Mantle structure and tectonic history of SE Asia

Robert Halla,*, Wim Spakmanb,c

a,* SE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
b Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584CD Utrecht, The Netherlands
c Centre for Earth Evolution and Dynamics - CEED, University of Oslo, Norway

* Corresponding author at: Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom. Tel: +44 1784 443897

E-Mail address: robert.hall@rhul.ac.uk (Robert Hall)
ABSTRACT

Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region’s tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.

Keywords

Subduction
Tomography
Tectonic reconstructions
Indonesia
1. Introduction

In this paper our focus is an assessment of independent models of tectonic evolution and mantle structure concerned with SE Asia. We discuss tomography and tectonic interpretations of the region centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia (Fig. 1).

At present much of the SE Asia region can be considered part of the Eurasian plate, and for some a separate sub-plate, given various names such as the SE Asia plate or the Sunda block, at a boundary that varies in position according to author (e.g. McCaffrey, 1996; Rangin et al., 1999; Bird, 2003; Simons et al., 2007). SE Asia is bounded largely by subduction zones and is situated in a position where major plates are converging from the south and east (India, Australia, Pacific, Philippine Sea). Subducted slabs are mainly well defined by seismicity down to depths of about 660 km (Fig. 1B) and by volcanoes (Fig. 1A). The region has a particularly complicated geology and plate tectonic history which has been dominated by subduction (e.g. Haile, 1973; Katili, 1973, 1975; Hamilton, 1979; Hutchison, 1989; Audley-Charles et al., 1988; Metcalfe, 1990, 2011, 2013; Lee and Lawver, 1995; Hall, 1996, 2002, 2012). The SE Asian promontory has grown primarily as a result of subduction and there have been thousands of kilometres of lithosphere subducted during the Mesozoic as Tethyan oceans were subducted, and during the Cenozoic as Australia moved northwards and the Pacific plates moved westwards.

It is now accepted that the mantle contains a record of subduction that can be imaged because subducted lithosphere produces a strong temperature anomaly which allows slabs to be detected as regions with relatively high seismic velocities. High-resolution (P-wave) seismic tomography reveals such anomalies although the images are blurred representations of mantle structure. Interpretation of subducted slabs is uncontroversial in regions which are seismically active and the combination of seismicity and tomography can reveal details of slab morphology and structure that may be used to understand the history of subduction. Anomalies in aseismic regions can be more problematic to interpret since they may result from processes, as yet unidentified, other than subduction. Nonetheless, seismic tomography should be of great value in helping to understand the tectonic development of SE Asia because its active margins are characterised by intense seismicity and volcanic activity and there are obvious, relatively simple, seismic velocity anomalies in the upper mantle which are clearly subduction-related.

Global Positioning System (GPS) measurements (Bock et al., 2003; Simons et al., 2007) and other kinematic data (DeMets et al., 1990, 2010) indicate very high rates of relative motions between plates and smaller tectonic fragments in the region. The rates of subduction at the margins of SE Asia are high, typically between 5 and 10 cm/year, and locally even higher. The lengths of slabs in the upper mantle identified by seismicity to depths of c. 660 km can therefore record only a limited period
of time, of the order of 10 to 25 million years, depending on rates of subduction. A longer subduction history may be recorded in the lower mantle. Like many other workers, but not all (e.g. Hamilton, 2007; Anderson, 2007), we consider that parts, or all, of subducted slabs often enter the lower mantle. Positive velocity anomalies below 660 km have been interpreted to record subduction that occurred as early as ~250 Ma (e.g. van der Meer et al., 2010). A good example of subduction history recorded in the lower mantle is seen in the Indonesian region between Java and the Banda arc (Fig. 2). In the east none of the slab subducted at the former Banda trench penetrates into the lower mantle and there is a large flat lying portion of the slab resting on the 660-km discontinuity (Spakman and Hall, 2010), whereas further west the subducted slab becomes almost vertical below about 300 km and the positive velocity anomaly can be traced well into the lower mantle to depths of c. 1500 km (Fukao et al., 1992; Puspito, 1995; Widiyantoro and van der Hilst 1997). This is not an artefact of tomographic methodology and we consider it to be lithosphere that was subducted before the slab now imaged in the upper mantle.

