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ON THE DIMENSION OF CLASSIFYING SPACES FOR

FAMILIES OF ABELIAN SUBGROUPS

GED COROB COOK, VICTOR MORENO, BRITA NUCINKIS,
AND FEDERICO PASINI

Abstract. We show that a finitely generated abelian group G of
torsion-free rank n ≥ 1 admits a n+r dimensional model for EFr

G,
where Fr is the family of subgroups of torsion-free rank less than
or equal to r ≥ 0.

1. Introduction

In this note we consider classifying spaces EFG for a family of subgroups
F of G. We are particularly interested in the minimal dimension, de-
noted gdFG, such a space can have.
Let G be a group. We say a collection of subgroups F is a family if it
is closed under conjugation and taking subgroups. A G-CW-complex
X is said to be a classifying space EFG for the family F if, for each
subgroup H ≤ G, XH ≃ {∗} if H ∈ F, and XH = ∅ otherwise.
The spaces EG = EFG for F = Fin the family of finite subgroups and
EG = EFG for F = Vcyc the family of virtually cyclic subgroups have
been widely studied for their connection with the Baum-Connes and
Farrell-Jones conjectures respectively. For a first introduction into the
subject see, for example, the survey [3].
We consider finitely generated abelian groups G of finite torsion-free
rank r0(G) = n and families Fr of subgroups of torsion-free rank less
or equal to r < n. Note that for r = 0, F0 = Fin and that it is a well
known fact, see for example [3], that R

n is a model for EG and that
gdF0

G = n. For r = 1, F1 = Vcyc and it was shown in [5, Proposition
5.13(iii)] that gdF1

G = n + 1.
The main idea is to use the method developed by Lück and Weiermann
[5] to build models of EFr

G from models for EFr−1G. We begin by
recalling those results in [5] that we need for our construction. Let F

and G families of subgroups of a given group G such that F ⊆ G.
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Definition 1.1. [5, (2.1)] Let F and G be families of subgroups of a
given group G such that F ⊆ G. Let ∼ be an equivalence relation on
G\F satisfying:

• For H,K ∈ G\F with H ≤ K we have H ∼ K.
• Let H,K ∈ G\F and g ∈ G, then H ∼ K ⇐⇒ gHg−1 ∼
gKg−1.

Such a relation is called a strong equivalence relation. Denote by [G\F]
the equivalence classes of ∼ and define for all [H ] ∈ [G\F] the following
subgroup of G:

NG[H ] = {g ∈ G | [gHg−1] = [H ]}.

Now define a family of subgroups of NG[H ] by

G[H ] = {K ≤ NG[H ] |K ∈ G\F , [K] = [H ]} ∪ (F ∩NG[H ]).

Here F∩NG[H ] is the family of subgroups of of NG[H ] belonging to F.

Theorem 1.2. [5, Theorem 2.3] Let F ⊆ G and ∼ be as in Definition

1.1. Denote by I a complete set of representatives of the conjugacy

classes in [G\F]. Then the G-CW-complex given by the cellular G push-

out

⊔[H]∈IG×NG[H] EF∩NG[H](NG[H ])
i

//

⊔[H]∈IidG×NG[H]f[H]

��

EF(G)

��

⊔[H]∈IG×NG[H] EG[H](NG[H ]) // X

where either i or the f[H] are inclusions, is a model for EG(G).

The condition on the two maps being inclusions is not that strong a
restriction, as one can replace the spaces by the mapping cylinders, see
[5, Remark 2.5]. Hence one has:

Corollary 1.3. [5, Remark 2.5] Suppose there exists an n-dimensional

model for EFG and, for each H ∈ I, a (n − 1)-dimensional model for

EF∩NG[H](NG[H ]) and a n-dimensional model for EG[H](NG[H ]). Then

there is an n-dimensional model for EGG.

Corollary 1.3 gives us a tool to find an upper bound for gdG G. A
very useful tool to find a lower bound for gdG G is the following Mayer-
Vietoris sequence [4], which is an immediate consequence of Theorem
1.2, see also [1, Proposition 7.1] for the Bredon-cohomology version.

Corollary 1.4. With the notation as in Theorem 1.2 we have following

long exact cohomology sequence:

... → H i(G\EGG) → (
∏

[H]∈I

H i(NG[H ]\EG[H]NG[H ]))⊕H i(G\EFG) →

∏

[H]∈I

H i(NG[H ]\EF∩NG[H]NG[H ]) → H i+1(G\EGG) → ...



CLASSIFYING SPACES FOR FAMILIES OF SUBGROUPS 3

This note will be devoted to proving the following Theorem:

Main Theorem. Let G be a finitely generated abelian group of finite

torsion-free rank n ≥ 1, and denote by Fr the family of subgroups of

torsion-free rank less than or equal to r ≥ 0. Then

gdFr
G ≤ n + r.

The case for more general classes of groups G is going to be dealt with,
using different methods, by the second author in his Ph.D thesis.

2. The Construction

Throughout, let G denote a finitely generated abelian group of torsion-
free rank r0(G) = n.
The idea is to construct models for EFr

G in terms of models for EFr−1G
using the push-out of Theorem 1.2 inductively. As a first step we shall
define an equivalence relation in the sense of Definition 1.1.

Lemma 2.1. Let ∼ denote the following relation on Fr\Fr−1 :

H ∼ K ⇐⇒ rk(H ∩K) = r.

Then ∼ is a strong equivalence relation.

