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Abstract
Across several animal taxa, the evolution of sociality involves a suite of characteristics, a ‘social syndrome’, that includes cooperative breeding, reproductive skew, primary female biased sex-ratio, and the transition from outcrossing to inbreeding mating system, factors that are expected to reduce effective population size (Ne). This social syndrome may be favoured by short-term benefits but come with long-term costs, because the reduction in Ne amplifies loss of genetic diversity by genetic drift, ultimately restricting the potential of populations to respond to environmental change. To investigate the consequences of this social life form on genetic diversity, we used a comparative RAD-sequencing approach to estimate genome-wide diversity in spider species that differ in level of sociality, reproductive skew, and mating system. We analysed multiple populations of three independent sister-species pairs of social inbreeding and subsocial outcrossing Stegodyphus spiders, and a subsocial outgroup. Heterozygosity and within population diversity were 6-10 fold lower in social compared to subsocial species, and demographic modelling revealed a tenfold reduction in Ne of social populations. Species-wide genetic diversity depends on population divergence and the viability of genetic lineages. Population genomic patterns were consistent with high lineage turnover, which homogenizes the genetic structure that builds up between inbreeding populations, ultimately depleting genetic diversity at the species level. Indeed, species-wide genetic diversity of social species was 5-8 times lower than that of subsocial species. The repeated evolution of species with this social syndrome is associated with severe loss of genome-wide diversity, likely to limit their evolutionary potential. 

Introduction
Understanding processes that influence the genetic diversity of natural populations is central for predicting the potential of species to respond to environmental change, i.e. their evolutionary potential. In large populations, mutation, selection and migration influence genetic poplymorphisms, but in reality population sizes are finite and affected by stochastic fluctuations in allele frequencies (Ellegren & Galtier 2016; Wright 1931). Change in allele frequencies across generations due to random sampling, or genetic drift, is determined by effective population size (Ne). Because of the inverse relationship between Ne and genetic drift, changes in Ne over time are expected to strongly affect population genetic diversity (Alcala & Vuilleumier 2014). In addition to census size, Ne is influenced by the ecology and demography of species, for example life history, dispersal, habitat fragmentation, and mating system, and by population dynamic processes such as extinction/colonisation events that may result in severe population fluctuations (Charlesworth 2009; Ellegren & Galtier 2016; Lourenço et al. 2017). The demographic history of species is influenced by biotic and abiotic environmental changes, and ecological drivers of demographic fluctuations may for instance result in population bottlenecks or founder effects that rapidly deplete genetic diversity due to drift. Reproductive mode and life history is highly correlated with genetic diversity in the way that species with few offspring, parental care, and long generation time, are less diverse (Romiguier et al. 2014a). These factors may act differentially on Ne, but if their cumulative effect reduces Ne, we expect reduced genetic diversity and increased structure within and among populations (Charlesworth 2003; Hamrick & Godt 1996; Leffler et al. 2012; Romiguier et al. 2014a). 

The evolution of cooperative breeding is widespread across the animal kingdom, and this social lifestyle is associated with several traits that act to reduce Ne. Cooperative breeding frequently involves reproductive division of labour where only one or a few females reproduce within family groups, for example in insects (Wilson 1971), birds (Cockburn 1998), mammals (Lukas & Clutton-Brock 2012), fish (Taborsky 2009), and arachnids (Lubin & Bilde 2007). In addition, some social species show female-biased sex ratio (Bourke 1997; Hamilton 1967; Nomura & Takahashi 2012; West 2009), and the social insects (bees, ants, and wasps, thrips and some bark beetles) are haplodiploid, which further decreases Ne (Hedrick & Parker 1997). Most social species maintain an outcrossing mating system through sex-biased dispersal (Clobert et al. 2001; Pusey 1987; Tabadkani et al. 2012; Wilson 1971), and thereby reduce the risk of inbreeding. In contrast, sociality in a number of taxa involves a regular inbreeding or even an obligatory inbreeding mating system. In these systems, social groups form by philopatry through the retention of offspring in the natal nest, which results in kin-group structuring within populations (Bilde et al. 2005). Benefits conveyed by group living or cooperation acting in concert with ecological constraints may further select for limited dispersal (Hatchwell & Komdeur 2000; Koenig et al. 1992; Thorne 1997), and increase the probability of reproducing with relatives (Bilde et al. 2005). This results in the transition from outcrossing to inbreeding mating system. Inbreeding may have severe detrimental effects on viability through the unmasking of recessive deleterious alleles (Charlesworth & Willis 2009), although purging may remove some of the genetic load (Crnokrak & Barrett 2002). In addition, the correlation between the parental alleles of an individual caused by inbreeding reduces Ne (Charlesworth 2009). The combined effects of inbreeding, female biased sex ratio, and reproductive skew are expected to result in severe reduction of Ne and random loss of alleles through genetic drift (Charlesworth 2003; Charlesworth & Willis 2009), thereby substantially depleting population genetic diversity (Charlesworth & Wright 2001; Wright et al. 2008). Social species with these characteristics that we refer to as a ‘social syndrome’ (Bilde & Lubin 2011), include thrips (Chapman et al. 2000), beetles (Keller et al. 2011), aphids (Johnson et al. 2000), mole rats (Reeve et al. 1990), and spiders (Lubin & Bilde 2007). 
