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Abstract

Does every Boolean tautology have a short propositional-calculus proof? Here,
a propositional calculus (i.e. Frege) proof is a proof starting from a set of axioms
and deriving new Boolean formulas using a set of fixed sound derivation rules.
Establishing any super-polynomial size lower bound on Frege proofs (in terms of
the size of the formula proved) is a major open problem in proof complexity, and
among a handful of fundamental hardness questions in complexity theory by and
large. Non-commutative arithmetic formulas, on the other hand, constitute a quite
weak computational model, for which exponential-size lower bounds were shown
already back in 1991 by Nisan [Nis91] who used a particularly transparent argument.

In this work we show that Frege lower bounds in fact follow from correspond-
ing size lower bounds on non-commutative formulas computing certain polynomi-
als (and that such lower bounds on non-commutative formulas must exist, unless
NP=coNP). More precisely, we demonstrate a natural association between tau-
tologies T to non-commutative polynomials p, such that:

• if T has a polynomial-size Frege proof then p has a polynomial-size non-
commutative arithmetic formula; and conversely, when T is a DNF, if p has a
polynomial-size non-commutative arithmetic formula over GF (2) then T has
a Frege proof of quasi-polynomial size.

The argument is a characterization of Frege proofs as non-commutative formu-
las: we show that the Frege system is (quasi-) polynomially equivalent to a non-
commutative Ideal Proof System (IPS), following the recent work of Grochow and
Pitassi [FOCS 2014] that introduced a propositional proof system in which proofs
are arithmetic circuits, and the work in [Tza11] that considered adding the com-
mutator as an axiom in algebraic propositional proof systems. This gives a charac-
terization of propositional Frege proofs in terms of (non-commutative) arithmetic
formulas that is tighter than (the formula version of IPS) in Grochow and Pitassi
[FOCS 2014], in the following sense:
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(i) The non-commutative IPS is polynomial-time checkable—whereas the original
IPS was checkable in probabilistic polynomial-time; and

(ii) Frege proofs unconditionally quasi-polynomially simulate the non-
commutative IPS—whereas Frege was shown to efficiently simulate IPS
only assuming that the decidability of PIT for (commutative) arithmetic
formulas by polynomial-size circuits is efficiently provable in Frege.

Contents

1 Introduction 2
1.1 Propositional proof complexity . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Prominent directions for understanding propositional proofs . . . . . . . 4
1.3 Overview of results and proofs . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Some preliminaries: non-commutative polynomials and formulas . 6
1.3.3 Non-commutative Ideal Proof System . . . . . . . . . . . . . . . . 6

1.4 Significance and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Comparison with previous work . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries 11
2.1 Frege proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Algebraic proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 F -PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The non-commutative ideal proof system 15

4 Non-commutative ideal proof system polynomially simulates Frege 16
4.1 Non-commutative IPS polynomially simulates tree-like F -PC . . . . . . . 17

5 Frege quasi-polynomially simulates non-commutative IPS 20
5.1 Balancing non-commutative formulas . . . . . . . . . . . . . . . . . . . . 20
5.2 The reflection principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Non-commutative formula identities have quasi-polynomial-size proofs . 24
5.4 Homogenization of non-commutative formulas has short Frege proofs . . 25
5.5 Homogenous non-commutative formula identities have polynomial-size

Frege proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Identity witnessing theorem . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6.1 Algebraic branching programs . . . . . . . . . . . . . . . . . . . . 29
5.6.2 Implicitly working with ABPs . . . . . . . . . . . . . . . . . . . . 32

1 Introduction

1.1 Propositional proof complexity

The field of propositional proof complexity aims to understand and analyze the computa-
tional resources required to prove propositional statements. The problems the field poses
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to us are fundamental, difficult and go back to the work of Cook and Reckhow [CR79],
who showed the immediate relevance of these problems to the NP vs. coNP problem
(and thus the P vs. NP problem).

Among the major unsolved questions in proof complexity, is whether the standard
propositional logic calculus, either in the form of the Sequent Calculus, or equivalently,
in the axiomatic form of Hilbert proofs (i.e., Frege proofs), is polynomially bounded; that
is, whether every propositional tautology (or unsatisfiable formula) has a proof whose size
is polynomially bounded (refutation, resp.) in the size of the formula proved. Here, we
consider the size of proofs as the number of symbols it takes to write them down, where
each formula in the proof is written as a Boolean formula (in other words we count the
total number of logical gates appearing in the proof where each proof-line is a formula).
It is known [Rec76] that all Frege proof-systems1 as well as the Gentzen sequent calculus
(with the cut rule) are polynomially equivalent to each other, and hence it does not
matter precisely which rules, axioms, and logical-connectives we use.

Complexity-wise, the Frege proof system is considered a very strong system alas a
poorly understood one. The qualification strong here has several meanings: first, that
no super-polynomial lower bound is known for Frege proofs. Second, that there are
not even good hard candidates for the Frege system (see [BBP95, Kra11, LT13] for a
further discussion on hard proof complexity candidates). Third, that for most hard
instances (e.g., the pigeonhole principle and Tseitin tautologies) that are known to be
had for weaker systems (e.g., resolution, cutting planes, etc.), there are known polynomial
bounds on Frege proofs. Fourth, that proving super-polynomial lower bounds on Frege
proofs seems to a certain extent out of reach of current techniques. And finally, that by
the common (mainly informal) correspondence between circuits and proofs—namely, the
correspondence between a circuit-class C and a proof system in which every proof-line is
written as a circuit from C2—Frege system corresponds to the circuit class of polynomial-
size log(n)-depth circuits denoted NC1 (equivalently, of polynomial-size formulas [Spi71]),
considered to be a strong computational model for which no (explicit) super-polynomial
lower bounds are currently known.

Accordingly, proving lower bounds on Frege proofs is considered an extremely hard
task. In fact, the best lower bound known today is only quadratic [Kra95], which uses
a fairly simple syntactic argument. If we put further impeding restrictions on Frege
proofs, like restricting the depth of each formula appearing in a proof to a certain fixed
constant, exponential lower bounds can be obtained [Ajt88, PBI93, PBI93]. Although
these constant-depth Frege exponential-size lower bounds go back to Ajtai’s result from
1988, they are still in some sense the state-of-the-art in proof complexity lower bounds
(beyond the important developments on weaker proof systems, such as resolution and its
weak extensions). Constant-depth Frege lower bounds use quite involved probabilistic
arguments, mainly specialized switching lemmas tailored for specific tautologies (namely,
counting tautologies, most notable of which are the Pigeonhole Principle tautologies).
Even random k-CNF formulas near the satisfiability threshold are not known to be hard

1Formally, a Frege proof system is any propositional proof system with a fixed number of axiom
schemes and derivation rules which is also implicationally complete in which proof-lines are written as
propositional formulas (see e.g., [Kra95] and Definition 8).

2To be more precise, one has to associate a circuit class C with a proof system in which a family of
proofs is written such that every proof-line in the family is a circuit family from C.
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for constant-depth Frege (let alone hard for [unrestricted depth] Frege).
All of the above goes to emphasize the importance, basic nature and difficulty in

understanding the complexity of strong propositional proof systems, while showing how
little is actually known about these systems.

1.2 Prominent directions for understanding propositional
proofs

As we already mentioned, there is a guiding line in proof complexity which states a
correspondence between the complexity of circuits and the complexity of proofs. This
correspondence is mainly informal, but there are seemingly good indications showing it
might be more than a superficial analogy. One of the most compelling evidence for this
correspondence is that there is a precise formal correspondence between the first-order
logical theories of bounded arithmetic (whose axioms state the existence of sets taken
from a given complexity class C; cf. [CN10]) to propositional proof systems (in which
proof-lines are circuits from C).

Another facet of the informal correspondence between circuit complexity and proof
complexity is that circuit hardness can sometimes be used to obtain proof-complexity
hardness. The most notable example of this are the lower bounds on constant depth
Frege proofs mentioned above: constant depth Frege proofs can be viewed as propositional
logic operating with AC0 circuits, and the known lower bounds on constant depth Frege
proofs (cf. [Ajt88, KPW95, PBI93]) use techniques borrowed from AC0 circuits lower
bounds. The success in moving from circuit hardness towards proof-complexity hardness
has spurred a flow of attempts to obtain lower bounds on proof systems other than
constant depth Frege. For example, Pudlák [Pud99] and Atserias et al. [AGP02] studied
proofs based on monotone circuits, motivated by known exponential lower bounds on
monotone circuits. Raz and Tzameret [RT08b, RT08a, Tza08] investigated algebraic proof
systems operating with multilinear formulas, motivated by lower bounds on multilinear
formulas for the determinant, permanent and other explicit polynomials [Raz09, Raz06].
Atserias et al. [AKV04], Kraj́ıček [Kra08] and Segerlind [Seg07] have considered proofs
operating with ordered binary decision diagrams (OBDDs), and the second author [Tza11]
initiated the study of proofs operating with non-commutative formulas (see Sec. 1.5 for
a comparison with the current work).

Until quite recently it was unknown whether the correspondence between proofs and
circuits is two-sided, namely, whether proof complexity hardness (of concrete known proof
systems) can imply any computational hardness. An initial example of such an implica-
tion from proof hardness to circuit hardness was given by Raz and Tzameret [RT08b].
They showed that a separation between algebraic proof systems operating with arithmetic
circuits and multilinear arithmetic circuits, resp., for an explicit family of polynomials,
implies a separation between arithmetic circuits and multilinear arithmetic circuits. In
a recent significant development about the complexity of strong proof systems, Grochow
and Pitassi [GP14] demonstrated a much stronger correspondence. They introduced a
natural propositional proof system, called the Ideal Proof System (IPS for short), for
which any super-polynomial size lower bound on IPS implies a corresponding size lower
bound on arithmetic circuits, and formally, that the permanent does not have small
arithmetic circuits. The IPS is defined as follows:
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Definition 1 (Ideal Proof System (IPS) [GP14]). Let F1(x), . . . , Fm(x) be a system of
polynomials in the variables x1, . . . , xn, where the polynomials x2

i − xi, for all 1 ≤ i ≤ n,
are part of this system. An IPS refutation (or certificate) that the Fi’s polynomials have
no 0-1 solutions is a polynomial C(x, y) in the variables x1, . . . , xn and y1, . . . , ym, such
that:

1. F (x1, . . . , xn, 0) = 0; and

2. F (x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

The essence of IPS is that a proof (or refutation) is a single polynomial that can be
written simply as an arithmetic circuit or formula. The advantage of this formulation is
that now we can obtain direct connections between circuit/formula hardness (i.e., “com-
putational hardness”) and hardness of proofs. Grochow and Pitassi showed indeed that
a lower bound on IPS written as an arithmetic circuit implies that the permanent does
not have polynomial-size algebraic circuits (Valiant’s VNP 6= VP [Val79]); And similarly,
a lower bound on IPS written as an arithmetic formula implies that the permanent does
not have polynomial-size algebraic formulas (Valiant’s VNP 6= VPe).

Under certain assumptions, Grochow and Pitassi [GP14] were able to connect their
result to standard propositional calculus proof systems, i.e., Frege and Extended Frege.
Their assumption was the following: Frege has polynomial-size proofs of the statement
expressing that the PIT for arithmetic formulas is decidable by polynomial-size Boolean
circuits (PIT for arithmetic formulas is the problem to decide whether an input arith-
metic formula computes the (formal) zero polynomial). They showed that3, under this
assumption super-polynomial lower bounds on Frege proofs imply that the permanent
does not have polynomial-size arithmetic circuits. This, in turn, can be considered as a
(conditional) justification for the apparent difficulty in proving lower bounds on strong
proof systems.

