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Abstract

We construct and study a version of the Berry-Keating operator corresponding
to a classical Hamiltonian on a compact phase space, which we choose to be a two-
dimensional torus. The operator is a Weyl quantisation of the classical Hamiltonian
for an inverted harmonic oscillator, producing a difference operator on a finite, peri-
odic lattice. We investigate the continuum and the infinite-volume limit of our model
in conjunction with the semiclassical limit. Using semiclassical methods, we show
that only a specific combination of the limits leads to a logarithmic mean spectral
density as it was anticipated by Berry and Keating.

1Department of Mathematics, Royal Holloway, University of London, Egham, TW20 0EX, United
Kingdom, jens.bolte@rhul.ac.uk

2Department of Mathematics, Technion–Israel Institute of Technology, 629 Amado Building, Haifa
32000, Israel, egger@tx.technion.ac.il

3Fachbereich Mathematik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany,
stefan.keppeler@uni-tuebingen.de



1 Introduction
Phase-space methods in quantum mechanics are often used in a semiclassical context be-
cause they link (pseudo-)differential operators and functions on a classical phase space, see,
e.g., [Zwo12]. In such a context the phase space is a cotangent bundle of a manifold (the
configuration space) and, hence, is not compact. In contrast, quantisations on compact
phase spaces lead to operators in finite dimensional Hilbert spaces. The latter approach is
frequently used to quantise symplectic maps on tori [BD96, DEG03], the most prominent
example being the cat map [HB80]. However, one can also quantise Hamiltonian flows on
tori and therefore obtain a phase-space representation of a Schrödinger equation in a finite
dimensional Hilbert space. In this context the Hamiltonian operator can be interpreted as
a difference operator on a finite lattice with periodic boundary conditions. If the classical
phase space is a two-dimensional torus one has two length parameters available in addition
to the semiclassical parameter. In models with difference operators on periodic lattices
these length scales can be used to perform a continuum limit as well as an infinite volume
limit.

In this paper we explore the various limits in a discrete variant of the Berry-Keating
operator that was introduced in [BK99a]. The latter is a differential operator with a self-
adjoint realisation in L2(R) and, therefore, can be represented in the phase space T∗R.
Inspired by the work of Connes [Con96, Con99], Berry and Keating intended to define a
self-adjoint operator whose spectrum is related to the non-trivial zeros of the Riemann
zeta function. In particular, the mean spectral density of this operator should follow
the same asymptotic, logarithmic law as that of the Riemann zeros. To this end they
considered a quantisation of the classical Hamiltonian H(q, p) = qp. The first obstacle
that needed to be addressed was that the naive version of the operator has a purely
continuous spectrum, which is related to the fact that the energy surfaces in phase space
are not compact. For that reason Berry and Keating suggested a truncation of these energy
surfaces [BK99a, BK99b], however, without defining an operator that would correspond
to that truncation. Using standard semiclassical techniques, they then showed that the
truncated energy surfaces would lead to the desired form of the mean spectral density.
Later, a modification was suggested [SRL11] to overcome the problems with the phase-
space truncation, and this was subsequently improved in [BK11]. These modifications
keep the non-compact phase space T∗R, but add terms to the classical Hamiltonian in
such a way that its energy surfaces are compact, yet the resulting semiclassical spectral
density has the same leading asymptotic behaviour as before. After quantisation, however,
the additional terms lead to non-local contributions to the quantum Hamiltonian.

In other approaches two-dimensional, semi-inverted oscillators were related to the Rie-
mann zeta function and its zero-count [BKRT97], and versions of the Berry-Keating oper-
ator on a half-line as well as on quantum graphs were investigated [ES10]. The connection
of the Berry-Keating operator with local versions of the Riemann hypothesis was studied
in [Sre11]. More recently, a PT-symmetric, non-hermitian variant of the Berry-Keating
operator [BBM16] as well as a version in polymeric quantum mechanics [BMM16] were
studied.
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Our proposal differs from previous approaches in that we use a two-dimensional torus as
phase space, but keep the classical Hamiltonian (up to a linear canonical transformation).
Weyl quantisation on this compact phase space will immediately produce a self-adjoint
operator in an N -dimensional Hilbert space that, therefore, will have a discrete, even
finite, spectrum. The number N of eigenvalues tends to infinity in the semiclassical limit,
which in this context is well known to be the limit N →∞. The model allows us to study
various limits of the operator and its spectrum, including semiclassical, continuum and
infinite-volume limits, or combinations thereof. We also use semiclassical methods that are
mainly based on a Gutzwiller trace formula which we proved previously [BEK15]. In that
context we identify a way to choose the length scales of the torus in such a way that they
produce the same cut-off as it was imposed in [BK99a]. As a consequence, the semiclassical
approximation of the spectral density is the same as in [BK99a], except for a factor of two
whose origin we explain in Section 4.