Theoretically, inbreeding is expected reduce Ne up to 50 % (self-fertilization), while the effects of sex ratio bias and reproductive skew further reduces Ne, depending on the strength of the bias and skew respectively (Wright 1931). For example, if a population is female biased with 9:1, Ne is reduced to 36%, while Ne of a population with an equal sex ratio but where only half of one sex reproduces is reduced to 67%. Regular inbreeding is often associated with life history characteristics that promote more severe population size fluctuations (Ingvarsson 2002; Schoen & Brown 1991) due to frequent cycles of extinction-recolonization events (Charlesworth & Wright 2001), and increased extent of linkage disequilibrium and genetic hitchhiking (selective sweeps and background selection) (Nordborg 2000). In some species, new populations are formed by propagule dispersal of mated females, which leads to recurrent founder events further decreasing genetic diversity of newly established populations. The effects of the ‘social syndrome’ on species-wide genetic diversity, however, depends on a complex combination of Ne, gene flow among populations, and the rates at which populations go extinct and (re)colonize (Harrison & Hastings 1996; Ingvarsson 2002; Pannell & Charlesworth 2000). With limited gene flow, deep divergent lineages harbouring different sets of randomly fixed alleles contribute to maintain species-wide genetic diversity and Ne, even though within-lineage diversity and Ne may be very low. This scenario can be disrupted if population dynamic patterns with high rates of extinction reduce lineage persistence, causing shallow population divergence. Combined with colonization events by some of these less divergent lineages, this type of dynamics may act to eliminate species-wide genetic diversity (Pannell & Charlesworth 2000; Settepani et al. 2014; Wade & McCauley 1988). Thereby, metapopulation dynamics may contribute to further elimination of genetic diversity of social inbreeding species. 
Interestingly, social inbreeding lineages generally occur at the tip clades of phylogenies indicating their derived state, and showing little evidence for speciation (Agnarsson et al. 2006; Chapman et al. 2000; Johannesen et al. 2007; Jordal & Cognato 2012; Pike et al. 2007; Settepani et al. 2016). Therefore, while the evolutionary transition from solitary to social living may be favoured by short-term benefits, this social syndrome is not necessarily an evolutionarily stable life form because of the long-term detrimental consequences on genetic diversity and evolutionary potential (Charlesworth 2003; Charlesworth & Charlesworth 1987; Charlesworth & Wright 2001; Romiguier et al. 2014a; Wright et al. 2013). Stebbins (1957) proposed that evolutionary transitions that reduce Ne and consequently population genetic diversity may lead to an evolutionary dead end, because lineages with low genetic diversity have reduced evolutionary potential and therefore suffer from increased risk of extinction. This hypothesis proposes that species with low genetic diversity are short lived and show reduced diversification rate of lineages (Takebayashi & Morrell 2001). Empirical evidence for the dead end hypothesis comes predominantly from phylogenetic analyses in plants, showing that selfing lineages form short terminal branches and are associated with reduced diversification rates (Charlesworth 2006; Igic et al. 2006; Igic & Busch 2013; Takebayashi & Morrell 2001; Wright et al. 2013). However, the genetic mechanisms predicted to limit the evolutionary potential of inbreeding lineages such as depletion of genome-wide genetic diversity remain largely untested. 
We performed a comprehensive quantitative test of the key prediction that the transition to sociality reduces Ne and genome-wide genetic diversity in individuals and populations, thereby limiting the evolutionary potential in derived social species. Adopting a comparative population genomic approach, we used restriction site associated DNA (RAD) sequencing to generate quantitative estimates of genome-wide genetic diversity in a genus of spiders with contrasting social life forms. The genus Stegodyphus contains three independently derived social inbreeding species that each have a subsocial outcrossing sister species (Johannesen et al. 2007; Kraus & Kraus 1988; Settepani et al. 2016), providing three independent contrasts for comparing genetic diversity among populations with social inbreeding and subsocial outcrossing mating systems. Our analyses included 235 individuals from multiple populations of these three species pairs and one outgroup, sampled across a wide range of their geographical distribution (Fig. 1). Permanent group living in spiders exists in approximately 25 of more than 46.000 extant spider species (Lubin & Bilde 2007; World Spider Catalog 2017), and remarkably, sociality has evolved independently at least 18 times across 7 families (Agnarsson et al. 2006). Sociality in spiders is always associated with elimination of pre-mating dispersal, the transition to an inbreeding mating system (not necessarily associated with a reduction in census population size), female biased sex ratio and reproductive skew (Lubin & Bilde 2007). In contrast, their subsocial sister species maintain pre-mating dispersal and an outcrossing mating system (Bilde et al. 2005). In social species, new groups are formed by propagule dispersal of homozygous sib-mated females, and populations are prone to high extinction-colonisation events (Lubin & Bilde 2007). This system is therefore well suited for examining effects of this social life style on population and species-wide genomic diversity.

