Hydrological and ecological changes in Western Europe between 3200 and 2000 years BP derived from lipid biomarker δD values in Lake Meerfelder Maar sediments

O. Rach¹,², S. Engels³, A. Kahmen⁴, A. Brauer⁵, C. Martin-Puertas⁶, B. van Geel⁷, D. Sachse¹

¹GFZ German Research Centre for Geosciences, Section 5.1, Geomorphology, Organic Surface Geochemistry Lab, Telegrafenberg, D-14473 Potsdam, Germany

²Institute for Earth- and Environmental Science, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany)

³Centre for Environmental Geochemistry, School of Geography, University of Nottingham, University Park, Nottingham (UK)

⁴Botany – Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel (Switzerland)

⁵GFZ German Research Centre for Geosciences, Section 5.2 Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam (Germany)

⁶Department of Geography, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom.

⁷Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

* Corresponding author’s email address: oliver.rach@gfz-potsdam.de

Highlights

- We present a high-resolution late Holocene biomarker δD record from W Europe
- Terrestrial biomarker δD_{terr} records minor hydrological changes between 3.2-2.0 cal ka BP
- δD_{terr} data are in agreement with other paleoecological data
- We observe significant effects of aquatic lipid source changes on the δD_{aq} record
- Multiproxy approaches are essential to avoid hydrological misinterpretations

Keywords
Holocene; Climate dynamics; Paleoclimatology; Western Europe; Continental biomarkers; Organic geochemistry; Stable isotopes; Vegetation dynamics

Abstract
One of the most significant Late Holocene climate shifts occurred around 2800 years ago, when cooler and wetter climate conditions established in western Europe. This shift coincided with an abrupt change in regional atmospheric circulation between 2760 and 2560 cal years BP, which has been linked to a grand solar minimum with the same duration (the Homeric Minimum). We investigated the temporal sequence of hydroclimatic and vegetation changes across this interval of climatic change (Homeric climate oscillation) by using lipid biomarker stable hydrogen isotope ratios (δD values) and pollen assemblages from the annually-laminated sediment record from lake Meerfelder Maar (Germany). Over the investigated interval (3200 to 2000 varve years BP), terrestrial lipid biomarker δD showed a gradual trend to more negative values, consistent with the western Europe long-term climate trend of the Late Holocene. At ca. 2640 varve years BP we identified a strong increase in aquatic plants and algal remains, indicating a rapid change in the aquatic ecosystem superimposed on this long-term trend. Interestingly, this aquatic ecosystem
change was accompanied by large changes in δD values of aquatic lipid biomarkers, such as \(nC_{21} \) and \(nC_{23} \) (by between 22-30‰). As these variations cannot solely be explained by hydroclimate changes, we suggest that these changes in the δD_{aq} value were influenced by changes in \(n \)-alkane source organisms. Our results illustrate that if ubiquitous aquatic lipid biomarkers are derived from a limited pool of organisms, changes in lake ecology can be a driving factor for variations on sedimentary lipid δD_{aq} values, which then could be easily misinterpreted in terms of hydroclimatic changes.

1. Introduction

Late Holocene climate was characterized by a gradual long-term cooling trend recognized globally (Marcott et al., 2013; Wanner et al., 2008), but also by superimposed short-term climatic variations occurring over the lifetime of a few generations and with strong impact on regional climate and society. For example, a relatively abrupt cooling and increased humidity 2800 years ago in the North Atlantic-European region (Swierczynski et al., 2013; Wirth et al., 2013) were interpreted from peat bog records in the Netherlands (van Geel et al., 1996; van Geel et al., 1999), glacial advances, and increased lake levels throughout Europe (e.g. Magny, 1993; Engels et al., 2016a). This change (Movius, 2013) coincided with a significant shift in the western Europe landscape that marked the onset of the Subatlantic period (Litt et al., 2001).

The climate change 2800 years ago has been related to the occurrence of a grand solar minimum (Magny, 1993; Martin-Puertas et al., 2012b; van Geel et al., 1996; van Geel et al., 1999), the Homeric Minimum, which occurred between 2750-2550 cal years BP recognized in both \(^{14}\)C-tree rings (Reimer et al., 2009) and \(^{10}\)Be-Greenland ice core records (Reimer et al., 2009; Vonmoos et al., 2006). Martin-Puertas et al. (2012b) recently reconstructed changes in solar variability during the time interval from 3300 to 2000 years BP by analyzing changes in \(^{10}\)Be accumulation rates in the annually laminated (varved) sediment record of lake Meerfelder Maar (MFM). The authors compared the reconstructed changes in solar variability to changes in
windiness (reconstructed from varve thickness) using the sediment record. The study showed a sharp increase (over less than a decade) in both the climatic and solar proxies at 2759 ± 39 varve years BP and a reduction 199 ± 9 years later, indicating that atmospheric circulation reacted abruptly and in phase with the grand solar minimum and hence showing empirical evidence for a solar-induced “Homeric Climate Oscillation” (HCO).

The HCO has been suggested to be the trigger for human migrations during the transition from Bronze Age to Iron Age (Scott et al., 2006; van Geel et al., 1996). Archeological and paleoecological studies from different locations in Europe (e.g. the Netherlands and Germany) also provide evidence for an increase in human activity and reorganization of prehistoric cultures around that time (Kubitz, 2000; van Geel et al., 1996), most likely favored by a rise in human population density after the climate deterioration (van Geel and Berglund, 2000). Although wetter conditions have been inferred for the HCO, it yet remains elusive if these wetter conditions were associated to major changes in rainfall intensity and/or lower evapotranspiration and the possible relation to the observed vegetation changes in western Europe. Furthermore, the exact temporal succession of regional hydrological and environmental changes during this period is unknown due to the lack of highly-resolved hydrological records in western Europe.