Interpreting tectonic history from seismic tomography is not straightforward, even for the upper mantle, and even if it is entirely the result of subduction. Anomalies at the same depth may correspond to subduction of lithosphere of different ages, at different rates, may result from subduction oblique to the trench, and slabs may deform during subduction. Furthermore, we cannot exclude seismic heterogeneities resulting from other processes or inherited in different ways, and some anomalies are simply artefacts of the tomographic imaging. These problems become even greater for the lower mantle where the interpreted subducted slabs are less plate-like and more amorphous, perhaps owing to folding and thickening in the more viscous lower mantle. Thus, linking imaged anomalies to past tectonic evolution becomes less well constrained. Despite the difficulties, there are now many parts of the globe where imaged upper and lower mantle structure has been convincingly interpreted in terms of tectonic history. A tectonic reconstruction model can be used to predict where lithosphere has been subducted and how much has been consumed in plate convergence zones. The predictions can be compared to the mantle structure interpreted by seismic tomography and if the two are independent (i.e. the tomographic model has not been used in making the reconstruction) the tomography provides an independent test of the tectonic reconstruction, and conversely the plate tectonic model may suggest interpretations of mantle structure. This analysis may then result in changes of the tectonic reconstruction, particularly if remnants of proposed subduction are not detected or if remnants of subduction are found in a different location than predicted.

We begin with an explanation of seismic tomography, assessment of tomographic model quality for tomography models created from seismic P-wave travel times and causes of velocity anomalies in the mantle. Then we introduce the detailed global P-wave velocity anomaly model UU-P07 used in the paper and explain how the imaged mantle structure of SE Asia mantle structure will be presented in figures and movies, followed by an overview of previous interpretations of mantle structure. Next we
introduce the tectonic model used in this paper, and continue with an assessment of velocity anomalies in the upper, and then lower, mantle and our interpretation of them in terms of the tectonic model. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region.

2. Introduction to seismic tomography models based on travel-times

2.1. A summary of travel-time tomography

Most of the three-dimensional models of SE Asian mantle structure have been created with seismic travel-time tomography using P-wave data and adopting the seismic ray approximation (e.g. Fukao et al., 1992; Puspito, 1993; Widiyantoro and van der Hilst, 1996). Seismic travel-time tomography is a geophysical inversion method that converts observed travel times of seismic waves into a three-dimensional (3-D) model of the seismic velocity structure of the mantle (e.g. Spakman et al., 1993). Usually, tomographic models are presented as colour maps displaying seismic velocity anomalies as percentages of a used 1-D background, or reference model, of seismic velocity (e.g. Fig. 2). Travel-time tomography developed from the pioneering work of Aki et al. (1977). Other developments have meanwhile led to many different tomographic methods for different data extracted from seismograms such as classical travel-time picks of seismic waves, arrival times determined from waveforms of body waves or surface waves, or even large portions of a seismogram (e.g. Zhu et al. 2012; Fichtner et al. 2013). For an overview of the various tomographic methods we refer to Nolet (2008). A summary of travel-time tomography, particularly relevant to most of the models shown here, follows below.

Travel-time tomography based on the ray approximation combines seismic rays with travel time picks of short-period (~ 1second) P-waves. A seismic ray is a high frequency representation of wave propagation and constitutes the particular path through the mantle along which a seismic wave travels from an earthquake hypocentre to a seismological station. The ray geometry \(L \) is fully determined by the seismic velocity structure \(v(r) \) of the mantle. The observed travel time \(T \) is interpreted as an integrated measure of all seismic velocities encountered along the ray path. Mathematically this is expressed as the integral \(T = \int_{L} 1/v(r) \, dl \). This travel-time integral forms the basis of travel-time tomography. Global travel-time tomography problems are based on a data set consisting of many millions of these integral equations. The tomographic inversion focuses on estimating the 3-D seismic velocity anomaly field \(\Delta v(r) \) with respect to a laterally averaged seismic velocity \(v_o(r) \) such as the radial reference model \(ak135 \) of Kennett et al. (1996) which is often used for global travel-time tomography.
A reference model plays an important role in the formulation of the tomographic problem. It facilitates the computation of approximations L_o of seismic rays L, of the estimation of earthquake hypocentres from which L_o starts, and of reference model travel times $T_o = \int_{L_o} \frac{1}{v_o} \, dl_o$. This information is used to formulate a mathematical linearization of the delay time integral equations
\[
d = T - T_o = \int_L \frac{1}{(v_o + \Delta v)} \, dl - \int_{L_o} \frac{1}{v_o} \, dl_o
\]
relative to these reference model quantities. The delay-time d is the difference between observed travel time T, acquired along the true ray L, and reference travel-time T_o computed along the reference model ray geometry L_o.

