
Big Bias Hunting in Amazonia: Large-scale
Computation and Exploitation of RC4 Biases

(Invited Paper)

Kenneth G. Paterson1, Bertram Poettering1, and Jacob C. N. Schuldt2

1 Information Security Group, Royal Holloway, University of London
2 Research Institute for Secure Systems, AIST, Japan

Abstract. RC4 is (still) a very widely-used stream cipher. Previous
work by AlFardan et al. (USENIX Security 2013) and Paterson et al.
(FSE 2014) exploited the presence of biases in the RC4 keystreams to
mount plaintext recovery attacks against TLS-RC4 and WPA/TKIP.
We improve on the latter work by performing large-scale computations
to obtain accurate estimates of the single-byte and double-byte distri-
butions in the early portions of RC4 keystreams for the WPA/TKIP
context and by then using these distributions in a novel variant of the
previous plaintext recovery attacks. The distribution computations were
conducted using the Amazon EC2 cloud computing infrastructure and
involved the coordination of 213 hyper-threaded cores running in parallel
over a period of several days. We report on our experiences of computing
at this scale using commercial cloud services. We also study Microsoft’s
Point-to-Point Encryption protocol and its use of RC4, showing that it
is also vulnerable to our attack techniques.

Keywords: RC4, plaintext recovery attack, WPA, TKIP, MPPE

1 Introduction

1.1 RC4 and its Applications

The stream cipher RC4, originally designed by Ron Rivest, is a beautifully com-
pact and fast algorithm. It became public in 1994 and has since been applied in
a very wide variety of secure communications protocols, including SSL/TLS (as
analysed in [1,7,13,16]); WEP [5] (where its particular usage led to devastating
attacks including complete, efficient key recovery, see [20] for a summary and ref-
erences); WPA [6] (as analysed in [21,20,22,15,18]); Microsoft’s Point-to-Point
Encryption protocol [14] (MPPE, as analysed here); and some Kerberos-related
encryption modes [8]. A selection of additional, non-protocol specific analyses of
RC4 can be found in [3,2,12,11,10,19].

Of particular relevance for this work are the results of AlFardan et al. [1].
They introduced a simple, Bayesian statistical method that recovers plaintexts
that are repeatedly encrypted under RC4 by exploiting biases in RC4 keystreams.

Their approach was successfully applied to RC4 in HTTPS (i.e., HTTP over
SSL/TLS), where a fresh pseudorandom 128-bit key is used for each SSL/TLS
connection, and where the repeated encryption of HTTP cookies can be arranged
by having malicious JavaScript running in the target user’s browser.

1.2 RC4 in WPA/TKIP

The work of AlFardan et al. motivated us to explore RC4’s usage in other de-
ployed protocols, in an attempt to determine whether similar weaknesses exist
and are exploitable. Our first focus was the wireless network encryption protocol
WPA/TKIP [6], with results presented in [15]. While WPA/TKIP was only ever
intended as a stop-gap to replace WEP until stronger cryptography could be
deployed, a recent survey [22] showed that it is still in widespread use.

In WPA/TKIP, fresh 16-byte (128-bit) RC4 keys are used for every frame
transmitted on the wireless network, but the first three bytes of the key are
determined by two bytes TSC = (TSC0, TSC1) of a public value, TSC, which incre-
ments on a frame-by-frame basis; the remaining 13 bytes of the per-frame key
are generated pseudorandomly. As observed in [15] and independently in [18],
the dependence of the RC4 key on TSC in turn induces large, TSC-dependent,
single-byte biases in the initial positions of RC4 keystreams. This suggests the
attack proposed in [15]: bin the available ciphertexts into 216 bins, one bin for
each possible value of TSC; perform a Bayesian analysis as per [1] for each bin;
and then combine the results across all the bins to estimate the likelihood for
each plaintext byte candidate. But this attack requires the computation of ac-
curate single-byte distributions for RC4 keystreams for each of the 216 values
of TSC. We estimated in [15] that the analysis of 232 – 240 RC4 keystreams per
TSC would be needed to achieve sufficient accuracy, for a total of 248 – 256 RC4
keystreams. At that time, this was well beyond our computational capabilities.
We resorted to working with 224 keystream per TSC and using the sub-optimal
procedure of examining the dependence of the RC4 keystream only on TSC1, in
effect aggregating over TSC0 (since our intuition was that this byte would have
a greater influence in determining the distribution than TSC0).

Another avenue left unexplored in [15] for WPA/TKIP was the use of double-
byte biases in plaintext recovery attacks. Such biases concern the distribution
of adjacent pairs of keystream bytes. They were used in [1] in the preferred
attack against SSL/TLS, because these biases are persistent throughout the
RC4 keystream (whereas the single-byte biases disappear shortly after position
256) and, in the considered attack scenario, it was not possible to arrange for
the target plaintext bytes (an HTTP cookie) to appear sufficiently early in the
sequence of plaintext bytes. It’s also possible that using a double-byte bias attack
would improve plaintext recovery rates in the early positions. To extend the
double-byte bias attack of [15] to the WPA/TKIP setting would then require
the computation of the double-byte keystream distributions, ideally on a per-TSC
basis. This would not only require enormous numbers of keystreams to obtain
sufficient accuracy, but also significant storage: just to describe the double-byte
distribution per position and TSC requires 216 numbers, each typically 32 bits

in size, leading to a total storage requirement of 8 Terabytes just to record the
double-byte distributions for the first 512 keystream positions.

1.3 RC4 in MPPE

Microsoft’s Point-to-Point Encryption (MPPE), as specified in [14,23], is a ven-
erable security protocol that can be used on top of the Point-to-Point Tunnelling
Protocol (PPTP). The latter is itself a general-purpose protocol encapsulation
method that is commonly used for providing Virtual Private Networking services
to devices running Microsoft operating systems, including Windows 8 and the
Windows Server family of products.

MPPE uses RC4 with a non-standard method for selecting keys. For example,
when a 40-bit key is used, MPPE starts with an 8-byte key K = (K0, . . . , K7) that
is itself derived by hashing a user password, an authentication protocol challenge,
and other public information. MPPE then sets K0 = 0xD1, K1 = 0x26, K2 = 0x9E.
It is then natural to ask: does this method for selecting keys in MPPE lead to
a different bias structure in its RC4 keystreams, and does this help or hinder
plaintext recovery attacks akin to those of [1]?

1.4 Our Contributions and Paper Organisation

Section 2 provides further background on the RC4 stream cipher and its use in
WPA and MPPE.

In Section 3, we report on our computations of more refined, per-TSC, single-
byte and double-byte RC4 keystream distributions for WPA/TKIP. In slightly
more detail, we computed these distributions for the first 512 keystream bytes,
based on 248 keys for the single-byte case and 246 keys for the double-byte case.
We made use of the Amazon Elastic Compute Cloud (Amazon EC2)3, which is
part of Amazon Web Services, to perform the computations. We used approxi-
mately 30 virtual-core-years for the single-byte computation and 33 virtual core-
years for the double-byte computation. Since, to us, a total of 63 virtual-core-
years was quite a significant amount of computation (costing roughly US$41k4)
and because we faced a number of obstacles in working at this scale, we report in
some detail on our experiences of working with Amazon EC2. One notable fea-
ture revealed by our large-scale computations is the presence of TSC-dependent,
single-byte biases well beyond position 256 in the RC4 keystream.