Materials and methods
Collection of samples
We sampled a total of 232 spiders from seven species of the genus Stegodyphus (Eresidae) across multiple geographic localities in Africa, India and Israel. Three of the sampled species are inbreeding and social (S. mimosarum, S. dumicola and S. sarasinorum) and four are outcrossing and subsocial (S. africanus, S. tentoriicola, S. pacificus and S. lineatus). We sampled one individual per nest (4-10 nests / locality) from 2-5 localities per species, with an average of nine nests per locality (sample localities: Fig. 1; see Table S1 for detailed sampling information). A nest refers to an adult female with her brood for subsocial species and a permanent group of adults and their offspring for social species. We refer to individuals from the same locality as a population. Samples of S. sarasinorum were collected in October-December 2010 and January 2012, S. pacificus in January 2012, S. lineatus, S. mimosarum, S. africanus and S. dumicola were collected in April-June 2012 and S. tentoriicola in May 2012 and November 2013.
Library construction, sequencing and data processing
Genomic DNA was extracted using the DNeasy Blood & Tissue kit, QIAGEN (Germantown, MD, USA). DNA from each individual was normalized to 20 ng/µl in 10 µl and double-digested with SbfI and MspI (New England Biolabs). Paired-end RAD tag libraries were created following the protocol in Poland et al. (2012) with the following modifications: 0.5 µl of BSA was added to the Restriction Mastermix and a final AMPure Beads clean-up and size selection step was performed after PCR amplification of the libraries to obtain a size range of approximately 150-600 bp. Each individual sample was barcoded with a unique sequence ranging from 4 nt to 9 nt in length (Poland et al. 2012). To obtain paired end reads (100 bp reads), pools of 40 individuals were sequenced on a single Illumina sequencing lane. The pipeline for data cleaning and processing is described in Fig. S1.
Proportion of protein coding sequence in Stegodyphus
A reference genome of the social inbreeding Stegodyphus mimosarum (Sanggaard et al. 2014), was estimated to be 2.7 gb long, and to carry about 27,000 genes with an average length of about 1,000 bp, suggesting that only approximately 1 % of the genome is protein coding. To estimate the proportion of protein coding RAD loci, we mapped the RAD loci obtained from S. mimosarum to its reference genome. As expected, our calculations show that only 1.16 % of the RAD loci are protein coding. We assume that a similarly low proportion of RAD loci are protein coding in the other Stegodyphus species, and that our data therefore mainly represent non-coding DNA sequences.
Data analyses 
The cleaned and processed data were analysed using pyRAD_v.2.15 (within-sample clustering, error-rate and heterozygosity estimation, creation of consensus sequences, clustering of consensus sequences across samples in a population, alignment and detection of paralogs) (Eaton 2014). pyRAD analyses were performed using the following parameters: ‘Minimum coverage for a cluster’ 10; ‘Clustering threshold’ 0.95; ‘Minimum samples in a final locus’ was adjusted according to the number of individuals in the given population; ‘Maximum number of individuals with shared heterozygote sites’ 60 %; ‘Ns in a consensus sequence’ 110; ‘Heterozygote sites in a consensus sequence’ 3; ‘Max number of SNPs in a final locus’ 10; ‘Max stack size’ 30; ‘Hierarchical cluster groups’ were specified for each species according to populations. For all analyses, indels and their flanking regions (7 bp) were masked to avoid misalignment.
We used custom scripts to further process the output of the pyRAD analyses in order to estimate genetic diversity (π) and genetic structure. To perform population genetic analyses it was necessary to remove any bias from the difference in RAD loci length and the potential for lack of independence between RAD loci. We therefore concatenated accepted loci into one alignment in a random order before analysis. For all diversity estimates we split each sample into 20 subsets of equal size, and estimated the population genetic parameter on each subset to obtain confidence intervals. All confidence intervals were obtained by bootstrapping and were used for statistical comparisons. To ensure that each population was represented equally within a species, populations were down-sampled to the number of individuals present in the population with the lowest number of individuals. The minimum number of individuals required in all populations in order to keep a locus was set to five. However, due to low numbers of individuals in the subsocial S. pacificus (four individuals per population) and the social S. sarasinorum (seven individuals in population D), analyses of these species were performed with two and four as a minimum number of individuals needed in all populations to keep the loci, respectively.
We could not use the S. mimosarum reference genome to filter RAD sites as it could only be used for S. mimosarum and partially for its sister species S. africanus. The remaining species were too divergent and only ~1 % of the reads mapped to the S. mimosarum reference genome with high certainty. We decided to do all analyses de novo not to add any bias.
We used MEGA6 (Tamura et al. 2013) to estimate genetic diversity (π and θ) and Tajima’s D per population and per species. Genetic differentiation (Fst) was estimated by 1- πP/πS with πP being the average π of the populations under consideration, and πS the total π of the species under consideration. Population structure analyses were performed in InStruct (Gao et al. 2007) in Mode 4 i.e. to infer population structure with admixture and population inbreeding coefficients, for K = 1 to K = N +1, K being the number of genetic clusters and N being the number of geographical populations in the species under consideration, and fastSTRUCTURE (Raj et al. 2014) for K = 1 to K = N +1. Structure analyses were performed on input files containing the informative sites of the given sample. Graphical representation of structure results were obtained with a custom script (available here: https://github.com/shenglin-liu/plotFastStructure) for fastStructure and distruct1.1 (Rosenberg 2004) for InStruct.