As a next step towards inversion, the Earth’s mantle is usually subdivided into 3-D network of non-overlapping cells which can be of variable size (e.g., Fukao et al., 1992; Widiyantoro and van der Hilst 1997; Bijwaard et al., 1998; Spakman and Bijwaard 2001), or for instance a prescribed network of velocity nodes between which velocity is interpolated (e.g., Montelli et al., 2006). The cell model is the basis of a mathematical parameterization of the unknown seismic velocity anomaly structure $\Delta v(\mathbf{r})$ of the mantle and is used to convert the integral equations into a linear algebraic set of observation equations $d_{obs} = Am + \epsilon$, which renders the tomographic inverse problem suitable for solving on computers. d_{obs} is the data vector consisting of millions of delay times; m is the model vector from which all velocity anomaly values in the cell model are obtained while m also incorporates parameters associated with hypocentre mislocation and station corrections; A is the matrix constructed from ray path intersections with cells and from coefficients related to hypocentre mislocation and seismological stations (e.g., Spakman et al., 1993; Bijwaard et al., 1998). The unknown vector of errors ϵ absorbs all inconsistencies between the data d_{obs} and Am. Clearly, the solution sought is the true mantle model m_{true} constituting the true anomalous mantle cell structure. By writing $d_{obs} = Am_{true} + \epsilon$, the error vector ϵ can be interpreted to comprise not only travel-time observation errors but also implicit errors due to using approximate ray theory, due to linearization of the observation equation relative to reference model quantities, and due to the approximation of true anomalous mantle structure by the adopted model parameterization. There are several ways to minimize the different sources of implicit data errors, for instance by using adaptive cell parameterization (Bijwaard et al., 1998; Spakman and Bijwaard, 2001), by using iterative approaches with repeated 3-D ray tracing and earthquake relocation (Bijwaard and Spakman, 2000), or by starting from different 1-D reference models (van der Hilst and Spakman, 1989; Spakman et al., 1993) or even from 3-D reference models (Widiyantoro et al., 2000; Amaru, 2007).

Due to insufficient data and data errors ϵ the linear equation $d_{obs} = Am + \epsilon$ has no unique solution and many different models may fit the observations equally well. A general strategy towards determining solutions is to find models \hat{m} with data predictions $d_{pred} = A\hat{m}$ that minimize the difference $\epsilon = d_{obs} - d_{pred}$, e.g. by using least squares methods, to some acceptable level guided by whatever is known, or perceived, about error variances and error correlations. An additional
complicating factor is that there are usually insufficient data to uniquely resolve mantle structure on the cell model. To find acceptable solutions there are basically two strategies. The first is to search the model space for suitable models, compute for each the data prediction d_{pred}, and devise search strategies to select the model best fitting the data using a predefined data fit measure. This approach has so far only been applied in mantle tomography using rather coarse model parameterizations involving relatively few model parameters (e.g. Trampert et al., 2004; Rawlinson et al. 2014). For obtaining detailed mantle models this strategy is too demanding of computer time. The second strategy is based on assuming additional information on general aspects of model geometry, for instance by putting restrictions on model amplitudes and/or requiring the model to be spatially flat and/or smooth. This can be implemented in several ways depending on the inversion approach (e.g. Nolet, 2008) and regularizes the inverse problem such that selected solutions can be computed. The importance of these additional constraints for selecting a solution can be tuned. Finding an acceptable model always requires making a subjective choice between fitting the data and fitting the additional constraints on model geometry.

Formally the entire data inversion step can be written, independent of methodology, as $\hat{\mathbf{m}} = \mathbf{G}^{-1} \mathbf{d}$ leading to the estimated tomographic model $\hat{\mathbf{m}}$. The matrix \mathbf{G}^{-1} is called the generalized inverse and is not unique as it depends on the imposed model regularisation and on estimates of data errors and their correlations. The generalized inverse can be explicitly computed in small inverse problems, but for many practical problems with a large number of model parameters \mathbf{G}^{-1} cannot be computed explicitly. Instead, the multiplication $\mathbf{G}^{-1} \mathbf{d}$ is implicitly constructed by iterative solution techniques (e.g. Spakman and Nolet, 1988) leading to an approximated solution $\hat{\mathbf{m}}$ from which estimates of the velocity anomaly in each cell, as well as hypocentre and station parameters, can be readily obtained.