In this study we analyze high-resolution lipid biomarker hydrogen isotope ratios of a Late Holocene sedimentary sequence from lake MFM in western Germany to test its potential for elucidating the nature of hydrological changes during the HCO. Stable hydrogen isotope ratios (expressed δD values) of sedimentary lipid biomarkers (i.e. n-alkanes), which can be traced back to their biological sources (Eglinton and Eglinton, 2008; Killops, 2005; Peters et al., 2007; Sachs et al., 2013), have become an important paleohydrological proxy over the last ca. 15 years. This has resulted in new insights into hydroclimate dynamics over different geological timescales (Aichner et al., 2010; Atwood and Sachs, 2014; Feakins et al., 2014; Rach et al., 2014; Sachs et al., 2009; Schefuss et al., 2011; Smittenberg et al., 2011; Tierney et al., 2010; Tierney et al., 2008; Zhang et al., 2014). Rach et al. (2014)
demonstrated that n-alkane $\delta^{13}D$ analyzes are a suitable proxy for
reconstructing regional hydrological changes during major and abrupt climate
shifts during the Late-Glacial that are recorded in the varved sediments of lake
MFM.

Our specific objectives for this study are (1) to reconstruct hydroclimate
variations for central-western Europe during a period of changing
environmental conditions (3200-2000 varve years BP) using lipid biomarker
stable isotope data, and (2) to combine this record with a high-resolution
aquatic and terrestrial vegetation reconstruction in order to evaluate possible
effects of vegetation change on the biomarker stable isotope record.

2. Lipid biomarkers as paleoclimate proxies

2.1 Sedimentary n-alkanes as biomarkers for aquatic and terrestrial
organisms

Straight-chained hydrocarbons such as n-alkanes are increasingly applied for
paleoclimate reconstruction. Different n-alkane homologues are produced by
bacteria, aquatic as well as terrestrial plants (Aichner et al., 2010; Baas et al.,
2000; Cranwell et al., 1987; Eglinton and Hamilton, 1967; Ficken et al., 2000;
Gelpi et al., 1970). As such, n-alkanes can be used to obtain information on
their biological sources. While not species-specific, different groups of source
organisms can be distinguished based on n-alkane chain length: n-alkanes
with 17 to 19 ($nC_{17} - nC_{19}$) carbon atoms (short-chain) are predominantly
synthesized by aquatic algae but also by bacteria (Cranwell et al., 1987; Gelpi
et al., 1970; Sachse and Sachs, 2008). Mid-chain n-alkanes ($nC_{21} - nC_{25}$) are
mainly synthesized by submerged aquatic plants (Aichner et al., 2010; Baas
et al., 2000; Ficken et al., 2000). Long-chain n-alkanes ($nC_{27} - nC_{31}$) are major
components of the leaf waxes of terrestrial higher plants (Eglinton and
Hamilton, 1967; Massimo, 1996), although conifers produce significantly
smaller amounts of n-alkanes than broad-leaved species (Diefendorf et al.,
2011). Some terrestrial plants also produce significant amounts of nC_{25},
making source assessment for this compound more difficult, but in general
aquatic or terrestrial sources can be distinguished from \(n \)-alkane abundances in sediments (Gao et al., 2011).

2.2. Climatic and environmental influences on \(\delta D \) values of aquatic and terrestrial biomarkers

The observation that \(\delta D \) values of aquatic (\(\delta D_{\text{aq}} \)) and terrestrial (\(\delta D_{\text{terr}} \)) plant derived lipid biomarkers record the \(\delta D \) values of the organisms’ source water (Garcin et al., 2012; Huang et al., 2004; Sachse et al., 2012; Sachse et al., 2004; Sauer et al., 2001) has fueled the application of \(\delta D \) measurements as a paleohydrological proxy. The major determinant of the \(\delta D \) values of aquatic and terrestrial lipid biomarkers is the \(\delta D \) value of the source water used by the organism (Sachse et al., 2012). Photosynthetic lacustrine aquatic organisms, such as submerged aquatic macrophytes and algae use lake water as a hydrogen source to synthesize \(n \)-alkanes. In a closed lake system (in temperate climates), which is only fed by precipitation and characterized by a low precipitation/ evaporation ratio, the hydrogen isotope composition of lake water can be interpreted as an integrated signal of precipitation \(\delta D \) (Aichner et al., 2010; Sachse et al., 2012). In particular, for MFM, being a maar with steep catchment walls (sheltered from the wind) an effect of evaporation on lake water is unlikely. For a neighboring maar lake (Holzmaar) a long-term study of lake water has shown that \(\delta ^{18}O \) values vary only around 1‰ and follow the seasonal temperature evolution (Moschen et al., 2005). Thus, in such a lake system sedimentary \(\delta D_{\text{aq}} \) values provide an integrated precipitation \(\delta D \) signal (Sachse et al., 2004).

Higher land plants on the other hand directly take up precipitation water (through soil water) (Sachse et al., 2012). However, transpirative processes in the leaf of the plant modify the isotopic composition of water (i.e. increased enrichment in \(D \) under drier conditions) before hydrogen is being fed into biosynthetic reactions (Kahmen et al., 2013a; Kahmen et al., 2013b; Sachse et al., 2012). As a consequence, sedimentary \(\delta D_{\text{terr}} \) values also record changes in ecosystem evapotranspiration (Kahmen et al., 2013b; Sachse et al., 2004).
2.3. *Species-specific differences and their influence on aquatic and terrestrial lipid \(\delta D \) values*

In addition to the isotopic composition of source water, it has been demonstrated that changes in vegetation type (of terrestrial plants) as well as aquatic lipid source organisms can also significantly affect the isotope composition of terrestrial and aquatic lipids (Sachse et al., 2012). For example, major differences in the net or apparent fractionation \(\varepsilon_{l/w} \), i.e. the isotopic difference between the source water \(\delta D_w \) and lipid \(\delta D_l \) (equ. 1), have been observed among different plant functional types (Gao et al., 2014; Sachse et al., 2012).

\[
(1) \quad \varepsilon_{l/w} = \frac{(D/H)_l}{(D/H)_w}
\]

Since \(\varepsilon_{l/w} \) represents the sum of physical and biochemical fractionation processes, it is currently unclear to what extent individual parameters are responsible for the observed differences. For example, major differences in the biosynthetic fractionation \(\varepsilon_{\text{bio}} \) between various species as well as differences in leaf-morphology, transpiration and water use efficiency between grasses and broadleaf-woody plants have been shown to affect \(\varepsilon_{l/w} \) (Kahmen et al., 2013b; Liu et al., 2006; McInerney et al., 2011; Sachse et al., 2012).