Individual heterozygosity (Hobs) based on all sites with coverage of at least 10 were estimated as the number of heterozygote sites divided by the total number of sites. To test the difference in Hobs between subsocial and social sister species we constructed a general linear mixed model in the R package “lme4” (Bates et al. 2015) for each species pair. Each model contained mating system (subocial or social) as the sole fixed effect and population as a random effect. P-values were obtained by comparing a reduced model, without mating system, with the full model using a likelihood ratio test. Hobs was square-root transformed to fulfil assumptions of parametric analysis. We used a two-sided Mann-Whitney U test to compare differences between Fst and π values between social and subsocial species. Analyses were performed in R (R Development Core Team 2016).
A summary of the characteristics of the data sets used, i.e. number of individuals and populations for each species, number of sites and polymorphic sites, total number of reads and loci, are reported in Table S2.
Demographic modelling
Coalescent simulations were performed to estimate demographic parameters using fastsimcoal2 (Excoffier et al. 2013). First, for each RAD locus included in the diversity analyses (see criteria above), the number of sequences per population were randomly down-sampled to the same number for all RAD loci. The sequence number depended on the number of samples per population for the given species and the amount of data retained per individual, and thereby presents a trade-off between number of sequences and amount of data per individual. Secondly, folded joint site frequency spectra (SFSs) were calculated from the combination of all RAD loci using a custom R script (available here: https://github.com/shenglin-liu/vcf2sfs) (for graphical representation see Fig. S2). Population models were constructed based on pairwise population divergence times, estimated also using fastsimcoal2. It was not possible to reconstruct a bifurcating population model for S. tentoriicola, so we used a star model. One hundred independent fastsimcoal2 runs were performed with 500,000 coalescent simulations, as well as 10–40 cycles of the likelihood maximization algorithm. We used a mutation rate of 6.65E-9, which is the average of the two differently estimated mutation rates used by Mattila et al. (2012) and a generation time of one year as Stegodyphus species are annual (Johannesen et al. 2007). We estimated separate population sizes on each branch (assuming constant population sizes), and all population split times. For each species, we also constructed a model including migration among all current populations, with separate migration rates between all possible population pairs. Confidence limits were estimated the following way: all RAD loci were concatenated, and 100 new data sets were constructed by bootstrapping over sites using seqboot from the PHYLIP package (Felsenstein 1989). For each new data set, joint frequency spectra were calculated as described above and 50 independent fastsimcoal2 runs were performed for each bootstrapped data set. By comparing maximum likelihood values between runs, we obtained the best run from each dataset, and calculated confidence limits for the model based on 100 sets of parameters.

Results 
Genetic diversity
We estimated genetic diversity at three levels: Observed individual heterozygosity (Hobs), within population diversity (πS), and species-wide diversity (πT). Observed individual heterozygosity (Hobs) estimates were on average more than six times lower in the social inbreeding than the subsocial outcrossing species (S. pacificus – S. sarasinorum: χ2 = 13.47, df =1, P = 0.0003; S. tentoriicola – S. dumicola: χ2 = 51.05, df =1, P < 0.0001; S. africanus – S. mimosarum: χ2 = 113.73, df =1, P < 0.0001) (Fig. 2A). Average Hobs of the social species was estimated to 0.00041, ranging from 0.00032 (S. mimosarum) to 0.00050 (S. sarasinorum), while average Hobs of the subsocial species was estimated to 0.00265, ranging from 0.00210 (S. africanus) to 0.00301 (S. lineatus) (Fig. 2A). 
Average within population nucleotide diversity (πS) was estimated to be more than ten times lower in the social inbreeding species (πS = 0.00031) compared with subsocial outcrossing species (πS = 0.00393) (Fig. 2B, Table S3). The lowest social population diversity was estimated in the S. dumicola population from Paarl (PAA) with πS = 0.00003, while the highest diversity estimate was from the southern S. sarasinorum population (C), πS = 0.00077. The diversity of subsocial populations ranged from πS = 0.00257 in S. africanus (PON) to πS = 0.00834 in S. pacificus (R2) (Fig. 2B, Table S3). The contrast in species-level genetic diversity among inbreeding and outcrossing species may be affected by differences in geographic distances among sampling sites. Since in our case, outcrossing populations in some instances were sampled at smaller ranges than inbreeding species (Fig. 1), our results should be robust, because similar distances among sampling sites is expected to translate into even more pronounced differences in the observed diversity patterns.
Species-wide nucleotide diversities (πT) were on average more than four times lower in the inbreeding compared to outcrossing species (Fig. 2B, Table S3). Species-wide nucleotide diversity (πT) estimate for the social S. mimosarum was higher than for the two other social species. This is due to the presence of two differentiated lineages of populations (the Malagasy and South African cluster) that are estimated to have diverged about 250,000 years ago, and are most likely completely isolated from each other by the Mozambique Chanel. When considering these two genetic lineages independently, estimates were similar for all social lineages and show that species-wide genetic diversity was eight times lower for social inbreeding species than for subsocial outcrossing species (πT = 0.00056 vs. πT = 0.00474) (S. pacificus - S. sarasinorum: U = 0, n1 = n2 = 19, P < 0.001; S. tentoriicola - S. dumicola: U = 0, n1 = 18, n2 = 19, P < 0.001; S. africanus - S. mimosarum: U = 0, n1 = n2 = 19, P < 0.0001; S. africanus - S. mimosarum Madagascar: U = 0, n1 = n2 = 19,  P < 0.0001; S. africanus - S. mimosarum South Africa: U = 0, n1 = n2 = 19,  P < 0.0001)  (Fig. 2B). Values of θ and Tajima’s D for each population and species are included in Fig. S3. The θ values are qualitatively very similar to the π estimates with lower values in the social inbreeding compared to the subsocial outcrossing species. All Tajima’s D estimates were negative with no consistent differences between the social and subsocial species.