1.3 Overview of results and proofs

1.3.1 Sketch

In this paper we contribute to the understanding of strong proof systems such as Frege,
and to the fundamental search for lower bounds on these systems, by formulating a
very natural proof system—a non-commutative variant of the ideal proof system—which
we show captures unconditionally (up to a quasipolynomial-size increase) propositional
Frege proofs. A proof in the non-commutative IPS is simply a single non-commutative
polynomial written as a non-commutative formula. This gives a fairly compelling and
simple new characterization of the proof complexity of propositional Frege. Moreover,
it brings new hope for achieving lower bounds on strong proof systems, by reducing the
task of lower bounding Frege proofs to the following seemingly much more manageable
task: proving matrix rank lower bounds on the matrices associated with certain non-
commutative polynomials (in the sense of Nisan [Nis91]; see below for details).

3We focus only on the relevant results about Frege proofs from [GP14] (and not the results about
Extended Frege; the latter proof system operates, essentially, with Boolean circuits, in the same way
that Frege operates with Boolean formulas (equivalently NC1 circuits)).
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We also tighten the results in Grochow and Pitassi [GP14], in the sense that we show
that in order to obtain a characterization of Frege proof in terms of an ideal proof system
it is advantageous to consider non-commutative polynomials instead of commutative ones
(as well as to add the commutator axioms). This shows that, at least for Frege, and in
the framework of the ideal proof system, lower bounds on Frege proofs do not necessarily
entail in themselves very strong computational lower bounds.

1.3.2 Some preliminaries: non-commutative polynomials and formulas

A non-commutative polynomial over a given field F and with the variables X :=
{x1, x2, . . .} is a formal sum of monomials with coefficients from F such that the product
of variables is non-commuting. For example, x1x2 − x2x1 + x3x2x

2
3 − x2x

3
3, x1x2 − x2x1

and 0 are three distinct polynomials in F〈X〉. The ring of non-commutative polynomials
with variables X with coefficients from F is denoted F〈X〉.

A polynomial (i.e., a commutative polynomial) over a field is defined in the same way as
a non-commutative polynomial except that now the product of variables is commutative;
that is, it is a sum of (commutative) monomials.

A non-commutative arithmetic formula (non-commutative formula for short; see Defi-
nition 9) is a fan-in two labeled tree, with edges directed from leaves towards the root, such
that the leaves are labeled with field elements (for a given field F) or variables x1, . . . , xn,
and internal nodes (including the root) are labeled with a plus + or product × gates.
A product gate has an order on its two children (holding the order of non-commutative
product). A non-commutative formula computes a non-commutative polynomial in the
natural way.

Exponential-size lower bounds on non-commutative formulas (over any field) were
established by Nisan [Nis91]. The idea (in retrospect) is quite simple: first transform
a non-commutative formula into an algebraic branching program (ABP; see Definition
19); and then show that the number of nodes in the ith layer of an ABP computing a
degree d homogenous non-commutative polynomial f is bounded from below by the rank
of the degree i-partial-derivative matrix of f .4 Thus, lower bounds on non-commutative
formulas follow from quite immediate rank arguments (e.g., the partial derivative matrices
associated with the permanent and determinant can easily be shown to have high ranks).

1.3.3 Non-commutative Ideal Proof System

Recall the IPS refutation system in Definition 1 above. We use the idea introduced in
[Tza11], that considered adding the commutator x1x2−x2x1 as an axiom in propositional
algebraic proof systems, to define a refutation system that polynomially simulates Frege:

Definition 2 (Non-commutative IPS). Let F be a field. Assume that F1(x) = F2(x) =
∙ ∙ ∙ = Fm(x) = 0 is a system of non-commutative polynomial equations from F〈x1, . . . , xn〉,
and suppose that the following set of equations (axioms) are included in the Fi(x)’s:

Boolean axioms: xi ∙ (1 − xi) , for all 1 ≤ i ≤ n ;
4 The degree i partial derivative matrix of f is the matrix whose rows are all non-commutative

monomials of degree i and columns are all non-commutative monomials of degree d − i, such that the
entry in row M and column N is the coefficient of the d degree monomial M ∙ N in f .
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Commutator axioms: xi ∙ xj − xj ∙ xi , for all 1 ≤ i < j ≤ n .

Suppose that the Fi(x)’s have no common 0-1 solutions.5 A non-commutative
IPS refutation (or certificate) that the system of Fi(x)’s is unsatisfiable is a non-
commutative polynomial F(x, y) in the variables x1, . . . , xn and y1, . . . , ym (i.e. F ∈
F〈x, y〉), such that:

1. F(x1, . . . , xn, 0) = 0; and

2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

We always assume that the non-commutative IPS refutation is written as a non-
commutative formula. Hence the size of a non-commutative IPS refutation is the minimal
size of a non-commutative formula computing the non-commutative IPS refutation.

The main result of this paper is that the non-commutative IPS (over either Q or Zq,
for any prime q) polynomially simulates Frege; and conversely, Frege quasi-polynomially
simulates the non-commutative IPS (over GF (2)). We explain the results in what follows.

For the purpose of the next theorem, we use a standard translation of propositional
formulas T into non-commutative arithmetic formulas:

Definition 3. Let tr(xi) := xi, for variables xi; tr(false) := 1; tr(true) := 0; and by
induction on the size of the propositional formula: tr(¬T1) := 1 − tr(T1); tr(T1 ∨ T2) =
tr(T1) ∙ tr(T2) and finally tr(T1 ∧ T2) = 1 − ((1 − tr(T1)) ∙ (1 − tr(T2))).

For a non-commutative formula f denote by f̂ the non-commutative polynomial com-
puted by f . Thus, T is a propositional tautology (i.e., a Boolean formula that is satisfied

by every assignment) iff t̂r(T ) = 0 for every 0-1 assignment to the underlying variables
of the non-commutative polynomial.

Theorem 1. Let F be either Q or Zq, for a prime q. The non-commutative IPS refutation
system, when refutations are written as non-commutative formulas over F, polynomially
simulates the Frege system. More precisely, for every propositional tautology T, if T has
a polynomial-size Frege proof then there is a non-commutative IPS certificate (over F) of
tr(¬T ) that has a polynomial non-commutative formula size.

The proof of Theorem 1 proceeds as follows. To simulate Frege proofs we use an
intermediate proof system F -PC formulated by Grigoriev and Hirsch [GH03]. The F -PC
system (Definition 11) is akin to the polynomial calculus refutation system [CEI96],
except that we operate in F -PC with arithmetic formulas treated as syntactic terms,
instead of writing polynomials throughout the proof as sum of monomials. We have the
two rules of polynomial calculus: from a pair of previously derived polynomials f, g we
can derive af +bg for a, b ∈ F, and from f we can derive xi ∙f , for any variable xi. We also
have local rewriting rules, that can operate on any sub-formula of an arithmetic formula
appearing in the proof. These rewriting rules express simple operations on polynomials
like commutativity of addition and product, associativity, distributivity, etc.

Grigoriev and Hirsch [GH03] showed that F -PC polynomially simulates Frege proofs,
and that for tree-like Frege proofs the polynomial simulation yields tree-like F -PC proofs.

5One can check that the Fi(x)’s have no common 0-1 solutions in F iff they do not have a common
0-1 solution in every F-algebra.

7



Since tree-like Frege is polynomially equivalent to Frege (because Frege proofs can always
be balanced to depth which is logarithmic in their size; cf. [Kra95] for a proof), we have
that tree-like F -PC polynomially simulates (dag-like) Frege proofs.

To conclude Theorem 1 it therefore remains to prove that non-commutative IPS poly-
nomially simulates tree-like F -PC proofs. This can be proved by induction on the number
of lines in the F -PC proofs. The interesting case in the induction is the simulation of
the commutativity rewrite-rule for products by the non-commutative IPS system, which
is done using the commutator axioms.

Now, since we write refutations as non-commutative formulas we can use
the polynomial-time deterministic Polynomial Identity Testing algorithm for non-
commutative formulas, devised by Raz and Shpilka [RS05], to check in deterministic
polynomial-time the correctness of non-commutative IPS refutations. Therefore, we ob-
tain:

Corollary 2. The non-commutative IPS is a sound and complete Cook-Reckhow refu-
tation system. That is, it is a sound and complete refutation system for unsatisfiable
propositional formulas in which refutations can be checked for correctness in determinis-
tic polynomial-time.

This should be contrasted with the original (commutative) IPS of [GP14], for which
verification of refutations is done in probabilistic polynomial time (using the standard
Schwartz-Zippel [Sch80, Zip79] PIT algorithm).

The major consequence of Theorem 1 is that to prove a super-polynomial Frege lower
bound it is now sufficient to prove a super-polynomial lower bound on non-commutative
formulas computing certain polynomials. Specifically, it is enough to prove that any non-
commutative IPS certificate F(x, y) (which is simply a non-commutative polynomial) has
a super-polynomial non-commutative formula size; and yet in another words, it suffices to
show that any such Fmust have a super-polynomial total rank according to the associated
partial-derivatives matrices discussed before.

We now consider the other direction, namely, whether Frege can simulate the non-
commutative IPS. We show that it does for CNFs (this is the case considered in [GP14]),
over GF (2), and with only a quasi-polynomial increase in size. For convenience, we use
a slightly different translation of clauses to non-commutative formulas than Definition 3:

Definition 4. Given a Boolean formula f we define the non-commutative formula trans-
lation tr′(f) as follows. Let tr′(x) := 1 − x and tr(¬x) := x, for x a variable. And let
tr′(f1 ∨ . . . ∨ fr) := tr′(f1) ∙ ∙ ∙ tr′(fr) (where the sequence of products stands for a tree of
product gates with tr′(fi) as leaves). Further, for a clause ki in a CNF φ = k1∧k2 . . .∧km,
denote by Qφ

i the non-commutative formula translation tr′(ki) of ki, where i = 1, 2, . . . ,m.

Theorem 3. For a CNF φ = k1 ∧ . . . ∧ km where Qφ
1 , . . . , Q

φ
m are the corresponding

non-commutative formulas for the clauses, if there is a non-commutative IPS refutation
of size s of Qφ

1 , . . . , Q
φ
m over GF (2), then there is a Frege proof of size sO(log s) of ¬φ.

The proof of Theorem 3 consists of several separate steps of independent interest.
Essentially, the argument is a short Frege proof for a reflection principle for the non-
commutative IPS system (a reflection principle for a given proof system P is a statement
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that says that if a formula is provable in P than the formula is also true). The argu-
ment becomes rather complicated because we need to prove properties of the evaluation
procedure of non-commutative formulas, within the restricted framework of propositional
Frege proofs.

The quasi-polynomial blowup in Theorem 3 depends solely on the fact that the reflec-
tion principle for non-commutative IPS is efficiently provable (apparently) only when the
non-commutative IPS certificate is written as a sum of homogenous non-commutative
formulas, as we now explain. Note that it is not known whether any arithmetic formula
can be turned into a (sum of) homogenous formulas with only a polynomial increase in
size (in contrast to the standard efficient homogenization of arithmetic circuits). Recently
Raz [Raz13] showed how to transform an arithmetic formula into (a sum of) homogenous
formulas with only a quasi-polynomial increase in size. In Lemma 18 we show that:

1. The same construction in [Raz13] holds also for non-commutative formulas.

2. This construction for non-commutative formulas can be carried out efficiently inside
Frege. That is, if F is a non-commutative formula of size s computing a homogenous
non-commutative polynomial over GF (2) and F ′ is a homogenous non-commutative
formula computing the same polynomial with size sO(log s) (existing by [Raz13]), then
Frege admits an sO(log s) size proof of F ≡ F ′.

