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ON GROWTH OF HOMOLOGY TORSION IN AMENABLE

GROUPS

ADITI KAR, PETER KROPHOLLER AND NIKOLAY NIKOLOV

Abstract. Suppose an amenable group G is acting freely on a simply
connected simplicial complex X̃ with compact quotient X. Fix n ≥

1, assume Hn(X̃,Z) = 0 and let (Hi) be a Farber chain in G. We

prove that the torsion of the integral homology in dimension n of X̃/Hi

grows subexponentially in [G : Hi]. By way of contrast, if X is not
compact, there are solvable groups of derived length 3 for which torsion
in homology can grow faster than any given function.

1. Introduction

Let G be a group acting freely on a simply connected simplicial complex
X̃ with compact quotient X̃/G = X. Let n ∈ N. The n-skeleton X(n) of

X is finite, π1(X) = G and X̃ is the universal cover of X. Let Cn(X) be
the free abelian group with basis the set of simplices in dimension n of X.
The boundary maps δn : Cn(X) → Cn−1(X) define the homology groups
Hn(X,Z) = ker δn/im δn+1. Denote the size of the torsion subgroup of
Hn(X,Z) by Tn(X).

Let (Hi) be a chain of finite index subgroups of G ordered by inclusion.
Let Ω be the profinite space lim←− G/Hi. The counting measure on the finite

sets G/Hi induces a probability measure µ on Ω and G acts on Ω by measure
preserving homeomorphisms. The chain (Hi) is called Farber if this action
of G is essentially free, i.e. StabG(x) = 1 for all x ∈ Ω except a null set.
This is equivalent to saying, for any g ∈ G\{1},

lim
i→∞

|{x ∈ G/Hi | gx = x}|

[G : Hi]
= 0.

An example of a Farber chain (Hi) is when each Hi is normal in G and⋂
i Hi = {1}.

Theorem 1. Let G be an amenable group acting freely on a simply connected
simplicial complex X̃ as above with compact quotient X. Let n ≥ 1 and
assume that Hn(X̃,Z) = 0. Let (Hi) be a Farber chain in G and let Yi =

X̃/Hi be the corresponding covering space Yi of X. Then,

lim
i→∞

log Tn(Yi)

[G : Hi]
= 0
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If G is of type Fn+1 we can take X to be the n + 1 skeleton of K(G, 1)

and X̃ to be the universal cover of X, then Hn(X,Z) is simply Hn(G,Z)
and we write Tn(G) for the size of the torsion subgroup of Hn(G,Z). Since

X̃ is n-connected, Theorem 1 yields the immediate

Corollary 2. Let G be an infinite amenable group of type Fn+1 and let Hi

be a Farber chain in G. Then,

lim
i→∞

log Tn(Hi)

[G : Hi]
= 0

In the case when G is elementary amenable or more generally, G contains
an infinite normal elementary amenable subgroup, this has been proved
by W. Lück [11]. There is a lot of interest in computing the above limit
logTn(Hi)
[G:Hi]

for arithmetic lattices in semisimple Lie groups, see [3], [1] and

its relationship to analytical torsion, [10]. We consider here, the case when
G is amenable and provide an elementary proof of the vanishing of torsion
growth. In the case when X is an aspherical manifold and (Hi) is an ex-
hausting normal chain Theorem 1 is a special case of [14, Theorem 1.6], see
also [4] for a different approach. It will be interesting Theorem 1 to the
case when G has an infinite normal amenable subgroup. Another natural
direction for further study is to relax the conditions on X̃ and relate the
growth of torsion in Hn(Yi,Z) to invariants of X̃ in the spirit of [9].

In Corollary 2, the hypothesis that the amenable group G is of type Fn+1,
is indeed necessary even for n = 1. By way of contrast we show that if G
is not finitely presented and M < G with [G : M ] finite, then the rate of
growth of T1(M) = |torH1(M,Z)| is not bounded by any function of [G : M ].

Theorem 3. Let f : N→ N be any function. There exists a finitely gener-
ated residually finite group G, together with a normal chain of subgroups of
finite index G > M1 > M2 > · · · such that

⋂
iMi = {1} and

T1(Mi) > f([G : Mi]), ∀i ∈ N.

In fact G can be taken to be a solvable group of derived length 3 or
an extension of an abelian group by Grigorchuk’s 2-group of subexponen-
tial growth.

Our construction is very general and gives examples of the formA⋊Q with
A abelian for any residually finite group Q which has an infinite ascending
chain of subgroups closed in the profinite topology. This raises the natural
question: which residually finite groups satisfy the ascending chain condition
on closed subgroups?

We propose the following

Conjecture 4. Every finitely generated amenable residually finite group
which satisfies the ascending chain condition on closed subgroups is virtually
solvable of finite rank.
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We offer the following special case as evidence.

Theorem 5. Let G be an elementary amenable group which is finitely gen-
erated and residually finite. Then the following are equivalent:

(1) G is virtually solvable of finite rank.
(2) G has the maximal condition on subgroups that are closed in the

profinite topology.

Related to this is the theorem of Jeanes and Wilson that finitely generated
solvable groups in which every subgroup is closed in the profinite topology
are polycyclic, see [7].

The finitely generated solvable groups that have finite rank are all mini-
max in the sense that they have a series 1 = G0 ⊳ G1 ⊳ · · · ⊳Gn = G of finite
length in which the factors are cyclic or quasicyclic. A quasicyclic group is
a group of p-power roots of unity in C, and there is one such group up to
isomorphism for each prime p, denoted by Cp∞.

Theorem 1 is proved in section 2 modulo a technical result on Følner sets
which is proved in Section 3. Theorem 3 is proved in Section 4 and Theorem
5 is proved in Section 5.

