Pattern Matching with Sequence Variables

L. Thomas van Binsbergen

Royal Holloway, University of London

11 May, 2016
Can a function, method or procedure have multiple arguments and multiple return values?
Can a function, method or procedure have multiple arguments and multiple return values?

- Procedural programmer: Off course, we use in/out parameters.
Can a function, method or procedure have multiple arguments and multiple return values?

- Procedural programmer: Off course, we use in/out parameters.
- OOer: Off course, we objects with multiple fields.
In your favourite programming language

Can a function, method or procedure have multiple arguments and multiple return values?

- Procedural programmer: Off course, we use in/out parameters.
- OOer: Off course, we objects with multiple fields.
- FPer: No way, a function has a single return value.
Can a function, method or procedure have multiple arguments and multiple return values?

- Procedural programmer: Off course, we use in/out parameters.
- OOer: Off course, we objects with multiple fields.
- FPer: No way, a function has a single return value.
- Haskell Curry: No way, every function has 1 argument and 1 result.
In your favourite programming language

Can a function, method or procedure have an arbitrary, unfixed number of arguments?
Can a function, method or procedure have an arbitrary, unfixd number of arguments?

- Procedural programmer: Off course, by passing an array.
Can a function, method or procedure have an arbitrary, unfixed number of arguments?

- Procedural programmer: Off course, by passing an array.
- Java’er: Off course, by using varargs.
In your favourite programming language

Can a function, method or procedure have an arbitrary, unfixed number of arguments?

- Procedural programmer: Off course, by passing an array.
- Java’er: Off course, by using varargs.
- FPer: No way! How to infer types? How to write patterns?
public static int sum (int... numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 sum = sum + numbers[i];
 }
 return sum;
}
The CBS Language - Executable Formal Specification

- CBS syntax
- CBS equations
- CBS semantics

Diagram:
- Program → Parse tree → Term → Behaviour
- Parser → Translation → Interpretation
Introduction
Pattern Matching

CBS Example

\[
\begin{align*}
 \text{program} & \ ::= (\text{stmt } ; ;)^* \\
 \text{stmt} & \ ::= \text{print int} \mid \ldots \\

 \text{print } 3; \\
 \ldots \\
 \text{print } 1337;
\end{align*}
\]

\[\text{left-to-right}(\text{print}(3), \ldots, \text{print}(1337))\]
Pattern Matching

- Split a function by a case-analysis on its arguments.

\[
\begin{align*}
 \text{sum} & : [\text{int}] \rightarrow \text{int} \\
 \text{sum} ([]) & = 0 \\
 \text{sum} (x :: xs) & = \text{plus} (x, \text{sum} (xs))
\end{align*}
\]
A pattern is either:
- A wildcard _
- A variable, e.g. X
- Or an applications of a term constructor to patterns

Examples: X, true, list(X, _), tuple(_, 1, X)

A pattern can match a term, producing bindings
Basic Pattern Matching Algorithm

- Any term is matched by _
- Any term T is matched by X, resulting in $\{X \mapsto T\}$
- Term $f(T_1, \ldots, T_n)$ is matched by pattern $g(P_1, \ldots, P_m)$, iff:
 - $f \equiv g$
 - $n \equiv m$
 - $\forall 1 \leq i \leq n$, T_i is matched by P_i (bindings are united)
- Failure otherwise
Sequences

Sequences

- A *sequence* denotes zero, one or more terms:
 - 1, 2, *true*
 - `sum(1, 2, 3)`

Sequence Variables

- A sequence variable X^*, X^+ or $X?$ is bound to a sequence.
- Sequences implicitly merge (no nesting).
- Given $X^* \mapsto 2$, *true*: $[1, X^*] \equiv [1, 2, true]$
Pattern Matching with Sequence Variables