On the other hand, \(\varepsilon_{l/w} \) in aquatic algae and cyanobacteria can also be influenced by water salinity and growth rate, possibly related to biochemical processes as shown for \(n \)-alkanoic acids (Sachs, 2014), the biosynthetic precursors of \(n \)-alkanes (Eglinton and Eglinton, 2008; Sachse et al., 2012; Sessions et al., 1999). In addition, significant differences in \(\varepsilon_{\text{bio}} \) have been observed among different algae (Zhang and Sachs, 2007). For example, under similar conditions in batch cultures, two different groups of green algae (Chlorophyceae and Trebouxiophyceae) produced \(C_{16} \) \(n \)-alkanoic acids, which differed in their \(\delta D \) values by 160‰ (Zhang and Sachs, 2007). Less information is available for submerged aquatic plants, but studies on modern
aquatic plants and lake surface sediments have suggested the ε_{bio} for aquatic macrophytes (i.e. *Potamogeton*) may be significantly smaller (-82‰) (Aichner et al., 2010) than observed for algae (-157‰) (Sachse et al., 2004). Therefore, if various algae and other water plants produce the same unspecific biomarker (e.g. short- to mid-chain n-alkanes) and the aquatic ecosystem (i.e. species composition) changes, the sedimentary n-alkane δD record could be affected. In a similar way, major vegetation changes can affect the δD_{terr} signal (Nelson et al., 2013). Despite these complications, δD values of aquatic and terrestrial lipids from sedimentary archives can be used to reconstruct changes in hydroclimate over time, if constraints on the processes discussed above, i.e. information about the terrestrial and aquatic producers of the studied lipids, are available (Aichner et al., 2010; Atwood and Sachs, 2014; Rach et al., 2014).

Therefore, for a robust paleoclimatic interpretation it is important to understand the interplay between hydrological and vegetation change and their effect on sedimentary lipid biomarker δD records. The here studied time interval was characterized by long and short-term climatic change as well as vegetation changes and this provides a testing ground to study the above discussed processes and their influence on biomarker δD values. Therefore, we compare a high-resolution δD_{aq} and δD_{terr} record from lake MFM in western Germany to lake and catchment ecosystem development, inferred from a new pollen-based vegetation reconstruction, as well as published sedimentary proxy data from MFM, such as varve thickness and Ti influx (Martin-Puertas et al., 2012b).

3. Study site

Lake Meerfelder Maar (50° 06' 2.87'' N; 06° 45' 27.13'' E) is located in western Germany as a part of the West-Eifel Volcanic Field (Fig. 1). The lake is situated in a volcanic crater which was formed by a phreatomagmatic eruption 80,000 years ago (Zöller, 2009).
The modern lake is situated at 336.5 m a.s.l. and the lake surface is around 0.248 km², covering the northern part (ca. 1/3) of the maar crater surface (Fig. 1). The maximum water depth is 18 m. The southern part of the crater is filled in by a shallow delta plain, deposited from a stream (Meerbach) passing through the crater rim in the south. The lake is eutrophic and due to its particular morphological situation within a deep maar crater, Lake MFM is wind-sheltered, favoring the preservation of fine seasonal layers within the sediment sequence (Brauer et al., 1999a; Brauer et al., 2008).

The climate of the region is influenced by its proximity to the North Sea coast (ca. 250 km) with a mean annual air temperature of 8.2 °C and mean annual precipitation of 950 mm, peaking in winter (Martin-Puertas et al., 2012a).

Seven sediment cores were collected in 2009 from the deepest area of Lake MFM using a UWITEC piston core, with a maximum distance between sites of 20 m. The sediment cores, labeled as MFM09-A to MFM09-G, were split, imaged, described and an overlapping sediment profile was constructed (Martin-Puertas et al., 2012a). For the present study the uppermost core MFM09-A was selected for sampling. We studied a meter long sequence from 230 to 330 cm depth, which covers the interval from 2000 to 3200 varve years BP (Martin-Puertas et al., 2012b). The MFM chronology (MFM2000) has been established by varve counting from ca. 1500 cal years BP back to 14,200 cal years BP along 7.85 m of sediments with a cumulative counting error of less than 5% and is supported by 51 radiocarbon dates (Brauer et al., 2000). This independent but floating chronology was anchored to the calendar year time scale by adopting the age of the regional (Eifel) Ulmener Maar Tephra (UMT) for the MFM record (Brauer et al., 1999b; Brauer et al., 2000). The UMT is dated at 11,000 ± 110 cal years BP in the Lake Holzmaar (HZM) varve chronology by multiple count sequences and ¹⁴C based-correction (Zolitschka et al., 2000). The proximity of Lake HZM to MFM (10 km) provides the opportunity to compare both records, showing a good agreement between the chronologies (Litt et al., 2009). For the study interval, an age error estimate has been provided by combining varve counting, radiocarbon dating and sediment ¹⁰Be accumulation rates (Martin-Puertas et al., 2012b). All ages in
the following text are rounded on 5 years to avoid interpretations on a
temporal accuracy level, which is not supported by the current age model.

Fig. 1: Map of western Europe with the study locations. Coloured dots mark the study (left) and coring (right) site at MFM.