Section 4 describes a plaintext recovery attack on WPA/TKIP that ex-
ploits our newly-computed and more accurate single-byte distributions for RC4
keystreams, comparing it to our previous results from [15].

Section 5 describes a novel plaintext recovery attack on WPA/TKIP that
exploits per-TSC, double-byte biases in RC4 keystreams. This attack combines
the double-byte bias attack from [1] with the idea of binning that was developed
for the case of single-byte biases in [15].

3 http://aws.amazon.com/ec2/
4 Here, and throughout, we quote prices exclusive of sales taxes at 20%.

http://aws.amazon.com/ec2/

Algorithm 1: RC4 KSA

input : key K of l bytes
output: initial internal state st0
begin

for i = 0 to 255 do
S[i]← i

j ← 0
for i = 0 to 255 do

j ← j + S[i] + Ki mod l

swap(S[i],S[j])

i, j ← 0
st0 ← (i, j,S)
return st0

Algorithm 2: RC4 PRGA

input : internal state str
output: keystream byte Zr+1

updated internal state str+1

begin
parse (i, j,S)← str
i← i+ 1
j ← j + S[i]
swap(S[i],S[j])
Zr+1 ← S[S[i] + S[j]]
str+1 ← (i, j,S)
return (Zr+1, str+1)

Fig. 1. Algorithms implementing the RC4 stream cipher. All additions are performed
modulo 256.

In Section 6, we report on the single-byte keystream distributions for RC4
when it is keyed according to the MPPE specification. In short, we found the
distributions to be highly skewed and amenable to exploitation using our attack
techniques.

Finally, Section 7 presents our conclusions and remarks on open problems.

2 Further Background

2.1 The RC4 Stream Cipher

Technically, RC4 consists of two algorithms: a key scheduling algorithm (KSA)
and a pseudo-random generation algorithm (PRGA), which are specified in Al-
gorithms 1 and 2. The KSA takes as input a key K, typically a byte-array of
length between 5 and 32 (i.e., 40 to 256 bits), and produces the initial internal
state st0 = (i, j,S), where S is the canonical representation of a permutation
on the set [0, 255] as an array of bytes, and i, j are indices into this array. The
PRGA will, given an internal state str, output ‘the next’ keystream byte Zr+1,
together with the updated internal state str+1.

2.2 WPA/TKIP

A detailed description of how RC4 is used in the WPA/TKIP context is given
in [15]. In short, WPA/TKIP generates a fresh 128-bit key K = (K0, . . . , K15) for
RC4 for each frame that is transmitted; the key is a function of the temporal
encryption key TK (128 bits), the TKIP sequence counter TSC (48 bits), and
the transmitter address TA (48 bits). A single value of TK is used over many
frames, while TSC increments from frame to frame; meanwhile TA is fixed. Very

importantly, the function used to compute K adds a specific structure added to
“preclude the use of known RC4 weak keys” [6]. More precisely, writing TSC =
(TSC0, TSC1, . . . , TSC5), we have

K0 = TSC1 K1 = (TSC1 | 0x20) & 0x7f K2 = TSC0 (1)

while K3, . . . , K15 can be considered to be pseudorandom functions of TK, TSC
and TA. Notably here, bytes K0, K1, K2 depend only on bytes TSC0 and TSC1 of TSC.
Moreover, the bits of TSC1 are used twice. So the bytes of K have more structure
than they would if they were chosen with uniform distribution. The per-frame
key K is then used to produce an RC4 keystream, following our description of
RC4 above. The TKIP plaintext (consisting of the frame payload, a 64-bit MAC
value MIC , and a 32-bit Integrity Check Vector ICV) is then XORed in a byte-
by-byte fashion with the RC4 keystream.

2.3 MPPE

MPPE provides a confidentiality service over PPTP using the RC4 algorithm.
Keys for the RC4 algorithm come from a separate authentication and key es-
tablishment protocol, such as MS-CHAPv1, MS-CHAPv2 or EAP-TLS; the first
two of these were broken in [17] and [4], respectively, leading to the depreca-
tion of the first and the recommendation only to use the second with additional
protection from PEAP5.

RFC 3079 [23] describes in detail how the keys used in MPPE’s instantiation
of RC4 are derived from preceding authentication and key establishment proto-
cols. Three different RC4 key lengths are supported, according to [23]: 40-bit,
56-bit and 128-bit. When a 40-bit key is used, MPPE starts with an 8-byte key
K = (K0, . . . , K7) that is itself derived by hashing the password, the authentica-
tion protocol challenge, and other public information. MPPE then overwrites
K0 = 0xD1, K1 = 0x26, K2 = 0x9E. When a 56-bit key is used, the protocol starts
with the same 8-byte key and then sets K0 = 0xD1; when a 128-bit key is used, a
similar procedure involving password and challenge hashing is used to generate
a 16-byte key K, and no bytes of K are overwritten.

Furthermore, MPPE operates in two modes, with the mode in use being
determined by a PPTP header field. In stateless mode, the RC4 key is refreshed
and the cipher restarted for each PPTP packet sent. By contrast, in stateful
mode, the RC4 key is refreshed only every 256 packets. In both cases, refreshing
the key involves hashing the old key with the first key for the session (called
StartKey in [14]) to generate a value InterimKey, then an RC4 encryption step
in which InterimKey is used to encrypt itself to generate a key K of either 8
or 16 bytes, and finally setting bytes as described above. See [14, Section 7] for
details.

From the above description it may be remarked that, while the hashing and
encryption steps used in deriving the RC4 keys may be intended to render them

5 https://technet.microsoft.com/library/security/2743314

https://technet.microsoft.com/library/security/2743314

pseudorandom, in the 40-bit and 56-bit cases, they have additional structure
that may be expected to lead to additional and/or different biases in the RC4
keystream as compared to the 128-bit case.Further, the use of stateless mode
would mean a fresh RC4 key (with additional structure in the 40-bit and 56-bit
cases) for every packet sent. These observations mean that MPPE in stateless
mode can be expected to be vulnerable to plaintext recovery attacks similar to
those developed in [1,15]. Since the protocol encapsulated by MPPE is likely to
be IP, similar fields as those identified in [15] could be targeted. We note that
while key lengths of 40 and 56 bits are small enough that a simple brute-force
search might initially seem to be more efficient than mounting a bias analysis
using our techniques, in the stateless case, such a brute-force search would only
recover the key used for a single packet. Moreover, a basic analysis suggests that
a 264 attack would be needed to recover StartKey from which all keys in the
session are derived. So our approach may be an attractive alternative if specific
plaintext bytes are targeted for recovery.

3 Large-Scale Computation of RC4 Keystream
Distributions for WPA/TKIP Keys

3.1 Computing Keystream Distributions and Finding New Biases

As noted in the introduction, in our previous work on WPA/TKIP in [15], we
worked with a total of only 240 keystreams and only with single-byte distribu-
tions for the first 256 positions. In an effort to further improve our attacks, we
decided to perform larger-scale computations using, in addition to our own local
resources, the Amazon EC2 cloud computing infrastructure to estimate both the
single-byte and double-byte keystream distributions for the first 512 positions,
on a per-TSC basis.