The paper is organised as follows. In Section 2 we review the model of Berry and
Keating and then introduce our model. In the next section we analyse the continuum
and the infinite-volume limit. This is first done very explicitly in the example of the
quantisation of the symbol ξ2, and then qualitatively for our model. Section 4 is devoted
to a semiclassical calculation of the spectral density in our model. The result is compared
to numerical data in the following section. We present our conclusions in Section 6. Two
appendices contain a proof of a lemma in Section 2 and the calculation of the matrix
elements of our model operator, respectively.

2 The model
Berry and Keating [BK99a, BK99b] consider the operator

HBK =
~
i
x

d

dx
+

~
2i
, (2.1)

which is a (Weyl) quantisation of the symbol hBK(q, p) = qp on the phase space T∗R.
Their intention is to count the number of eigenvalues in spectral intervals, however, the
operator HBK defined on a suitable domain in L2(R) has a continuous spectrum and no
eigenvalues. They, therefore, suggest a cut-off in phase space to enforce the energy surfaces
h−1BK(E) ⊂ T∗R to be compact. One would expect a modification of the operator (2.1)
that reflects the truncation of the energy surfaces to possess a purely discrete spectrum.
However, no definition of an operator is given.

The cut-off procedure they suggest is to only consider the subset

{(q, p) ∈ T∗R; q ≥ Lq, p ≥ Lp}, (2.2)

of phase space, where Lq > 0 and Lp > 0 are parameters satisfying LqLp = 2π~. Before
the truncation the energy surface consists of the points (q, p) ∈ T∗R on the two branches of
the hyperbola qp = E. After the truncation only the part in the first quadrant satisfying

Lq ≤ q ≤ E

Lp
and Lp ≤ p ≤ E

Lq
(2.3)
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Figure 1: Energy surfaces (a) for the classical Hamiltonian corresponding to the Berry-
Keating operator, with cut-off parameters Lq and Lp, and (b) for the rotated Hamiltonian
(2.5), with fundamental domain characterised by `x and `ξ; (c) relation between Lq,p and
`x,ξ, see Sec. 4.

remains, see Figure 1(a). This has finite volume, suggesting that a related operator would
possess a purely discrete spectrum. Berry and Keating also propose that one should identify
p with −p and/or q with −q in a yet to be specified way.

With the last suggestion in mind we propose to ‘compactify’ phase space independent
of E in that T∗R is replaced by a torus, R2/Γ, where Γ ∼= Z2 is a lattice. Any observable
then has to be a function on R2 that is periodic with respect to Γ. If the lattice were chosen
such that it acts on points in R2 as (q, p) 7→ (q + na, p+mb), with some fixed parameters
a, b > 0 and integers n,m, observables would have to be functions f that are periodic in q
and p. The symbol hBK(q, p) = qp clearly does not have this property, so one would need
to restrict it to a fundamental domain of Γ, say, 0 ≤ q ≤ a, 0 ≤ p ≤ b, and extend it
periodically to R2. The result would be a function on R2 that is not continuous.

One can achieve an improvement by introducing new coordinates,

x =
p− q√

2
and ξ =

p+ q√
2
. (2.4)

The map (q, p) 7→ (x, ξ) is symplectic (a canonical transformation), and the symbol hBK is
transformed to

h(x, ξ) =
ξ2 − x2

2
. (2.5)

One then defines the lattice `xZ⊕`ξZ acting on R2 as (x, ξ) 7→ (x+n`x, ξ+m`ξ), n,m ∈ Z.
Restricting h(x, ξ) to a fundamental domain (−`x/2, `x/2)×(−`ξ/2, `ξ/2) of the lattice and
extending it periodically to R2 then gives a continuous, albeit not differentiable, function.
Hence, the Fourier series for h will have improved convergence properties over the Fourier
series for hBK. As opposed to some alternative suggestions this procedure maintains the
symmetry in x and ξ, at least when choosing `x = `ξ. A fundamental domain of the lattice
as well as an energy surface of h are shown in Figure 1(b).
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Returning to operators defined in L2(R), a (Weyl) quantisation of the symbol (2.5)
produces the Hamiltonian operator for an inverted oscillator,

H = −~2

2

d2

dx2
− 1

2
x2, (2.6)

that one can define on the domain C∞0 (R).

Proposition 1. The operator H has the following properties:

(i) Defined on the domain C∞0 (R), it is essentially self-adjoint. (For simplicity we denote
its self-adjoint extension also as H.)

(ii) It is unitarily equivalent to the operator HBK defined in (2.1).

(iii) H has a purely absolutely continuous spectrum, σ(H) = σac(H) = R.

Proof. The proof uses standard arguments:

(i) This property follows from [Wei03, Satz 17.15].