Due to the assumptions and approximations described above, the tomography model $\hat{\mathbf{m}}$ is obtained as an approximation of real mantle structure \mathbf{m}_{true} and is usually presented in percentages $\Delta v/v_0(r)$ of the reference velocity at radius r. The preference for a particular model $\hat{\mathbf{m}}$ created is that of the tomographer who makes the choices of applicable theory, reference model, model parameterisation, estimates of data errors, and the inversion strategy, the latter being crucially based on the adopted data fit measure and on the additional regularization constraints imposed.

2.2. Model quality assessment

Without measures of model quality a tomographic model cannot be reasonably interpreted. For very large inverse problems with many tens to hundreds of thousands of model parameters, assessment of the spatial resolution and model amplitude errors is usually performed with sensitivity analysis based on imaging synthetic seismic velocity models \mathbf{m}_{syn} (Humphreys and Clayton, 1988; Spakman and Nolet, 1988; Rawlinson et al., 2014). Synthetic data \mathbf{d}_{syn} are first generated from a synthetic
seismic velocity model using the same ray paths as in the real data inversion, i.e., by forward computation $Am_{syn} = d_{syn}$. A synthetic model usually consists of an alternating pattern of negative and positive anomalies, e.g. isolated cells of different sizes (Spakman and Nolet, 1988) or checkerboard structures of different cell sizes (Fukao et al., 1992). The synthetic data are inverted in the same manner as the actual data. This leads to the solution $\hat{m}_{syn} = G^{-1}d_{syn}$ by invoking the same generalized inverse. Substituting $d_{syn} = Am_{syn}$ into this equation leads to $\hat{m}_{syn} = G^{-1}Am_{syn}$.

Defining $R = G^{-1}A$ gives $\hat{m}_{syn} = Rm_{syn}$ where R is called the resolution matrix. The resolution matrix R explicitly describes in what way the model value in a particular cell depends on the values in all other cells; spatial resolution is a measure of the linear dependence between model parameters. The resolution matrix R is exactly the same as the one pertaining to the real data inversion. Starting from $\hat{m} = G^{-1}d$ and substituting $d = Am_{true} + \epsilon$, leads to $\hat{m} = Rm_{true} + G^{-1}\epsilon$. The term $G^{-1}\epsilon$ is caused by the effects of (unknown) data and theoretical errors and explicitly shows that data error affects a solution apart from resolution issues.

The resolution matrix R explicitly describes how the true mantle, m_{true} or m_{syn}, is related to the tomographic model, \hat{m} or \hat{m}_{syn}, respectively. Clearly, a perfectly resolved model has $R = I$, where I is the identity matrix. For large inverse problems the resolution matrix cannot be computed and this is where sensitivity analysis proves its value. By comparing \hat{m}_{syn} to m_{syn} one can arrive at estimates regarding spatial resolution and amplitude response. By adding synthetic noise ϵ_{syn}, i.e. solving $d_{syn} = Am + \epsilon_{syn}$, one can also assess the effect of data noise on the solution by computing $G^{-1}\epsilon_{syn}$, or by comparing sensitivity tests conducted with or without noise, leading to a more integral assessment of how the mantle structure m_{true} is mapped into a preferred model \hat{m}. Examples of sensitivity tests for combined estimates of spatial resolution and noise are given in this paper (e.g. Fig. 3).

The choices made by the tomographer leading to a particular model \hat{m} cannot all be tested by inspecting the resolution matrix or by sensitivity analysis with synthetic models. Sensitivity analysis cannot test the assumptions and approximations that lead to the equation $d = Am + \epsilon$. This equation can only be used to study error propagation into the model and how well the preferred model is spatially resolved, which depends on the matrix A, the assumptions made about the statistics of data errors, and on the additional regularisation constraints imposed on the model geometry. Sensitivity analysis for estimating image quality also has potential pitfalls if conclusions are drawn from tests with only a single synthetic model (Lévêque et al., 1993) but the risk of misinterpretation can be reduced considerably by analysing a wide range of synthetic models (e.g. Bijwaard et al., 1998). The basic requirement for a useful test is that a synthetic test model should contain structure to which the data are insensitive; formally, contain structure that is in the null space of the inverse problem. In that case the lack of resolution is always detected by sensitivity analysis. An obvious example of lack of
resolution are the cells, or mantle regions, in the model that are not sampled by the seismic rays. More complex resolution artefacts lead to blurring of true mantle structure into larger structures with a different geometry. Blurring can also occur in specific directions only, i.e., smearing of true structure along a locally dominant orientation of seismic ray paths such as along the dip direction of a subducting slab. These resolution artefacts can all be detected by testing with proper synthetic models.