Genetic structure 
The InStruct and fastSTRUCTURE analyses showed that a single genetic cluster is the most likely in each of the four subsocial outcrossing species (K = 1), while more than one genetic cluster is most likely in each of the three social inbreeding species (model selection was based on Deviance Information Criteria) (Fig. 3A InStruct, Fig. S4 fastSTRUCTURE). The inferred genetic clusters for the social species corresponded closely to predefined populations. The individuals from two S. sarasinorum populations (A and B) formed one genetic cluster, as did the ADDO and PAA, and PON and KRU populations of S. dumicola. Two genetic clusters were the most likely when considering all S. mimosarum populations, however, when performing the analyses on the Malagasy and South African populations separately, each predefined population constituted its own genetic cluster (Fig. 3A, Fig. S4). See Fig. S4 for a representation of the best fastSTRUCTURE estimates of K per species. InStruct simultaneously estimates inbreeding coefficients (Fis) for the genetic clusters. Inbreeding coefficients for social species were substantially higher than those of subsocial species (Fig. 3). Stegodyphus sarasinorum populations showed the lowest inbreeding coefficients of the social species ranging from 0.55 to 0.71, while S. dumicola populations have the highest ranging from 0.71 to 0.88. Inbreeding coefficients of subsocial species were 0.15-0.17 except for S. pacificus with 0.44. We only have a few samples from this species and attribute the relatively high inbreeding coefficient to stochastic effects.
Differentiation among populations measured by Fst was more than 10 times lower in subsocial outcrossing compared to social inbreeding species (S. pacificus - S. sarasinorum: U = 361, n1 = n2 = 19, P < 0.001; S. tentoriicola - S. dumicola: U = 361, n1 = n2 = 19, P < 0.001; S. africanus - S. mimosarum: U = 361, n1 = n2 = 19, P < 0.0001; S. africanus - S. mimosarum Madagascar: U = 361, n1 = n2 = 19,  P < 0.0001; S. africanus - S. mimosarum South Africa: U = 361, n1 = n2 = 19,  P < 0.0001) (Fig. 3B). Average Fst of subsocial and social species was 0.046 and 0.641, respectively. The estimate for social species is strongly inflated by the physical separation of the Malagasy and South African populations; however, a tenfold difference in Fst between the subsocial and social species remained when considering the Malagasy and South African populations separately (average social Fst = 0.467) (Fig. 3B).
Demographic modelling
We found a tenfold reduction in Ne of social inbreeding species compared to subsocial outcrossing species (population level estimates, Fig. 4). Also, the time to the most recent common ancestor (TMRCA) was considerably longer for subsocial species compared to social species (Fig. 4). We note that the estimates of Ne and TMRCA especially in the subsocial species appear to deviate from coalescent based predictions (either too high Ne or too low TMRCA), it is possible that that this deviation is explained by migration. Stegodyphus mimosarum was an exception, however, but it is reasonable to assume two independent population dynamic processes due to the deep split between populations from Madagascar and South Africa caused by the physical barrier created by Mozambique Channel. Average migration rates were estimated to be lower in social relative to subsocial species, as expected given inbreeding in social species (approximately by a factor two). Models including migration provide the best fit for all species except for S. pacificus, based on Akaike Information Criterion. We note that the estimated parameters of demographic modelling may be biased due to selection on the markers used or on linked loci (Schrider et al. 2016). The extent of such bias depends on the combination of the strength and efficacy of selection (effective population size and the selection coefficient, Nes) and the extent of linkage disequilibrium. Since Nes is predicted to be higher in the subsocial species, while the extent of linkage disequilibrium is predicted to be higher in the social species, it is difficult to predict if the estimated parameters are biased more in social than subsocial species.

Discussion
By contrasting three independent lineages of social inbreeding species with their subsocial outcrossing sister species, we found extraordinary low estimates of genetic diversity for social species at all levels. Estimates of population level neutral genetic diversity for a wide range of species (Leffler et al. 2012) show that mammals such as the European lynx (Lynx lynx) with extremely small small breeding populations (as low as 40-50 individuals are present in the Balkan region (IUCN 2015)) have extremely low population genetic diversity (~ π = 0.0001). Social spiders showed up to three times lower population genetic diversity compared with the lynx (S. dumicola in Paarl, πS = 0.00003), despite the fact that there are many thousand individuals of S. dumicola in the population (Bilde et al. 2007; Lubin & Bilde 2007). This suggests that factors associated with the transition to a social life style including female biased sex ratio, reproductive skew, meta-population dynamics and inbreeding, in addition to breeding population size significantly affect individual, population-level and species-wide genetic diversity. While we cannot disentangle the effects of the different characteristics of the social lifestyle, our results unequivocally demonstrate that the evolution of this social syndrome incurs dramatic loss of genome-wide genetic diversity at all levels.