(ii) The symbol h of the operator H was obtained from the symbol hBK of the operator
HBK through the linear symplectic map (2.4). A combination of [Fol89, Eq. (2.1)]
with [Fol89, Eq. (4.23)] therefore yields that H and HBK are unitarily equivalent.
More specifically, by referring to the Heisenberg equations of motion for a harmonic
oscillator one can confirm that, indeed,

ei
π
4~HoscHBKe−i

π
4~Hosc = H, where Hosc = −~2

2

d2

dx2
+

1

2
x2. (2.7)

(iii) In [Per83, Proposition 6.2] as well as in [Wei03, Satz 24.6] it is shown that the
spectrum of HBK is R and is purely absolutely continuous. By (ii) the same then
holds for the operator H.

We now turn to constructing a model operator by Weyl quantising the equivalent of
the symbol (2.5) on the torus R2/`xZ⊕ `ξZ. Hence, for all n,m ∈ Z we set

h(x, ξ) =
(ξ −m`ξ)2 − (x− n`x)2

2
, if

{(
m− 1

2

)
`ξ ≤ ξ <

(
m+ 1

2

)
`ξ(

n− 1
2

)
`x ≤ x <

(
n+ 1

2

)
`x

. (2.8)

This function has a representation as a Fourier series,

h(x, ξ) =
∑
n,m∈Z

hmn e
2πi
(
mξ
`ξ
−nx
`x

)
, (2.9)
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with coefficients

hmn =


`2ξ−`

2
x

24
, if (m,n) = (0, 0)

1
4π2

(
`2ξ

(−1)m
m2 (1− δm0)δn0 − `2x

(−1)n
n2 (1− δn0)δm0

)
, if (m,n) 6= (0, 0)

. (2.10)

The Weyl quantisation on the torus was introduced in [HB80], for details see, e.g., [BD96,
DEG03]. It assigns to the function (2.8) with Fourier coefficients (2.10) an operator

opN(h) :=
∑
m,n∈Z

hmn T
m,n (2.11)

acting in CN . When h is real valued and CN is equipped with the standard inner product,
opN(h) is self-adjoint. Here the unitary operators

Tm,n = eiπ
nm
N Tm,0T 0,n (2.12)

in CN are defined through the actions(
Tm,0ψ

)
l
:= ψl+m and

(
T 0,nψ

)
l
:= e−

2πiln
N ψl (2.13)

on ψ = (ψl) ∈ CN , where we use the convention that ψl+N = ψl. The operators Tm,0 and
T 0,n represent translations in the x- and ξ-directions, respectively. The integer N ∈ N
is a semiclassical parameter, such that N → ∞ is the semiclassical limit. It satisfies the
relation

2π~N = `ξ`x. (2.14)

Therefore, the Weyl quantisation of the symbol (2.8) is

opN(h) =
`2ξ − `2x

24
T 0,0 +

`2ξ
4π2

∞∑
m=1

(−1)m

m2

(
Tm,0 + T−m,0

)
− `2x

4π2

∞∑
n=1

(−1)n

n2

(
T 0,n + T 0,−n), (2.15)

and acts on a vector ψ = (ψl) ∈ CN as(
opN(h)ψ

)
l
=
`2ξ − `2x

24
ψl +

`2ξ
4π2

∞∑
m=1

(−1)m

m2

(
ψl+m + ψl−m

)
− `2x

4π2

∞∑
n=1

(−1)n

n2

(
e−

2πiln
N + e

2πiln
N

)
ψl

=
`2ξ
24
ψl +

`2ξ
4π2

∞∑
m=1

(−1)m

m2

(
ψl+m + ψl−m

)
− 1

2

(
l`x
N

)2

ψl.

(2.16)

It can hence be seen as a difference operator on a lattice with N points and periodic
boundary conditions.

The spectrum σ(opN(h)) of opN(h) consists of N real eigenvalues En.
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Lemma 1. When `x = `ξ the spectrum of opN(h) is symmetric about zero, i.e., En ∈
σ(opN(h)) implies that −En ∈ σ(opN(h)).

We prove this lemma in Appendix A.
Below we wish to study the distribution of the eigenvalues of opN(h) in the semiclassical

limit N →∞. We intend our approach to provide an approximation to the operator (2.6)
and, therefore, keep the value of ~ fixed. Due to the relation (2.14), the semiclassical limit
N →∞ can then be achieved by sending `ξ and/or `x to infinity.

3 Continuum and infinite volume limit
Before studying spectral properties of the operator opN(h) in various combinations of the
limits `ξ → ∞ and `x → ∞, we want to explore their interpretation in some more detail.
It is obvious from the set-up that `x measures the extension of the model in ‘configuration
space’, whereas `ξ is the corresponding measure in ‘momentum space’. One may then view
vectors ψ = (ψn) ∈ CN as functions evaluated at the N equidistant points

xn =
n`x
N
∈
[
−`x

2
,
`x
2

)
, (3.1)

where −N
2
≤ n < N

2
. The distance between neighbouring points can be expressed as

`x
N

=
2π~
`ξ

(3.2)

by making use of the relation (2.14). As we keep ~ fixed, taking `ξ → ∞ corresponds
to a continuum limit, in which difference operators approximate differential operators.
In contrast, taking `x → ∞ corresponds to an infinite-volume limit. Both limits are
semiclassical in the sense of Weyl quantisation on a torus as they imply N →∞.