Proof. We show that ∼ is transitive: If H ∼ K and K ∼ L, this implies
that both H ∩ K and K ∩ L are finite index subgroups of K. Hence
also H ∩ K ∩ L is a finite index subgroup of K, and in particular of
K ∩ L and thus of L. Hence H ∩ L is finite index in both H and L.
The rest is easily checked. �

Lemma 2.2. G satisfies (MFr−1⊆Fr
), i.e. every subgroup H ∈ Fr\Fr−1

is contained in a unique Hmax ∈ Fr\Fr−1, which is maximal.

Proof. The existence follows from [6]. As regards uniqueness, suppose
H is included in two different maximal elements K,L ∈ Fr\Fr−1: then
H ≤ KL. Note that, since H ∼ L and H ≤ L, it follows that |L : H| <
∞. Hence

|KL : K| = |L : K ∩ L| ≤ |L : H| < ∞

implies KL ∈ Fr\Fr−1, contrary to the maximality of K and L. �

Note that we always have maximal elements in Fr\Fr−1 as long as the
ambient group is polycyclic [6], but uniqueness already fails for the
Klein-bottle group K, which is non-abelian but contains a free abelian
subgroup of rank 2 as an index 2 subgroup. Denote

K = 〈a, b | aba−1 = b−1〉

and consider F1 the family of cyclic subgroups. Since a2 = (ab−1)2,
in follows that 〈a2〉 ≤ 〈ab−1〉 as well as 〈a2〉 ≤ 〈a〉, both of which are
maximal.
For M ≤ G a subgroup of G we denote by All(M) the family of all
subgroups of M .
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Lemma 2.3. Let M be a maximal subgroup of G of torsion-free rank

r. Then R
n−r is a model for EAll(M)G, and gdAll(M)G = n− r.

Proof. Since M is maximal it follows that G/M is torsion-free of rank
n − r and hence R

n−r is a model for E(G/M). The action of G given
by the projection G ։ G/M now yields the claim. �

Lemma 2.4. Let F and G be two families of subgroups of G. Then

gdF∪G G ≤ max{gdFG, gdG G, gdF∩G G+ 1}.

Proof. By the universal property of classifying spaces for families, there
are maps, unique up to G-homotopy, EF∩GG → EGG and EF∩GG →
EFG. Now the double mapping cylinder yields a model for EF∪GG of
the desired dimension. �

Lemma 2.5. Given r < n, suppose there exists a d ≥ n such that

gdFr−1
G ≤ d and that for all maximal subgroups N with r0(N) > r− 1

we also have gdFr−1∩All(N)G ≤ d. Then

gdFr
G ≤ d+ 1 and gdFr∩All(M)G ≤ d+ 1

for all maximal subgroups M of r0(M) > r.

Proof. We begin by applying Theorem 1.2 to the families G = Fr and
F = Fr−1. Lemma 2.2 implies that G satisfies (MFr−1⊆Fr

). Denote by
N the set of equivalence classes of maximal elements in Fr\Fr−1. Then
[5, Corollary 2.8] gives a push-out:

⊔N∈NEFr−1(G) //

��

EFr−1(G)

��

⊔N∈NEFr−1∪All(N)(G) // Y,

and Y is a model for EFr
G.

By assumption we have that gdFr−1
G ≤ d and gdFr−1∩All(N)G ≤ d for

all N ∈ N . Furthermore, by Lemma 2.3 we have that gdAll(N)G =
n − r0(N) < n. Lemma 2.4 now implies that gdFr−1∪All(N)G ≤ d + 1.
Applying Corollary 1.3 to the above push-out yields

gdFr
G ≤ d+ 1.

The second claim is proved similarly applying Theorem 1.2 to the fami-
lies G = Fr ∩ All(M) and F = Fr−1 ∩ All(M). The argument of Lemma
2.2 applies here as well and hence G satisfies (M(Fr−1∩All(M))⊆(Fr∩All(M))).
We denote by N (M) the set of equivalence classes of maximal elements
in Fr ∩ All(M)\Fr−1 ∩ All(M). this now gives us a push-out:

⊔N∈N (M)EFr−1∩All(M)(G) //

��

EFr−1∩All(M)(G)

��

⊔N∈N (M)E(Fr−1∩All(M))∪All(N)(G) // Z,
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and Z is a model for EFr∩All(M)G.
Since N ≤ M , it follows that (Fr−1∩All(M))∩All(N) = Fr−1∩All(N)
and hence, by assumption gd(Fr−1∩All(M))∩All(N) G ≤ d and Lemma 2.4
implies that gd(Fr−1∩All(M))∪All(N) G ≤ d + 1. Now the same argument
as above applies and

gdFr∩All(M)G ≤ d+ 1.

�

Proof of Main Theorem: We begin by noting that for r = 0 we
have that Fr = F0 is the family of all finite subgroups of G. Then for
all maximal subgroups M of rank 1, we have that F0 = F0 ∩ All(M).
Furthermore, is is well known that gdF0

G = n, see for example [3].
Now an induction using Lemma 2.5 yields the claim.

�

Question 2.6. Is the bound of our Main Theorem sharp, i.e. for n > r,
is

gdFr
G = n + r?

Since gdF0
G = gdF0∩All(N)G = n for all maximal subgroups N , we

can assume equality in the inductive step (assumptions of Lemma 2.5).
Then a successive application of the Mayer-Vietoris sequences to the
push-outs in Lemmas 2.5 and 2.4, reduces the question to whether the
map

Hd(G\EFr−1G) → Hd(G\EFr−1∩All(N)G)

is surjective or not.

We know by [5] that gdF1
G = n + 1 and it was shown in [2] that the

question has a positive answer for G = Z
3, i.e. that gdF2

(Z3) = 5.
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