2.3. Seismic velocity anomalies

Seismic velocity is a material parameter depending on local elastic properties and density, which in turn depend on temperature, pressure, and composition (Goes et al., 2000; Cammarano et al., 2003; Deschamps and Trampert, 2003). Positive, or fast, velocity anomalies are often associated with the cold cratonic parts of continental lithosphere, with oceanic lithosphere, or with subducted lithosphere in the mantle. Conductive cooling of the lithosphere prior to subduction is the most important cause of the observed velocity contrast between subducted slabs and the ambient mantle. The low thermal conduction in the mantle explains why large volumes of subducted lithosphere remain detectable using tomography long after the lithosphere entered the trench even when subduction occurred hundreds of millions of years ago (e.g. van der Meer et al., 2010). Negative velocity anomalies are often correlated with higher temperatures in the mantle, which can be due to advective temperature transport (e.g. hot mantle upwelling), or may be locally generated (e.g. by partial melting in the mantle wedge above a subducting slab). Compositional effects are still difficult to assess, but play a role for the continental lithosphere (e.g. Lebedev and Nolet 2003) and may be important for the deeper mantle (Trampert et al., 2004). Compositional effects are not considered dominant for most of the upper mantle above 400 km but can increase in importance below that depth (Cammarano et al., 2003). Applications of predictions of the effects of temperature and composition on seismic velocities to interpretation of imaged seismic velocities are still strongly hampered by the largely unknown error in the amplitudes of imaged seismic velocity anomalies that results from data noise, assumptions and approximations.

In this review paper, we are mostly concerned with the strong thermal anomalies associated with subducted lithosphere. We interpret positive velocity anomalies as images of subducted lithosphere, and negative velocity anomalies as reflections of relatively warmer mantle. P-wave velocity anomalies for the upper mantle vary from a few per cent at the top, in the first few hundreds of kilometres, to c. 1% in the transition zone, decreasing to c. 0.5% in the mid-mantle. According to Goes et al. (2005) this could correspond to a thermal anomaly in the range of 250°K (or 10-20% of ambient mantle temperature) for most depth ranges. Tomographic models based on S-wave data typically image velocity anomalies with amplitudes larger than those based on P-wave data by a factor ~1.7-2.0 which is generally due to a different dependence of S-waves on elastic parameters. The sensitivity of S-wave velocity to temperature anomalies is of the same sign as that of P-wave velocity. A discussion,
pertaining to the SE Asian region, on the effects on seismic velocities of temperature and other quantities, such as composition, partial melting and volatiles, can be found in Lebedev and Nolet (2003).

2.4. Global mantle model UU-P07

Many tomographic studies based on cell parameterization of the mantle have been performed but differ in cell division, inversion and regularization method, data treatment, amount of data, reference model, or in taking a regional or global approach. Movie files in folder Supplementary\MapView_depth_slices_different_models show different models for the region (SEA_mapv_4mod.mov). Rather than discussing different models for SE Asia, we present mantle structure from a detailed global mantle model which we use to illustrate mantle structure imaged in other tomographic studies as well as for developing some new interpretations of imaged structure. This model is the global P-wave velocity anomaly model UU-P07 of Amaru (2007) from which the evidence for subduction-related global lower mantle structure was presented by van der Meer et al. (2010, 2012). Several authors (e.g. Schellart et al., 2009; Schellart and Spakman, 2012; van Hinsbergen et al., 2012; van Bentham et al., 2013; Chertova et al., 2014) have used model UU-P07 in studies of regional mantle structure. It is the successor to the BSE model of Bijwaard et al. (1998) and is based on a similar treatment of travel-time data, mantle cell division and inversion approach. The main differences are in the use of more than twice as much data (c. 18 million P-wave type travel times), in a denser cell division of the mantle with lateral cell dimensions which are multiples of 0.5° with a minimum of 0.5° in regions of high ray sampling, and in the use of CRUST2.0 (Laske et al., 2000) as a crustal correction model. Details on how this model was constructed can be found in Amaru (2007). The cell parameterization is dependent on the local ray density with smaller cells placed in mantle volumes of higher ray density (Spakman and Bijwaard, 2001). In the subducted slab regions of SE Asia cell sizes are generally 0.5° or 1°. Cell dimensions also vary with depth. Cell thickness varies from 10 km in the crust, and is 50 km from the base of the crust down to 410 km, then 65 km down to 660 km, and then 100 km at the top of the lower mantle gradually increasing to 200 km in the mid mantle.