2. Proof of Theorem 1

We find presentations 〈Xi|Ri〉 of the subgroupsHi ofG such that |Xi|/|G :
Hi| → 0 as i → ∞ while at same time the lengths of all relations of all Ri

stay bounded. In case n = 1 the bound on the torsion of Hab
i follows from

the following fundamental lemma. For a vector v ∈ Z
m, by ||v|| we denote

the l1-norm of v, i.e. the sum of the absolute values of the coordinates of v.

Lemma 6. Let m,k, l ∈ N and let v1, . . . , vl ∈ Z
m with ||vi|| ≤ k for all

i = 1, . . . , l. Let A = Z
m/

∑l
i=1 Zvi. Let tor(A) denote the size of the

torsion subgroup of A. Then tor(A) ≤ km.

Proof. Let L = (v1, . . . , vl) be the m× l matrix having vi as column vectors.
Let r be the rank of L. Now tor(A) is the greatest common divisor ∆r(L)
of all determinants of r × r minors of L, see [6, Theorem 3.9]. This can
easily be proved directly: The matrix L can be transformed to a diagonal
matrix L′ using row and column operations. Then tor(A) is the product
of the non-zero r entries on the diagonal of L′ which is just ∆r(L

′). On
the other hand the row and column operations do not change ∆r and so
∆r(L) = ∆r(L

′) = t(A).
To prove Lemma 6 it is thus sufficient to bound the size of just one

determinant of a r× r minor. So we need to prove the inequality under the
assumption that l = m = r and that A is torsion i.e. that the determinant
of the matrix L = (v1, . . . , vm) is non-zero. We will show that |detL| ≤ km.

Let vi = (νj,i) with νj,i ∈ Z be a column vector in Z
m. Now

|detL| ≤
∑

π∈Sn

m∏

i=1

|νi,π(i)| ≤
m∏

i=1

||vi|| ≤ km.
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�

Folner choice of coset representatives. Let B ⊂ V be a subset of the
vertices V of a graph Γ. By ∂(B), we denote the set of edges joining vertices
from B to vertices in its complement V \B. Also, ΓB denotes the induced
graph on B from Γ (i.e. the vertices in B and those edges of Γ whose ends
are in B.)

The Cayley graph Γ(G,S) of a group G with respect to a generating set
S is defined to have vertices G and edges (x, sx) for x ∈ G and s ∈ S ∪S−1.
For ǫ > 0 a finite subset B ⊂ G is said to be (ǫ, S)- Følner if

|∂(Fi)||Fi|
−1 < ǫ.

The following Theorem allows for a Følner choice of coset representatives
for a Farber chain of subgroups in G.

Theorem 7. Let G be an infinite amenable group generated by a finite set
S and let Γ = Γ(G,S) be the Cayley graph of G with respect to S. Let (Hi)
be a Farber chain in G. There exists a sequence of subsets Fi ⊂ G such that
Fi is a set of left coset representatives for Hi in G and |∂(Fi)||Fi|

−1 → 0
with i→∞.

This Theorem was proved in [16] (see also [2] for a different argument) in
the case when (Hi) is a normal exhausting chain and it implies the existence
of a Følner sequence of monotiles in G. In section 3 we give an elementary
proof of Theorem 7 based on [16] and the Ornstein-Weiss quasi-tiling Lemma
from [12].

The following Lemma allows us to assume that all sets Fi in the above
theorem are such that the induced graphs ΓFi

are connected.

Lemma 8. Let F be a set of left coset representatives for a subgroup H
of finite index in a group G and let Γ be a Cayley graph of G. There is
another set L of coset representatives for H in G such that ΓL is connected
and |∂(L)| ≤ |∂(F )|.

Proof. The group G acts on the right on its Cayley graph Γ and we have
G = FH. If ΓF is connected then take L = F . Otherwise let C1, C2, . . . , Cs

be the connected components of ΓF . Note that for i 6= j, the boundary of Ci

does not share a common edge with the boundary of Cj and consequently,
|∂(F )| =

∑
j |∂(Cj)|. Since Γ = ∪jCjH is connected there is some edge

joining a vertex l ∈ Cih with a vertex w ∈ Cjg for some g, h ∈ H and
i 6= j. Now consider F ′ = (∪j 6=iCj) ∪ C ′

i where C ′
i = Cihg

−1. This is
another set of coset representatives for H in G. Since C ′

i and Cj share
the edge (lg−1, wg−1) on their boundary the induced graph on C ′

i ∪ Cj is
connected and the boundary of C ′

i∪Cj has fewer edges than |∂(Ci)|+|∂(Cj)|.
Therefore, |∂(F ′)| < |∂(F )| and we can replace F with F ′. Continuing in
this fashion we reduce the number of connected components of ΓF until it
becomes connected. �
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Proof of Theorem 1: n = 1. We first prove Theorem 1 in the case
of n = 1. The argument, though similar to the general case, provides a
more effective combinatorial alternative because it uses graphs rather than
the chain complex. The reader who wants to see a homological proof of
Theorem 1 may proceed directly to the general case.

Let 〈S,R〉 be a presentation of G and let k be the length of the longest
word in R.

Note that for n = 1 the group H1(Yi,Z) = H1(Hi,Z) = Hab
i is the

abelianization of Hi and thus depends only on Hi. So we may use any CW -
complex X with fundamental group G and its universal cover X̃ in order to
describe Hab

i and its torsion subgroup.