4. Methods

4.1 Biomarker extraction, identification and quantification

A 1.0-m-long core section, which included the time interval of the HCO, was sampled in consecutive 1-cm-thick slices, resulting in a total of 100 samples. Due to differences in sedimentation rate, the temporal resolution of the samples varies between 4 and 45 years per sample. To remove remaining water, all samples were freeze-dried and subsequently homogenized. A Dionex accelerated solvent extraction system (ASE 350) with a dichloromethane (DCM): methanol mixture (9:1) at 100°C and 103 bar was used for the extraction of lipid biomarkers from freeze-dried samples in the biomarker laboratory at the University of Potsdam. The total lipid extracts (TLE) were separated into three fractions (aliphatic (F1), aromatic (F2) and alcohol/ fatty acid (F3)) by solid phase extraction (SPE). The separation was achieved using 2g silica gel as the stationary phase and hexane, hexane:DCM (1:1) and DCM as the respective mobile phases. Activated copper in a pipette column was used to remove elemental sulfur from the F1 fraction. The aliphatic fraction was dominated by \(n \)-alkanes (\(nC_{21} - nC_{31} \) homologues) and alkenes. Fractions F2 and F3 contained mainly ketones, alcohols and fatty acids. To avoid coelution of alkanes and alkenes during
isotope measurement, the F1 fraction was further purified using silver nitrate (AgNO₃) impregnated silica gel in a pipette column with hexane and dichloromethane as the mobile phase for the elution of alkanes and alkenes, respectively.

n-Alkane identification and quantification was performed using a gas chromatograph (GC 7890-A, Agilent, Santa Clara, USA) coupled to a flame ionization detector (FID) and a mass selective detector (MSD) (MS 5975-C, Agilent, Santa Clara, USA) coupled via an electronic split interface. The quantification was performed through the FID by comparing compound peak area to the peak area of the internal standard (5α-androstane). Compound identification was achieved using the MSD and comparison with library and literature mass spectra. The GC temperature program used for *n*-alkane quantification contained the following specifications: injection at 70°C (hold for 2 minutes), then heating up to 140°C with a ramp of 12°C per minute directly followed by a heating to 320°C with a ramp of 2°C per minute. The final temperature of 320°C was held for 15 minutes. The PTV injector started at 50°C and was heating up to 350°C with a ramp of 14°C per second.

4.2 Stable isotope measurement and evaluation

Compound-specific hydrogen isotope ratios of the *n*-alkanes were measured on a Delta-V-Plus Isotope Ratio Mass Spectrometer (IRMS) (Thermo Fisher, Bremer, Germany) coupled to a Trace Gas Chromatograph Ultra (Thermo Fisher, Bremer, Germany) at the Swiss Federal Institute of Technology Zurich (ETH Zurich). The following GC-temperature program was used: start at 90°C (held for 2 minutes), heating up to 150°C with 10°C per minute, heating from 150°C to 320°C with 4°C per minute; the final temperature was held for 10 minutes. Each sample was injected three times. For conversion of the measured δD values to the VSMOW scale a standard containing *n*C₁₆ to *n*C₃₀ alkanes (Mix A4 obtained from Arndt Schimmelmann, Indiana University) with known δD values was measured in triplicate at the beginning and the end of each sequence. All measured δD values were corrected to the VSMOW scale using a linear regression function (with a specific slope and intercept) derived
from measured vs. real Mix A4 standard values. The mean standard deviation of all A4 standard measurements \((n=441)\) was 2.1\%, while the mean standard deviation of all sample \(n\)-alkane measurements \((n=492)\) was 1.4\%. To avoid misinterpretation of the measured \(\delta D\) values only baseline separated peaks with areas over 20Vs have been used for interpretation. The H3\(^+\) factor was determined before each sequence and remained constant at 3.63 ± 0.39 during the 4 weeks measurement period.

4.3 Palynological analysis

Two plastic containers of 35x260 mm were pressed into cores MFM09A2DR and MFM09A2UR to a depth of 10 mm. The sediment in the plastic containers was subsequently subsampled with a 3 samples/ centimeter resolution for the sediments older than 2765 varve years BP and a 2 samples/ centimeter resolution for the sediments younger than 2765 varve years BP. These sampling intervals correspond to a temporal resolution of 1-29 years per sample. Ninety-one samples were prepared for the analysis of pollen and spores at the University of Amsterdam following the protocols of Faegri et al. (1990) and Moore et al. (1991). Standard tablets with \textit{Lycopodium} spores were added to the sample during laboratory processing to estimate pollen and spore concentrations and influx numbers (Stockmarr, 1971). Pollen, fern spores, fungal spores, and other palynomorphs (including remains of freshwater algae) were identified using a light microscope with 400× magnification (1000× when necessary). Keys and illustrations by Moore et al. (1991) and Beug (2004) as well as a reference collection were used for pollen identification. The identification of algal remains and other non-pollen palynomorphs (NPPs) follows van Geel (1978). A pollen percentage diagram was calculated using a pollen sum \((\Sigma\)-pollen\) that includes arboreal pollen and pollen of upland herbs and the average \(\Sigma\)-pollen is 572 (range: 443-698). The percent-abundances of all pollen, spores and NPPs are calculated in relation to \(\Sigma\)-pollen. Concentrations of individual taxa were calculated by multiplying the number of encountered pollen by the ratio of the number of added \textit{Lycopodium} spores and the number of spores encountered during analysis.
This number was then divided by the volume of material used in the analysis to derive taxon-specific pollen concentrations. A percent-abundance diagram was plotted using TILIA v 1.17.6; concentration- and influx-diagrams were plotted using C2. Details on the taxa important for the interpretation of our n-alkane data are presented in section 5.3 (pollen data), whereas overview diagrams of the arboreal taxa (percentages, concentrations and influx) (Fig. S1) and the aquatic taxa (expressed as percentages in relation to Σ-pollen) (Fig. S2) can be found in the Supplementary Information.