2.5. Display of tomographic images

In this paper we concentrate on the mantle structure of SE Asia associated with subduction along the Sunda–Banda arc, subduction in the region of Sulawesi, and on the origin of high velocity anomalies in the lower mantle beneath SE Asia and parts of the west Pacific. The imaged mantle structure of the region is presented in a number of figures and movies. Fig. 2 shows map view images at selected depths of the tomographic model UU-P07 (Amaru, 2007) for the SE Asian mantle. A
complete sequence of such map view images is compiled as a movie file (SEA_UU-P07_mapview.mov) showing depth slices for UU-P07 in the folder Supplementary\ Mapview_depth_slices_UU-P07. The P-wave velocity anomalies are plotted relative to the reference model ak135 of Kennett et al. (1995). Negative and positive anomalies correspond to regions where the seismic velocity is respectively lower or higher than the reference model value at the corresponding depth. Subducted slabs are marked by positive anomalies displayed with blue-to-green colours.

As discussed above, image blurring is assessed with sensitivity tests for spatial resolution with synthetic velocity models and examples are given in Fig. 3 and movies in the folder Supplementary\ Resolution_movies (SVideo_Resolution_1.mov and SVideo_Resolution_2.mov). The colour contouring in the figure and movies shows how synthetic anomalies of variable dimensions (solid line contours) and with alternating velocity amplitudes of ±5% are recovered in the tomographic inversion. The input blocks are separated by 0% anomalies, and in depths laterally shifted, which facilitates detecting anomaly smearing along locally dominant seismic ray orientations. Anomaly amplitudes are generally underestimated and local smearing effects illustrate limited resolution. These resolution tests also help identify larger regions where the tomographic model is essentially unresolved because of almost complete lack of data sampling the mantle, such as in the top 1000 km of the mantle under the Indian Ocean to the SW of Sumatra, and in the top 400 km under the core of Sundaland (Borneo, the Thai–Malay Peninsula and Indochina). Good spatial resolution at scales of 100 to 200 km is generally obtained in regions of the upper mantle where there are subducted slabs. In the lower mantle, resolution is generally good for all length scales between 200 to 700 km and anomaly smearing is mostly localized; where important for our analysis, we comment on the local resolution.

3. Mantle structure of SE Asia: larger scale patterns and early interpretations

The lithosphere of the continental region comprising the Sunda Shelf, Malay Peninsula, Borneo and Java Sea, shows negative seismic P-wave anomalies in all P-wave models. However, these negative seismic velocity anomalies are poorly resolved due to lack of sampling seismic rays. This region, inboard of the enclosing Sunda–Banda–Philippines subduction systems, is essentially the Sundaland continent (Hall and Morley, 2004) and is largely composed of continental fragments added to Asia from the Triassic to the Cretaceous (e.g. Metcalfe, 2011, 2013; Hall, 2012). The UU-P07 model shows predominantly negative seismic anomalies in the top 100-150 km (Fig. 2 and SEA_UU-P07_mapview.mov) with very limited, or even absent, spatial resolution under Sundaland (Fig. 3 and SVideo_Resolution_1.mov and SVideo_Resolution_2.mov). Surface wave tomography studies have generally a better sampling of the top 100-150 km of SE Asia and invariably show negative seismic S-wave velocities in the top 100-150 km (Ritzwoller et al., 2002; Lebedev and Nolet 2003; Shapiro et al., 2008; Ritsema et al., 2011; Schafer and Lebedev, 2013) Several of the models are shown in the
movie Supplementary\Mapview_depth_slices_different_models\SEA_mapv_4mod.mov. Although S-wave and P-wave velocities respond differently to temperature, composition and density, elevated temperatures lower both P- and S-wave velocities as discussed by Lebedev and Nolet (2003). Temperature effects are probably greater than compositional effects for the lithosphere and other possible causes for lowered seismic velocities such as partial melting, and presence of small amounts of volatiles such as water, or CO₂ which can be significant in many SE Asia hydrocarbon basins and may have a mantle origin (Imbus et al., 1998). All would point to a weakened continental lithosphere, or perhaps a partly absent lithospheric mantle.