Let X be the presentation complex of G and let X̃ be the universal cover
of X. We choose a base vertex v ∈ X̃ so that the vertices of X̃ are in
bijection with the orbit vG of v under the action of G. Let Ui = vFi be
the subset of the vertices of X̃ which corresponds to Fi and let ΓUi

be the

subgraph induced on Ui from X̃ . By Lemma 8 we may assume that ΓUi
is

connected. Note that the boundary of ΓUi
has size exactly ∂(Fi). Let us

take a spanning tree Ti of ΓUi
. Then Ti has |Fi| vertices and the covering

map p : X̃ → X̃/Hi = Yi defines a bijection between the vertices of Ti and
Yi. If η is the number of edges in the graph ∆i := p(Ti), then |Fi| − 1 ≤ η;
but, as η is no larger than the number of edges in Ti, η ≤ |Fi| − 1. This
means that η = |Fi| − 1 and therefore ∆i is a spanning tree for Yi. Let
y = p(v) be the base vertex of Yi. The group Hi is isomorphic to π1(Yi)
and therefore has presentation 〈E |D〉 with the following description. For
an edge e = (a, b) ∈ Y 1

i let l(e) be the closed path which travels from y
to a on ∆i, then on the edge (a, b) and returns from b to y on ∆i. The
generating set E is the set of paths l(e) where e is an edge of Yi outside ∆i.
The relations in D are given by the closed paths on the disks of Y 2

i . We
note that the relations of D have the same length as the boundary of the
disks of X2, i.e. the relations in R.

Let

E′ = {l(p(ẽ))| ẽ is an edge of ΓUi
}

and E′′ = E\E′. Every edge e of Y 1
i is equal to p(ẽ) for some edge ẽ of

X̃ with at least one vertex in Ui. Moreover by definition l(e) ∈ E′ if and
only if both ends of ẽ are in Ui. We see that |E′′| ≤ |∂Fi| which is the

number of edges of X̃ with one end in Ui and the other outside Ui. When
ẽ is an edge of ΓUi

let l̃(ẽ) be the closed path in X̃ which travels from v on
Ti to one end of ẽ and then returns from the other end of ẽ back to v on
the Ti. Note that l(p(ẽ)) = p(l̃(ẽ)). Since X̃ is simply connected, the path

l̃(ẽ) is null-homotopic and hence so is p(l̃(ẽ)). Therefore the generators E′

represent the trivial element in H.
We see that Hi = 〈E | D〉 = 〈E | D ∪ E′〉 ≃ 〈E′′| D̄〉 where D̄ is the

image of the set D under the homomorphism from the free group on E to
the free group on E′′ which sends all elements of E′ to 1.
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Observe that all the relations of D̄ still have length at most k. By abelian-
izing the presentation 〈E′′| D̄〉 of Hi we are in a position to apply Lemma 6
and deduce that

|torHab
i | ≤ k|E

′′| ≤ k|∂(Fi)|

This holds for each i. Moreover Hab
i = H1(Yi,Z), and |∂(Fi)|/|G : Hi| =

|∂(Fi)|/|Fi| which tends to zero as i → ∞. This proves the case n = 1 of
Theorem 1.

Proof of Theorem 1: General case. For the general case we argue
directly with the homology groups Hn(Hi,Z). Choose D to be a collection

of simplices of X̃ which is a fundamental domain for the action of G on X̃.
Let Hi, Fi, Yi and Ui be as above. Let

Fi =
⋃

g∈Fi

Dg.

Then Fi is a fundamental domain for the action of Hi on X̃. For a union of
simplices A ⊂ X̃ we denote by Ā the topological closure of A in X̃ , this is
also a union of simplices. Define

Ji =
⋃{
Dg | Dg ⊂ Fi

}

and let Ji = {g ∈ G | Dg ⊂ Ji}.
Since X̃ is quasi-isometric to the Cayley graph Γ of G we see that

(1)
|Fi\Ji|

|Fi|
→ 0 as i→∞.

As a consequence if mi is the number of simplices of Bi := Fi\Ji then (1)
gives that mi/|Fi| → 0 with i→∞.

Recall that Cn(Yi) denotes the free abelian group with basis Y
(n)
i . For

each simplex c ∈ Y
(n)
i , let c̃ be the unique simplex of Fi such that p(c̃) = c.

Note that Yi is the disjoint union of p(Ji) and p(Bi)
Let Vi,Wi be the subgroups of Cn(Yi) generated by the n-simplices of

p(Ji) respectively of p(Bi). We have Cn(Yi) = Vi ⊕ Wi and the relative
homology group Hn(Yi, p(Ji),Z) is defined to be

Hn(Yi, p(Ji),Z) =
ker δn + Vi

im δn+1 + Vi

There is a homomorphism f : Hn(Yi,Z)→ Hn(Yi, p(Ji),Z) given by

f(x+ im δn+1) = x+ im δn+1 + Vi

for each x ∈ ker δn.
The covering map p : X̃ → Yi defines a homomorphism pn : Hn(X̃,Z)→

Hn(Yi,Z) which sends a cycle
∑

j λj c̃j with λj ∈ N, c̃j ∈ Cn(X̃) to the cycle∑
j λjp(c̃j) ∈ Cn(X). Let Hn(X̃)Ji

be the subgroup of Hn(X̃,Z) generated
by the images of cycles with support in Ji.



ON GROWTH OF HOMOLOGY TORSION IN AMENABLE GROUPS 7

Lemma 9. The following sequence of abelian groups is exact at Hn(Yi,Z).

Hn(X̃)Ji

pn
−→ Hn(Yi,Z)

f
−→ Hn(Yi, p(Ji),Z).