When a symbol only depends on either x or ξ, the spectrum of its quantisation can be
determined explicitly. As a simplification of (2.8) we therefore choose

a(ξ) = (ξ −m`ξ)2, if
(
m− 1

2

)
`ξ ≤ ξ <

(
m+ 1

2

)
`ξ , m ∈ Z, (3.3)

with Fourier expansion

a(ξ) =
`2ξ
12

+
`2ξ
π2

∞∑
n=1

(−1)n

n2
cos

(
2π

`ξ
nξ

)
. (3.4)

Its quantisation is

opN(a) =
`2ξ
12

+
`2ξ

2π2

∞∑
n=1

(−1)n

n2

(
T n,0 + T−n,0

)
. (3.5)
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We define plane waves ψ(ν) = (ψ
(ν)
m ) ∈ CN as

ψ(ν)
m = e

i
~
ν`ξ
N

m`x
N = e2πi

νm
N . (3.6)

Choosing ν ∈ Z with −N
2
≤ ν < N

2
ensures that the N momenta satisfy

ν`ξ
N
∈
[
−`ξ

2
,
`ξ
2

)
. (3.7)

Plane waves can easily be seen to be eigenfunctions of the operators T n,0,

(T n,0ψ(ν))m = e2πi
νn
N ψ(ν)

m , (3.8)

and consequently

(opN(a)ψ(ν))m =

(
`2ξ
12

+
`2ξ
π2

∞∑
n=1

(−1)n

n2
cos
(

2π
νn

N

))
ψ(ν)
m =

(
ν`ξ
N

)2

ψ(ν)
m . (3.9)

It is convenient to express the eigenvalues EN
ν =

(
ν`ξ
N

)2
in several ways,

EN
ν = `2ξ

ν2

N2
(3.10a)

=

(
2π~
`x

)2

ν2 (3.10b)

= 2π~
`ξ
`x

ν2

N
. (3.10c)

We note in passing that

inf σ(opN(a)) = 0 and supσ(opN(a)) =


`2ξ
4

for N even
`2ξ
4

(
N−1
N

)2 for N odd
, (3.11)

and that the nearest-neighbour separation of eigenvalues (for non-negative ν) is

sNν = EN
ν+1 − EN

ν = `2ξ
2ν + 1

N2
(3.12a)

=

(
2π~
`x

)2

(2ν + 1) (3.12b)

= 2π~
`ξ
`x

2ν + 1

N
. (3.12c)

We now discuss the behaviour of the spectrum in the continuum- and/or infinite-volume
limit:
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1. Continuum limit in finite volume, i.e., `x fixed, `ξ → ∞: From (3.10b) one sees
that the eigenvalues, even before taking the limit, are the same as eigenvalues of
the operator −~2 d2

dx2
on an interval [−`x/2, `x/2] with periodic boundary conditions.

The only effect of the limit N → ∞ hence is a growing number of eigenvalues,
eventually covering the entire spectrum of the differential operator. The separation
of neighbouring eigenvalues (3.12b) is unaffected.

2. Infinite volume limit on the lattice 2π~
`ξ
Z, i.e., `ξ fixed, `x → ∞: In this limit the

expression on the right-hand side of (3.5) for the operator opN(a) is unaffected by
the limit; opN(a) remains a difference operator, albeit on a growing lattice that tends
to an infinite lattice in the limit. From (3.11) we see that the spectrum remains in
the finite interval [0, `2ξ/4], whereas (3.12a) shows that the eigenvalues become dense
everywhere in this interval.

3. Continuum limit in infinite volume, i.e., `x → ∞ and `ξ → ∞: Combining the two
previous cases one might expect a convergence (in a suitable sense) of the difference
operator opN(a) to the differential operator −~2 d2

dx2
acting in L2(R). The spectrum

is expected to approach a ‘continuous’ spectrum [0,∞). Indeed, (3.11) implies that
supσ(opN(a))→∞ in this case, but whether the eigenvalues become dense depends
on how fast `x and `ξ go to ∞, and the answer can be different in different ranges.
To illustrate this we set

`ξ = ANα , `x = BN1−α (3.13)
with α ∈ (0, 1) and constants A,B satisfying AB = 2π~ in order to comply with
(2.14). Then according to (3.10c) and (3.12c),

EN
ν = A2N2α−2 ν2 and sNν = A2N2α−2 (2ν + 1). (3.14)

Thus, at a fixed range in the spectrum, i.e. when ν grows like N1−α, the eigenvalues
become dense for every α > 0. Near the supremum of the spectrum, i.e., when ν
grows proportional to N , the eigenvalues only become dense if α < 1

2
, i.e., if `x grows

faster than `ξ.