Before we homogenize the non-commutative formulas (according to Raz’ construction
[Raz13]) we need to balance them, so that their depth is logarithmic in their size. We
inspect that the recent construction of Hrubeš and Wigderson [HW14], for balancing
non-commutative formulas with division gates (incurring at most a polynomial increase
in size) results in a division-free formula, when the initial non-commutative formula is
division-free itself. Therefore, we can assume that the non-commutative IPS certificate
is already balanced.

To prove Theorem 3 we thus start with a non-commutative IPS certificate π over
GF (2) of the polynomial translation of the CNF φ, written as a balanced non-commutative
formula (over GF (2)). We then consider this non-commutative polynomial identity over
GF (2) as a Boolean tautology by replacing plus gates with XOR and product gates with
AND. We convert this Boolean tautology to a homogenous representation (as described
above, using a simulation of [Raz13]). Now, we have a Boolean tautology which we denote
by π.

We wish to prove ¬φ in Frege, using the fact that π is a (massaged version of a)
non-commutative IPS certificate. To this end we essentially construct an efficient Frege
proof of the correctness of the Raz and Shpilka non-commutative formulas PIT algorithm
[RS05]. The PIT algorithm in [RS05] uses some basic linear algebraic concepts that might
complicate the proof in Frege. However, since we only need to show the existence of short
Frege proofs for the PIT algorithm’s correctness, we can supply witnesses to witness the
desired linear algebraic objects needed in the proof (these witnesses will be a sequence of
linear transformations).

Furthermore, to reason inside Frege directly about the algorithm of [RS05] is appar-
ently impossible, since this algorithm first converts a non-commutative formula into an
algebraic branching program (ABP); but apparently the evaluation of ABPs cannot be
done with Boolean formulas (and accordingly Frege possibly cannot reason about the eval-
uation of ABPs). The reason for this apparent inability of Frege to reason about ABP’s
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evaluation is that an ABP is a “sequential” object (an evaluation of an ABP seems to
follow from the source to sink, level by level), while Frege operates with formulas, which
are “parallel” objects (evaluation of [balanced] formulas can be done in logarithmic time,
in case we have enough [separate] processors to perform parallel sub-evaluations of the
formula). To overcome this obstacle we show how to perform Raz and Shpilka’s PIT
algorithm directly on non-commutative formulas, without converting the formulas first
into ABPs. This technical contribution takes a large part of the argument (Sec. 5.6). We
are thus able to prove the following statement, which might be interesting by itself:

Lemma 4. If a non-commutative homogeneous formula F (x) over GF (2) of size s is
identically zero, then the corresponding Boolean formula ¬Fbool(x) (where Fbool results by
replacing + with XOR and ∙ with AND in F (x)) can be proved with a Frege proof of size
at most sO(1).

1.4 Significance and discussion

The propositional-calculus is one of the most natural and central notions in logic, and
within proof complexity it has a dominant role as a strong proof system whose struc-
ture and complexity is poorly understood. In that respect, our characterization of Frege
proofs (and thus propositional-calculus) simply as non-commutative polynomials whose
non-commutative formula size corresponds (up to a quasi-polynomial factor) to the size
of Frege proofs, should be considered a valuable contribution. Since non-commutative
formulas constitute a weak model of computation that is quite well understood, and since
the Frege system is considered a strong proof system, and it is not entirely out of the way
that Frege—or at least its extension, Extended Frege—is polynomially bounded (i.e., ad-
mits polynomial-size proofs for every tautology), our results showing the correspondence
between Frege proofs and non-commutative formulas are quite surprising.

This correspondence, between non-commutative formulas and proofs, also gives re-
newed hope for progress on the major fundamental lower bounds problems in proof com-
plexity: it reduces the problem of proving lower bounds on Frege proofs to the problem
of establishing rank lower bounds on matrices associated with non-commutative polyno-
mials, where the non-commutative polynomials are given “semi-explicitly” (that is, they
are given in terms of the properties of the non-commutative IPS (Definition 2)). It is
already known that rank lower bounds yielding strong non-commutative formulas lower
bounds are fairly simple (cf. [Nis91]). This then provides a quite compelling evidence
that Frege lower bounds, although mostly considered out of reach of current techniques,
might not be very far away. Furthermore, our result simplifies greatly the high level-
lower bound approach laid out in [GP14]: the suggested lower bound approach in [GP14]
proposed to move from (commutative) arithmetic circuits lower bounds towards proof
complexity lower bounds; but for (commutative) arithmetic circuits there are no known
explicit lower bounds, in contrast to non-commutative formulas which constitute a well
understood circuit class: both explicit exponential lower bounds and a deterministic PIT
algorithms are known for non-commutative formulas.

The new characterization of Frege proofs also sheds light on the correspondence be-
tween circuits and proofs in proof complexity: in the framework of the ideal proof system,
a Frege proof can be seen from the computational perspective as a non-commutative for-
mula.
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We also tighten the results of [GP14]. Namely, by showing that already the non-
commutative version of the IPS is sufficient to simulate Frege. As well as by showing
unconditional efficient simulation of the non-commutative IPS by Frege.

While proving that Frege quasi-polynomially simulates the non-commutative IPS, we
demonstrate new simulations of algebraic complexity constructions within proof complex-
ity; these include the homogenization for formulas of Raz [Raz13] and the PIT algorithm
for non-commutative formulas by Raz and Shpilka [RS05]. These proof complexity sim-
ulations adds to the known previous such simulations shown in Hrubeš and Tzameret
[HT12] and might be interesting by themselves.

Lastly, this work emphasizes the importance and usefulness of non-commutative mod-
els of computation in proof complexity (see [Hru11, LT13] for more on this).

1.5 Comparison with previous work

As discussed before, our main characterization of Frege system is based on a non-
commutative version of the IPS system from Grochow and Pitassi [GP14]. As described
above, the non-commutative IPS gives a tighter characterization than the (commutative)
IPS in [GP14]. Thus, our proof system is seemingly weaker than the original (formula
version of) IPS, and hence apparently closer to capture the Frege system.

Proofs in the original (formula version of the) IPS are arithmetic formulas, and thus
any super-polynomial lower bound on IPS refutations implies VNP 6= VPe, or in other
words, that the permanent does not have polynomial-size arithmetic formulas (Joshua
Grochow [personal communication]). This gives a justification of the considerable hard-
ness of proving IPS lower bounds. On the other hand, an exponential-size lower bound on
our non-commutative IPS gives only a corresponding lower bound on non-commutative
formulas, for which exponential-size lower bounds are already known [Nis91]. Since
Frege is quasi-polynomially equivalent to the non-commutative IPS, this means that
exponential-size lower bounds on Frege implies merely—at least in the context of the
Ideal Proof System—corresponding lower bounds on non-commutative formulas, a result
which is however already known. This implies again that there is no strong concrete
justification to believe that Frege lower bounds are beyond current techniques.

The work in [Tza11] dealt with propositional proof systems over non-commutative
formulas. The difference with the current work is that [Tza11] formulated all proof
systems as variants of the polynomial calculus and hence the characterization of a proof
system in terms of a single non-commutative polynomial is lacking from that work (as
well as the consequences we obtained in the current work).

2 Preliminaries

2.1 Frege proof systems

Definition 5 (Boolean formula). Given a set of input variables x1, . . . , xn, a Boolean
formula on the inputs is a rooted tree of fan-in at most two, with edges directed from leaves
to the root. Internal nodes are labeled with the Boolean gates ∨,∧,¬, and the fan-in of
∨,∧ is two and the fan-in of ¬ is one. The leaves are labeled either with input variables
or with 0, 1 (identified with the truth values false and true, resp.). The entire formula
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computes the function computed by the gate at the root. Given a formula F , the size of
the formula is the number of Boolean gates in F.

Informally, a Frege proof system is just a standard propositional proof system for
proving propositional tautologies (one learns in a basic logic course), having axioms and
deduction rules, where proof-lines are written as Boolean formulas. The size of a Frege
proof is the number of symbols it takes to write down the proof.

The problem of demonstrating super-polynomial size lower bounds on propositional
proofs (called also Frege proofs) asks whether there is a family (Fn)∞n=1 of propositional
tautological formulas for which there is no polynomial p such that the minimal Frege
proof size of Fn is at most p(|Fn|), for all n ∈ Z+ (where |Fn| denotes the size of the
formula Fn).

Definition 6 (Frege rule). A Frege rule is a sequence of propositional formulas

A0(x), . . . , Ak(x), for k ≤ 0, written as A1(x),...,Ak(x)
A0(x)

. In case k = 0, the Frege rule is
called an axiom scheme. A formula F0 is said to be derived by the rule from F1, . . . , Fk

if F0, . . . , Fk are all substitution instances of A1, . . . , Ak, for some assignment to the x
variables (that is, there are formulas B1, . . . , Bn such that Fi = Ai(B1/x1, . . . , Bn/xn), for
all i = 0, . . . , k). The Frege rule is said to be sound if whenever an assignment satisfies
the formulas in the upper side A1, . . . , Ak, then it also satisfies the formula in the lower
side A0.

Definition 7 (Frege proof). Given a set of Frege rules, a Frege proof is a sequence of
Boolean formulas such that every proof-line is either an axiom or was derived by one
of the given Frege rules from previous proof-lines. If the sequence terminates with the
Boolean formula A, then the proof is said to be a proof of A. The size of a Frege proof
is the the total sizes of all the Boolean formulas in the proof.

A proof system is said to be implicationally complete if for all set of formulas T , if
T semantically implies F , then there is a proof of F using (possibly) axioms from T . A
proof system is said to be sound if it admits proofs of only tautologies (when not using
auxiliary axioms, like in the T above).

Definition 8 (Frege proof system). Given a propositional language and a set P of sound
Frege rules, we say that P is a Frege proof system if P is implicationally complete.

Note that a Frege proof is always sound since the Frege rules are assumed to be sound.
We do not need to work with a specific Frege proof system, since a basic result in proof
complexity states that every two Frege proof systems, even over different languages, are
polynomially equivalent [Rec76].

2.2 Algebraic proof systems

In this section, we give the definitions the algebraic proof systems Polynomial Calcu-
lus over Formulas (F -PC) defined by Grigoriev and Hirsch [GH03]. We start with the
definition of a non-commutative formula:

Definition 9 (Non-commutative formula). Let F be a field and x1, x2, . . . be variables. A
noncommutative arithmetic formula (or noncommutative formula for short) is a labeled
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tree, with edges directed from the leaves to the root, and with fan-in at most two, such
that there is an order on the edges coming into a node (the first edge is called the left
edge and the second one the right edge). Every leaf of the tree (namely, a node of fan-in
zero) is labeled either with an input variable xi or a field F element. Every other node of
the tree is labeled either with + or × (in the first case the node is a plus gate and in the
second case a product gate). We assume that there is only one node of out-degree zero,
called the root. A noncommutative formula computes a noncommutative polynomial in
F〈x1, . . . , xn〉 in the following way. A leaf computes the input variable or field element that
labels it. A plus gate computes the sum of polynomials computed by its incoming nodes.
A product gate computes the noncommutative product of the polynomials computed by its
incoming nodes according to the order of the edges. (Subtraction is obtained using the
constant −1.) The output of the formula is the polynomial computed by the root. The
depth of a formula is the maximal length of a path from the root to the leaf. The size of
a noncommutative formula f is the total number of nodes in its underlying tree, and is
denoted |f |.