Proof. Let us verify the exactness at Hn(Yi,Z). Suppose x+im δn+1 ∈ ker f .
Then x = y+ v where v ∈ Vi and y ∈ im δn+1. Hence v = x− y ∈ ker δn∩Vi

is a cycle of Cn(Y ) supported on the n-simplices of p(Ji). It is sufficient to
prove that v = pn(ṽ) for some cycle ṽ in Cn(Ji). Suppose that v =

∑
j λjcj

where λj ∈ Z and cj ∈ p(Ji) ⊂ Yi. Then ṽ :=
∑

j λj c̃j ∈ Cn(Ji) < Cn(X̃).

From the definition of Ji, the boundary of each c̃j is inside Fi and so δn(ṽ) ∈
Cn−1(Fi). Since v is a cycle of Cn(Yi) we have

p(δn(ṽ)) = δn(p(ṽ)) = δn(v) = 0.

On the other hand, Fi is a fundamental domain for Hi and from δn(ṽ) ∈
Cn−1(Fi) and p(δn(ṽ)) = 0 we obtain δn(ṽ) = 0 i.e. ṽ is a cycle in Cn(Ji),
hence v = pn(ṽ) ∈ im pn and the sequence is exact at Hn(Yi,Z).

�

By assumption, Hn(X̃,Z) = 0, so Lemma 9 implies that Hn(Yi,Z), which

is isomorphic to Hn(Yi, p(Ji),Z), is a subgroup of Cn(Yi)
Vi+imδn+1

. In turn by

considering the projection h : Cn(Yi) = Wi ⊕ Vi →Wi we see

Cn(Yi)

Vi + imδn+1
≃Wi/Wi,0

where Wi,0 = h(imδn+1). The group Wi is a free abelian group generated
by the n-simplices in p(Bi) and in particular has a basis of size at most mi.

Note that im δn+1 is generated by boundaries of simplices in Cn+1(Y )
and each such boundary is an integral combination of n + 2 simplices of
dimension n. Since h is a projection onto a direct summand spanned by a

subset of the basis Y
(n)
i we conclude that Wi,0 = h(im δn+1) is spanned by

vectors of l1-norm at most n+ 2.
Lemma 6 applies and gives that |torWi/Wi,0| ≤ (n+2)|mi|. SinceHn(Yi,Z)

is isomorphic to a subgroup of Wi/Wi,0 we obtain

tor(Hn(Yi,Z)) ≤ tor(Wi/Wi,0)

and so log |tor(Hn(Yi,Z)| ≤ |mi| log(n + 2). Together with the earlier ob-
servation that |mi|/[G : Hi] → 0 with i → ∞ this completes the proof of
Theorem 1.

3. Quasi-tilings of amenable groups

In this section we prove Theorem 7.
A monotile for a group G is a finite set T such that there exists a subset

C ⊂ G such that ∪c∈CTc is a partition of G. The relevance of monotiles to
our proof is provided by the following
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Theorem 10 ([12]). Let G be an amenable group with a p.m.p essentially
free action on a probability space (Ω, µ). Let T ⊂ G be a monotile and let
ǫ > 0. Then there exist a measurable subset A ⊂ Ω such that

1. t1A ∩ t2A = ∅ for all t1 6= t2 ∈ T , and
2. µ(∪t∈T tA) > 1− ǫ.

Of course this is only useful if one has a good source of monotiles. It
is not known if every amenable group has a Følner sequence of monotiles.
When G is residually finite [16] B. Weiss constructed such a sequence of
monotiles Ti with |∂(Ti)||Ti|

−1 → 0. In fact the sets Ti are chosen to be
coset representatives for a normal exhausting chain in G. To obtain Følner
representatives for Farber chains we need to use Theorem 10.

So let Hi be a Farber chain in G and let Ω = lim←− G/Hi with probability

measure µ induced from the counting measure on each G/Hi. By Ui we
denote the closure of Hi in Ω, this is an open set of measure [G : Hi]

−1. The
base of the topology in Ω is given by all B = {gUi | g ∈ G, i ∈ N}.

Proof of Theorem 7. For δ > 0 let T be a (δ, S)-invariant monotile of size m
provided by [16].

We are going to prove that there is an integer N such that for all n > N
there is a (2δ, S)-invariant set F ⊂ G which maps bijectively onto G/Nn,
i.e. forms a set of left coset representatives for Hn in G.

Let ǫ > 0 and let A ⊂ Ω be the subset provided in Theorem 10 for this
T , Ω and ǫ. We can find a compact set K ⊂ G and an open O ⊂ G such
that K ⊂ A ⊂ O and µ(O\A) < ǫ and µ(A\K) < ǫ. Let BO be the elements
of B contained in O. Since K ⊂ O we see that BO is an open cover of the
compact set K. Hence there exists a finite subcover of K which implies that
there is an integer N (depending on O and K) such that for all n > N there
exist x1, . . . xk ∈ G (depending on n), such that

K ⊂ ∪ki=1xiUn ⊂ O.

We may assume that xiUn 6= xjUn if i 6= j.

Let A′ = ∪ki=1xiUn and let a = µ(A′). Note that since

µ(∪t∈T tK) > 1− ǫ−mǫ

and tA′ still covers tK for each t ∈ T we have

a = µ(∪t,itxiUn) > 1− (m+ 1)ǫ.

Also since µ(O) ≤ 1/m + ǫ we get k[G : Hn]
−1 = µ(A′) ≤ 1/m + ǫ and

therefore k ≤ [G : Hn](1/m+ ǫ).
Let F ′ = ∪ki=1Txi. Note that

|∂F ′| ≤ k|∂T | ≤ δ|T |[G : Hn](1/m + ǫ) = δ[G : Hn](1 +mǫ).