When `x = `ξ, the operators opN(a) and opN(b), where b(x) = x2, are unitarily equivalent
via the discrete Fourier transform, see (A.6). Therefore, the operators have the same
spectrum and the above discussion applies to opN(b) too. However, even when `x 6= `ξ can
one carry over the above analysis to σ(opN(b)); one only needs to swap `ξ and `x.

For the operator opN(h) we expect a qualitatively similar behaviour. We first note that
since

opN(h) =
1

2

(
opN(a)− opN(b)

)
, (3.15)

and both opN(a) and opN(b) are positive operators, the min-max principle allows us to
bound the spectrum of opN(h) from above and below in terms of the upper bounds Ea,max =
`2ξ/4 and Eb,max = `2x/4 for opN(a) and opN(b), respectively,

−`
2
x

8
≤ opN(h) ≤

`2ξ
8
. (3.16)
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In the various cases of sending `ξ and/or `x to infinity we make the following observations:

1. Continuum limit in finite volume, i.e., `x fixed, `ξ → ∞: The explicit form (B.11)
of the matrix elements of opN(h) show that in this limit opN(a) dominates, so that
opN(b) can be seen as a perturbation. Hence, as `ξ → ∞ the eigenvalues of opN(h)
will asymptotically be given by (one half of) the right-hand side of (3.10) (ν fixed).
This will describe large eigenvalues; at the bottom of the spectrum the contribution
of opN(b) will have an effect. As can be seen from (3.16), in the limit the spectrum
will be contained in [−`2x/8,∞). We expect the limiting operator to be

−~2

2

d2

dx2
− 1

2
x2 (3.17)

on the interval [−`x/2, `x/2] with periodic boundary conditions.

2. Infinite volume limit on the lattice 2π~
`ξ
Z, i.e., `ξ fixed, `x → ∞: This limit de-

scribes the opposite case to the previous one, in that opN(a) will be a perturbation
of − opN(b). Asymptotically, the eigenvalues will be given by −1

2
times the right-

hand side of (3.10) with `x instead of `ξ. The limiting spectrum will be contained in
(−∞, `2ξ/8].

3. Continuum limit in infinite volume, specifically, ` := `x = `ξ →∞: From (B.11) one
obtains that all matrix elements of opN(h) contain a factor `2, hence the eigenvalues
will have the same factor and otherwise be independent of `. The only conclusion
one can draw from the bounds (3.16) is that the limiting spectrum will be contained
in R. We expect the limiting operator to be H (2.6), whose spectrum is described in
Proposition 1.

The semiclassical discussion in the following section will confirm this picture.

4 Semiclassics
For a semiclassical analysis of the spectrum of opN(h) we need to determine some classical
quantities, including the energy surface and periodic orbits of the Hamiltonian flow, as well
as their actions and periods. We first note that

−`
2
x

8
≤ E ≤

`2ξ
8
, (4.1)

which is the classical equivalent to (3.16). For these values of E the energy surface is

ΣE =

{
(x, ξ) ∈

(
−`x

2
,
`x
2

)
×
(
−`ξ

2
,
`ξ
2

)
;
ξ2 − x2

2
= E

}
. (4.2)
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When `ξ = `x, the energy surface is always connected. Otherwise, depending on the values
for `ξ, `x, E it is either connected or consists of two connected components. The latter case
occurs when either `ξ > `x and

0 < E <
`2ξ − `2x

8
, (4.3)

or when `x > `ξ and
`2ξ − `2x

8
< E < 0. (4.4)

In all other cases ΣE is connected. Likewise, when ΣE is connected, there is only one
primitive periodic orbit p of the Hamiltonian flow. Its period tp then is the volume (in
Liouville measure) of ΣE. When ΣE has two components, however, there are two primitive
periodic orbits p and p−1, where the latter is the time reversal of the former. In this case
the volume of ΣE is the sum of tp and tp−1 , i.e., 2tp.

When one keeps `x fixed and increases `ξ, only in the small range `2ξ−`2x < 8E < `2ξ will
ΣE be connected. In the large energy range (4.3) ΣE has two components. As E grows,
these components approach the two components of the energy surface

Σ0
E :=

{
(x, ξ); ξ = ±

√
2E
}

(4.5)

of ξ2/2. A Bohr-Sommerfeld quantisation of the energy surfaces ΣE hence demonstrates
that semiclassical approximations of large eigenvalues of opN(h) in the range (4.3) ap-
proach semiclassical approximations of the eigenvalues of the operator −~2

2
d2

dx2
on the in-

terval [−`x/2, `x/2] with periodic boundary conditions. (The latter are identical with the
exact eigenvalues (3.10b).) Near the bottom of the spectrum one would approximate eigen-
values with Bohr-Sommerfeld quantisations of surfaces ΣE at small, positive values of E,
which deviate essentially from the corresponding energy surfaces Σ0

E. There will also be
a limited range of negative energies with connected ΣE whose quantisations may approx-
imate negative eigenvalues. Thus, the semiclassical picture conforms with our discussion
in Section 3.