5. Results

5.1 n-Alkane concentrations

In total 100 samples were analyzed for their n-alkane content. Eighteen samples did not contain enough material for n-alkane analysis. In the remaining 82 samples the concentration of all identified n-alkanes (nC$_{21}$ to nC$_{31}$) ranged from 0.34 to 69.42µg/g dry weight of sediment. The most abundant n-alkane homologue in all samples was nC$_{29}$ with an average concentration of 26.5µg/g sediment dry weight per sample (range 3.0-69.1µg/g). The compound with the lowest concentration was always nC$_{21}$ with 3.9µg/g on average (range 0.34 -14.3µg/g). Other n-alkanes (nC$_{23}$, nC$_{25}$, nC$_{27}$ and nC$_{31}$) had average concentrations between 4.2 to 20.5µg/g sediment dry weight. The average chain-length (ACL) varied between 26.0 and 28.8. The average influx values (µg normalized per varve year) of short- and long-chain n-alkanes showed significant variations. Before the HCO, nC$_{21}$ and nC$_{23}$ showed average influx values of 0.35 and 0.27µg/ year, while the nC$_{25}$ to nC$_{31}$ homologues showed average influx values between 0.46 and 1.34µg/year, respectively (Fig 2B). The influx of nC$_{21}$ and nC$_{23}$ increased rapidly to 0.68 and 1.03µg/ year after 2785 varve years BP, while the influx values of nC$_{25}$ to nC$_{31}$ also increased to average values between 2.10 and 6.28µg/year (Fig 2B). The average n-alkane influx values for nC$_{21}$ and nC$_{23}$ decreased abruptly to average values of 0.12 and 0.15µg /year after the HCO (Fig 2B). The nC$_{25}$
to nC$_{31}$ homologues also decreased to average influx values between 0.37 and 1.42µg/ year. nC$_{21}$ showed maximum influx values during the first part of the HCO (2750 – 2660 varve years BP), while long-chain n-alkanes had their maximum influx rates in the second part of the HCO (2700 – 2610 varve years BP) (Fig 2B). Influx rates of nC$_{23}$ showed local maxima both in the first half of the HCO (at 2740 varve years BP) as well as in the second half of the HCO (at 2610 varve years BP) (Fig 2B).

5.2 Stable hydrogen isotope composition (δD values) of the n-alkanes

All 82 samples were analyzed for compound specific stable hydrogen isotope ratios, expressed as δD values. The n-alkane δD values showed a decreasing trend during the analyzed period (Fig 2A). Generally, the δD values of all n-alkanes were more positive before the HCO than after (Fig 2A). However, there were major differences in the magnitude of variation between n-alkanes of different chain-length. Short and mid-chain n-alkanes (nC$_{21}$-nC$_{25}$) generally showed higher variability in their δD values than long-chain n-alkanes. Before the HCO, nC$_{21}$ δD values were on average -135 ± 2‰ (arithmetic mean from 3190 to 2785 varve years BP with respective 95% confidence interval) while after the HCO the average δD value changed to -160 ± 5‰ (arithmetic mean from 2540 to 2015 varve years BP). Applying the epsilon equation (Sessions and Hayes, 2005) for accurate calculations of differences in δ-values results in a difference of about 30‰ for nC$_{21}$ δD values before and after the HCO. The average δD values of nC$_{23}$ and nC$_{25}$ for the same period changed from -153 ± 3‰ and -152 ± 3‰ to -171 ± 7‰ and -176 ± 4‰, respectively (difference 22 and 28‰) (Fig 2A). Long-chain n-alkanes generally showed smaller changes in their δD values. The average δD values of nC$_{27}$ and nC$_{29}$ changed from -169 ± 2‰ and -188 ± 2‰ (before the HCO) to -182 ± 3‰ and -192 ± 2‰ (after the HCO) (difference 15 and 4‰). The δD values of nC$_{31}$ changed from -162 ± 3‰ to -179 ± 2‰ (difference 20‰) (Fig 2A).
Fig. 2: δD values (A) (smoothing by 3-data running average) and annual flux (µg/ year) (B) of $nC_{21}-nC_{31}$ alkanes and varve thickness as well as Titanium content (smoothing by 100-data running average) (Martin-Puertas et al., 2012b) of the studied core section.

5.3 Pollen-data

The lower part of the pollen record (2945-2795 varve years BP) was characterized by relatively high percentages of arboreal pollen (AP) of 95-100% (Fig. 3). The pollen-assemblages were dominated by Fagus which reached abundances >60%, accompanied by relatively high abundances of other deciduous tree taxa such as Alnus (15-30%), Corylus (5-15%) and Quercus (5-15%). Pollen from non-arboreal taxa (NAP) were only present in low abundances between 2945-2795 varve years BP, suggesting that the vegetation around MFM consisted of a closed-canopy forest.

A sharp decrease in relative abundance of Fagus to values of around 40% was observed at ~2795 varve years BP (Fig. 3). Simultaneously, spores of Kretzschmaria deusta, a parasitic fungus living on various tree species (van...
Geel et al., 2013), showed an increase in abundance to values of 5%. An increase in the relative abundance of Alnus as well as of several NAP-taxa coincided with the decrease in Fagus (Fig. 3). Crop plants (e.g. Poaceae, Cerealia) as well as Plantago lanceolata and Rumex acetosella-type all started to increase after 2795 varve years BP. Remains (vegetative cell walls) of the green algae Botryococcus, Tetraedron minimum and of the aquatic macrophyte Myriophyllum spicatum/verticillatum-type showed an increase around 2620 and 2595 varve years BP, respectively.

Fig. 3: Pollen and spores abundance of the major constituents of vegetation in and surrounding MFM given in % (A) and pollen concentrations (B). Thinner lines on top of the upper six plots in A marking exaggeration-lines (5-times). Blue shaded areas marking aquatic organisms. Green areas are showing terrestrial plants. The dark-green/orange areas show the local tree/herb distribution in percentage.

6. Discussion

Our lipid biomarker stable hydrogen isotope record showed a long-term trend to more negative δD values during the 3200 to 2000 varve years BP interval. This is evident in all analyzed biomarkers, regardless of their biological origin.
The decrease in lipid δD values possibly reflects the long-term cooling trend as a consequence of declining summer insolation in the Northern Hemisphere (Marcott et al., 2013; Renssen et al., 2009) in the way that a decrease in air temperature would lead to more negative precipitation δD values (Dansgaard, 1964; Gat, 1996; Gat et al., 2000). However, we observed substantial differences in the magnitude of changes in δD values between aquatic and terrestrial plant derived lipid biomarkers: δD_{aq} values showed a rather abrupt decrease starting at around 2700 varve years BP, a change not observed for δD_{terr} values (except a slight decrease in nC_{31} δD values). This indicates that different processes controlled the observed changes for aquatic and terrestrial biomarkers. While different biosynthetic fractionation factors for aquatic and terrestrial plants can explain different absolute δD values, different magnitudes of change indicate either significant evapotranspirational or ecological changes. For example, cooler and more arid conditions could explain a stronger decrease in δD_{aq} compared to δD_{terr}, as δD_{terr} values would reflect increasing plant transpiration (Kahmen et al., 2013b). However, there is no evidence for a substantial aridification during this period in western Europe. Rather, several studies suggest a shift to more humid conditions during this period (Martin-Puertas et al., 2012b; van Geel, 1978; van Geel et al., 1996; van Geel et al., 2013). With our combined high-resolution lipid biomarker and palynological analysis we therefore explore ecological changes in the aquatic and terrestrial ecosystem in and around MFM to test if these changes may have influenced the magnitude of change in biomarker δD values.