Thermal weakening of the lithosphere may be a result of long-term Cenozoic subduction beneath continental SE Asia (e.g. Hamilton, 1979; Hutchison, 1989; Hall, 2002, 2012). Another local cause of thermal weakening could be plumes such as the interpreted Hainan plume (Lebedev and Nolet, 2003; Montelli et al., 2006) if the plume head had spread under a large part of Indochina. Intraplate Cenozoic volcanism is widespread in the Indochina-Hainan region (e.g. Barr and MacDonald, 1981; Hoang and Flower, 1998; Wang et al., 2001), particularly since the Middle Miocene, and has also been associated with the existence of the Hainan plume (e.g. Xu et al., 2012). Negative P-wave velocity anomalies are found in UU-P07 model under the Hainan region and Indochina to depths of 1900 km (Fig. 2 and SEA_UU-P07_mapview.mov). At greater depths the negative anomaly can be traced ESE and it connects with the large low velocity region in the deepest mantle under the SW Pacific, which has been proposed to be a major plume generation region (Torsvik et al., 2006; Burke et al., 2008). A third possible contribution to the observed negative seismic velocity anomalies of the Sundaland lithosphere may result from the Triassic to Cretaceous amalgamation of continental blocks that make up much of SE Asia (Metcalfe, 2011, 2013; Hall 2012; Hall and Sevastjanova, 2012). It is not clear whether these blocks retained their Gondwana mantle lithosphere, or lost it during their movement across the Tethys, during amalgamation with Asia, or perhaps shortly after.

Most of the earlier research focus in the region has been on the complex subduction systems bordering SE Asia along the Andaman–Sunda–Banda trench, along the eastern boundary with the Philippine Sea plate, and subduction zones internal to the region, e.g. North Sulawesi. The morphology of subducted slabs in the upper mantle around Indonesia and the Philippines has been quite well known from seismicity for many years (e.g. Hamilton, 1974, 1979; Cardwell and Isacks, 1978, 1981; Cardwell et al., 1980; Hamburger et al., 1983; Newcomb and McCann, 1987; McCaffrey, 1988, 1989; Chiu et al., 1991). Tomography has provided additional important insights. The most obvious feature of the upper mantle structure in the region is the prominent narrow positive velocity anomaly that can be traced from the Andaman Sea to the Banda Sea which is the product of subduction at the Sunda–Java trench and the former Banda trench (Fig. 2; SEA_UU-P07_mapview.mov). In detail the structure of the subducted slab in the upper mantle is complex. There
are several gaps, and prominent bends at depth, beneath Sumatra and the Banda region. Furthermore, there have been a number of suggestions concerning what happens to subducted slabs at the base of the upper mantle.

Fukao et al. (1992) used a global mantle approach focussed on the West Pacific and Indonesian region. They showed that the Java slab dips steeply in the lower part of the upper mantle and crosses the 660-km discontinuity into the lower mantle where the slab dips much less steeply, spreads laterally, and reaches depths up to 1200 km. They explained this using a model of Ringwood and Irifune (1988) by suggesting the subducted slab thickened and buckled to form a megalith above the 660-km discontinuity which then sank into the lower mantle because of its higher density. A similar mechanism for slab thickening was proposed by Das et al. (2000) in the Indonesian region although in their model the thickened slab dips steeply.

Puspito et al. (1993) presented a P-wave travel-time tomography model for the Indonesian region showing several of the main morphological features of slabs. They proposed that the western limb of the inverted U-shaped Molucca Sea plate (Hatherton and Dickinson, 1969) may penetrate into the lower mantle whereas the eastern limb beneath Halmahera reached a depth of about 400 km. They suggested there may be a remnant of an older subduction zone in the lower mantle below the Molucca Sea which they interpreted to be related to Miocene subduction below Sulawesi (Katili, 1978). Puspito et al. (1993) imaged the horseshoe-shaped positive velocity anomaly in the Banda arc, which Puspito and Shimazaki (1995) concluded did not penetrate into the lower mantle in contrast to the subducted Indian ocean slab further west beneath the eastern Sunda arc, which did. Puspito and Shimazaki (1995) also observed that a slab under the Andaman–Sumatra region could be traced deeper into the mantle (to 500 km) than indicated by seismicity (to 250 km).