The evolutionary transition to sociality with repeated cycles of inbreeding and the propagation of lineages by single mated females is expected to strongly decrease individual heterozygosity. In accordance, we found that estimates of observed individual heterozygosity (Hobs) were much lower in the three social species compared to their outcrossing congeners (Fig. 2A). At the population level, theory predicts that inbreeding alone can reduce genetic diversity by at most 50% (self-fertilization) (Charlesworth 2003; Charlesworth & Wright 2001; Nordborg 2000). However, an even stronger reduction of up to ~2/3 is found in some selfing plant species (Foxe et al. 2009). This is attributed to lower effective recombination rates and stronger effects of hitchhiking events in selfing species. We document an even more severe reduction in genetic diversity of social species as estimates of population nucleotide diversity (πS < 0.0001) was 6-fold lower in social populations compared to subsocial populations (Fig. 2B). The higher reduction in population genetic diversity than expected solely through inbreeding may be caused by hitchhiking events. Linkage disequilibrium is predicted to be extended due to reduced effective recombination rate in the social inbreeding species (Charlesworth & Wright 2001), and hitchhiking events are therefore expected to remove more linked variation. However, Ne is lower in the social species than in subsocial species (Fig. 4) leading to lower efficacy of selection (Settepani et al. 2016), which potentially reduces the number of hitchhiking events (Charlesworth & Wright 2001). In addition, preliminary evidence from humans and Drosophila suggests that most selective sweeps are so-called ‘soft’ sweeps fixing existing genetic variants (Cutter & Payseur 2013). Because subsocial species harbour more standing genetic variation, loss of diversity by selective sweeps is predicted to be higher in subsocial outcrossing species than social inbreeding species. While we cannot rule out that hitchhiking may have contributed to the observed loss of genetic diversity, we suggest that female biased sex ratio, reproductive skew and potentially metapopulation dynamics (see discussion below) are the main drivers of the observed loss in genetic diversity. These factors are inherent to the social syndrome and act to further reduce Ne relative to the expected reduction in Ne to 50% by inbreeding alone (Wright 1931). 
Furthermore, metapopulation dynamics with high nest and population turnover (Ingvarsson 2002; Pannell & Charlesworth 2000), also contribute to the depletion of genetic diversity in the social species. We will discuss metapopulation processes further in relation to species-wide genetic diversity below. 
In the absence of gene flow, social lineages should become fixed for different alleles through neutral or adaptive divergence, which means that genetic diversity may be maintained at the species level. In contrast with this expectation, species-wide genetic diversity (πT) of social spiders was 5-8 fold lower than that of subsocial species, and amongst the lowest estimated for any species (Leffler et al. 2012). One of the social species, S. mimosarum, showed higher species-wide genetic diversity compared to the two other social species. However, population structure analyses of S. mimosarum revealed two genetic lineages, one in South Africa and one in Madagascar, that diverged approximately 250,000 years ago (Fig. 4). Genetic diversity within each of these lineages was comparable to the two other social species. If we consider the Malagasy and South African lineages separately, which is justified by the separation caused by ~1000 km ocean and genetic divergence through isolation by distance, we observe similar coalescence times of all social inbreeding species (Fig. 4). Under this separation of S. mimosarum into two independent genetic lineages, species-wide diversity estimates in all the inbreeding Stegodyphus are lower than those reported in other species with inbreeding mating systems (Graustein et al. 2002; Walser & Haag 2012). It is possible that the difference in species-level genetic diversity among social and subsocial species could be affected by differences in geographic distances among sampling sites. However, sampling of subsocial populations were always performed at similar or smaller ranges than sampling of social species (Fig. 1). We therefore consider our results robust, because similar distances among sampling sites is expected to translate into even more pronounced differences in the observed diversity patterns. 
The existence of polymorphisms within the restriction site when using RAD sequencing may result in an underestimation of genetic diversity (Arnold et al. 2013). Our results are very robust to this inherent bias, because higher diversity, as observed in the subsocial species, will result in more polymorphic restriction sites and lead to an underestimation of genetic diversity compared to the social species. For diversity data similar to those observed/estimated in our study, underestimation of genetic diversity is expected to be in the order of 10-15 % (Arnold et al. 2013), and correcting for this bias would not change our the result of extremely low estimates of genetic diversity in the social species.