Because the double-byte biases are smaller than the single-byte ones (typi-
cally by a factor of roughly 28), many more keystreams would be needed to ac-
curately estimate double-byte distributions than for single-byte ones. However,
we chose to focus our effort on the single-byte case here, computing distribu-
tions based on 232 keystreams per TSC in the single-byte case and based on 230

keystreams per TSC in the double-byte case. The reasons for this focus are as
follows. Using our local computational resources, we determined that it would be
difficult to use the full per-TSC distributions in a double-byte attack akin to that
of [1] because of the complexity of handling so much data when running attacks
(for example, we would need to deal with 16GB of distribution data and perform
248 multiplications of real numbers to analyse a single byte position). Rather,
an aggregated approach seemed more likely to be feasible for the double-byte
setting. Here our idea was to start with 230 keystreams per TSC and combine the
28 distributions for each TSC1 value (called TSC0-aggregation in [15]) to obtain
28 different double-byte distributions, one per TSC1-value, each distribution now
based on 238 keystreams. This not only boosts the number of keystreams per dis-
tribution estimate (good for accurately estimating biases), but also reduces the

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

TSC1 [0...255]

-30

-20

-10

 0

 10

 20

 30

(a) Position 260

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

TSC1 [0...255]

-30

-20

-10

 0

 10

 20

 30

(b) Position 270

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

TSC1 [0...255]

-30

-20

-10

 0

 10

 20

 30

(c) Position 300

Fig. 2. Pictorial representation of biases in RC4 keystreams for random TSC0-
aggregated WPA/TKIP keys at keystream positions 260, 270, and 300, for different
TSC1 values (x-axis) and byte values (y-axis). At each point we encode the bias in the
keystream for the (TSC1,value) combination as a colour; precisely, we encode the dif-
ference between the occurring probability and the (expected) probability 1/256, scaled
up by a factor of 224, capped to values in [−30,+30].

size of the distribution data and computation both by a factor of 256 (making
simulation of attacks much more feasible).

Our computations went well beyond those of prior RC4 cryptanalyses in scale
(e.g., [1,15]), and indeed we were rewarded by discovering new TSC1-dependent
single-byte biases in positions all the way up to 512 (see Figure 2 for examples at
specific positions). The existence of these biases is surprising in view of the be-
haviour of single-byte biases observed in previous works and, in principle, would
allow the recovery of plaintext using a single-byte attack like that presented in
[15] and Section 4 below. It is an open problem to determine how far into the
RC4 keystream these biases persist.

3.2 Reflections on Using Amazon EC2

The task of computing accurate estimates of RC4 keystream distributions is
well-suited to distributed computation. In particular, in the case of WPA, the
probability distribution for each TSC value can be estimated independently by
generating keystreams using randomly chosen WPA keys for that TSC (having
the structure described in Section 2.2). This makes performing the computation
using cloud services such as Amazon EC2 seem appealing, on account of its
virtually unlimited computing capacity being able to provide the computational
resources required to complete the computation within an acceptable period of
time.

For our computation of the per-TSC bias estimates, we used Amazon EC2 to
create 256 virtual machines of the type ‘c3.x8large’, each providing 32 ‘virtual’
cores. The underlying hardware of the virtual machines were servers equipped
with Intel Xeon 2.8GHz processors. Note, however, that each of the cores of a
virtual machine corresponds to a hyper-threaded core of the underlying CPU i.e.,
one ‘c3.x8large’ instance effectively corresponds to a machine with 16 physical

cores. To manage the virtual machines, we utilized boto6 which implements a
Python interface to Amazon EC2. This provided a simple and straightforward
way to automate management and access to the virtual machines, and made it
relatively easy to set up the execution of the computation using a combination
of Python and shell scripts. The virtual machines were all initialized with an
Ubuntu 13.10 image obtained through the AWS Marketplace7.

Each virtual machine was set up to compute the keystream distributions for
all TSC0 values given a fixed TSC1 value, and to split this computation equally
among the 32 available virtual cores. To make the WPA keystream generation
efficient, we used the RC4 implementation in OpenSSL8. However, experiments
showed that to reach the desired number of keystreams with our available budget,
further optimizations were required. Additional experiments revealed that the
amount of available cache in the underlying CPUs on which the virtual machines
were running, and how this cache was utilized, played an important role in the
performance of the keystream distribution generation. Specifically, the chance of
cache misses occurring when updating the keystream distribution statistics was
found to have a large influence on performance.

To address this, we used a combination of two different approaches to re-
duce the chance of cache misses occurring. Firstly, to fit the array storing the
counters used to collect the statistics of the keystream distribution into the
cache memory, we “packed” multiple small-width counters into single 64-bit in-
tegers and implemented logic for handling counter overflows. Secondly, instead
of updating the keystream distribution statistics after each keystream has been
generated, we stored multiple keystreams in memory before updating the statis-
tics. This implies that multiple updates of the statistics for a single position can
be done sequentially, which, assuming the appropriate memory layout, increases
the chance of a cache hit. While these optimizations only provided small gains
for the computation of single-byte biases, significant gains were achieved for the
computation of double-byte biases.

Single-byte computations Using the above setup, each virtual core was capa-
ble of generating and processing on average 294k length 512 WPA keystreams per
second for single-byte distributions. Hence, computing the per-TSC single-byte
distributions based on 232 keystreams for each TSC value (i.e., 248 keystreams in
total), took 9.56× 108 virtual core seconds in total, or approximately 30 virtual
core years. Due to the large degree of parallelism in our setup, this corresponds
to an actual running time of slightly more than 32 hours.

While each of the 256 virtual machine was set up identically, a single vir-
tual machine ran significantly slower than the others, and was only capable of
processing approximately 180k keystreams per second. We suspect that other
virtual machines running on the same underlying hardware might have affected

6 http://github.com/boto/boto
7 http://aws.amazon.com/marketplace/
8 https://www.openssl.org/

http://github.com/boto/boto
http://aws.amazon.com/marketplace/
https://www.openssl.org/

the performance of this virtual machine. Due to this issue, it took approximately
52 hours to complete the computation of the single-byte distributions.

At the time we did the experiments, the cost of running a single “c3.x8large”
virtual machine instance was US$2.40 per hour, leading to a cost of US$614 per
hour when running all 256 instances simultaneously.

To store the generated keystream distributions, we attached a separate Ama-
zon Elastic Block Storage (EBS) volume to each virtual machine. This gave us
the option of terminating a virtual machine without erasing the generated data,
and furthermore allowed us to use a single virtual machine to inspect and process
all generated data, by sequentially attaching the EBS volumes to this machine.
The latter provided a more cost effective solution than running the virtual ma-
chines in parallel, and a faster solution than resuming each virtual machine
sequentially. We stored the distribution for each TSC value as a sequence of bi-
nary encoded 32-bit integers, leading to a storage requirement of 512KB per
distribution (128MB per virtual machine), or 32GB in total. However, since the
minimum size of an EBS volume is 1GB, we allocated a total of 256GB of EBS
storage (note that a single EBS volume cannot be mounted by multiple vir-
tual machines simultaneously). The cost of EBS storage was US$0.05 per GB
per month, leading to a cost of just US$12.60 a month to maintain the EBS
volumes.