On the other hand the image F̄ ′ of F ′ in G/Hn has size

|F̄ ′| = [G : Hn]a > [G : Hn](1 − (m+ 1)ǫ).
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Let y := |T |k − |F̄ ′|, we have

y < [G : Hn](1 +mǫ)− [G : Hn](1 − (m+ 1)ǫ) = [G : Hn](2m+ 1)ǫ.

Let
z := [G : Hn]− |F̄

′| < [G : Hn](m+ 1)ǫ.

We can remove y elements from F ′ and add z elements to it so that the
resulting set F maps bijectively onto G/Hn. This means that F is a set of
left coset representatives for Hn in G. The boundary of F can increase by
at most 2|S|(y + z) < 2|S|(3m+ 2)[G : Hn]ǫ.

Now |∂F | is at most

|∂F ′|+ 2|S|(3m + 2)[G : Hn]ǫ < δ[G : Hn](1 + ǫ(m+ 2|S|(3m + 2)).

Let ǫ be chosen such that ǫ < (m + 2|S|(3m + 2))−1. We obtain |∂F | <
2δ[G : Hn] = 2δ|F |. We constructed such a set F for each n > N . The
Theorem follows. �

4. Proof of Theorem 3

We shall adopt the convention that for a commutative ring S and group
G or H or K, the augmentation ideal of the group algebra is denoted by the
corresponding German fraktur letter g or h or k.

We shall construct our exampleG as a split extension (semidirect product)
of an abelian normal subgroup W by a group Q. We write W additively,
regarding it as a ZQ-module. Thus G = Q ⋉ W consists of ordered pairs
Q×W with product (q, w)(q′, w′) = (qq′, wq + w′).

The construction that follows is possible when Q fails to have the ascend-
ing chain condition on subgroups that are closed in the profinite topology,
and since this happens for many metabelian groups we are able to construct
a G that is soluble of derived length 3.

Lemma 11. Let Q be a residually finite group which possesses an infinite
locally finite subgroup. Then Q fails to have the ascending chain condition
on subgroups that are profinitely closed. In particular, the lamplighter groups
Cp ≀ Z (p prime) provide examples of this behaviour.

Proof. In a residually finite group, the finite subgroups are closed, and in
a group with an infinite locally finite normal subgroup there are strictly
ascending chains of finite subgroups. �

There are many more residually finite groups for which this ascending
chain condition fails including all branch groups (see Propositions 17 be-
low), and all finitely generated residually finite elementary amenable groups
(Theorem 5).

If R is a subgroup of Q and T is a submodule of W then R ⋉ T is a
subgroup of G. In this notation we have the following, the proof of which
we leave to the reader.
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Lemma 12. Let R be a normal subgroup of Q. Then the derived subgroup
of R ⋉ W is [R,R] ⋉ W r, and the derived factor group H1(R ⋉ W,Z) is
isomorphic to the direct product R/[R,R]×W/W r.

Let Q be a finitely generated residually finite group which possesses a
strictly ascending sequence 1 = P0 < P1 < P2 < . . . of subgroups each of
which is closed in the profinite topology. Set P =

⋃
i Pi. It is possibly worth

noting that we do not require P to be closed.
The construction of the module W depends on a choice of sequence (ni)

of natural numbers ≥ 2. We shall describe a general construction first
which produces a module for any sequence and only towards the end of
the argument will we choose a particular sequence to obtain the required
fast growth rate. Let (ni) be a sequence and let Vi be the ZP -module
Z/niZ[Pi\P ] and let V ′

i be the kernel of the augmentation map Vi → Z/niZ.
Then Vi is the permutation module on the cosets of Pi in P having exponent
ni, and we write ei for the generator Pi. Let V be the product

∏
i Vi and

let U be the ZP -submodule of V generated by e := (e0, e1, e2, . . . ). Let V
be the direct sum

⊕
i Vi. The module W is now defined to be the induced

module U ⊗ZP ZQ and the role of V is explained in Lemma 13 below.
We have the following properties of the ZP -modules V , V and U .

Lemma 13. Assume that the sequence (ni) is unbounded.

(1) U ∩V is the submodule of U consisting of the Z-torsion and U/U ∩V
is a trivial cyclic module isomorphic to Z.

(2) V ∩ U is the direct sum
⊕

i V
′
i .

Proof. Let p be an arbitrary element of P . Then there exists j such that
p ∈ Pj . Therefore eip = ei for all i ≥ j. Hence e(p − 1) has only finitely
many non-zero coordinates and so lies in V . Thus Up ⊆ V and U/Up is a
cyclic trivial module which is isomorphic to Z because the ni are unbounded.
It is also clear now that U ∩ V = Up is precisely the torsion submodule of
U . This proves (1). Since Up = U ∩ V , we see that the projection of U ∩ V
onto any Vi has image contained in V ′

i .
We now show by induction on j that epjZP = V ′

0⊕· · ·⊕V
′
j−1 and then (2)

follows. First, the ZPj module epj is contained in V0 ⊕ · · · ⊕ Vj−1 because
Pj fixes ek for all k ≥ j. Inductively we may assume that epj−1ZP =
V ′
0 ⊕ · · · ⊕ V ′

j−2 from which it follows that epjZP contains V ′
0 ⊕ · · · ⊕ V ′

j−2

as a submodule. Since epj also maps surjectively to Z/njZ on projection to
the j-th factor the result follows. �

Let Yi = Vi ⊗ZP ZQ and Y ′
i = V ′

i ⊗ZP ZQ; set Y = ⊕iYi and Ȳ =
∏

i Yi.
Then W is a Z[Q] submodule of Ȳ . Note that by Lemma 13, W ∩ Y =
⊕iY

′
i . The following Lemma identifies torsion in Z[Q]-submodules of W

that contain Y ′
i .