In line with theoretical expectations, demographic modelling consistently produced tenfold lower Ne estimates in the three social species compared to their subsocial sister species (Fig. 4). The combined effect of low Ne and restricted gene flow due to lack of pre-mating dispersal and inbreeding predicts strong differentiation among populations (Harrison & Hastings 1996; Ingvarsson 2002; Pannell & Charlesworth 2000). Our results partly corroborate this prediction as genetic and geographic clusters closely matched and were highly differentiated (Fig. 3). This could possibly be explained by relatively longer average geographic distance between sampled populations of the social species. On the other hand, the distances between the outcrossing S. tentoriicola and S. africanus populations are comparable to the distances between both the South African and the Malagasy social S. mimosarum populations, yet S. tentoriicola form a single genetic cluster, while the S. mimosarum populations form separate clusters. The divergence among social populations is, however, based on relatively few fixed SNPs. In the absence of gene flow, population divergence is expected to increase over time, contributing to the maintenance of genetic diversity at the species level (Charlesworth 2003), but this is not what we found in the social species. Despite strong differentiation between populations, the divergence between populations was shallow and the time to the most recent common ancestor in the social species was shorter (on average less than half of that of subsocial species) (Fig. 4). The extent of divergence depends on population age, population turnover rates, and extent of gene flow among populations (Barton & Whitlock 1997; Wade & McCauley 1988; Whitlock & McCauley 1990). Population turnover is expected to deplete within-population diversity due to genetic bottlenecks/founder events (Ingvarsson 2002), but to increase between-population differentiation due to genetic drift and strong founder effects (Harrison & Hastings 1996; Pannell & Charlesworth 2000) e.g. in aphids (Massonnet et al. 2002), or Daphnia and other freshwater invertebrates (Freeland et al. 2000; Walser & Haag 2012). Our data are consistent with a scenario where social populations differentiate, as predicted by theory, but divergence is counteracted by high turnover rates of genetic lineages (Settepani et al. 2014). If genetic lineages were recently established because turnover rate is particularly high (Wade & McCauley 1988), we would expect to observe genetic homogenization and therefore low between-population divergence and low species-wide genetic diversity (Haag et al. 2005). Indeed, field studies show that social spider populations are characterised by rapid nest turnover and high population extinction (Bilde et al. 2007; Crouch & Lubin 2001), which is consistent with this scenario.

Genetic homogenization by lineage extinction-colonization dynamics requires social spiders to be able to disperse over large distances and successfully establish new populations. Lineages are propagated by mated females (Johannesen et al. 2002), and long-distance dispersal occurs by ballooning, enabling dispersal over much longer distances than simply by walking (Schneider et al. 2001). Propagule dispersal is expected to occur when nests overshoot their optimal size (Bilde et al. 2007; Ulbrich & Henschel 1999), or when local conditions deteriorate (Crouch & Lubin 2001). Random dispersal by ballooning is risky, and the likelihood of successfully establishing a new nest is low as small nests experience high mortality (Bilde et al. 2007; Johannesen et al. 2002). The population dynamic processes associated with lineage propagation therefore act to homogenize genetic variation among populations (Settepani et al. 2014), which may explain the extremely low species-wide diversity in social species. In relation to this scenario, we note that both structure analyses and demographic models are most consistent with the occurrence of some degree of gene flow. However, even very low occurrence of ballooning individuals entering and joining already existing populations or nests would account for these results. This does not necessarily mean that individuals originating from different populations admix; they may co-exist as independent lineages in a location (Johannesen et al. 2002), until one of the lineages die out. Indeed, population structure analysis provides only limited evidence of admixture of genotypes originating from different genetic lineages (S. sarasinorum, population C and D, Fig. 3). 

Consequences of low genetic diversity
The extent and spatial subdivision of genetic diversity has important consequences for individual fitness and population viability (Hughes et al. 2008; Reed & Frankham 2003; Spielman et al. 2004b; Whitehorn et al. 2011), and for evolutionary processes such as local adaptation and speciation (Pannell & Charlesworth 2000; Wright 1931). Our data show that social species with female bias, reproductive skew and inbreeding show extremely low population and species-wide genetic diversity, which is likely to limit their ability to respond to environmental or ecological challenges (Fox & Reed 2011; Schou et al. 2015). Indeed, phylogenetic patterns of taxa that show this social syndrome indicate that the social lineages are derived, short-lived, and appear to lack diversification (Agnarsson et al. 2006; Chapman et al. 2000; Johannesen et al. 2007; Jordal & Cognato 2012; Pike et al. 2007; Settepani et al. 2016). In addition, low Ne is expected to reduce effective recombination rate and efficacy of selection, which may lead to a build-up of the genetic load by the accumulation of deleterious mutations (Charlesworth 2003; Charlesworth & Wright 2001). Evidence for reduced efficacy of selection associated with mating system transitions was found in several systems as for example in plants (Arunkumar et al. 2015), freshwater snails (Burgarella et al. 2015) and eusocial insects (Romiguier et al. 2014b), in addition to social spiders (Mattila et al 2012; Settepani et al. 2016). Deleterious effects of low Ne may result in a less effective immune response towards pathogens (Cassinello et al. 2001; Spielman et al. 2004a). In social Stegodyphus spiders, it is hypothesized that high extinction rates of nests and entire populations may be caused by elevated vulnerability to diseases (Bilde et al. 2007; Crouch & Lubin 2001), and preliminary data indicated that social Stegodyphus species have a less effective immune response compared to outcrossing species (Jønsson 2015). Deleterious effects of inbreeding on the immune system may cause a decline in population fitness (Acevedo-Whitehouse et al. 2003; Coltman et al. 1999; Liersch & Schmid-Hempel 1998), and contribute to increase risk of extinction of populations with small effective size. 