When `x grows while `ξ is kept fixed, the above discussion applies after having swapped
x and ξ as well as positive E and negative E. In the case `x = `ξ all energy surfaces
are connected and there is a complete symmetry in x and ξ. After Bohr-Sommerfeld
quantisation this leads to a semiclassical equivalent of Lemma 1.

We now calculate the action Sp and period tp of the single primitive periodic orbit p in
the case of a connected energy surface at positive energy E,

Sp =

∮
p

ξ dx and tp =
dSp
dE

. (4.6)

At negative energy one has to swap x and ξ, but otherwise gets the same expressions. In
the fundamental domain the primitive orbit p consists of the two sections of the hyperbola
ξ2−x2 = 2E between the points (x−, `ξ/2) and (x+, `ξ/2), and (x+,−`ξ/2) and (x−,−`ξ/2),
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respectively, as shown in Figure 1(b). Here we have defined x± = ±
√
`2ξ/4 + 2E. Thus,

for the action we find

Sp = 2

∫ x+

x−

√
x2 + 2E dx+ `ξ

(
x+ − x−

)
= 4E arsinh

√
`2ξ
8E
− 1− `ξ

2

√
`2ξ − 8E.

(4.7)

The derivative of this result yields the period,

tp = 4 arsinh

√
`2ξ
8E
− 1. (4.8)

With these classical quantities available, we can use them in the trace formula that was
proven in [BEK15]. Choosing a test function ρ ∈ C∞(R) with Fourier transform ρ̂ ∈
C∞0 (R), denoting the eigenvalues of opN(h) as En, the Maslov index of the primitive
periodic orbit p as σp [BEK15], and with the notation as above, this trace formula reads∑

n

ρ

(
En − E

~

)
=
∑
k∈Z

tp ρ̂(ktp)

2π
e

i
~kSp−i

π
2
kσp +O(~). (4.9)

Using a suitable Tauberian theorem [BPU95, Theorem 6.3], this expression allows us to
determine the leading semiclassical behaviour of the local eigenvalue counting function to
be

N(E; r) := #{n; |En − E| ≤ r~} ∼ r

π
tp as ~→ 0. (4.10)

This means that the leading asymptotic behaviour of the spectral density is given by

d(E) ∼ tp
2π~

=
2

π~
arsinh

√
`2ξ
8E
− 1. (4.11)

We now propose to link our length-parameters `ξ, `x to the truncation (2.2) of the phase
space introduced by Berry and Keating. Their parameters Lq, Lp measure the closest
distance of the truncated hyperbola qp = E to the coordinate axes. In our coordinates this
would be the closest distance of the hyperbola ξ2 − x2 = 2E to the asymptotes ξ = ±x.
The truncation at E/Lp on the q-axis in [BK99a] then corresponds to the distance

√
2
`ξ
2
− Lp (4.12)

on the asymptote ξ = x, see Figure 1(c) for an illustration. Equating these quantities and
using the value Lp =

√
2π (in units where ~ = 1) as in [BK99a] gives

`ξ =
E + 2π√

π
, (4.13)
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E

Figure 2: Histogram (grey) of the eigenvalues of opN(h) for N = 1000, ~ = 1 and
`x = `ξ =

√
2πN compared to the semiclassical estimate (thick black line) for the density

(4.11).

hence linking the torus-length scale to the energy. With this identification the action (4.7)
and the period (4.8) become

S(E) = 4E arsinh

(
E − 2π√

8πE

)
− E2

2π
+ 2

= 2E log
E

2π
− E2

2π
+ 2

(4.14)

and
tp = 4E arsinh

(
E − 2π√

8πE

)
= 2 log

(
E

2π

)
. (4.15)

Using this in the expression on the right-hand side of (4.11) then leads us to expect a
logarithmic mean spectral density

d̄(E) =
1

π
log

(
E

2π

)
. (4.16)

We note that this is twice the value which Berry and Keating [BK99a] found in their model.
The factor of two arises from the fact that in [BK99a] only one branch of the hyperbola
was considered, whereas we have taken both branches into account, see Figure 1.
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Figure 3: Numerical estimate dK (grey) of the mean spectral density compared to the
semiclassical asymptotics d̄ (black), see Eq. (4.16). The left panel is forK = 2; one observes
fluctuations of dK around d̄. For K = 3 (right panel) the lines are hardly distinguishable
at higher energies; small rapid fluctuations are visible upon magnification (inset).

5 Numerical results
In order to illustrate the findings of Section 4 we have numerically diagonalised the Hamil-
tonian opN(h) in the form

opN(h) =
π

2N

N−1∑
m=1

(−1)m

sin2
(
πm
N

) (Tm,0 − T 0,m
){ 1 if N even

cos
(
πm
N

)
if N odd

. (5.1)

Here, using Lemma 2 and Eq. (B.8) in Appendix B, the infinite sum in (2.15) has been
converted into a finite sum. Furthermore, we have chosen ~ = 1 and `x = `ξ =

√
2πN .