Double-byte computations Working with double-byte keystream distribu-
tions introduced significant overheads compared to the single-byte case, both in
terms of computation and storage. With the previously mentioned optimizations,
each virtual core was capable of processing on average 67k WPA keystreams
per second. Hence, computing the per-TSC double-byte keystream distributions
based on 230 keystreams for each TSC value (i.e., 246 keystreams in total), took
1.05× 109 virtual core seconds in total, or approximately 33 virtual core years.
In our setup, this corresponds to an actual running time of slightly more than
34 hours, but due to the virtual machines being sequentially initialized and an
issue with a single virtual machine, the time it took to complete the computation
was approximately 48 hours. More specifically, the issue that arose was that the
virtual machine in question was reset and rebooted during the computations,
and hence did not complete its assigned task. We were unable to identify the
cause of this event, and simply restarted the relevant computations manually.

As for the single-byte distributions, we created separate EBS volumes to
store the double-byte distributions. However, each TSC-specific double-byte dis-
tribution requires 128MB of storage when stored as a sequence of 32-bit integers,
leading to a storage requirement of 32GB per virtual machine, or 8TB in total.
This increased storage overhead not only led to an increased cost (US$410 per
month), but also created additional practical issues which we had to handle. For
example, since the EBS volumes are implemented via network attached storage
(NAS), writing the distribution data to an EBS volume caused a significant delay
in some instances. In particular, we observed that immediately after completion
of the keystream distribution generation, detaching an EBS volume might not

succeed, which in turn could interrupt the shutdown of a virtual machine. Fur-
thermore, making all data available to a single machine at the same time, which
is required to efficiently run attack simulations, was made more difficult by the
8TB size of the dataset. We decided to transfer the complete dataset to our local
storage array both to run the attack simulations and to permanently store the
data. For this purpose, we used bbcp9, which is capable of transferring large
amounts of data between network computers using multiple TCP streams and
large transfer windows, and allowed us to obtain a transfer speed of approxi-
mately 50MB per second, leading to a total transfer time of slightly more than
48 hours. Note that data transfers out of Amazon EC2 were charged at US$0.12
per GB, resulting in a US$983 cost to move the complete 8TB dataset to our
local storage.

Our experience of using Amazon EC2 to compute estimates of the per-TSC
biases suggests that Amazon provides a flexible platform which is well suited to
perform this type of computation, and that the practical difficulties arising in
the distribution of the computation can be overcome with moderate effort.

4 Plaintext Recovery Attacks Against WPA/TKIP
Based on Single-Byte Biases

4.1 The Attack of Paterson, Poettering and Schuldt[15]

The attack against WPA/TKIP in [15] builds on the single-byte bias attack (on
TLS) of [1]. Both attacks work for the setting where the same plaintext is en-
crypted many times under different RC4 keys to obtain a set of ciphertexts. The
key idea of both attacks is that, in any given position r of the ciphertext stream,
a guess for the repeated plaintext byte in that position induces a distribution
on the keystream in position r, via XORing the guess with byte r in each of the
ciphertexts in turn. This induced distribution can be compared to the known
distribution in keystream position r (which is obtained by sampling), and the
choice of plaintext guess giving the “best fit” selected as the attack’s output for
position r. This is formalised as a Bayesian procedure, leading to the output in
position r as being the plaintext candidate that maximises the probability of
observing the induced keystream distribution in position r.

The innovation in [15] (and independently observed in [18]) was to recognise
that in WPA/TKIP a different keystream distribution can – and should – be
used for each value of the byte pair TSC = (TSC0, TSC1) when estimating the
probabilities of the induced keystream distributions. This leads to an algorithm
that “bins” ciphertexts into 216 groups, one group per TSC, computes the induced
keystream probability for each group, and takes the product of these across the
groups to compute the probabilities for each plaintext candidate. Since our new
double-byte algorithm in Section 5 can be seen as an extension of our algorithm
in [15], we explain the latter here in more detail.

9 http://www.slac.stanford.edu/~abh/bbcp/

http://www.slac.stanford.edu/~abh/bbcp/

We first obtain a detailed picture of the distributions of RC4 keystream
bytes Zr, for all positions r in some range, on a per (TSC0, TSC1) pair basis, by
gathering statistics from keystreams generated using a large number of random
keys. That is, for all r in our selected range, we estimate

pTSC,r,k := Pr(Zr = k) , TSC ∈ TscSp, k ∈ Byte,

where here (and henceforth) Byte denotes the set {0x00, . . . , 0xFF}, TscSp de-
notes the set Byte × Byte, and where the probability is taken over the random
choice of the RC4 encryption key K, subject to the structure on K0, K1, K2 induced
by TSC.

Now suppose we have S ciphertexts C1, . . . , CS available for our attack. We
partition these into 216 groups according to the value of TSC (recall that the TSC

value is public); for convenience, we assume the resulting bins of ciphertexts are
all of equal size T = S/216. Let the bin of ciphertexts associated with a particular
value of TSC be denoted STSC and have members CTSC,j for j = 1, . . . , T ; we denote
the byte at position r of CTSC,j by CTSC,j,r. For any position r and any candidate

plaintext byte µ for that position, vector
(
N

(µ)

TSC,r,k

)
k∈Byte with

N
(µ)

TSC,r,k
= |{j ∈ [1 .. T] | CTSC,j,r = k ⊕ µ}| (0x00 ≤ k ≤ 0xFF)

represents the distribution on Zr required to obtain the observed ciphertext
bytes (CTSC,j,r)1≤j≤T for bin STSC by encrypting µ. The probability λTSC,r,µ that
plaintext byte µ is encrypted to bytes (CTSC,j,r)1≤j≤T in bin STSC for position r
now follows the distribution:

λTSC,r,µ =
∏

k∈Byte

(pTSC,r,k)
N

(µ)

TSC,r,k . (2)

Note that this expression differs from that in [15] by the omission of factorial
terms arising in the multinomial distribution. Those terms do not need to be
included in the formal Bayesian procedure underlying the attack (since we are
interested in the probability of a group of ciphertexts bytes as given in a par-
ticular sequence rather than in unordered form). Moreover, their removal makes
the attack slightly easier to implement.

Now the probability that plaintext byte µ is encrypted to the vector of bytes
(CTSC,j,r)1≤j≤T across all bins STSC in position r can be precisely calculated as

λr,µ =
∏

TSC∈TscSp

λTSC,r,µ .

By computing λr,µ for all µ ∈ Byte, and identifying P ∗r = µ such that λr,µ is
largest, we determine the maximum-likelihood plaintext byte value P ∗r .

Note that, for each position r and group of bytes (CTSC,j,r)1≤j≤T , values

N
(µ)

TSC,r,k
can be computed from values N

(µ′)

TSC,r,k
by using the equation N

(µ)

TSC,r,k
=

N
(µ′)

TSC,r,k⊕µ′⊕µ, for all k. Further, computing and comparing log(λTSC,r,µ) and

Algorithm 3: Plaintext recovery attack using TSC binning

input : {CTSC,j}TSC∈TscSp,1≤j≤T – S = 216 · T independent encryptions of fixed
plaintext P
r – target byte position
(pTSC,r,k)TSC∈TscSp,k∈Byte – keystream distributions for all TSC at pos. r

output: P ∗r – estimate for plaintext byte Pr
begin

NTSC,k ← 0 for all TSC ∈ TscSp, k ∈ Byte
for TSC = (0x00, 0x00) to (0xFF, 0xFF) do

for j = 1 to T do
k ← CTSC,j,r

NTSC,r,k ← NTSC,r,k + 1

for TSC = (0x00, 0x00) to (0xFF, 0xFF) do
for µ = 0x00 to 0xFF do

for k = 0x00 to 0xFF do

N
(µ)

TSC,r,k
← NTSC,r,k⊕µ

λTSC,r,µ ←
∑
k∈ByteN

(µ)

TSC,r,k
log pTSC,r,k

for µ = 0x00 to 0xFF do
λr,µ ←

∑
TSC∈TscSp λTSC,r,µ

P ∗r ← arg maxµ∈Byte λr,µ
return P ∗r

log(λr,µ) instead of λTSC,r,µ and λr,µ makes the computation more efficient and
accuracy easier to maintain. Adding these optimisations leads to the attack in
Algorithm 3 (which differs from the corresponding attack in [15] only in the
omission of a term FTSC corresponding to the factorial terms discussed above
and some small notational changes).