Lemma 14. Fix i ≥ 0. If R is a normal subgroup of finite index in Q such
that PiR < PR and if X is a ZQ-submodule of W which contains Y ′

i , then
tor(X/Xr) ≥ ni.



ON GROWTH OF HOMOLOGY TORSION IN AMENABLE GROUPS 11

Proof. The torsion subgroup of X
Xr

contains
Y ′

i

Y ′

i
∩Xr

. As Y ′
i ∩Xr is contained

in Yir, it is sufficient to estimate
Y ′

i

Y ′

i
∩Yir

∼=
Y ′

i +Yir

Yir
. The quotient Yi

Yir
is

isomorphic to Z/niZ[PiR\Q], which is a free Z/niZ-module of rank |Q :
PiR|.
We now consider Yi

Y ′

i
+Yir

:

Yi

Y ′
i + Yir

∼=
Yi/Y

′
i

(Yi/Y ′
i )r
∼= Z/niZ[PR\Q].

Therefore, Yi

Y ′

i
+Yir

is a free Z/niZ-module of rank |Q : PR|. As PiR < PR,

we obtain ∣∣∣∣
Y ′
i

Y ′
i ∩Xr

∣∣∣∣ ≥
∣∣∣∣

Y ′
i

Y ′
i ∩ Yir

∣∣∣∣ = n
|Q:PiR|−|Q:PR|
i > ni.

�

Lemma 15. Fix j ∈ N and let (Qi) be a normal chain in Q such that⋂∞
i=1 QiPj = Pj . Then

⋂∞
i=1 Yjqi = {0}. In particular Yj is residually finite

as a ZQ-module.

Proof. The module Yj
∼= Z/njZ[Pj\Q] is the permutation module on the

cosets Pj\Q. If x =
∑l

s=1 λsPjgs with λs ∈ Z/njZ and gs ∈ Q is a non-zero

element of Yj where the cosets (Pjgs)
l
s=1 are pairwise distinct we can find

i ∈ N such that the cosets {PjQigs}
l
s=1 are pairwise distinct. This implies

that x 6∈ Yjqi.
�

Lemma 16. Suppose that f : N → N is a function. Then there exist a
choice of strictly ascending sequence n0 < n1 < n2 < . . . and a chain W0 >
W1 > W2 > . . . of submodules of finite index in W such that

⋂
iWi = 0 and

torWi/Wiqi > f(|Q/Qi|.|W/Wi|) for all i ≥ 1.

Proof. Since Q is residually finite and each Pj is profinitely closed, there
exists a chain Q = Q0 > Q1 > Q2 > . . . of normal subgroups of finite index
in Q such that

⋂∞
i=1 PjQi = Pj , PjQj < PQj for all j, and

⋂
iQi = {1}.

We construct the sequences ni by induction on i. The idea at the inductive
step is choose ni using that |W : Wi| is finite and is a function of only
n0, . . . , ni−1. To this end we consider the map

φi : W → Y0 ⊕ · · · ⊕ Yi−1 →
Y0

Y0qi−1

⊕ · · · ⊕
Yi−1

Yi−1qi−1

where the first homomorphism is the projection of W onto the first i − 1
factors of Ȳ . The image of φi is finite and we define Wi = kerπi. Lemma

15 gives
⋂∞

i=1Wi = {0}. Note that the index of Wi divides
∏i−1

j=0 |
Vj

Vjqi
| =

∏i−1
j=0 n

|Q:PjQi−1|
j and in particular does not depend on ni.

Note that Wi then contains the whole of ⊕j≥iYj. Thus by Lemma 14 we
have torWi/Wiqi > ni. We now choose ni > ni−1 so that ni > f(|Q/Qi|.|W/Wi|).

�
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Proof of Theorem 3. We define G to be the semidirect product of W by Q
where Q is chosen to satisfy the conclusions of Lemma 11 and W is con-
structed to satisfy the conclusions of Lemma 16. Then the finite generation
of G is guaranteed because Q is finitely generated and W is cyclic as a
ZQ-module. Theorem 3 now follows by taking Mi = Qi ⋉ Wi and using
Lemmas 12 and 14 together with the fact that both chains (Qi) and (Wi)
intersect trivially. If Q is a lamplighter group, for example, then this con-
struction produces a solvable group of derived length 3 as promised. If Q
is taken to be Grigorchuk’s 2-group of intermediate growth then we can
construct an amenable example that is abelian-by-(subexponential growth).
Both Grigorchuk’s group and the lamplighter group have infinite abelian
torsion subgroups so Lemma 11 applies. �

In fact Q above can be any branch group:

Proposition 17. Let G be a weakly branch group acting on a rooted tree T .
Then G does not satisfy the ascending chain condition on closed subgroups.

Proof. We refer the reader to the survey [17] for the definitions and back-
ground theory of (weakly) branch groups. For a vertex v ∈ T denote by
D(v) the vertices of T which are descendants of v. Let us choose a sequence
of vertices (vj)

∞
j=1 such that their descendants D(vj) are pairwise disjoint.

Let gj ∈ G be a nontrivial element of the rigid stabilizer ristG(vj) and let
kj ∈ D(vj) be a vertex moved by gj . Let Pj be the pointwise stabilizer of the
vertices {ki | i ≥ j} in G. Then each Pj is closed in the profinite topology
of G and since gj ∈ Pj+1\Pj we have P1 < P2 < · · · is a strictly ascending
chain of subgroups. �

5. Proof of Theorem 5

For the proof of Theorem 5 we need some preparatory lemmas.