6.1. Changes in vegetation based on palynological records
The palynological data provide first evidence for changes in the terrestrial ecosystem at ca. 2800 varve years BP. Our pollen record showed a decrease in relative pollen abundance of Fagus by half and a doubling of Alnus, accompanied by a general trend to increasing grass/herb vegetation in the catchment of MFM (Fig. 3A). The presence/increase of human-impact indicators such as Plantago lanceolata and Rumex acetosella-type provided
evidence for increased human impact (Behre, 1981) in the catchment of MFM. *Kretzschmaria deusta* spores increased in abundance from 2795 to 2765 varve years BP, which could be a result of the temporary occurrence of this fungus on wounded trees that were present in the landscape after the clearing of parts of the forest (Kubitz, 2000; van Geel et al., 2013).

The second substantial decline in tree pollen at 2695 varve years BP occurred about 100 years after the variations mentioned above (Fig 3A). This marks a second phase of ecosystem changes, which is additionally characterized by an increase of *Botryococcus* – green algae (Fig 3A). This second phase in ecological change could even have been caused by further increased human impact but climatic changes cannot be ruled out either.

6.2. Environmental and hydroclimatic changes inferred from changes in lipid biomarker abundance and δD values

6.2.1 Terrestrial biomarker flux into the sediment

At 2695 varve years BP, about 60 years after the increase in varve thickness (Fig 2) (Martin-Puertas et al., 2012b), our lipid biomarker record showed an increased influx of leaf wax *n*-alkanes into the sediment (Fig 2B). This doubling in lipid biomarker flux occurred simultaneous with an increase in Titanium counts, a proxy for surface runoff (Fig. 2) (Martin-Puertas et al., 2012b). At the same time, tree pollen decreased significantly (from 90-71%) and grass and other herbaceous pollen increased from 10 to 29% (Fig. 3A).

We interpret these changes in the pollen record to reflect a shift toward a more open landscape, which might have led to increased erosion and flux of terrestrial material into the lake. This is supported by the observation that the influx of terrestrial biomarkers reached its maximum at the same time when the tree / herb pollen ratios showed their lowest value at ca. 2610 varve years BP. However, the onset of the tree pollen decline (from 96-86%) and increasing grass pollen (from 4 to 14%) occurred already 100 years earlier, at ca. 2800 varve years BP. Also, varve thickness increased likely because of
windier conditions already ca. 60 years before the increased terrestrial lipid biomarker influx at 2760 varve years BP.

The decadal resolution of our lipid biomarker and palynological data allows a detailed assessment of the temporal succession of proxy changes related to the HCO. We have to note that the different vegetation proxies presented here (alkanes, pollen) partly may reflect different source areas. While most of the \(n \)-alkanes likely were derived from vegetation growing on the lake shore, pollen assemblages may also include a signal from the upland vegetation surrounding the MFM crater. However, the specific catchment-conditions of lake MFM, with its steep crater walls and small catchment area, make it most likely that most pollen is derived from the catchment vegetation itself, and that the contribution of long distance transport is of minor importance (Engels et al., 2016b; Litt et al., 2009). The initial change in the pollen diagram observed at ca. 2800 varve years BP is not linked to additional transport of terrestrial material into the lake. Only at ca. 2700 varve years BP, when the largest vegetation change occurred, soil erosion increased. The first decrease in pollen concentrations at 2800 varve years BP may be due to decreased pollen production as a result of increased ecological stress, instead of changes in vegetation, which may have followed a few decades later.

6.2.2 Biomarker \(\delta D \) values as recorders of hydroclimate

In addition to the long-term trend to more negative \(\delta D \) values between 3200 and 2000 varve years BP (Fig. 2A), evident in nearly all analyzed biomarkers (except \(nC_{29} \)), aquatic and terrestrial lipid biomarker \(\delta D \) values showed their most substantial decrease (by between 30 and 4\%_\text{o}) during the HCO interval (Fig. 4).

While the 4-20\% decrease in \(\delta D_{\text{ter}} \) values could have been caused by a combination of cooler conditions and lower plant transpiration (Craig, 1965; Flanagan et al., 1991; Kahmen et al., 2013b; Sachse et al., 2012) under the more humid conditions suggested by earlier studies (van Geel et al., 1996), it
remains difficult to explain the rapid decline in δD_{aq} values between 22-30‰, as these would not be affected by changes in terrestrial transpiration. While a decrease in air temperature would lead to more negative precipitation δD values, the observed decrease of 22-30‰ in δD_{aq} would imply an unrealistic temperature decrease between 11 and 15°C during the HCO, when considering the modern temperature sensitivity of precipitation δD in this region (2‰/°C; IAEA/WMO, 2006). While no temperature reconstructions are available for the HCO, a temperature decrease between 0.5-1.5°C has been suggested for similar solar minima (Martin-Puertas et al., 2012b). Therefore, a potential 0.5-1.5°C decrease during the HCO would only have had a minimal effect on precipitation δD values. However, a decrease in temperature may also be associated to shifts in the moisture source region and/or changes in moisture source temperature, which may have exercised additional control on decreasing δD values. For example, Martin-Puertas et al. (2012b) suggested a reduced atmospheric pressure gradient between the subtropics and Iceland for the HCO, resembling a negative phase of the North Atlantic Oscillation (NAO), which today results in more negative winter δD_{precip} values in parts of western Europe (Baldini et al., 2008). However, we do not observe an increase in δD values after the HCO, suggesting the observed change was not an excursion or phase but rather a shift of atmospheric conditions to a new regime. While the relatively small changes in δD_{terr} can be largely explained by the proposed long-term hydroclimatic changes during this period, the abrupt changes in δD_{aq} of up to 30‰ over 180 years are difficult to reconcile with this scenario. Due to the absence of other proxy indicators suggesting hydroclimatic changes that could explain such a decline in δD_{aq}, we explore the possibility that factors additional to hydroclimate influenced δD_{aq}.