4.2 Attacks Based on Aggregation

One method of coping with noisy estimates for the probabilities pTSC,r,k that was
extensively explored in [15] was to consider aggregation of distributions over TSC0
or over both TSC0 and TSC1 (effectively increasing the number of keys by factors
of 28 and 216, respectively). It is not difficult to see how to modify Algorithm 3 to
work with 28 bins, one for each value of TSC1, instead of 216 bins. The execution
of the modified algorithm becomes in practice faster, since each estimate for a
plaintext byte µ now only involves calculation of λTSC,r,µ over 28 TSC1 values

instead of 216 (TSC0, TSC1) pair values. Similarly, one can modify the algorithm
to work with just a single bin, one for all values of TSC0 and TSC1, in which case
we recover the original algorithm of [1], albeit without the unnecessary factorial
terms arising from the use of multinomial distributions and using WPA/TKIP-
specific distributions in place of the original RC4 distributions reported in [1].

0%	

20%	

40%	

60%	

80%	

100%	

19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	

R
ec

ov
er

y
ra

te
!

Log2(number of encryptions)!

Fig. 3. Average success rates of non-aggregated (blue), TSC0-aggregated (green), and
fully aggregated (red) single-byte plaintext recovery attacks for byte positions 1 to 256
(based on 256 experiments). Punctured lines represent the average recovery rates for
the odd byte positions.

However, the cost of using aggregation is that it “throws away” statistical
information that may be of use in improving the accuracy of the attack for a
given number of ciphertexts S. Indeed, this is demonstrably the case: as we
report below, using our new estimates for the probabilities pTSC,r,k computed

using a total of 248 keystreams in a full binning (non-aggregated) attack leads
to an improvement in accuracy.

4.3 Attack Simulation Results

We implemented the single-byte plaintext recovery attack of Algorithm 3 based
on the keystream distribution estimates obtained from the Amazon EC2 compu-
tations described in Section 3. We furthermore implemented the TSC0-aggregated
and fully aggregated variants of the attack described in Section 4.2. To obtain
bias estimates for the latter two attacks, we aggregated the Amazon EC2 data
correspondingly, thereby obtaining estimates based on 240 keystream per TSC1
value, and 248 keystreams, respectively.

The measured success rates of the attacks are shown in Figure 3. We observe
that there is a significant difference in the recovery rates between the fully aggre-
gated attack and the two other attacks, the non-aggregated attack being capable
of achieving a similar success rate to the fully aggregated attack using almost
16 times fewer ciphertexts. Likewise, the non-aggregated attack clearly improves
upon the TSC0-aggregated attack, albeit not as significantly; the non-aggregated
attack requires on average half as many ciphertexts to achieve a similar success
rate to the TSC0-aggregated attack.

In order to investigate the effect of our new and (presumably) more accurate
single-byte keystream distributions, we also compared the performance of Algo-
rithm 3 using keystream distribution estimates based on 224 keystreams per TSC

0%	

20%	

40%	

60%	

80%	

100%	

0	
 16	
 32	
 48	
 64	
 80	
 96	
 112	
 128	
 144	
 160	
 176	
 192	
 208	
 224	
 240	
 256	

R
ec

ov
er

y
ra

te
	

Byte position	

Fig. 4. Success rates of single-byte plaintext recovery attack against TKIP/WPA for
positions 1 to 256 with 224 ciphertexts, using keystream distribution estimates based
on 224 keystreams (red) and 232 keystreams (blue) per TSC (success rates based on 256
experiments).

(as in our previous work [15]) and based on 232 keystreams per TSC (obtained
from the Amazon EC2 computations described in Section 3). Figure 4 shows the
results, with the attacks using the two keystream distributions in combination
with 224 ciphertexts in each experiment. There is a clear boost to the success
rate of the attack when moving to the refined keystream distribution estimates.
The effect is particularly pronounced in the odd positions.

As noted in Section 3, we discovered significant TSC1-dependent, single-byte
biases in the RC4 keystreams for WPA/TKIP keys well beyond position 256.
The biases are roughly comparable in size to the single-byte biases seen in RC4
keystreams at positions around 250 for random 128-bit keys (as used in TLS and
reported in [1]). So we might expect to obtain reliable plaintext recovery with
around 230 – 232 ciphertexts as in [1]. The full investigation of this avenue is left
to future work.

5 Plaintext Recovery Attacks for WPA/TKIP Based on
Double-Byte Biases

Our double-byte bias attack against WPA/TKIP builds on the attack in [1],
and works in the same setting as the above described single-byte bias attack:
the same plaintext is assumed to be encrypted many times under different RC4
keys, yielding a set of ciphertexts which is given as input to the attack algorithm.
However, as opposed to the attack based on single-byte biases, the attack does
not estimate the likelihoods of the individual plaintext bytes (or plaintext byte
pairs). Instead, the basic idea of the attack is to estimate likelihoods of sequences
of plaintext bytes by considering chains of overlapping plaintext byte pairs in
combination with the double-byte biases in the keystream.

More precisely, the attack will construct likelihood estimates for sequences
of plaintext bytes that are gradually increasing in length by extending already
established sequences and their corresponding likelihood estimates. This is done
as follows: consider a sequence of plaintext bytes with an already estimated like-
lihood, and a candidate for the next plaintext byte in the sequence. By XORing
the pair consisting of the last plaintext byte of the existing sequence and the
new candidate plaintext byte with the ciphertext byte pairs for the correspond-
ing positions, an induced distribution on the keystream byte pairs is obtained.
By comparing this to the known double-byte keystream distribution, a likelihood
estimate for the new candidate plaintext byte can be computed; combining this
with the likelihood estimate for the initial plaintext sequence, a likelihood esti-
mate for the extended sequence can be obtained.

Note that, using a naive algorithm, the complexity of computing the like-
lihood estimates for all possible plaintext sequences would grow exponentially
in the length of the sequences. Furthermore, considering all possible candidates
for the next plaintext byte, but only maintaining a small set of the most likely
sequences after each extension, is not guaranteed to produce a plaintext byte
sequence that maximises the value of the estimated likelihood. However, as high-
lighted in [1], by tracking which sequences produce the maximum value for the
estimated likelihood for each possible value of the last byte in the sequence, the
overall plaintext sequence which maximises the likelihood estimate is guaranteed
to be found.