This choice ensures that the condition (2.14) is satisfied, as well as that the continuum
and the infinite-volume limits are performed simultaneously. The matrix elements of this
operator, that we have used for the numerical diagonalisation, are given in Eq. (B.11).

We first test the accuracy of the semiclassical arguments leading to the estimate (4.11)
for the spectral density. To this end we show a histogram of the eigenvalues of opN(h)
for N = 1000 in Figure 2. The overall behaviour is well described by Eq. (4.11), which is
plotted for comparison.

Now we want to compare the logarithmic mean density (4.16) to the numerical data,
where we have to satisfy the condition (4.13). However, since we have already fixed `ξ in
terms of N , this relation now reads

√
2πN =

E + 2π√
π

. (5.2)

It can thus be implemented in the following way. For each value of N – recall that N labels
matrices of different size, and thus different spectra – we have to determine the spectral
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density at the energy
E = π

√
2N − 2π . (5.3)

The latter we do as follows. We first determine the K eigenvalues which are closest to
the given energy E. Of these we determine the minimal and the maximal value EK

min and
EK

max, respectively. We then estimate the local spectral density as

dK(E) =
K − 1

EK
max − EK

min

. (5.4)

In Figure 3 we compare the spectral densities dK obtained from spectra with 10K ≤ N ≤
2000 to the logarithmic semiclassical estimate (4.16) and observe a good agreement.

6 Conclusions
Our goal was to introduce a self-adjoint quantum Hamiltonian as a modification of the
Berry-Keating operator [BK99a, BK99b] that has, to leading order, an eigenvalue count
resembling the logarithmic law of the Riemann zeros. In order to achieve this we followed
the suggestion of a phase-space truncation made in [BK99a, BK99b]. In contrast to pre-
vious approaches [SRL11, BK11] we did not modify the classical Hamiltonian to achieve
compact energy surfaces, but we replaced the non-compact phase space T∗R by a torus.
We then demonstrated that Weyl quantisation on a torus provides a powerful tool to con-
struct operators and to analyse their properties. This setting enabled us to use the three
available parameters, the two length scales and the semiclassical parameter, to perform
various limits, including a continuum and an infinite-volume limit.

Representing the quantum Hamiltonian in Weyl quantisation offers the opportunity to
use semiclassical methods in order to study spectral properties. Based on the Gutzwiller
trace formula for our setting [BEK15], we derived a semiclassical expression for the spectral
density which, however, is not of the desired logarithmic form. It rather expresses the
spectral density in the vicinity of a fixed energy E, with fixed length parameters and
in a semiclassical approximation. However, it does fit a numerically computed spectral
density very well. As in the (semi-)classical calculation provided in [BK99a, BK99b], we
had to link the torus length scales to the energy; this can be done in a similar way as in
[BK99a, BK99b], producing the same leading term.

Our model provides a clean and direct implementation of the original proposal made by
Berry and Keating, avoiding ad hoc modifications as well as non-local terms in the quantum
Hamiltonian as they were suggested in [SRL11, BK11]. The original model was based on
the work of Connes [Con96, Con99], and central to it was the idea to provide a quantisation
of the classical Hamiltonian H(q, p) = qp, with the expectation that the hyperbolic nature
of the classical dynamics would provide the necessary instability to produce a spectrum that
would be able to mimic the ‘spectrum’ of Riemann zeros, whose correlations on the scale of
the mean level spacing can be modelled by random-matrix theory (see, e.g., [BK99b] and
references therein). In one degree of freedom, however, classical dynamics are integrable
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and, therefore, one cannot truly expect such a mimicking to happen. This is reflected by the
fact that we had to use a family of operators, parametrised by the semiclassical parameter
N , and to link the size of the torus to the energy E. We then counted eigenvalues around
E in an N -dependent way, eventually leading to the desired logarithmic spectral density.
In that way our analysis clearly demonstrates the limitations of modelling the Riemann
zeros with the eigenvalues of an operator that is a quantisation (of an established nature)
of H(q, p) = qp.

Acknowledgements

This research was supported through the programme Research in Pairs by the Mathema-
tisches Forschungsinstitut Oberwolfach in 2016. A first stage of the work was supported
by Grant no. 41534 of the London Mathematical Society.

A Proof of Lemma 1
Along the symbol a(ξ) defined in (3.3), whose Fourier series is (3.4), we define

b(x) = (x− n`x)2, if
(
n− 1

2

)
`x ≤ x <

(
n+ 1

2

)
`x , n ∈ Z, (A.1)

with Fourier expansion

b(x) =
`2x
12

+
`2x
π2

∞∑
n=1

(−1)n

n2
cos

(
2π

`x
nx

)
, (A.2)

and quantisation

opN(b) =
`2x
12

+
`2x

2π2

∞∑
n=1

(−1)n

n2

(
T 0,n + T 0,−n). (A.3)

Hence, h(x, ξ) = 1
2
(a(ξ)− b(x)).