The definition of (a commutative) arithmetic formula is almost identical:

Definition 10 (Arithmetic formula). An arithmetic formula is defined in a similar way
to a noncommutative formula, except that we ignore the order of multiplication (that is,
a product node does not have order on its children and there is no order on multiplication
when defining the polynomial computed by a formula).

Given a pair of non-commutative formulas F and G and a variable xi, we denote by
F [G/xi] the formula F in which every occurrence of xi is substituted by the formula G.

Note that an arithmetic formula is a syntactic object. For example, x1+x2 and x2+x1

are different formulas because commutativity might not hold (even if commutativity
holds, we will regard them as different formulas. And in the proof system F -PC they can
be derived from each other via the “commutativity of addition”).

2.2.1 F -PC

The F -PC proof system defined by Grigoriev and Hirsch [GH03] operates with arithmetic
formulas (as purely syntactic terms).

Definition 11 (F -PC [GH03]). Fix a field F. Let F := {f1, . . . , fm} be a collection of
formulas6 computing polynomials from F[x1, . . . , xn]. Let the set of axioms be the following
formulas:

Boolean axioms xi ∙ (1 − xi) , for all 1 ≤ i ≤ n .

A sequence π = (Φ1, . . . , Φ`) of formulas computing polynomials from F[x1, . . . , xn] is
said to be an F -PC proof of Φ` from F , if for every i ∈ [`] we have one of the following:

1. Φi = fj , for some j ∈ [m];

2. Φi is a Boolean axiom;

6Note here that we are talking about formulas (treated as syntactic terms), and not polynomials. Also
notice that all formulas in F -PC are (commutative) formulas computing (commutative) polynomials.
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3. Φi was deduced by one of the following inference rules from previous proof-lines
Φj , Φk , for j, k < i:

Product
Φ

xr ∙ Φ
, for r ∈ [n] .

Addition
Φ Θ

a ∙ Φ + b ∙ Θ
, for a, b ∈ F .

(Where Φ, xr ∙Φ, Θ, a∙Φ, b∙Θ are formulas constructed as displayed; e.g., xr ∙Φ is the
formula with product gate at the root having the formulas xr and Φ as children.)7

4. Φi was deduced from previous proof-line Φj, for j < i, by one of the following
rewriting rules expressing the polynomial-ring axioms (where f, g, h range over all
arithmetic formulas computing polynomials in F[x1, . . . , xn]):

Zero rule 0 ∙ f ↔ 0

Unit rule 1 ∙ f ↔ f

Scalar rule t ↔ α, where t is a formula containing no variables (only field F
elements) that computes the constant α ∈ F.

Commutativity rules f + g ↔ g + f , f ∙ g ↔ g ∙ f

Associativity rule f + (g + h) ↔ (f + g) + h , f ∙ (g ∙ h) ↔ (f ∙ g) ∙ h

Distributivity rule f ∙ (g + h) ↔ (f ∙ g) + (f ∙ h)

(The semantics of an F -PC proof-line pi is the polynomial equation pi = 0.) An F -PC
refutation of F is a proof of the formula 1 from F . The size of an F -PC proof π is
defined as the total size of all formulas in π and is denoted by |π|.

Definition 12 (Tree-like F -PC). A system F -PC is a tree-like F -PC if every derived
arithmetic formula in the proof system is used only once (and if it is needed again, it
must be derived once more).

Translation of Boolean formulas into polynomial equations. The proof system
F -PC can be considered as a propositional proof system for Boolean tautologies (namely,
Boolean formulas that are true under any assignment). Given a Boolean formula T in the
propositional variables x1, . . . , xn we can transform T into a set of polynomial equations
by encoding it into a set of arithmetic formulas where each clause in the CNF corresponds
to an arithmetic formula by replacing ∧ with ×, ∨ with + and ¬x with 1−x; and for each
variable xi, add x2

i − xi (called the Boolean axioms) to guarantee that every satisfying
assignment to the variables is a 0-1 assignment. Then the given CNF is a tautology if
and only if the set of arithmetic formulas have no common root.

7In [GH03] the product rule of F -PC is defined so that one can derive Θ ∙ Φ from Φ, where Θ is
any formula, and not just a variable. However, the definition of F -PC in [GH03] and our Definition 11
polynomially-simulate each other.
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Definition 13 (Polynomially Simulation). Let P1,P2 be two proof systems for the same
language L (in case the proof systems are for two different languages we fix a translation
from one language to the other, as described above). We say that P2 polynomially simu-
lates P1 if given a P1 proof (or refutation) π of a F , then there exists a proof (respectively,
refutation) of F in P2 of size polynomial in the size of π. In case P2 polynomially simu-
lates P1 while P1 does not polynomially simulates P2 we say that P2 is strictly stronger
than P1.

In [GH03], it was shown that F -PC, as well as tree-like F -PC, polynomially simulate
Frege. We repeat the argument for the convenience of the reader:

Theorem 5 ([GH03]). Tree-like F -PC polynomially simulates Frege.

Proof. The following was shown in [GH03]:

Theorem (Theorem 3, [GH03]). The system F -PC polynomially simulates
the Frege system.

Moreover, inspecting the proof of the above theorem, we can observe that tree-like
Frege proofs are simulated by tree-like F -PC proofs:

Lemma 6. Tree-like F -PC polynomially simulates tree-like Frege systems.

But Kraj́ıček showed that tree-like Frege and Frege are polynomially equivalent:

Theorem ([Kra95]). Tree-like Frege proofs polynomially simulate Frege
proofs.

Thus, by this theorem and by Lemma 2.2.1, tree-like F -PC polynomially simulates the
Frege system.

3 The non-commutative ideal proof system

The non-commutative ideal proof system (non-commutative IPS for short) is an algebraic
refutation system in which a refutation is a single non-commutative polynomial. In the
next section we show that when the non-commutative IPS refutations are written as
non-commutative formulas then the non-commutative IPS polynomially simulates tree-
like F -PC, and hence polynomially simulates the Frege proof system (by [GH03]).

Definition 14 (Non-commutative IPS). Let F be a field. Assume that F1(x) = F2(x) =
∙ ∙ ∙ = Fm(x) = 0 is a system of non-commutative polynomial equations from F〈x1, . . . , xn〉,
and suppose that the following set of equations (axioms) are included in the Fi(x)’s:

Boolean axiom: xi ∙ (1 − xi) , for all 1 ≤ i ≤ n ;

Commutator axiom: xi ∙ xj − xj ∙ xi , for all 1 ≤ i < j ≤ n .
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Suppose that the Fi(x)’s have no common 0-1 solutions.8 A non-commutative IPS refu-
tation (or certificate) that the system of Fi(x)’s is unsatisfiable is a non-commutative
polynomial F(x, y) in the variables x1, . . . , xn and y1, . . . , ym (i.e. F ∈ F〈x, y〉), such
that:

1. F(x1, . . . , xn, 0) = 0; and

2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

In this paper we assume that the non-commutative IPS refutation is written as a non-
commutative formula. Hence the size of a non-commutative IPS refutation is the minimal
size of a non-commutative formula computing the non-commutative IPS refutation.

Comment:

1. The identities in items 1 and 2 in Definition 14 are formal identities of polynomials
(i.e., in 1 the polynomial in the left hand side has a zero coefficient for every
monomial, and in 2 the only nonzero monomial is the monomial 1).

2. In order to prove that a system of commutative polynomial equations {Pi = 0}
(where each Pi is expressed as an arithmetic formula) has no common roots in non-
commutative IPS, we write each Pi as a non-commutative formula (in some way;
note that there is no unique way to do this).

3. When we write P ∙ Q − Q ∙ P where P,Q are formulas (e.g., xi and xj , resp.), we
mean ((P ∙ Q) + (−1 ∙ (Q ∙ P ))).

4 Non-commutative ideal proof system polynomially

simulates Frege

Here we show that the non-commutative IPS polynomially simulates Frege.

Theorem 7 (restatement of Theorem 1). The non-commutative IPS refutation system,
when refutations are written as non-commutative formulas, polynomially simulates Frege
systems. More precisely, for every propositional tautology T , if T has a polynomial-size
Frege proof then there is a non-commutative IPS certificate (with integer coefficients) of
polynomial non-commutative formula size.

Recall that Raz and Shpilka [RS05] gave a deterministic polynomial-time PIT algo-
rithm for non-commutative formulas (over any field):

Theorem 8 (PIT for non-commutative formulas [RS05]). There is a deterministic
polynomial-time algorithm that decides whether a given noncommutative formula over
a field F computes the zero polynomial 0.9

8One can check that the Fi(x)’s have no common 0-1 solutions in F iff they do not have a common
0-1 solution in every F-algebra.

9We assume here that the field F can be efficiently represented (e.g., the field of rationals).
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Now, since we write refutations as non-commutative formulas we can use the theorem
above to check in deterministic polynomial-time the correctness of non-commutative IPS
refutations, obtaining:

Corollary 9 (restatement of Corollary 2). The non-commutative IPS is a sound and
complete Cook-Reckhow refutation system. That is, it is a sound and complete refutation
system for unsatisfiable propositional formulas in which refutations can be checked for
correctness in deterministic polynomial-time.

To prove Theorem 7, we will show in Section 4.1 that the non-commutative IPS
polynomially-simulates tree-like F -PC (Definition 11), which sufficed to complete the
proof due to Theorem 5.

4.1 Non-commutative IPS polynomially simulates tree-like
F -PC

For convenience, let Ci,j denote the commutator axiom xi ∙xj −xj ∙xi, for i, j ∈ [n], i 6= j.

Theorem 10. Non-commutative IPS polynomially simulates Tree-like F -PC (Definition
11).

Proof. Let F1, . . . , Fm be arithmetic formulas over the variables x1, . . . , xn. Note that an
arithmetic formula is a syntactic term in which the children of gates are ordered. We thus
can treat a (commutative) arithmetic formula as a non-commutative arithmetic formula
by taking the order on the children of products gates to be the order of non-commutative
multiplication.

Suppose F -PC has a poly(n)-size tree-like refutation π := (L1, . . . , Lk) of the Fi’s (i.e.,
a proof of the polynomial 1 from F1, . . . , Fm), where each Lj is an arithmetic formula. We
construct a corresponding non-commutative IPS refutation of the Fi’s from this F -PC
tree-like refutation. Denote by |π| the size of π. We have the following:

Lemma 11. For each i ∈ [k], there exists a non-commutative formula φi such that

1. φi(x, 0) = 0;

2. φi(x, Ft, Cj,j′) = Li, where t ∈ [m], j, j ′ ∈ [n], j < j ′;10

3. |φi| ≤
(∑

`∈Ai
|L`|
)4

, where Ai ⊂ [k] refers to the indices of the F -PC proof-lines
involved in deriving Li.

11

Note that if the lemma holds, then φk will be a non-commutative IPS proof because
it has the property that φk(x, 0) = 0 and φk(x, Ft, Cj,j′) = Lk = 1, where t ∈ [m], j, j ′ ∈

[n], j 6= j ′. And its size is bounded by
(∑

`∈Ak
|L`|
)4

≤
(∑

`∈[k] |L`|
)4

≤ O(|π|4). Thus,

non-commutative IPS polynomially simulates tree-like F -PC.

10This is an abuse of notation meaning φi(x, F1, . . . , Fm, C1,2, C1,3 . . . , Cn−1,n). We use a similar abuse
of notation in the sequel.

11 For example, if Li is derived by Lα and Lα is derived by Lβ for some β < α < i ∈ [k], then we say
that α, β are both involved for deriving Li.
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Proof. We construct φi by induction on the length k of the refutation π. That is, for
i from 1 to k, we construct the non-commutative formula φi(x, y) according to Li, as
follows:

Case 1: The Li is the input axiom Fj for some j ∈ [m].
Let φi := yj. Obviously, φi(x, 0) = 0, φi(x, Ft, Cα,β) = Fj = Li and |φi| = 1 ≤ |Li|4.