6.2.3. The effect of lake ecosystem changes on δD values of aquatic n-alkanes

Additional factors known to affect δD_{aq} include changes in water salinity, light intensity, growth rate and species changes (Sachs, 2014; Zhang and Sachs,
2007). MFM always was a freshwater lake, so that we can rule out salinity as a driver. Increased upland erosion and a subsequent delivery of nutrients into the lake may have resulted in increasing growth rates of aquatic organisms. However, for aliphatic lipids produced by algae D/H fractionation does not seem to change significantly with growth rate (Sachs, 2014), and no such data exist for aquatic plants.

However, palynological data indicate significant changes in the aquatic ecosystem at 2625 varve years BP, when the total amount of aquatic and swamp taxa pollen/ remains started to increase from virtually zero to a maximum of 1.5% at 2600 varve years BP (Fig. 4). Strikingly, this increase, as well as the change in species composition, was synchronous to the largest changes in nC_{21} and nC_{23} alkane δD values (Fig 4). These compounds are primarily synthesized by aquatic organisms, likely aquatic macrophytes (Aichner et al., 2010; Cranwell et al., 1987). A minor decrease was also observed for nC_{25} δD (Fig 2) values, a compound that can originate from both aquatic as well as terrestrial sources (Baas et al., 2000; Eglinton and Hamilton, 1967; Ficken et al., 2000). Palynological analysis indicates the occurrence / increase of Myriophyllum spicatum/verticillatum-type (submerged aquatic plant), Botryococcus, Pediastrum and Tetraedron minimum (green algae) during and after the HCO (Fig. 3). The most abundant aquatic taxon identified from the microfossil record is Botryococcus (identified by vegetative cell walls). As such, the available palynological data indicate major changes in the aquatic ecosystem at 2625 varve years BP, coeval with the largest change in δD_{aq} values. Since nC_{21} and nC_{23} alkanes can be produced by a variety of different algae and submerged aquatic macrophytes (Aichner et al., 2010; Ficken et al., 2000; Gelpi et al., 1970; Parrish, 1988) it is possible that a change in the predominant aquatic organisms, characterized by different magnitudes of ε_{bio}, was at least partly responsible for the observed changes. For the more ubiquitous nC_{16} alkanooic acid differences in ε_{bio} of up to 160‰ between different green algal taxa have been observed in culture studies (Zhang and Sachs, 2007). As such, if the spectrum of organisms producing nC_{21} and nC_{23} was relatively small, which is supported by the limited number
of pollen of aquatic taxa (Fig 3), it is conceivable that changes in the predominant nC\textsubscript{21} and nC\textsubscript{23} producers have resulted in a significant variation within the sedimentary δD\textsubscript{aq} record. Therefore, we argue that the change in the δD values of the nC\textsubscript{21} and nC\textsubscript{23} alkanes does not only reflect hydroclimatic changes, but that it was amplified as a result of a change in aquatic lipid sources. This also implies that without knowledge of the biosynthetic fractionation factors for the individual nC\textsubscript{21} and nC\textsubscript{23} producers, a direct reconstruction of source water δD values is impossible. Arguably, the observed changes in the aquatic ecosystem were most probably initiated by the climatic and environmental changes. We suggest that the increasing influx of terrestrial material between 2695 and 2610 varve years BP due to wetter conditions and decreasing tree cover (see section 6.2.1), delivered more nutrients into the lake, acting as a fertilizer for aquatic plants. The increase in abundance of aquatic organisms around 2640 varve years BP occurred 60 years after the increase of terrestrial biomarker flux into the lake, possibly marking a threshold in the fertilization rate and triggering the diversification of the aquatic ecosystem.

6.2.4. The effect of vegetation changes on δD values of terrestrial n-alkanes

δD values of the terrestrial plant derived nC\textsubscript{27}, nC\textsubscript{29} and nC\textsubscript{31} n-alkanes decreased in total by 15, 4 and 20‰, respectively, during the HCO interval (difference between mean δD values from before and after the HCO) (Fig 2). While changes in nC\textsubscript{27} and nC\textsubscript{29} δD values were gradual and can be explained by hydroclimatic changes (i.e. cooler and more humid conditions), the first larger and relatively abrupt decrease within the HCO of about 7‰ observed for nC\textsubscript{31} at 2685 varve years BP coincides with the onset of a 20% increase in grass and other herbaceous pollen (Fig 3) likely caused by an increase of human impact (Kubitz, 2000). As such, the change in δD values of nC\textsubscript{31} may have been amplified by changes in terrestrial vegetation and influenced not only by climatic but also by anthropogenic factors. While nC\textsubscript{31} is produced by different tree species (e.g. Betula, Acer (Diefendorf et al., 2011)) it is often found in higher concentrations in grasses (Massimo, 1996).
Therefore, the more negative δD values after 2680 varve years BP may reflect at least partly the increased amount of grass-derived nC₃₁ into the lake sediment, as n-alkane δD values from grasses are usually found to be more negative (up to 30‰) compared to those from trees (Duan and He, 2011; Hou et al., 2007; Kahmen et al., 2013b; Liu et al., 2006; Sachse et al., 2012).

Based on the palynological data we suggest that the nC_{27} and nC_{29} alkanes in the MFM sediments were primarily produced by trees such as Alnus, Betula, Salix, Fagus, Carpinus, Ulmus and Quercus, species known to produce the n-alkanes (Diefendorf et al., 2011; Piasentier et al., 2000; Sachse et al., 2006).