We define the length l(G) of a solvable minimax group G to be the number
of infinite factors in a cyclic/quasicyclic series of G. The Hirsch length or
torsion-free rank, h(G) is the number of infinite cyclic factors in such a series.
For the sake of brevity we henceforth use the terminology closed subgroup
to mean a subgroup that is closed in the profinite topology: that is, any
subgroup that is an intersection of subgroups of finite index. We shall use
the term dense to mean dense in the profinite topology.

The Prüfer rank of a group G is the least d ≥ 0 such that every finitely
generated subgroup can be generated by at most d elements.

Lemma 18. Let A be a torsion-free abelian minimax group. Then the Prüfer
rank of A is equal to the minimum number of (topological) generators of the
profinite completion of A, and is also equal to the Hirsch length of A.

Proof. By the definition of minimax groups A has a finitely generated free
abelian subgroup B such that A/B =

∏
q∈π Cq∞ for a finite, possibly empty

set π of primes. The Hirsch length of h = h(A) is the rank of B. Let p be
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a prime outside π. Now A/Ap ∼= B/Bp = (Z/pZ)h. Therefore the Prüfer
rank is at least as great as h. Since A is torsion-free, every finitely generated
subgroup is free abelian of rank at most the rank of B, that is h. Hence the
Prüfer rank is equal to h. Let d be the minimum number of generators of the
profinite completion of A. Then d ≥ h because A has a quotient (Z/pZ)h.
On the other hand B has rank h and A/B is torsion and divisible and so B
is dense in the profinite topology on A. Therefore d ≤ h and the proof is
complete. �

We shall need the following results about minimax groups.

Theorem 19. [13, Theorem 10.33] Let G be a residually finite solvable
minimax group. Then

1. G is nilpotent-by-abelian-by-finite.
2. G has subgroups {1} = G0 ⊳ G1 ⊳ · · · ⊳ Gk+1 = G such that

G/Gk is finite and Gi+1/Gi is a torsion free abelian minimax group for all
i = 0, 1, . . . , k − 1.

Lemma 20. [8, Lemma 2.5]. Let G be a residually finite solvable minimax
group and let A be an abelian normal subgroup of G. Then the subspace
topology on A induced by the profinite topology on G coincides with the
profinite topology on A.

Lemma 21. Let G be a residually finite group with the maximal condition
on closed subgroups. Suppose that A is a closed abelian normal subgroup such
that G/A is solvable and minimax. Then there is a unique normal closed
subgroup B of G minimal subject to the condition that A/B is torsion-free,
and minimax.

Proof. Let B be the set of all subgroups B of A that are closed and normal
in G and such that A/B is torsion free and minimax. Let A0 be a finitely
generated dense subgroup of A. Such a subgroup exists because A has the
maximal condition on closed subgroups. Let d be the minimum number of

generators of A0. Then the closure A of A in the profinite completion Ĝ
of G can be (topologically) generated by d elements and hence so is A/B

for any B ∈ B, where B denotes the closure of B in Ĝ. By Lemma 20,
A/B is isomorphic to the profinite completion of A/B and hence by Lemma
18, the Hirsch length of A/B is at most d. Let B0 ∈ B be a subgroup
such that the Hirsch length of A/B0 is largest possible. If B1 ∈ B with
B1 < B0 then B0/B1 contains an infinite cyclic subgroup, so h(B0/B1) > 0
and h(A/B1) > h(A/B0) contradiction. So B0 is the required minimal
subgroup. �

One direction of Theorem 5 is relatively easy to prove and does not require
the hypotheses of finite generation or residual finiteness:

Lemma 22. Let G be a virtually solvable minimax group. Then G satisfies
the maximal condition on closed subgroups.
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Proof. Clearly we may assume that G is residually finite and hence by The-
orem 19, G has a subgroup of finite index which is poly-(torsion-free abelian
minimax). Therefore it suffices to establish the result for abelian mini-
max groups because the class of groups satisfying the maximal condition on
closed subgroups is extension closed. Suppose (Hj) is a strictly ascending
chain of closed subgroups in an abelian minimax group denoted by A. Since
l(Hj) is an increasing bounded sequence of integers we may assume that
l(Hj) is constant. This implies that |Hj+1 : Hj| is finite for all j. Now
let A0 = ∪jHj. The quotient A0/H1 is an infinite torsion abelian minimax
group, which is residualy finite since H1 is closed in A. Hence A0/H1 cannot
contain quasicyclic subgroups and hence must be finite. This means that
the chain Hj stabilizes, a contradiction. �

The other direction of Theorem 5 is more subtle. We shall use the follow-
ing theorem of Mal′cev, [15, Theorem 3.6]:

Theorem 23. There is a constant µ(n) depending only on n such that any
solvable linear group of degree n contains a triangularizable normal subgroup
of finite index at most µ(n).

Proof of Theorem 5. (1)⇒(2) This is a special case of the above Lemma.

(2)⇒(1) We first deal with the case when G is nilpotent-by-abelian. Let
N = [G,G]. By assumption N is nilpotent, hence N is minimax if and
only if N/[N,N ] is minimax. In particular, if G is not minimax then the
metabelian group G/[N,N ] is not minimax and since all finitely generated
metabelian groups are residually finite (see Hall’s classic paper [5]), we may
replace G by G/[N,N ] and assume G is metabelian. Now [5] shows that
there is a finite set of primes π such that [G,G] has a free abelian group B
such that G/B is π-torsion. Moreover if G is not minimax then B must have
infinite rank. Therefore, taking a prime p /∈ π we have that [G,G]/[G,G]p

is an elementary abelian p-group of infinite rank. Since [G,G] is closed in G
it follows that [G,G]p is closed. Now we can pass to a quotient G/[G,G]p

which has an infinite torsion subgroup. Since all finite subgroups are closed,
then it is clear that there are strictly ascending chains.