Case 2: The Li is derived from an inference rule from previous proof-lines Lj , Lj′ , for
j, j ′ < i. Then we divide this case into two parts.

Part (1): The Li is derived from the addition rule Li = aLj + bLj′ . Put φi := aφj + bφj′

where a, b ∈ F. Thus, φi(x, 0) = aφj(x, 0) + bφj′(x, 0) = 0, φi(x, Ft, Cα,β) = aLj + bLj′ =

Li and |φi| = |φj|+ |φj′ |+3 ≤
(∑

`∈Aj
|L`|
)4

+
(∑

`∈Aj′
|L`|
)4

+3 ≤
(∑

`∈Ai
|L`|
)4

(where

the right most inequality holds since π is a tree-like refutation and hence Aj ∩ Aj′ = ∅).

Part (2): The Li is derived from the product rule Li = xr ∙ Lj′ for r ∈ [n]. Put φi :=
(xr ∙ φj). Then φi(x, 0) = xr ∙ φj(x, 0) = 0, φi(x, Ft, Cα,β) = xr ∙ Lj = Li and |φi| =

|φj| + 2 ≤
(∑

`∈Aj
|L`|
)4

+ 2 ≤
(∑

`∈Ai
|L`|
)4

.

Case 3: The Li is derived from Lj by a rewriting rule excluding the commutative rule
of multiplication. Let φi := φj . The non-commutative φi satisfies the properties claimed
trivially since all the rewriting rules (excluding the commutative rule of multiplication)
express the non-commutative polynomial-ring axioms, and thus cannot change the poly-

nomial computed by a non-commutative formula. And |φi| = |φj| ≤
(∑

`∈Ai
|L`|
)4

.

Case 4: The Li is derived from Lj by a single application of the commutative rule of
multiplication. Then by Lemma 12 below, we can construct a non-commutative formula
φLi,Lj

such that φi := (φj + φLi,Lj
) satisfies the desired properties (stated in Lemma 11).

Lemma 12. Let Li, Lj be non-commutative formulas such that Li can be derived from
Lj via the commutative rule of multiplication. Then there is a non-commutative formula
φLi,Lj

(x, y) in variables {x`, yα,β, ` ∈ [n], α < β ∈ [n]}, such that:

1. φLi,Lj
(x, 0) = 0;

2. φLi,Lj
(x,Cα,β) = Li − Lj;

3.
∣
∣φLi,Lj

∣
∣ ≤ |Li|

2 |Lj|
2.

Proof. We define the non-commutative formula φLi,Lj
inductively as follows:

• If Li = (P ∙Q), and Lj = (Q∙P ), then φLi,Lj
is defined to be the formula constructed

in Lemma 13 below.
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• If Li = (P ∙ Q), Lj = (P ′ ∙ Q′).

Case 1. If P = P ′, then let φLi,Lj
:= (P ∙ φQ,Q′).

Case 2. If Q = Q′, then let φLi,Lj
:= (φP,P ′ ∙ Q).

• If Li = (P + Q), Lj = (P ′ + Q′).

Case 1. If P = P ′, then let φLi,Lj
= φQ,Q′ .

Case 2. If Q = Q′, then let φLi,Lj
= φP,P ′ .

By induction, one could check the construction satisfies the desired properties.

Lemma 13. For any pair P,Q of two non-commutative formulas there exists a non-
commutative formula F in variables {x`, yi,j , ` ∈ [n], i < j ∈ [n]} such that:

1. F (x, 0) = 0;

2. F (x,Ci,j) = P ∙ Q − Q ∙ P ;

3. |F | = |P |2 |Q|2.

Proof. Let s(P,Q) denote the smallest size of F satisfying the above properties. We will
show that s(P,Q) ≤ |P |2 ∙ |Q|2 by induction on max(|P | , |Q|).

Base case: |P | = |Q| = 1.
In this case both P and Q are constants or variables, thus s(P,Q) = 1 ≤ |P |2 |Q|2.

In the following induction step, we consider the case that |P | ≥ |Q| (which is sym-
metric for the case |P | < |Q|).

Induction step: Assume that |P | ≥ |Q| (the case |P | < |Q| is similar).

Induction step case 1, the root of P is addition.
Case 1: The root of P is addition.

Let P = (P1 + P2). We have (after rearranging):

P ∙ Q − Q ∙ P = ((P1 ∙ Q − Q ∙ P1) + (P2 ∙ Q − Q ∙ P2))

By induction hypothesis, we have s(P,Q) ≤ s(P1, Q) + 1 + s(P2, Q) ≤ |P1|
2 |Q|2 + 1 +

|P2|
2 |Q|2 ≤ (|P1| + |P2| + 1)2 |Q|2 = |P |2 ∙ |Q|2.

Case 2: The root of P is a product gate.
Let P = (P1 ∙ P2). By rearranging:

P ∙ Q − Q ∙ P = ((P1 ∙ (P2 ∙ Q − Q ∙ P2)) + ((P1 ∙ Q − Q ∙ P1) ∙ P2))

By induction hypothesis, we have s(P,Q) = |P1|+1+ s(P2, Q)+1+ s(P1, Q)+1+ |P2| ≤
|P1| + 1 + |P2|

2 |Q|2 + 1 + |P1|
2 |Q|2 + 1 + |P2| ≤ (|P1| + |P2| + 1)2 |Q|2 = |P |2 ∙ |Q|2.
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5 Frege quasi-polynomially simulates non-

commutative IPS

In this section we prove that the Frege system quasi-polynomially simulates the non-
commutative IPS (over GF (2)). Together with Theorem 10 this concludes Theorem 14
and gives a new characterization (up to a quasi-polynomial increase in size) of proposi-
tional Frege proofs as non-commutative arithmetic formulas.

We use the notation in Section 1.3.3: for a clause ki in a CNF φ = k1 ∧ . . . ∧ km, we
denote by Qφ

i the non-commutative formula translation tr ′(ki) of the clause ki (Definition
4). Thus, ¬x is translated to x, x is translated to 1 − x and f1 ∙ ∙ ∙ fr is translated to∏

i tr
′(fi) (considered as a tree of product gates with tr ′(fi) as leaves), and where the

formulas are over GF (2) (meaning that 1 − x is in fact 1 + x).

Theorem 14 (Main quasi-polynomial simulation). For a 3CNF φ = k1 ∧ . . .∧ km where
Qφ

1 , . . . , Q
φ
m are the corresponding polynomial equations for the clauses, if there is a non-

commutative IPS refutation of size s of Qφ
1 , . . . , Q

φ
m over GF (2), then there is a Frege

proof of size sO(log s) of ¬φ.

The rest of the paper is dedicated to proving Theorem 14.

5.1 Balancing non-commutative formulas

We show that a non-commutative formula of size s can be balanced to an equivalent
formula of depth O(log s). Both the statement and its proof are similar to Proposition
4.1 in Hrubeš and Wigderson [HW14] (which in turn is similar to the proof for the
commutative formula with division gates case in Brent [Bre74]) . Note that a formula of
a logarithmic depth must have a polynomial-size. (Thus, in the sequel, without loss of
generality we will assume the F is given already in a balanced form, namely has depth
O(log s) and polynomial-size which for simplicity we denoted simply as s.)

Lemma 15. Assume that a non-commutative polynomial p can be computed by a formula
of size s. Then p can be computed by a formula of depth O(log s) (and hence of polynomial-
size).

Proof. The proof is almost identical to the proof of Proposition 4.1 in [HW14], which deals
with rational functions and allows formulae with division gates. Thus, we only outline
the argument in [HW14] and argue that if the given formula does not have division gates,
then the new formula obtained by the balancing construction will not contain any division
gate either.

We need the following notations:

Notation. Let F be a non-commutative formula and let g be a gate in F . We denote
by Fg the subformula of F with the root being g and by F [z/g] the formula obtained by

replacing Fg in F by the variable z. We denote by F̂ , F̂g the non-commutative polynomials
in F〈X〉 computed by F and Fg, respectively.

We simultaneously prove the following two statements by induction on s, concluding
the lemma:
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Inductive statement: Let F be a non-commutative formula of size s then for sufficiently
large s and suitable constants c1, c2 > 0, the following hold:

(i) F̂ has a non-commutative formula of depth at most c1 log s + 1 ;

(ii) if z is a variable occurring at most once in F , then:

F̂ = A ∙ z ∙ B + C,

where A,B,C are non-commutative polynomials that do not contain z, and each
can be computed by a non-commutative formula of depth at most c2 log s.

Base case: s = 1. In this case there is one gate g connecting two variables or constants. (i)
can be obtained immediately as it is already computed by a formula of depth 1 = log s+1.
As for (ii), note that in the base case, F is a formula with only one gate g. Assuming
that z is a variable occurring only once in F , it is trivial to construct non-commutative
formulas A,B,C so that F̂ = A ∙ z ∙ B + C for which the conditions in (ii) hold:

Case 1: if g is a plus gate connecting the variable z and a variable or constant x 6= z,
then F̂ := 1 ∙ z ∙ 1 + x.
Case 2: if g is a product gate connecting z, x (for z 6= x) sequentially, then Fg = 1∙z∙x+0.
Case 3: if g is a product gate connecting x, z (for z 6= x) sequentially, namely in the
reverse order, then Fg = x ∙ z ∙ 1 + 0.

Induction step: (i) is obtained roughly as follows. Find a gate g in F such that both
Fg and F [z/g] are small (of size at most 2s/3, and where z is a new variable that does
not occur in F ). Then, by applying induction hypothesis on F [z/g], there exist formulas

A,B,C of small depth such that F̂ [z/g] = A ∙ z ∙ B + C. Thus, F̂ := A ∙ F̂g ∙ B + C.
To prove (ii), find an appropriate gate g on the path between z and the output of F (an

appropriate g is a gate g such that F [z1/g] and Fg are both small (of size at most 2s/3),
where z1 is a new variable introduced for substitution). Use the inductive assumptions
to write:

F̂ [z1/g] = A1 ∙ z1 ∙ B1 + C1 and F̂g = A2 ∙ z ∙ B2 + C2

and compose these expressions to get the following :

F̂ = A1 ∙ (A2 ∙ z ∙ B2 + C2) ∙ B1 + C1 = A′ ∙ z ∙ B′ + C ′,

where A′ = A1 ∙ A2, B′ = B2 ∙ B1, C
′ = A1 ∙ C2 ∙ B1 + C1.

It is obvious that the depths of A′, B′, C ′ are at most c2 log(2s/3) + 2 ≤ c2 log s when
s is sufficiently large.

To finish the proof of (ii), all that we need to show is that A′, B′, C ′ do not contain the
variable z. It is enough to prove that A1, B1, C1, A2, B2, C2 do not contain z. Notice that

Fg contains z and z is a variable occurring at most once in F . Therefore F̂ [z1/g] does not
contain the variable z, which means that both A1, B1, C1 do not contain z. Moreover, by
induction hypothesis, we know that A2, B2, C2 do not contain z. Therefore, we conclude
that A′, B′, C ′ do not contain z and thereby the whole proof.
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5.2 The reflection principle

Here we show that the existence of a non-commutative IPS refutation of size s and
depth O(log s), implies the existence of a Frege proof with size sO(log s) of ¬φ. This is
done by proving a reflection principle for the non-commutative IPS system in Frege. As
mentioned in the introduction, informally, a reflection principle for a given proof system
P is a statement that says that if a formula is provable in P then the formula is also true.
Thus, suppose we have a short Frege-proof of the reflection principle for P , having the
form:

“([π] is a P -proof of [T ]) −→ T”,

where [T ] and [π] are some reasonable encodings of the tautology T and its P -proof π,
respectively. Then, we can easily obtain a Frege proof of T assuming we have a P -proof
of T .