Compared to the algorithm from [1], the algorithm presented here provides
two refinements made possible by the specific way RC4 is used in WPA/TKIP.
Firstly, as in the attack described in Section 4, likelihood estimates are computed
on a per-TSC basis, and combined across all TSC values to obtain improved overall
likelihood estimates. Secondly, the attack not only exploits the per-TSC double-
byte biases in the WPA keystream, but also takes into account the single-byte
biases in the computation of the likelihood estimates. A more detailed description
of the algorithm is given next.

To run the algorithm, accurate estimates of both the single-byte and double-
byte keystream distributions are required for all positions r the attack is tar-
geting. By considering the statistics gathered by generating a large number of
keystreams, we estimate

pTSC,r,k := Pr(Zr = k), and p̃TSC,r,k1,k2 := Pr(Zr = k1 ∧ Zr+1 = k2)

where TSC ∈ TscSp, k, k1, k2 ∈ Byte, and the probability is taken over a random
choice of RC4 key subject to the structure on K0, K1, K2 induced by TSC.

As in the single-byte bias attack, we suppose we have S ciphertexts available
for our attack, and that, when grouped according to TSC values, each group
contains exactly T = S/216 ciphertexts. We likewise use the notation CTSC,j,r

to denote the ciphertext byte at position r in the jth member of the group of
ciphertexts for the value TSC.

For a given position r, we can now use a similar approach to the single-
byte bias attack to compute the likelihood of a candidate byte µ or a candi-
date byte pair (µ, µ′) (at position (r, r + 1)) corresponding to the encrypted

plaintext byte or byte pair. More specifically, the vectors
(
N

(µ)

TSC,r,k1

)
k1∈Byte

and(
Ñ

(µ,µ′)

TSC,r,k1,k2

)
k1,k2∈Byte

, where

N
(µ)

TSC,r,k1
= |{j ∈ [1 .. T] | CTSC,j,r = k1 ⊕ µ}|

Ñ
(µ,µ′)

TSC,r,k1,k2
= |{j ∈ [1 .. T] | (CTSC,j,r, CTSC,j,r+1) = (k1 ⊕ µ, k2 ⊕ µ′)}| ,

represent induced distributions on the keystream byte Zr and keystream byte
pair (Zr, Zr+1), respectively. Indeed, the probability that plaintext byte µ is

encrypted at position r, which we will denote α
(µ)
r , and the probability that

(µ, µ′) is encrypted at position (r, r + 1), which we will denote β
(µ,µ′)
r , can be

computed as:

α(µ)
r =

∏
TSC∈TscSp

∏
k1∈Byte

(pTSC,r,k1)
N

(µ)

TSC,r,k1 ,

β(µ,µ′)
r =

∏
TSC∈TscSp

∏
k1,k2∈Byte

(p̃TSC,r,k1,k2)
Ñ

(µ,µ′)
TSC,r,k1,k2 .

However, as highlighted earlier, instead of using the above probabilities for
individual plaintext byte and byte pairs directly, we use these to construct like-
lihood estimates for longer sequences of plaintext bytes by considering chains
of overlapping byte pairs. More specifically, consider a plaintext byte sequence
µ1 ‖ · · · ‖ µr for positions 1 to r with an already established likelihood esti-
mate λµ1‖···‖µr , and a plaintext candidate byte µr+1 for position r+ 1. Then we
estimate the likelihood of the plaintext byte sequence µ1 ‖ · · · ‖ µr+1 as:

λµ1‖···‖µr+1
= δ(µr,µr+1)

r · λµ1‖···‖µr (3)

where δ
(µr,µr+1)
r denotes the conditional probability that µr+1 is the plaintext

byte at position r+1 given that the plaintext byte at position r is µr. Note that,

by the definition of conditional probability, we can compute δ
(µr,µr+1)
r based on

the estimates α
(µr)
r and β

(µr,µr+1)
r as

δ(µr,µr+1)
r = β(µr,µr+1)

r /α(µr)
r .

In the description of the attack algorithm presented here, it is assumed that
the plaintext byte P ∗1 at position r = 1 is known. This serves as a starting
point for the algorithm, i.e., the algorithm is initialized with a single plaintext
sequence containing the byte value P ∗1 for position r = 1 and with the estimated
likelihood λP∗1 = 1. Now, using the above described method for extending a
plaintext byte sequence and the corresponding likelihood estimate, the attack
algorithm iterates over the range of considered positions as follows. For each
position r, and for all possible values µr+1 of the plaintext byte at position r+1,
the extension with µr+1 of each of the sequences from the previous iteration is

considered, and, for each of the possible values of µr+1, the algorithm stores the
“most likely” extended sequence having µr+1 as the last byte value (that is, it
stores the extended sequence which maximises the likelihood estimate expressed
in equation (3)). When the attack algorithm reaches the last position, it simply
returns the sequence with the highest likelihood estimate.

Note that this process is guaranteed to find the plaintext byte sequence with
the highest likelihood estimate computed according to equation (3). However,
we emphasise that this expression yields only an approximation to the actual
plaintext likelihood, being based on the twin assumptions that plaintext bytes
are independently and uniformly distributed and that keystream bytes have no
dependencies beyond those in adjacent bytes as expressed in the double-byte
distributions.

A full description of the attack algorithm is given in Algorithm 4 (on page 22).
Note that the algorithm can easily be extended to work for the case where the
plaintext byte at the initial position is unknown. In particular, by exploiting the
single-byte biases, the likelihoods of all possible values of the initial plaintext byte
can be estimated, and subsequently used as a starting point for the algorithm.
Of course, the algorithm need not start at position r = 1 either.

Notice that the algorithm involves heavy nesting of loops, particularly in
phase 2b, where for each position r we perform a computation over all possible
values for the candidate plaintext byte pair (µr−1, µr), each such computation
itself involving a sum over 232 pairwise products of real numbers arising from
the triple summation over TSC, k1 and k2. Thus a direct implementation of
this algorithm would require on the order of 248 additions and products per
position! This would be inconvenient, to say the least. For this reason, and
because our double-byte, per-TSC keystream distributions are not particularly
accurate (being based only on 230 keystreams each), we would in preference use
aggregated versions of the algorithm. Specifically, building on our experience in
the single-byte case, we may consider a version of the algorithm that works with
TSC0-aggregated distributions and only works on a per-TSC1 basis. It is not hard
to see how to modify Algorithm 4 to operate in this way, saving a factor of 28

in its computational cost. The algorithm could be further modified to use fully
aggregated distributions, saving another factor of 28 in computational cost, but
now effectively ignoring any TSC-related structure in the keystream distributions.

We have performed a very limited validation of our double-byte attack in its
fully aggregated form. A complete evaluation of the algorithm and a comparison
of its performance with the single-byte Algorithm 3 is deferred to the full version
of the paper. We make one observation at this stage, however. Algorithm 4

makes use of ratios of probability expressions of the form β
(µr,µr+1)
r /α

(µr)
r , where

the numerator is a double-byte probability and the numerator is a single-byte
probability. If the significant biases in the former probabilities actually arise from
products of single-byte biases for adjacent positions, then such expressions can

be simplified to just single-byte probability terms of the form α
(µr+1)
r+1 , in effect

reducing our double-byte attack to our single-byte attack. Such behaviour can be
expected in early byte positions, where single-byte biases are very large. Thus we

do not expect our double-byte attack in Algorithm 4 to significantly out-perform
our single-byte attack in the early positions. On the other hand, in regions where
single-byte biases become smaller and fewer in number but double-byte biases
still persist (as seems to be the case in later positions), then Algorithm 4 may
be expected to perform better than our single-byte attack. Indeed, Algorithm 4
should be able to smoothly interpolate between regions where single-byte biases
dominate and regions where they do not.