Interestingly, nC_{29} δD values from the MFM sediments of the analyzed period were on average 18‰ more negative than nC_{27} and nC_{31} δD values. This consistent offset possibly implies a different water source or a different ε_{bio} for all or the major nC_{29} source organisms. The pollen record provides evidence for a high proportion of Alnus and Salix in the catchment area, taxa primarily adapted to wetter areas such as lake shores and riversides (Landolt and Bäumler, 2010; Lauber and Wagner, 2001). Alnus and Salix have been found to synthesize higher amounts of nC_{29} (Diefendorf et al., 2011; Sachse et al., 2006) and therefore the more negative nC_{29} δD values may be due to the preferred location at the lakeshore within the crater, where higher relative humidity (due to the proximity of the water body) may have resulted in smaller leaf water isotope enrichment (Craig, 1965; Farquhar et al., 2007; Flanagan et al., 1991; Kahmen et al., 2011; Kahmen et al., 2013b).

Due to the wide variety of possible sources of the nC_{27} and nC_{29} alkanes, it is likely that these compounds had the highest integrative capacity and the occurrence or disappearance of single species did not significantly affect the sedimentary δD record. As such δD values of these compounds more faithfully recorded the long-term late Holocene hydroclimatic trend to cooler and wetter conditions. Nevertheless, while less susceptible to changes than species-poor assemblages, major environmental perturbances such as human impact on vegetation, wildfires, etc, can significantly affect diverse and species-rich plant assemblages to the extent that n-alkane records (and their stable isotope records) can be affected.
Fig. 4: Aquatic and terrestrial plant derived sedimentary n-alkane δD record combined with reconstructed vegetation distribution. Vegetation data shown as moving average over 3 data points. (A) Aquatic plant derived n-alkane δD records (nC_{21}, nC_{23}) vs. vegetation population of aquatic and swamp taxa. (B) Terrestrial plant (tree) derived n-alkane δD records (nC_{27}, nC_{29}) vs. tree
population. (C) Terrestrial plant (herbs) derived n-alkane δD record (nC_{31}) vs. herb population.

7. Conclusions

Our combined high-resolution hydroclimate and vegetation study based on lipid biomarker δD and palynological records from lake MFM provides detailed insights into the succession of climate and ecosystem change and emphasizes the advantages of a multiproxy approach for hydroclimate reconstructions during periods of ecological change. Specifically, our results indicate that:

1. Between 3200 and 2000 varve years BP decreasing lipid biomarker δD values reflect the overall late Holocene trend to cooler and/or wetter conditions.

2. Since lipid biomarker δD values remain more negative after the HCO, we suggest that this period does not only constitute a temporal climatic oscillation triggered by a grand solar minimum, but marks a transition phase resulting in the permanent establishment of cooler and wetter conditions and/or different atmospheric moisture pathways.

3. Our data show that the local aquatic ecosystem composition did change significantly at 2640 varve years BP, ca. 60 years after the onset of changes in the terrestrial ecosystem. This is possibly induced by increased nutrient input due to enhanced soil erosion, which in turn was related to a decrease in vegetation caused by forest clearance.

4. We argue that changes in the source organisms of aquatic n-alkanes (possibly associated with different degrees of biosynthetic hydrogen isotope fractionation) at the time of major (aquatic) ecosystem change caused significant changes in δD$_{aq}$ values. Therefore, the appearance and/or disappearance of a single species can result in significant variations in sedimentary δD$_{aq}$, in particular for lake systems with a limited number of aquatic n-alkane source organisms. However, while n-alkane spectra of species-poor assemblages might be more susceptible to taxonomic turnover, even changes in species-rich
Assemblages could significantly affect the n-alkane record. As such, changes in the aquatic lipid biomarker δD values during the study period do not only reflect hydroclimate changes but also reflect ecological change, in our case amplifying the climatic signal.

In contrast, terrestrial higher plant derived leaf wax n-alkanes, produced by a number of different broadleaved tree species and derived from thousands of individual trees in the lake catchment, record an integrated signal of the terrestrial vegetation and, therefore a more reliable hydroclimate record.

Our data suggest the importance to consider the different integrative capacities of source specific vs. less specific lipid biomarkers and show that the combination with microfossil records can provide detailed insights into the succession of climatic and ecosystem changes in the lake catchment.

Acknowledgements

This work was supported by a DFG Emmy-Noether grant to DS (SA1889/1-1). It is a contribution to the INTIMATE project, which is funded as an EU COST Action and to the Helmholtz Association (HGF) Climate Initiative “REKLIM” Topic 8 ‘Rapid climate change derived from proxy data’ and has used infrastructure of the HGF TERENO programme. Laboratory assistance was provided by Nikolas Werner (UP).

Author contributions

O. Rach carried out the n-alkane extraction, analysis, stable isotope measurement, isotope data evaluation and wrote the paper. S. Engels and B. van Geel carried out the pollen analysis, pollen data evaluation and wrote the paper. A. Kahmen provided infrastructure for isotope measurement, contributed to the analysis, data evaluation and writing. A. Brauer was responsible for lake coring, data evaluation and writing. C. Martín-Puertas provided the chronology and stratigraphy, contributed to data evaluation and
wrote the paper. Dirk Sachse conceived the research, acquired financial support and wrote the paper.

Supplementary information

Fig. S1: Overview diagram on arboreal taxa (in percent - left, concentration – middle, influx - right)
Fig. S2: Overview diagram on aquatic taxa (right part) and trees/shrubs vs. herbaceous taxa distribution (left) in percent

References

Engels, S., Bakker, M., Bohncke, S., Cerli, C., Hoek, W., Jansen, B., Peters, T.,
Wolma, M., 2016a. Centennial-scale lake-level lowstand at Lake Uddelermeer
(The Netherlands) indicates changes in moisture source region prior to the 2.8-kyr event. The Holocene 26, 1075-1091.

Engels, S., Brauer, A., Buddelmeyer, N., Martín-Puertas, C., Rach, O., Sachse, D.,

Litt, T., Scholzel, C., Ku hl, N., Brauer, A., 2009. Vegetation and climate history in the Westefel Volcanic Field (Germany) during the past 11000 years based on annually laminated lacustrine maar sediments. Boreas 38, 679-690.

Sachse, D., Radke, J., Gleixner, G., 2006. δD values of individual n-alkanes from terrestrial plants along a climatic gradient - Implications for the sedimentary biomarker record. Organic Geochemistry 37, 469-483.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>