Let F be a non-commutative formula over GF (2). First, note that F is a non-
commutative IPS proof of φ only if it has the following two properties:

F
(
x, 0
)

= 0, F
(
x,Q

φ
(x)
)

= 1, (1)

showing the unsatisfiability of Q
φ
(x) = 0, and hence showing ¬φ is a tautology. We can

treat F as a Boolean formula, as follows:

Definition 15 (Booleanization Fbool). Let F (x) be a non-commutative formula over
GF (2) in the (algebraic) variables x. We denote by Fbool(p) the Boolean formula in
the (propositional) variables p obtained by turning every plus gate and multiplication gate
to ⊕ (i.e., XOR) and ∧ gates, respectively, and turning the input variables x into the
propositional variables p. We sometimes write F and Fbool without explicitly mentioning
the x and p variables.

Note that for any 0-1 assignment, F and Fbool have the same value Therefore, by the
properties in (1), we know:

¬Fbool

(
p, 0
)
, Fbool

(
p,Q

φ
(p)
)

(2)

are both tautologies.
We proceed to prove ¬φ based on 2 first, before we show there exists an sO(log s) proof

of 2.

Lemma 16.
((

¬Fbool

(
p, 0
))

∧ Fbool

(
p,Q

φ
(p)
))

→ ¬φ can be proved with a polynomial-

size Frege proof.

Proof. We will prove by way of a contradiction that:

φ, ¬Fbool

(
p, 0
)
, Fbool

(
p,Q

φ
(p)
)

(3)

cannot be simultaneously satisfied. Assume otherwise and let the Boolean formula
Truth([φ], p) express the statement that the assignment p satisfies the formula φ, as
defined below. In the following we always denote by p actual propositional variables
occurring in a propositional formula (and not an encoding of an assignment).
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Definition 16 (Section 4.3 in [GP14]).

Truth([φ], p) :=
∧

i∈[m]

Truth([ki], p).

For a single 3-literal clause ki, define Truth([k], p) as follows. For an integer i, let [i]
denote the standard binary encoding of i. And [k] = q1s1q2s2q3s3 where each si is the
sign bit and each qi is a length-[log2 n+1] string of variables corresponding to the encoding
of the index of a variable.

Truth([k], p) :=
∨

j∈[3]

∨

i∈[n]

(
¬ qj = i ∧ (pi ↔ sj)

)
.

As Truth([k], p) is syntactically identical to k(p), it can be easily proved as follows:

φ(p) → Truth([φ], p), (4)

We proceed to prove the following formulae:

•
Truth([ki], p) → ¬Qφ

ibool
(p), ∀i ∈ [m]. (5)

Note that ¬Qφ
ibool

(p) and Truth([ki], p) are of constant size. So (by completeness) all
the formulae in (5) above can be proved with a Frege proof of constant-size.

• Using the fact that Truth([φ], p) =
∧

i∈[m] Truth([ki], p) we can easily prove in Frege

with a polynomial-size proof that for each i ∈ [m],

Truth([φ], p) → ¬Qφ
ibool

(p). (6)

• By assumption φ together with modus pones using 4 and 6, we have:
∧

i∈[m]

¬Qφ
ibool

(p). (7)

• We show below how to prove the following by a way of contradiction:

¬Fbool

(
p, 0
)
∧
∧

i∈[m]

¬Qφ
ibool

(p) → ¬Fbool

(
p,Q

φ
(p)
)

. (8)

If there is an assignment a that makes Fbool

(
a,Q

φ
(a)
)

false, while

¬Fbool

(
a, 0
)
,
∧

i∈[m] ¬Q
φ

i (a) are still true, then the assignment must make Q
φ
(a) 6=

0, which is a contradiction with the fact that
∧

i∈[m] ¬Q
φ

i (a) is still true. Therefore,
there is no such assignment a. That is, 8 holds.

• Using the assumptions that ¬Fbool

(
p, 0
)

and 7 together with modus pones on (8),
we get:

¬Fbool

(
p,Q

φ
(p)
)

,

which is a contradiction to Fbool

(
p,Q

φ
(p)
)
. Therefore, we finish our proof.
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It remains to show a quasi-polynomial-size proof of (2).

We denote ¬Fbool

(
p, 0
)

and ¬
(
1 ⊕ Fbool

(
p,Q

φ
(p)
))

by

F ′
bool(p), F ′′

bool(p), respectively. (9)

Note that the substitutions of the constants 0 or the constant depth formulae Qφ
bool in F

can not increase the depth of F too much (i.e., can add at most a constant to the size
of F ). In other words, the depths of the formulae in (9) are still O(log s).

Proof of Theorem 14 (Main quasi-polynomial simulation). Using Lemma 17 that we
shall prove below, we get that 9 can be proved in quasi-polynomial-size. And together
with Lemma 16 above, this shows that ¬φ can be proved in quasi-polynomial-size, con-
cluding the proof.

5.3 Non-commutative formula identities have quasi-
polynomial-size proofs

Recall that a (commutative or non-commutative) multivariate polynomial f is homoge-
neous if every monomial in f has the same total degree. For each 0 ≤ j ≤ d, denote by
f (j) the homogenous part of degree j of f , that is, the sum of all monomials (together
with their coefficient from the field) in f of total degree j. We say that a formula is
homogeneous if each of its gates computes a homogeneous polynomial (see Definition 9
for the definition of a polynomial computed by a gate or a formula).

To complete the proof of Theorem 14 it remains to prove the following:

Lemma 17. If a non-commutative formula F (x) with 0-1 coefficients of size s and depth
O(log s) is identically zero, then the corresponding Boolean formula ¬Fbool(p) admits a
Frege proof of size sO(log s).

Proof. The formula F is of size s which means that the maximum degree of a polynomial
computed by F is at most s + 1. Following Raz’ work in [Raz13], we can split F into
homogenous formulae F (i), i = 0, . . . , s + 1. In Lemma 18, proved in the sequel, we
show that Raz’ homogenization construction can already be proved efficiently in Frege.
In other words, we show that there exists an sO(log s)-size Frege proof of:

s+1⊕

i=0

F (i) ↔ Fbool. (10)

By Lemma 19 proved in the sequel, for any homogenous formula H, ¬Hbool admits a
polynomial-size in the size of H Frege proof (recall that ¬Hbool is a tautology whenever
H is a non-commutative formula computing the zero polynomial over GF (2)). Thus, by
Lemma 19, for every F (i), i = 0, . . . , s + 1, there exists an sO(log s)-size Frege proof of

¬F
(i)
bool. That is, there exists an sO(log s)-size Frege proof of ¬

(⊕s+1
i=0 F

(i)
bool

)
. (Note that

Lemma 19 gives proofs which have size polynomial in the size of ¬F
(i)
bool, and this latter

size is sO(log s)). Together with tautology (10), we can derive ¬Fbool in Frege.
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5.4 Homogenization of non-commutative formulas has short
Frege proofs

To complete the proof of Theorem 17 it remains to prove Lemmas 18 and 19. Here we
prove the former, namely that Raz’ construction from [Raz13] (see below) is efficiently
provable in Frege:

Lemma 18. If F is a non-commutative formula of size s and depth O(log s) and
F (0), . . . , F (s) are the homogenous formulae computing F ’s homogenous parts of degree
from 0 to s, respectively, constructed according to [Raz13], then there exists an sO(log s)-
size Frege proof of:

s+1⊕

i=0

F (i) ↔ Fbool. (11)

Proof. We first give a sketch of Raz’ (commutative) formula homogenization construction
from [Raz13]. This is a slightly more involved variant of the standard homogenization
construction for circuits (cf. [Str73]).

Raz’ formula homogenization construction. Given a (commutative) arithmetic
formula F we wish to construct s (commutative) formulas computing the homogenous
parts F (i), i = 0, . . . , s. Define the product-depth of a gate u, denoted upd, as the
maximal number of product gates along a directed path from u to the output gate. Since
the formula F is balanced, the depth is at most O(log s), namely the largest value of upd

for any node u in F is O(log s).
Furthermore, for every integer r, denote by Nr the family of monotone non-increasing

functions Du from {0, 1, . . . , r} to {0, 1, . . . , s}. Thus, the size of Nr is
(

r+s+1
r+1

)
=
(

r+s+1
s

)

(the number of combinations with repetitions of r+1 elements from s+1 elements, which
determine functions in Nr). Thus, for every node u of F , the size of the set Nupd

is at

most
(

s+O(log s)+1
s

)
= sO(log s).

We construct the desired homogenous formulae F (0), F (1), . . . , F (s+1) by constructing
a formula F ? according to F first. Split every gate u in F into |Nupd

| gates in F ?, labeled
(u,Du), for every Du ∈ Nupd

and add edges connecting nodes in the same way as [Raz13].
Denote by F ?

u,Du the sub-formula rooted at (u,Du) in F ? (there may be some isolated
nodes (u,Du), namely nodes that no edge connects with them, and we consider the sub-
formulae on these nodes as 0). Similarly, denote by Fu the sub-formula rooted at u in
F . In [Raz13] it was proved that for every node (u,Du) in F ?, F ?

u,Du is a homogenous
formula computing the homogenous part of degree Du(upd) of Fu. More precisely, for
every node u in F , denote by su the size of the formula Fu. The maximum degree of the
polynomial computed by Fu is su +1. Furthermore, for i = 0, 1, . . . , su +1, let Du

i denote
the set of functions Du in Nupd

such that Du(upd) = i. The formulae F ?
u,Du , for Du ∈ Du

i ,
are the formulae computing the homogenous parts of degree i of Fu. For simplicity, let
F ?

u,Du
i

denote such a formula.

Efficient proofs of the homogenization construction. Next, we use a similar in-
duction argument as in [Raz13], from leaves to the top gate of F , showing that for every
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gate u in F there exists an sO(log s)-size Frege proof of:

su+1⊕

i=0

F ?
u,Du

i bool ↔ Fu bool.

Observe that the formulae F ?
r,Dr

0
, . . . , F ?

r,Dr
s+1

, computing the homogenous parts of

all degree of the sub-formula rooted on the root of F , are just those desired formulae
F (0), F (1), . . . , F (s+1). Thus, eventually, when we prove the above statement for the root
node r, we prove the existence of an sO(log s)-size Frege proof of the Boolean formulae in
11.

• If u is a leaf, by the construction, for each Du ∈ Nupd
, the node (u,Du) is the leaf

of F ?. Furthermore, if u is labeled by a field element, (u,Du) is labeled by the
same field element if Du(upd) = 0 and by 0 if Du(upd) 6= 0. If u is labeled by an
input variable, (u,Du) is labeled by the same input variable if Du(upd) = 1 and
by 0 if Du(upd) 6= 1. Thus, we know for each Du ∈ Nupd

, F ?
(u,Du) either computes

F
(Du(upd))
u or 0. Namely, we can easily prove the induction base:

su+1⊕

i=0

F ?
bool u,Du

i
↔ Fbool u.

• If u is a sum gate with children v, w, by construction, for every Du ∈ Nupd
, denote

by Dv ∈ Nvpd
the function that agrees with Du on {0, 1, . . . , upd} and satisfies

Dv(vpd) = Du(upd), and in the same way, denote by Dw ∈ Nwpd
the function

that agrees with Du on {0, 1, . . . , upd} and satisfies Dw(wpd) = Du(upd). The node
(u,Du) computes:

F ?
u,Du := F ?

v,Dv + F ?
w,Dw .