The evolution of group living and cooperation is widespread in the animal kingdom, and is attributed an important role for the ecological success of dominant species such as humans (Fehr & Fischbacher 2003; Kramer 2010) and social insects (Wilson 1971). Most social birds, mammals and insects maintain pre-mating dispersal or other inbreeding avoidance mechanisms and outcrossing mating systems (Pusey & Wolf 1996; Pusey 1987; Tabadkani et al. 2012). Thereby, they avoid the immediate fitness cost caused by the expression of deleterious alleles (Charlesworth & Willis 2009; Wang et al. 1999), which is expected under inbreeding even if some of the genetic load is purged by natural selection (Crnokrak & Barrett 2002; Hedrick 1994). Furthermore, because of outcrossing, Ne is higher compared to inbreeding social species and the long term costs in the form of reduced efficacy of selection and accumulation of deleterious mutations is therefore relatively lower (see references above). Nevertheless, the evolution of sociality is tightly connected with factors that diminishes Ne also in outcrossing species, most prominently reproductive skew, but also restricted dispersal (Cockburn 2003). Genetic diversity (πs) of RAD loci in bumblebees (Lozier 2014) and of transcriptomes of eusocial termites, ants and bees (Romiguier et al. 2014a) was shown to be similar to that of subsocial spider species in this study, and although their diversity is thereby approximately 10x higher than that of the social inbreeding spider species, it is still low compared with non-social outcrossing systems (Leffler 2012 Romiguier et al. 2014a). Within social insects, the level of social complexity across ant species correlates positively with reduced Ne, reduced genetic diversity, and increased genetic load (Romiguier et al. 2014b), suggesting that despite outcrossing, effects of high reproductive skew and demography have detrimental consequences for genomic architecture and population genetic diversity. In the social taxa that are characterized by lack of outcrossing (Agnarsson et al. 2006; Chapman et al. 2000; Johannesen et al. 2007; Jordal & Cognato 2012; Pike et al. 2007; Settepani et al. 2016), the negative effects of low Ne on population genetic diversity and build-up of the genetic load are even further amplified by inbreeding. The short-term benefits of sociality in these taxa therefore come with long-term costs in the form of reduced adaptive potential, consistent with the hypothesis that this social syndrome may be an evolutionary dead end. 
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Figure legends
Figure 1. Geographic distribution of the populations sampled. Social species are underlined and represented by circles, subsocial sister species are represented by triangles and the subsocial outgroup is represented by a square. For a phylogeny of the genus see (Settepani et al. 2016). Full names of sampling localities and GPS points are provided in Table S1.

Figure 2. A) Observed individual heterozygosity (Hobs) and B) genetic diversity per population (πS) and species (πT). Error bars represent 95% confidence intervals. Phylogenetic relationships including posterior node probabilities and split time estimates represented on the left side of the graph are redrawn from Settepani et al. (2016). Social species are underlined. S. dufuori, S. bicolor and S. tibialis are not subject to investigation in this study, but are drawn to illustrate the multiple speciation events occurring from subsocial species. A) Individual heterozygosity was calculated as the mean frequency of polymorphic sites per individual per species. Individual estimates were obtained in pyRAD. B) Genetic diversity per species (πT) is represented by white-striped bars, black-striped bars represent the S. mimosarum lineages (Malagasy and South African) and solid bars represent genetic diversity per population (πS). Values of θ and Tajima’s D per population and species are visible in Fig. S3.

Figure 3. Estimated population structure and Fst measures. Phylogenetic relationships including posterior node probabilities and split time estimates represented on the left side of the graph are redrawn from Settepani et al. (2016). Social species are underlined. S. dufuori, S. bicolor and S. tibialis are not subject to investigation in this study, but are drawn to illustrate the multiple speciation events occurring from subsocial species. A) Population structure (InStruct): The best representing number of genetic clusters (K) estimated for each species is reported under the species name and graphically represented by the barplots. Different colours in the barplot represent individuals’ membership to different genetic clusters and inbreeding coefficients (FIS) per cluster are shown on top of each cluster. Geographic population names are labelled below the barplot (see Fig. 1 for geographic localities). Results for the social S. mimosarum are reported for the species level and separately for the Malagasy and the South African clusters. A graphical representation of the best fastSTRUCTURE estimate of K per species is given in Fig. S4. B) Population differentiation (Fst): Fst was estimated by 1- πP/πS, with πP being the average π of the populations under consideration, and πS the total π of the species under consideration. Fst values were estimated for each species and separately for each genetic cluster of the social S. mimosarum (Madagascar and South Africa). Error bars represent 95% confidence intervals.

Figure 4. Demographic modelling from joint folded site frequency spectra (SFS). Two models were run for each species using fastsimcoal2 (Excoffier et al. 2013); one with and one without migration. The species to the left are the subsocial species and to the right their social sister-species. For each species the best fitting model based on Akaike Information Criterion (AIC) is shaded in grey. Below each model are population names and estimated effective population sizes (Ne) and 95 % confidence limits. The thickness of the branches is to scale with the Ne. To the left is a time scale for the time to the most recent common ancestor (TMRCA) in years. Note that the Y-axis is logarithmic. To see heatmaps representing joint folded site frequency spectra (SFS) see Fig. S2.
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