We next consider the general solvable case. Suppose that G is finitely
generated, residually finite and solvable and that G satisfies the maximal
condition on closed subgroups. Let A be the centre of the centralizer of the
last non-trivial term of the derived series of G. Then A is closed and G/A
is residually finite of smaller derived length, therefore we may assume that
G/A is minimax by induction. The torsion subgroup of A must be finite
otherwise G would contain a strictly ascending chain of finite subgroups
contradicting the maximal condition on closed subgroups. By factoring out
this finite subgroup we may assume that A is torsion-free.

Using Lemma 21 let D be the unique normal subgroup of G minimal
amongst the closed normal subgroups B of G such that B ⊂ A and A/B is
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torsion-free, and minimax. Then G/D is a residually finite minimax group.
We claim that D = 1 which implies the result.

Suppose by way of contradiction that D is non-trivial soD is infinite since
D ≤ A and A is torsion free. As in the proof of Lemma 21 the ascending
condition on closed subgroups implies that the closureD ofD in the profinite
topology of G is d-generated for some d ∈ N. For each prime p let Dp denote
the intersection of all the normal subgroups E of finite index in G such that
D/D∩E is an elementary abelian p-group. Since D is closed in G, Dp ≤ D
and dimFp

D/Dp ≤ d for all p. In addition when D 6= 1 then D > Dp for at
least one prime p because G is residually finite.

We consider first the case when there are infinitely many primes p such
that Dp < D. In that case let K = ∩pDp, then D/K is infinite. Malćev’s
Theorem 23 applied to the action of G/K on each Fp-vector space D/Dp

gives that that G/CG(D/Dp) ≤ GL(d,Fp) is (nilpotent of class at most
d)-by-abelian-by-(finite of size at most µ(d)). Let Up/CG(D/Dp) be the
Fitting subgroup of G/CG(D/Dp). So G/Up is abelian by (finite of size at
most µ(d)) while Up acts on D/Dp as a nilpotent group of class at most d.
Let W = ∩pUp, then G/W is abelian-by-finite while W acts on D/K as a
nilpotent group of class at most d. Let L/D be the Fitting subgroup of G/D.
Since G/D is minimax and so nilpotent-by-abelian-by-finite, it follows that
G/L is abelian-by-finite.

So G/(W ∩ L) is abelian-by-finite while (W ∩ L)/D is a nilpotent group
which acts nilpotenly on D/K. Hence (W ∩L)/K is nilpotent and so G/K
is nilpotent-by-abelian-by-finite.

Since G/K is also residually finite, G/K must be minimax by the first
case we considered. The maximal condition on closed subgroups implies
that the torsion subgroup T/K of D/K is finite, this means that D/T is
torsion free infinite and minimax, and contradicts the minimality of D.

The next case to consider is that there are only finitely many primes p
for which Dp < D. Since D is infinite there must be a prime p such that the

Sylow p subgroup Lp of D is infinite. Recall that D is d generated, therefore

Lp is isomorphic to F ⊕ Z
k
p for some finite p-group F and some k ∈ [1, d].

Let D/E be the image of D in Lp, i.e E is the intersection of all normal
subgroups Y of finite index in G such that D/D ∩ Y is a p-group.

Mal′cev’s theorem implies that G acts on Lp as a nilpotent-by-abelian-
by-finite group, this time by appeal to the case of characteristic zero. A
similar argument as the case above gives that G/E is a residually finite,
nilpotent by abelian by finite group and D/E is infinite. This again provides
a contradiction to the minimality of D. Therefore D = 1 after all, and G is
minimax.

For the general case of an elementary amenable group G we proceed as
follows. Define the hierarchy of classes of elementary amenable groups in
the following way. For each ordinal α, let Xα be the class of groups defined
by
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(1) for α = 0 then X0 is the class of all finitely generated abelian-by-
finite groups;

(2) if α is a successor ordinal then Xα consists of the class of all groups
which are extensions of a locally Xα−1-group by an X0-group;

(3) if α is a (non-zero) limit ordinal then Xα consists of all groups be-
longing to some Xβ for some β < α.

Let G be a finitely generated residually finite elementary amenable group
with the maximal condition on closed subgroups. If G is not virtually solv-
able then there exists a least ordinal α such that G has a finitely generated
subgroup H in Xα which is not virtually solvable. The minimality of α im-
plies that α is a successor ordinal. ThenH has a normal subgroupK ∈ Xα−1,
while the quotient H/K is abelian-by-finite. The choice of α ensures that K
is locally (virtually solvable). Note that K cannot be virtually solvable itself
because this would imply that the extension H is also virtually solvable.

We consider two cases:
Case 1: K is in the variety generated by some of its finitely generated

subgroups, say L. Since L is virtually solvable it follows that K has a
normal solvable subgroup U such that K/U is in the variety generated by
some finite group. In particular K/U is locally finite. Let Ū be the closure
of U in the topology of K induced from the profinite topology of G. Then
Ū is solvable and K/Ū is locally finite. If K/Ū is finite then K is virtually
solvable, contradition. If K/Ū is infinite then K fails the maximal condition
on closed subgroups.

Case 2: K is not in the variety generated by any of its finitely generated
subgroups. Inside K it is therefore possible to choose a strictly ascending
chain 1 < K0 < K1 < K2 < . . . of finitely generated virtually solvable
subgroups each of which does not belong to the variety of groups generated
by its predecessor. Since the closure (in the ambient group G) of any Ki

belongs to the variety that Ki generates it follows that the closures of the
subgroups in this chain also ascend strictly. This contradicts the ascending
chain condition and so we deduce that G is virtually solvable after all. The
result now follows from the solvable case already considered. �
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