Assume Du(upd) = j. Then it means

F̂u,Du
j

:= F̂v,Dv
j

+ F̂w,Dw
j
.

Therefore, the corresponding boolean formula of F̂u,Du
j

should have the following
property:

F ?
u,Du

j bool ↔ F ?
v,Dv

j bool ⊕ F ?
w,Dw

j bool , j = 0, 1, . . . , s.

Together with the induction hypothesis on nodes v, w:

Fbool v ↔
sv+1⊕

i=0

F ?
v,Dv

i bool, Fbool w ↔
sw+1⊕

i=0

F ?
w,Dw

i bool,

we can show
su+1⊕

i=0

(
F ?

v,Dv
i bool ⊕ F ?

w,Dw
i bool

)
↔ Fv bool ⊕ Fw bool.

Namely:
su+1⊕

i=0

F ?
u,Du

i bool ↔ Fu bool ,

as we have assumed that u is a sum gate.
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• If u is a product gate with children v, w, using the same notation as above, for
j = 0, 1, . . . , su +1, we define F ?

u,Du
j

:=
∑j

i=0 F ?
v,Dv

i
∙F ?

w,Dw
j−i

. If j > us, let F ?
u,Du

j
:= 0.

Similarly, using induction hypothesis on nodes v, w and observing the fact that in
the formula su = sv + sw + 1, we can prove:

Fu bool ↔
su+1⊕

i=0

F ?
u,Du

i bool

as follows:

Fu bool

↔Fv bool ∧ Fw bool

↔

(
sv+1⊕

j=0

F ?
v,Dv

j bool

)

∧

(
sw+1⊕

i=0

F ?
w,Dw

i bool

)

↔
sv+sw+2⊕

j=0

j⊕

i=0

(
F ?

v,Dv
i bool ∧ F ?

w,Dw
j−i bool

)

↔
su+1⊕

j=0

(
j⊕

i=0

(
F ?

v,Dv
i bool ∧ F ?

w,Dw
j−i bool

)
)

↔
su+1⊕

i=0

F ?
u,Du

i bool.

5.5 Homogenous non-commutative formula identities have
polynomial-size Frege proofs

To conclude Theorem 14 it remains to prove Lemma 19. Here we will prove 19, based on
further lemmas we prove in the next section.

First, we need to set some notation. Denote by F =syn G the fact that F is syntacti-
cally identical to G. And for two vectors of formulae F ,G, denote by F =syn G the fact
that the two vectors are identical coordinate-wise.

Definition 17 (Syntactic-degree). Define the syntactic degree of a non-commutative
formula F , deg(F ), as follows: (i) If F is a field element or a variable, then deg(F ) = 0
and deg(F ) = 1, respectively; (ii) deg(F ⊕G) = max(deg(F ), deg(G)), and deg(F ⊗G) =
deg(F ) + deg(G), where ⊕,⊗ denote plus gates, product gates respectively.

The following definition is essential for the next section, where we talk about algebraic
branching programs (ABPs). This definition will enable us to identify within a homoge-
nous non-commutative formula a certain part of the formula that corresponds to a part
of the algebraic branching program.
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Definition 18 (Induced part of a formula). Let F ′ be a sub-formula of F and g1, ..., gk be
gates in F ′ and c1, ..., ck be constants in F. Then F ′[c1/g1, ..., ck/gk] is called an induced
part of F .

We sometimes call an induced part of a formula simply a part of a formula.

Lemma 19 (Main technical lemma). There exists a constant c such that if a non-
commutative homogeneous formula F (x) over GF (2) of size s is identically zero, then
the corresponding Boolean tautology ¬Fbool(p) can be proved with a Frege proof of size at
most sc (for sufficiently large s).

Proof. Let d be the syntactic-degree of F . Note that the syntactic-degree d of F is at
most s+1. Theorem 20, proved in the next section, states the existence of a collection of
witnesses that witness that the homogenous non-commutative formula F computes the
non-commutative zero polynomial. As demonstrated below, these witnesses, derived from
the Raz and Shpilka [RS05] PIT algorithm for non-commutative formulas, will enable us
to inductively and efficiently prove in Frege that F indeed is the zero polynomial (over
GF(2)). The following are the witnesses and the properties they have:

Identity Witnesses

1. d + 1 many 0-1 matrices Λi of the following dimensions: for i =
0, . . . , d − 1, Λi is of dimension mi × mi; for i = d, Λd is of dimension
1 × md, where md = 1 (so Λd = 1).

2. d many matrices Ti−1; For each matrix Ti−1, i = 1, . . . , d, its mi ×
mi−1 entries are homogenous linear forms in the x variables with 0-1
coefficients.

3. For i = 0, . . . , d, F i is a vector of induced parts of F , each computing
a homogenous non-commutative polynomial of degree exactly i. The
length of the vectors F i is denoted mi.

These witnesses make the following equalities true:

ΛiF i = 0, i = 0, 1, . . . , d, (12)

F =syn ΛdF d (meaning that F =syn F d) (13)

ΛiF i =syn Ti−1Λi−1F i−1 i = 1, . . . , d. (14)

To conclude Lemma 19 we demonstrate a proof of ¬Fbool based on the tautologi-
cal Boolean formulas obtained from equations (12), (13) and (14). For simplicity of
transforming (12), (13), (14) to Boolean formulas, denote Fbool(p)i as the vector of all

corresponding Boolean formulas of the formulas in F i, and Fbool(p)i,t as its tth coordinates.
Based on (12), we have the following Boolean formulae:

∧

w∈[mi]




⊕

t:Λi(w,t)=1

¬
(
Fbool(p)i,t

)


 , i = 0, 1, . . . , d. (15)
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And based on (14), for i = 1, . . . , d, and each index u ∈ [mi] of vector ΛiF i, we have the
following logical equivalence between two Boolean formulae:




⊕

t:Λi(u,t)=1

¬Fbool(p)i,t



 ≡
⊕

w∈[mi]



Ti−1(u,w)bool(p) ∧




⊕

t:Λi−1(w,t)=1

¬Fbool(p)i−1,t







 ,

(16)
which states the equivalence between two consecutive Boolean formulae in 15. Note that
Ti−1(u,w) is a linear combination

∑n
i=1 cixi where ci ∈ GF (2), ∀i ∈ [n]. Thus

Ti−1(u,w)bool(p) =
⊕

i:ci=1

pi.

Now we give a Frege proof of the Boolean formulae (15), (16). First, (16) can be
immediately proved in Frege since the left part is syntactically equal to the right part (by
the syntactic equalities in (14)). Moreover, when i = 0, F 0 is just a 0-1 constant vector.
Thus, the following Boolean formula is a tautology without variables and hence can be
proved in Frege in polynomial-size:

∧

w∈[m0]




⊕

t:Λi(w,t)=1

¬Fbool(p)i,t



 . (17)

Therefore, applying modus ponens inductively on (17) and (16) we can prove each tau-
tology in (15). Hence, when i = d, we have proved:

∧

w∈[md]




⊕

t:Λd(w,t)=1

¬Fbool(p)d,t



 ,

which is just ¬Fbool(p) by (13).

5.6 Identity witnessing theorem

It remains to prove the following:

Theorem 20 (Identity witnessing theorem). Let F (x) be a non-commutative homogenous
formula of syntactic degree d over GF (2) computing the non-commutative zero polyno-
mial. Then the Identity Witnesses as defined in Section 5.5 exist.

In what follows we will prove this theorem. The proof uses the notion of an algebraic
branching program and the Raz and Shpilka PIT algorithm [RS05].

5.6.1 Algebraic branching programs

We recall the work of Raz and Shpilka [RS05] showing a deterministic polynomial-time
PIT algorithm for non-commutative arithmetic formulas. Similar to [RS05], we introduce
the following definition:
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Definition 19 (ABP). An algebraic branching program (ABP) is a directed acyclic graph
with one source and one sink. The vertices of the graph are partitioned into levels num-
bered from 0 to d (the degree of the ABP), and edges may go only from level i to level i+1.
The source is the only vertex at level 0, and the sink is the only vertex at level d. Each
edge is labeled with a homogeneous linear polynomial in the variables xi (i.e., a function
of the form

∑
i cixi, with coefficients ci ∈ F, where F is the underlying field). The size of

an ABP is the number of its vertices. A path, directed from source to sink, in the ABP is
said to compute the non-commutative product of linear forms on its edges (in the order
they appear in the path). A node in the ABP computes the sum of all incoming paths
arriving from the source. The ABP computes the non-commutative polynomial computed
at its sink.

By transforming the formula to ABP and using the following fact which had been
proved in [RS05], one can obtain a deterministic polynomial-time algorithm for the poly-
nomial identity testing of non-commutative formulas:

Theorem 21 (Theorem 4, [RS05]). Let A be a (non-commutative) ABP of size s with
d + 1 levels then we can verify whether A is a zero polynomial in time O(s5 + s ∙ n4).

Let l be the number of levels in the ABP A where the source node is on the 0th

level and the sink node is on the (l + 1)th level. Denote the nodes on the ith level
by vi,1, . . . , vi,mi

(where mi is the number of nodes on the ith level). Thus the ABPs
starting from each node on the ith level to the sink vl+1 compute the i-degree polynomials:
A(vl+1−i,1, vl+1), . . . , A(vl+1−i,ml+1−i

, vl+1). Furthermore, for i = 0, 1, . . . , l + 1, denote by:

Ai :=
(
A(vl+1−i,1, vl+1), . . . , A(vl+1−i,ml+1−i

, vl+1)
)

the vector of these polynomials. With this notation, we are now able to apply a similar
idea to that in Raz and Shpilka’s PIT algorithm for non-commutative formulas [RS05]:

Lemma 22. If A(v0, vl+1) is identically zero, then:

1. There exist l + 1 0-1 matrices Λi with dimension mi × mi such that

ΛiAi = 0, i = 0, . . . , l,

(where the equality here is semantic).

2. There exist l matrices Ti−1 whose mi × mi−1 entries are homogenous linear forms
in the x variables with 0-1 coefficients, such that

ΛiAi =syn Ti−1Λi−1Ai−1, i = 1, . . . , l − 1

A(v0, vl+1) =syn Al+1 =syn TlΛlAl,

where the syntactic equality means that the ABPs are all identical (when we con-
struct the ABPs in the right hand sides of the two equalities above in the obvious
manner).
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Proof. Let Λl+1 := 1. Then we know:

Λl+1Al+1 = TlΛlAl.

We will start from Λl+1 and compute Λi inductively for i = l, . . . , 0.
Let Mi,i−1 be the adjacency matrix of dimension mi × mi−1 of the two consecutive

layers l − i, l − i + 1 in A, where for each entry:

Mi,i−1(p, q) = A(vl−i,p, vl+1−i,q) =
n∑

k=1

ckxk,

where ck ∈ {0, 1} , k ∈ [n], p ∈ [mi], q ∈ [mi+1].

That is, Mi,i−1 can be written as
∑n

k=1 xkM
(k)
i,i−1 (the superscript (k) is used here as

an index only, not as a homogenous component of a polynomial). Therefore, by the
definition of an ABP we have:

Ai = Mi,i−1Ai−1

=
n∑

k=1

xiM
(k)
i,i−1Ai−1.

Moreover, if ΛiAi = 0, then

Λi

n∑

k=1

xiM
(k)
i,i−1Ai−1 = 0.

Therefore, by the non-commutativity of product we have:

ΛiM
(k)
i,i−1Ai−1 = 0, k = 1, 2, . . . , n.