The proposal

A pattern is either:
- A wildcard _
- A variable, e.g. \(X \)
- A sequence variable, e.g. \(X^*, X^+ \) or \(X? \)
- A sequence variable with a predicate, e.g. \(X^* : p \)
- Or formed by applications of term constructors to patterns
Example - sum

$$\text{sum} : \text{int}^* \rightarrow \text{int}$$

$$\text{sum}() = 0$$

$$\text{sum}(X) = X$$

$$\text{sum}(X, Y) = \text{plus}(X, Y)$$

$$\text{sum}(X, Y, Z^+) = \text{plus}(\text{plus}(X, Y), \text{sum}(Z^+))$$
Example - list-map

\[
\text{list-map} : (V \rightarrow R) \times [V] \rightarrow [R] \\
\text{list-map} (F, []) = [] \\
\text{list-map} (F, [V, V^*]) = [F (V), \text{list-map} (F, [V^*])]
\]
Example - myswap

Goal: \texttt{myswap} (’a’, ’b’, ..., 1, 2, ...) ≡ (1, 2, ..., ’a’, ’b’, ...)

\texttt{myswap} (X^+ : \texttt{char}, Y^+ : \texttt{int}) = (Y^+, X^+)
Example of an ambiguous pattern: $X^* : \text{int}$, Y^+

- Can match 1, $true$ in two ways.
- Greedy longest-match is no solution, e.g. 1, 2, 3
Overview of the Algorithm

\[T_1 \ldots T_n \]

\[P_1 \ldots P_m \]
Overview of the Algorithm

\[T_1 \ldots T_n \quad \text{\mid} \quad P_1 \quad \text{\mid} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad P_m \]
Overview of the Algorithm

\[T_1 \ldots T_n \]

\[P_1 \quad \ldots \quad P_m \]
Overview of the Algorithm

\[T_1 \ldots T_n \] \[P_1 \quad P_2 \quad P_3 \quad \ldots \quad P_m \]
Overview of the Algorithm

\[T_1 \ldots T_n \]

\[P_1 \quad P_2 \quad P_3 \quad \ldots \quad P_m \]
Overview of the Algorithm

\[T_1 \ldots T_n \quad | \quad P_1 \quad | \quad P_2 \quad | \quad P_3 \quad | \quad \ldots \quad | \quad P_{m-1} \]

\[P_1 \ldots P_m \]
Overview of the Algorithm

\[T_1 \ldots T_n \]

\[P_1 \quad P_2 \quad P_3 \quad \ldots \quad P_{m-1} \quad P_m \]

\[P_1 \ldots P_m \]
Motivated the usage of sequence variables.
An algorithm for a more powerful matching scheme.
CBS suggests sequences variables are convenient.

Open Questions
- Is the scheme useful in other languages and domains?
- Can it be integrated into a language with type inferencing?
- What is the worst-case complexity of the algorithm?
Pattern Matching Algorithm M^*

- Assume matcher M for single terms and patterns
- We match T_1, \ldots, T_n with P_1, \ldots, P_m
- Initially $\{(0, 0, \emptyset)\} \equiv \mathcal{R}$
- Pop $(i, j, env) \in \mathcal{R}$, until $\mathcal{R} \equiv \emptyset$:
 1. If $i \equiv n + 1$ and $j \equiv m + 1$, return env
 2. If $i < n + 1$ and $j \equiv m + 1$, continue
 3. If P_j is a simple pattern:
 - Add $(i + 1, j + 1, env') \in \mathcal{R}$ iff $env' = M(T_i, P_j, env)$
 4. If P_j is a sequence variable: ... (next slide)
- Failure if no env was returned
If P_j a sequence variable, add $(k, j + 1, env'(k)) \in \mathcal{R}$, with:

- If P_j is X^* then $\forall i \leq k \leq n + 1$
- If P_j is X^+ then $\forall i + 1 \leq k \leq n + 1$
- If P_j is $X?$ then $\forall i \leq k \leq i + 2$
- $env'(k) = [P_j \mapsto T_i, \ldots, T_{k-1}]env$

If P_j has predicate p, then k is the maximum number s.t. T_i, \ldots, T_{k-1} satisfy p
...

Term $f(T_1, \ldots, T_n)$ is matched by pattern $g(P_1, \ldots, P_m)$, iff:

- $f \equiv g$.
- T_1, \ldots, T_n is matched by P_1, \ldots, P_m, according to M^*
- Otherwise as before...

...