We also introduce the discrete Fourier transform F , which is a unitary operator on CN

defined as

(Fψ)k :=
1√
N

N−1∑
l=0

e−2πi
kl
N ψl , (A.4)

where we recall the periodicity ψl+N = ψl. A short calculation then shows that

F−1Tm,0F = T 0,m, hence FT 0,mF−1 = Tm,0. (A.5)

When `x = `ξ, a comparison of (3.5) and (A.3) hence yields that

F−1 opN(a)F = opN(b). (A.6)
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Moreover, since F 2 is a parity operator, (F 2ψ)l = ψ−l, it follows that

F 2 opN(b)F−2 = opN(b), hence opN(a) = F opN(b)F−1 = F−1 opN(b)F. (A.7)

Thus,

F−12 opN(h)F = F−1 opN(a)F − F−1 opN(b)F

= opN(b)− opN(a) = −2 opN(h).
(A.8)

As F−1 opN(h)F and opN(h) have the same spectra, the lemma is proven.

B Matrix elements
In this appendix we calculate the matrix elements opN(h)k,l of the operator with Weyl
symbol (2.8).

The matrix elements Ak,l of an operator A are defined by

(Aψ)k =
∑

−N
2
≤k<N

2

Ak,l ψl . (B.1)

In order to calculate the matrix elements of a Weyl operator (2.11) we need the matrix
elements of the unitary phase-space translation operators Tm,n. From Eqs. (2.12) and
(2.13) one concludes that

(Tm,nψ)k =
∑

−N
2
≤k<N

2

e−iπ
nm
N e−2πi

kn
N δk+m,l ψl , (B.2)

from which the matrix elements are read off as

(Tm,n)k,l = e−iπ
nm
N e−2πi

kn
N δk+m,l . (B.3)

Here it is understood that our convention ψl+N = ψl implies that all indices are to be taken
modulo N .

Since phase space is a torus, the resulting periodicity of translations imply that for
fixed N we can always view a Weyl operator as the quantisation of a symbol that is a finite
trigonometric polynomial instead of the in general infinite series (2.11).

Lemma 2. Let f ∈ C(R2/(`xZ⊕ `ξZ)) be a Weyl symbol with quantisation opN(f). Then
there exists a (generally N-dependent) symbol g that is a finite trigonometric polynomial,
such that

opN(f) = opN(g) . (B.4)

We remark that a similar statement can be found in [Lig16, Theorem 1].
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Proof. We explicitly construct g. First observe the following periodicity property of the
phase space translations,

Tm+µN,n+νN = (−1)mν+nµ+µνN Tm,n , (B.5)

which follows from (B.3) by a direct computation. Hence,

opN(f) =
∑
m,n∈Z

fm,nT
m,n =

N−1∑
m,n=0

∑
µ,ν∈Z

fm+µN,n+νNT
m+µN,n+νN

=
N−1∑
m,n=0

∑
µ,ν∈Z

fm+µN,n+νN (−1)mν+nµ+µνN Tm,n .

(B.6)

Defining
gm,n =

∑
µ,ν∈Z

fm+µN,n+νN (−1)mν+nµ+µνN , 0 ≤ m,n < N − 1 , (B.7)

concludes the proof.

We now use this result to determine the matrix elements of opN(h), see (2.11). To
this end we first choose f(x, ξ) = a(ξ)/2, with a defined in Eq. (3.3), for the symbol in
Lemma 2. Then fm,n = amδn0 and, likewise, gm,n = 0 for all n 6= 0. For m 6= 0 we have,
cf. (3.4),

gm,0 =
`2ξ

4π2

∑
µ∈Z

(−1)m+µN

(m+ µN)2
=
`2ξ(−1)m

4π2N2

∑
µ∈Z

(−1)µN

(µ+ m
N

)2

=
`2ξ(−1)m

4N2 sin2
(
πm
N

) { 1 if N even
cos
(
πm
N

)
if N odd

,

(B.8)

where we have used [DLMF, Eq. 5.15.6] to evaluate the sums. The remaining coefficient is

g0,0 =
`2ξ
24

+
`2ξ

2π2

∞∑
µ=1

(−1)µN

µ2N2
=

`2ξ
24N2

{
(N2 + 2) if N even

(N2 − 1) if N odd
. (B.9)

The second term of the symbol (2.8), h− a/2 = b/2, cf. (A.1), is a function of x only,
and thus its quantisation is diagonal in the chosen representation,(

opN(b/2)ψ
)
l
= −1

2

(
l

N
`x

)2

ψl . (B.10)

Finally, the matrix elements of opN(h) read

opN(h)k,l =

(
g0,0 −

1

2

(
k

N
`x

)2
)
δk,l +

N−1∑
m=1

gm,0 δk+m,l , (B.11)

with the coefficients gm,0 given in Eqs. (B.8) and (B.9).
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