6 MPPE

6.1 Computing Keystream Distributions for MPPE Keys

We also computed the RC4 keystream distributions for the first 256 keystream
bytes using MPPE keys having the structure described in Section 2.3. More
specifically, we generated random 8-byte random keys K = (K0, . . . , K7) and then
overwrote key bytes according to the MPPE specification for the 40-bit and
56-bit cases, while in the 128-bit case, we generated random 16-byte keys. We
used more than 239 keys in each case, with all computations being performed
on our local computing facilities. Figure 5 compares the distributions obtained
for random 128-bit RC4 keys (as used in 128-bit MPPE and in TLS) with those
for 40-bit and 56-bit MPPE keys. As can be seen, the process of fixing certain
key bytes to constant values produces many additional, strong biases in the
corresponding keystreams.

6.2 Attack Simulation Results

We used the MPPE keystream distributions to simulate plaintext recovery at-
tacks using the algorithm of [1], equivalent to the fully aggregated version of
Algorithm 3. The results are depicted in Figure 6. As expected, the additional
structure in RC4 keys introduced by MPPE in the 40-bit and 56-bit cases sig-
nificantly aids plaintext recovery, with 40-bit keys leading to the highest success
rate for a given number of ciphertexts. We also experimented with random 64-bit
keys, finding success rates very close to the random 128-bit case. This indicates
that it is not the reduction in key-size that makes the difference in MPPE, but
rather the introduction of fixed key bytes.

7 Conclusions

In this paper, we have explored the use of cloud computing facilities to perform
large-scale computations in support of the cryptanalysis of WPA/TKIP. We
expended 63 virtual-core-years of computational effort at a cost of US$41k to
carry out two computations, one involving 248 keystreams to estimate per-TSC
single-byte distributions, the other involving 246 keystreams to estimate per-
TSC double-byte distributions. The total amount of computation was roughly

one-twentieth of that used in the sieving stage for the factorisation of RSA-
76810. The problems of developing efficient code for, and then managing, these
computations were not insignificant but ultimately surmountable. This suggests
that commercial cloud services can be used as a platform for this kind of work,
instead of relying on owned infrastructure. Certainly, running 213 hyper-threaded
cores in parallel was an exhilarating, if expensive, way to explore the limits of
commercial cloud computing capabilities.

The value of our keystream distribution computations for WPA/TKIP is
aptly illustrated in Figure 4, which shows the marked improvement in success
rate that accrues from moving from single-byte keystream distribution estimates
based on 224 keystreams per TSC to 232 keystreams per TSC. Our computations of
RC4 keystream distributions in WPA/TKIP and MPPE also provide experimen-
tal data that may be useful in making hypotheses about keystream biases, and
which may in turn lead to a better theoretical understanding of the operation
of RC4 in these applications. Certainly, having an explanation for the long-lived
TSC1-specific single-byte biases that we observed experimentally would be very
welcome. A similar project would investigate the effect of fixing key bytes in RC4
keys, and apply the results to provide a theoretical explanation for the observed
biases in MPPE keystreams.

Our attack on WPA/TKIP based on double-byte biases requires further in-
vestigation: the time and budget available for this project has limited our ex-
perimentation with it and reduced our investment in its fine-tuning. Given the
dominance of single-byte biases in early portions of the RC4 keystreams for
WPA/TKIP, we expect this algorithm to come into its own when targeting re-
peated plaintext that is located later in WPA/TKIP frames (e.g. after position
256). Moreover, it provides a mechanism for smoothly transitioning attacks from
the regime where single-byte biases dominate to the regime where these biases
are no longer apparent but where double-byte biases are still present. It remains
to investigate whether other forms of bias (such as the “ABSAB” biases from
[11]) can be effectively integrated into a more general Bayesian approach, and
how much impact this might have on overall attack performance.

Acknowledgements

The research of the authors was conducted in part while all authors were at Royal
Holloway, University of London. The research was supported by an EPSRC Lead-
ership Fellowship, EP/H005455/1 as well as a grant from the UK government.
We thank Martin Albrecht, Jon Hart and Adrian Thomas at RHUL for their
assistance with sourcing, building and maintaining our local computing infras-
tructure and for help in managing AWS. We thank Strombenzin for its generous
donation of computing cycles. We thank the UK government for financing our
adventures with Amazon’s cloud computing infrastructure, and Mark Rowlands

10 Estimated at 1500 core-years for a single core 2.2 GHz AMD Opteron processor with
2GB RAM in [9].

at Amazon Web Services for his assistance in maxing out the AWS US West
data centre.

References

1. N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N.
Schuldt. On the security of RC4 in TLS. In USENIX Security. USENIX
Association, 2013. https://www.usenix.org/conference/usenixsecurity13/

security-rc4-tls.
2. S. R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling al-

gorithm of RC4. In S. Vaudenay and A. M. Youssef, editors, Selected Areas in
Cryptography, volume 2259 of Lecture Notes in Computer Science, pages 1–24.
Springer, 2001.

3. S. R. Fluhrer and D. McGrew. Statistical analysis of the alleged RC4 keystream
generator. In B. Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer
Science, pages 19–30. Springer, 2000.

4. D. Hulton and M. Marlinspike. Divide and conquer: Cracking MS-CHAPv2 with
a 100% success rate, 2012. https://www.cloudcracker.com/blog/2012/07/29/

cracking-ms-chap-v2/.
5. IEEE 802.11. Wireless LAN medium access control (MAC) and physical layer

(PHY) specification, 1997.
6. IEEE 802.11i. Wireless LAN medium access control (MAC) and physical layer

(PHY) specification: Amendment 6: Medium access control (MAC) security en-
hancements, 2004.

7. T. Isobe, T. Ohigashi, Y. Watanabe, and M. Morii. Full plaintext recovery attack
on broadcast RC4. In S. Moriai, editor, FSE, volume 8424 of Lecture Notes in
Computer Science, pages 179–202. Springer, 2013. ISBN 978-3-662-43932-6.

8. K. Jaganathan, L. Zhu, and J. Brezak. The RC4-HMAC Kerberos Encryption
Types Used by Microsoft Windows. RFC 4757 (Informational), Dec. 2006. http:

//www.ietf.org/rfc/rfc4757.txt.
9. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,

A. Kruppa, P. L. Montgomery, D. A. Osvik, H. J. J. te Riele, A. Timofeev, and
P. Zimmermann. Factorization of a 768-bit RSA modulus. In T. Rabin, editor,
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture
Notes in Computer Science, pages 333–350. Springer, 2010. ISBN 978-3-642-14622-
0. URL http://dx.doi.org/10.1007/978-3-642-14623-7_18.

10. S. Maitra, G. Paul, and S. Sen Gupta. Attack on broadcast RC4 revisited. In
A. Joux, editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages
199–217. Springer, 2011.

11. I. Mantin. Predicting and distinguishing attacks on RC4 keystream generator.
In R. Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 491–506. Springer, 2005.

12. I. Mantin and A. Shamir. A practical attack on broadcast RC4. In M. Matsui,
editor, FSE, volume 2355 of Lecture Notes in Computer Science, pages 152–164.
Springer, 2001.