Hence, to prove the existence of Λi−1 for which the statement of the lemma holds, it
suffices to find a Λi−1 that satisfies the following property:

Λi−1Ai−1 = 0 ⇐⇒ ΛiM
(k)
i,i−1Ai−1 = 0, k = 1, 2, . . . , n.

This can be done by finding the basis of the span of all row vectors in Λ iM
(k)
i,i−1, k =

1, 2, . . . , n.
Moreover, to prove the existence of T

(k)
i−1 we note that, by properties of a basis of a

linear space, there must be a matrix T
(k)
i−1 such that:

ΛiM
(k)
i,i−1 = T

(k)
i−1Λi−1, k = 1, 2, . . . , n

Then, let Ti−1 =
∑n

k=1 T
(k)
i−1xk. Thus:

Λi ∙ Ai = Ti−1Λi−1Ai−1.
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5.6.2 Implicitly working with ABPs

Notice that it is unclear how to (usefully) represent an ABP A directly in Frege system,
because apparently ABP is a stronger model than formulas (and Frege operates with
formulas). Thus, we cannot directly use the same formulation as [RS05]. This is the
reason we work with induced parts of formulas (Definition 18): an induced part of a
formula serves as a “massaged” version of a part of the ABP obtained from the non-
commutative formula.

Denote by A the ABP obtained from F . For two vertices v′, v′′ in the ABP A, we
denote by A(v′, v′′) the polynomial computed by the ABP with the source v′ and the sink
v′′ and all paths leading from v′ to v′′.

We observe that Raz and Shpilka’s [RS05] proof uses only those ABPs A(v, vl+1)
in which v is an arbitrary node in A and vl+1 is the sink. We introduce the following
definition:

Definition 20 (v-part of formula F ). Let F be a homogenous formula and A be an ABP
transformed from F according to the methods stated in [RS05] in which the source is v0

and the sink is vl+1. For every node v in A, if there exists an induced part of the formula
F computing the same polynomial as A(v, vl+1), then we call this part a v-part of the
formula F (the v-part is not necessarily unique).

Let F be a non-commutative homogenous formula and let A be the corresponding ABP
of F . By Lemma 23 (proved in the sequel) we construct an injective map between
the nodes v in A to v-parts of F , denoted F •

v (so F •
v computes the non-commutative

homogenous polynomial computed by A(v, vl+1)). Thus, we can refer to every ABP
A(v, vl+1) implicitly by an explicit induced part F •

v of F . Furthermore, for every vertex v
in A, we know that there exists an order of summation (written as a fan-in two formula
of plus gates) and also a linear sum (also written as a formula of plus gates) making the
following syntactic equality true:

F •
v =syn

∑

u: u has an incoming
edge from v

A(v, u) × F •
u . (18)

We show how to inductively construct the injective mapping F •
v between nodes v in

the ABP A and v-parts in F in the proof of the following lemma:

Lemma 23. For a non-commutative homogenous formula F with 0-1 coefficients, let A
be the ABP transformed from F by the methods in [RS05, Nis91] in which the source is
v0 and the sink is vl+1. For every node v in A the polynomial computed by A(v, vl+1)
can be computed by some formula, denoted F •

v , which is a v-part of F . Furthermore, for
every node v in the ABP, there exits an order of summation (written as a fan-in two tree
of plus gates) and a sequence of formulas computing homogenous linear forms A(v, u)
(identified with A(v, u) for simplicity) such that (18) holds.

Proof. Let F ′ be a sub-formula of F and let g1, ..., gk be gates in F ′ and c1, ..., ck constants
in {0, 1}. Recall that we call F ′[c1/g1, , . . . , , ck/gk] an induced part of F . First, we
construct a non-homogeneous ABP A, such that each node v of A is mapped to a part of
F , (which we denote for simplicity also F •

v ). In a non-homogeneous ABP we mean that
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the ABP is not necessarily leveled, that edges may be labeled with constants 1, and that
the ABP may output a non-homogeneous polynomial.

Similar to the standard construction in [RS05], construct by recursion a non-
homogeneous ABP for the right son of the root of the formula and a non-homogeneous
ABP for the left son of the root of the formula. We denote with v0 and vl+1 the source
and the sink, respectively, of the resulting ABP.

We will assign the corresponding F •
v to v once we add the node v in A.

Consider the process of construction: each time we have two nodes v1, v2 which had
been added and we proceed to construct, by induction, A(v1, v2) for the formula F ′. In
other words, we add nodes between v1, v2 according to the arithmetic operation in the
root gate g, continuing the construction on the son gates of g.

We now give the details of how to add nodes according to the arithmetic operation in
g as well as how to assign specific parts of F to these new nodes.

• If g is a plus gate, add two new nodes v′, v′′ and wire the ABPs in parallel as follows:
add two edges labeled with 1 from v1 to v′ and from v1 to v′′. Furthermore, we
continue the construction of A(v′, v2),A(v′′, v2) for F ′

gleft
, F ′

gright
, respectively.

Then, the corresponding v-parts F •
v′ , F •

v′′ of F for v′, v′′ should compute the same
polynomials computed by A(v′, vl+1),A(v′′, vl+1).

Consider the gate g in the original F , Fg = Fgleft
+ Fgright

. Furthermore, consider g
in F ′, F ′

g = F ′
gleft

+ F ′
gright

.

A(v′, vl+1) = A(v′, v2) ∙ A(v2, vl+1)

= F ′
gleft

∙ F •
v2

= (F ′ − F ′
gright

) ∙ F •
v2

= F ′[0/gleft] ∙ F
•
v2

=
(
F ′ ∙ F •

v2

)
[0/gleft]

= F •
v1

[0/gleft].

Note that F •
v1

[0/gleft] is also a part of F and we assign it to v′ as the corresponding
v-part F •

v′ . Similarly, for node v′′, the part F •
v1

[0/gright] is assigned as the v-part.

• If g is a product gate, add the node v and wire A sequentially with node v1, v, v2

such that A(v1, v) = Fgleft
,A(v, v2) = Fgright

. Then the corresponding v-part of F
for the new node v should satisfy the following:

F •
v = F ′

gright
∙ F •

v2
= F ′[1/gleft] ∙ F

•
v2

= F •
v1

[1/gleft].

Thus we can assign F •
v1

[1/gleft] to v as the corresponding v-part of F .

That is, each node v of A corresponds to a unique part F •
v of F computing A(v, vl+1).

Observe that every edge in the non-homogenous ABP A is labeled by only one constant
or only one variable. Using the above notation, we have the following syntactic equality:
when v′, v′′ are children of a plus gate v1, then

F •
v1

=syn F •
v1

[0/gright] + F •
v1

[0/gleft] =syn F •
v′ + F •

v′′ .
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When v is introduced by a product gate v1 and v and both gates are directly connected
by an edge labeled with x, then:

F •
v1

=syn A(v1, v)F •
v1

[1/v] =syn x ∙ F •
v .

Moreover, notice that such parts F •
v , where v is a node of A, is also a homogenous

formula as we only substitute the son gates of plus gates or product gates by 0, or 1,
respectively, maintaining these plus and product gates still computing the homogenous
formula.

Like [RS05], to turn the non-homogeneous ABP to a standard ABP, first replace
each vertex v (except the source) of the non-homogeneous ABP with s + 1 new vertices,
(v, 0), (v, 1), . . . , (v, s+1), such that vertex (v, i) computes the homogeneous part of degree

i of v, namely F
• (i)
v . However, by the property of a homogenous formula, we know there

is only one node (v, i) in the s + 1 copies computing the exact F •
v but 0. Therefore, we

only need to focus on the unique copy computing the non-zero polynomial among these
ABPs and such copy, denoted by A′, is the same as A, except the original names v of each
node in A becomes (v, iv) where iv is the degree of the homogenous polynomial computed
by F •

v .
Then all that we need to do to turn A′ into a standard (homogenous) ABP is to get

rid of edges labeled with constants. Note that the following operations, for getting rid of
edges labeled with constants, can only reduce the number of nodes in an ABP while not
changing any correspondence between the nodes in the ABP and the sub-formulae of F .
Therefore, we can conclude that for each node v in A, the formula computed by A(v, vl+1)
can be computed by the formula F •

v which is an induced part of F . Additionally, the
following operations do not change the syntactical equivalence between each nodes on
different levels but may make several equalities into one with some specific order. *** ?
*** For simplicity, we denote it as

F •
v =syn

∑

u has incoming
edge from v

A(v, u) × F •
u .

We now get rid of edges that are labeled with constants. Since the coefficient is either
0 or 1 and the edge with 0 can be erased directly as it has no influence on the result, all
edges that we proceed to get rid of is those with constant 1

Let e be a such edge labeled with a constant 1.
For every edge e going from (v, iv) to (u, iu) for some nodes u, v of F : we erase the

edge e, and instead we connect every (directed) in-neighbor of (v, iv), (w, iw) if iw = iv−1,
to (u, iu) in the following manner: If the edge from (w, iw) to (v, iv) is labeled with some
function h, then we put a directed edge between (w, iw) and (u, iu) and label it with h. If
there is already an edge between (w, iw) and (u, iu), labeled with some function h0, then
we replace it with an edge labeled with h0 + h.

To conclude, we finish the transformation from a homogenous formula F to an ABP
A, where for each node v in A, we have a v-part of F , denoted F •

v , that computes the
polynomial computed by A(v, vl+1); and further there exits a specific order of summation
(written as a fan-in two tree of sum gates) and specific formulas computing homogenous
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linear forms A(v, u), such that:

F •
v =syn

∑

u has incoming
edge from v

A(v, u) × F •
u .

Now we conclude the proof the main Theorem 20, as follows:

Proof of Theorem 20. For the non-commutative homogenous formula F (x) with 0-1 co-
efficients computing a zero polynomial, let A(v0, vl+1) be its corresponding ABP, which
means A(v0, vl+1) is identically zero.

Then by Lemma 22 we know:

(i) there exists l + 1 0-1 matrices Λi with dimension mi × mi such that

ΛiAi = 0, i = 0, . . . , l;

(ii) there exists l matrices Ti−1 whose mi × mi−1 entries are homogenous linear forms
in the x variables with 0-1 coefficients, such that

ΛiAi = Ti−1Λi−1Ai−1, i = 1, . . . , l − 1,

A(v0, vl+1) = Al+1 = TlΛlAl.

Using the correspondence given in Lemma 23, we can replace each ABP A(v, vl+1) in
Ai by a corresponding v-part F •

v . Denote with F i the vector of all v-parts F •
v of F that

compute a (homogenous) polynomial of degree i, we can replace Ai in the above equalities
to obtain new equalities about parts of formula F rather than APBs. Note that there
may be some redundant v-parts of F in F i which do not correspond to any node in ABP,
we can just add more lines with all zero in Λi to get rid of them. For simplicity, in what
follows, we still use Λi to denote such matrices with additional zero lines.

Now, we have:
(i) d + 1 0-1 matrices Λi of dimension mi × mi, i = 0, . . . , d − 1 and Λd of dimension

1 × md, such that
ΛiF i = 0, i = 0, 1, . . . , d,

and
(ii) d matrices Ti−1 whose mi × mi−1 entries are homogenous linear forms in the x

variables with 0-1 coefficients, such that

ΛiF i = Ti−1Λi−1F i−1, i = 1, . . . , d.

F = Λd ∙ F d.

Using the syntactic equality in Lemma 23, we know there exits a specific order of sum-
mation and specific formulas computing homogenous linear forms making equalities in
5.6.2, 5.6.2 be syntactic equalities:

ΛiF i =syn Ti−1Λi−1F i−1, i = 1, . . . , d.

F =syn Λd ∙ F d.
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