13. T. Ohigashi, T. Isobe, Y. Watanabe, and M. Morii. How to recover any byte of
plaintext on RC4. In T. Lange, K. Lauter, and P. Lisonek, editors, Selected Areas in
Cryptography, volume 8282 of Lecture Notes in Computer Science, pages 155–173.
Springer, 2013. ISBN 978-3-662-43413-0.

https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls
https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
http://www.ietf.org/rfc/rfc4757.txt
http://www.ietf.org/rfc/rfc4757.txt

14. G. Pall and G. Zorn. Microsoft Point-To-Point Encryption (MPPE) Protocol. RFC
3078 (Informational), Mar. 2001. http://www.ietf.org/rfc/rfc3078.txt.

15. K. G. Paterson, B. Poettering, and J. C. N. Schuldt. Plaintext recovery attacks
against WPA/TKIP. In FSE 2014, Lecture Notes in Computer Science. Springer,
to appear.

16. S. Sarkar, S. Sen Gupta, G. Paul, and S. Maitra. Proving TLS-attack related open
biases of RC4. Cryptology ePrint Archive, 2013/502. https://eprint.iacr.org/
2013/502.

17. B. Schneier and Mudge. Cryptanalysis of Microsoft’s Point-to-Point Tunneling
Protocol (PPTP). https://www.schneier.com/paper-pptp.pdf.

18. S. Sen Gupta, S. Maitra, W. Meier, G. Paul, and S. Sarkar. Dependence in IV-
related bytes of RC4 key enhances vulnerabilities in WPA. In FSE 2014, Lecture
Notes in Computer Science. Springer, to appear.

19. S. Sen Gupta, S. Maitra, G. Paul, and S. Sarkar. (Non-) random sequences from
(non-) random permutations – analysis of RC4 stream cipher. Journal of Cryptol-
ogy, 27(1):67–108, 2014.

20. P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Statistical attack on RC4 – distin-
guishing WPA. In K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture
Notes in Computer Science, pages 343–363. Springer, 2011.

21. E. Tews and M. Beck. Practical attacks against WEP and WPA. In D. A. Basin,
S. Capkun, and W. Lee, editors, WISEC, pages 79–86. ACM, 2009.

22. M. Vanhoef and F. Piessens. Practical verification of WPA-TKIP vulnerabilities.
In K. Chen, Q. Xie, W. Qiu, N. Li, and W.-G. Tzeng, editors, ASIACCS, pages
427–436. ACM, 2013.

23. G. Zorn. Deriving Keys for use with Microsoft Point-to-Point Encryption (MPPE).
RFC 3079 (Informational), Mar. 2001. http://www.ietf.org/rfc/rfc3079.txt.

http://www.ietf.org/rfc/rfc3078.txt
https://eprint.iacr.org/2013/502
https://eprint.iacr.org/2013/502
https://www.schneier.com/paper-pptp.pdf
http://www.ietf.org/rfc/rfc3079.txt

Algorithm 4: Double-byte bias attack

input : C – balanced vector of 216 · S encryptions of fixed plaintext P
(CTSC,j,r denotes r-th byte of j-th encryption of P for TSC-value TSC)
L – length of P in bytes
m1 and mL – known first and last byte of P
{pTSC,r,k}TSC∈TscSp, 1≤r≤L, k∈Byte – single-byte key distribution
{p̃TSC,r,k1,k2}TSC∈TscSp, 1≤r<L, k1,k2∈Byte – double-byte key distribution

output: estimate P ∗ for plaintext P
begin

NTSC,r,k ← 0 for all TSC ∈ TscSp, 1 ≤ r ≤ L, k ∈ Byte
ÑTSC,r,k1,k2

← 0 for all TSC ∈ TscSp, 1 ≤ r < L, k1, k2 ∈ Byte
initialise mappings Q,Q′ : Byte→ Byte∗ × R
// Phase 1 (count occurrences of keystream bytes and byte pairs)
for each TSC ∈ TscSp do

for j = 1 to S do
for r = 1 to L− 1 do

NTSC,r,CTSC,j,r
← NTSC,r,CTSC,j,r

+ 1

ÑTSC,r,CTSC,j,r,CTSC,j,r+1
← ÑTSC,r,CTSC,j,r,CTSC,j,r+1

+ 1

// Phase 2a (derive likelihoods for plaintext byte at position 2)
for µ2 = 0x00 to 0xFF do

λm1‖µ2
← +

∑
TSC∈TscSp

∑
k1,k2∈Byte

ÑTSC,1,k1⊕m1,k2⊕µ2
log p̃TSC,1,k1,k2

−
∑

TSC∈TscSp

∑
k∈Byte

NTSC,1,k⊕m1
log pTSC,1,k

Q[µ2]← (µ2, λm1‖µ2
)

// Phase 2b (derive likelihoods for plaintext bytes at positions 3. . . (L− 1))
for r = 3 to L− 1 do

for µr = 0x00 to 0xFF do
L∗ ← −∞
for µr−1 = 0x00 to 0xFF do

parse Q[µr−1] as (P ′, λP ′)

λP ′‖µr ← λP ′

+
∑

TSC∈TscSp

∑
k1,k2∈Byte

ÑTSC,r−1,k1⊕µr−1,k2⊕µr log p̃TSC,r−1,k1,k2

−
∑

TSC∈TscSp

∑
k∈Byte

NTSC,r−1,k⊕µr−1
log pTSC,r−1,k

if λP ′‖µr > L∗ then
(P ∗, L∗)← (P ′, λP ′‖µr)

Q′[µr]← (P ∗ ‖ µr, L∗)
Q← Q′

// Phase 3 (pick most likely plaintext out of candidate set)
L∗ ← −∞
for µL−1 = 0x00 to 0xFF do

parse Q[µL−1] as (P ′, λP ′)

λP ′‖mL ← λP ′

+
∑

TSC∈TscSp

∑
k1,k2∈Byte

ÑTSC,L−1,k1⊕µL−1,k2⊕mL log p̃TSC,L−1,k1,k2

−
∑

TSC∈TscSp

∑
k∈Byte

NTSC,L−1,k⊕µL−1
log pTSC,L−1,k

if λP ′‖mL > L∗ then
(P ∗, L∗)← (P ′, λP ′‖mL)

return m1 ‖ P ∗ ‖ mL

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(a) 128-bit MPPE keys

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(b) 40-bit MPPE keys

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(c) 56-bit MPPE keys

Fig. 5. Pictorial representation of biases in RC4 keystreams for 128-bit, 40-bit and
56-bit MPPE keys, for different positions (x-axis) and byte values (y-axis). For each
position we encode the bias in the keystream for the (position,value) combination as a
colour; in each case, the colouring scheme encodes the absolute biases, i.e., the absolute
difference between the occurring probabilities and the (expected) probability 1/256,
scaled up by a factor of 216, capped to a maximum of 0.5.

0%	

20%	

40%	

60%	

80%	

100%	

19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	

R
ec

ov
er

y
R

at
e	

Log2(number of encryptions)	

Fig. 6. Average success rates of single-byte plaintext recovery attacks against MPPE
using 40-bit keys (blue), 56-bit keys (red), and 128-bit keys (green) over positions 1 to
256. The success rates are based on 256 experiments.

	Big Bias Hunting in Amazonia: Large-scale Computation and Exploitation of RC4 Biases(Invited Paper)