Widiyantoro and van der Hilst (1996, 1997) produced the first model showing images of laterally continuous subduction along the entire Andaman–Sunda–Banda arc, and to the north under the Molucca Sea. Their major interpretation concerned the connection between the Andaman–Sunda–Banda slab in the upper mantle and the large lower mantle anomaly under SE Asia which they inferred to be one subducting system. They associated the lower mantle part with a Tethyan subduction system that can be traced to the Eastern Mediterranean (van der Hilst et al., 1997; Bijwaard et al., 1998; van der Voo et al., 1999; Hafkenscheid et al., 2006). To the west, under Sumatra, the upper and lower mantle anomalies appear disconnected in the transition zone, which was interpreted as slab detachment. However, this image of slab detachment in the transition zone under Sumatra has not been reproduced in later work (e.g. Bijwaard et al., 1998; Replumaz et al., 2004; Pesicek et al., 2008; Li and van der Hilst, 2010).

Widiyantoro and van der Hilst (1996, 1997) inferred an overall clockwise rotation between the upper mantle slab and the lower mantle slab which they linked to the Cenozoic northward advance of India, mid-ocean ridge collision with western Indonesia arcs and escape tectonics postulated for India–
Asia collision. They suggested that this may also have caused a southward migration of the eastern Sunda slab explaining the observed kink between the upper and lower mantle Java slab. They tentatively suggested that there is probably a continuous slab in the seismic gap beneath East Java although they observed that the slab could be thinned.

Like earlier workers, Widiyantoro and van der Hilst (1997) contrasted penetration of the subducted slab beneath Java into the lower mantle with a flattening of the subducted slab further east in the transition zone to form a spoon-shape beneath the Banda arc. Their explanation for the shape of the Banda slab followed the 180-degree arc-bending hypothesis of Katili (1973, 1975) which they related to Pliocene collision of the Banda arc with Australia. They confirmed the inverted U-shape of subducted Molucca Sea lithosphere and proposed a steeper dip for the western limb beneath the Sangihe arc compared to the eastern limb below Halmahera, which they attributed to a westward movement of the entire slab system in the mantle.

Similar anomalies in the mantle under SE Asia are imaged in the global mantle model of Bijwaard et al. (1998), as shown in Rangin et al. (1999), Hafkenscheid et al. (2001) and Hall and Spakman (2002). Other global models support slab penetration into the lower mantle under SE Asia (Fukao et al., 1992, 2001; Li and van der Hilst, 2010).

The morphology of the subducted slab below North Sumatra shows a conspicuous kink (Fig. 2) that has been a topic of considerable interest for many years. Page et al. (1979) and Fauzi et al. (1996) suggested there may be a slab tear beneath Sumatra, possibly linked to the Investigator Fracture Zone, which may be related to the Toba volcanic centre (Chesner et al., 1991; Chesner, 1998, 2012). Lange et al. (2010) also suggested the Investigator Fracture Zone may influence seismicity and presumably slab morphology. Widiyantoro and van der Hilst (1996) recognised that the space-time evolution of slab structure beneath Sumatra was not understood and required further study. The Bijwaard et al. (1998) model and subsequent models of the Utrecht group display a clear lateral kink in the slab under NW Sumatra and several other studies have observed changes in orientation and dip of the subducted slabs between Sumatra and the Andaman segment (e.g. Kennett and Cummins, 2005; Richards et al., 2007; Shapiro et al., 2008). Pecisek et al. (2008, 2010) made a detailed study of this region and the lateral kink for which they favoured folding of the slab as an explanation. They also identified subducted slab material in the transition zone below Indochina not imaged in earlier studies but also visible in model UU-P07 (Fig. 2; SEA_UU-P07_mapview.mov).

Hafkenscheid et al. (2001) and Gorbatov and Kennett (2003) showed similar slab geometries at the western end of the Sunda arc and they also showed the continuity of the Sumatra–Andaman slab. From a comparison of bulk-sound and shear velocity anomalies in the Sunda arc Gorbatov and Kennett (2003) interpreted an abrupt along-strike change in age of subducted lithosphere in the upper mantle below SE Sumatra which may also be reflected in a strong change in anisotropic directions mapped with SKS-splitting analysis (Hammond et al., 2010).
Beneath the Sunda arc Replumaz et al. (2004) interpreted upper and lower mantle anomalies based on a global tomography model by Kárason (2002). This model shows fragmented weak upper mantle slab anomalies delineating the Sunda arc and the Sumatra slab kink (Bijwaard et al., 1998; Bijwaard and Spakman, 2000; Hafkenscheid et al., 2001) although this is not discussed by Replumaz et al. (2004). Like Widiyantoro and van der Hilst (1996, 1997) they interpreted the lower mantle anomaly as having a Tethyan origin. They interpreted the strong northward turn of the modern Sunda arc subduction systems toward the Andaman region to be confined to the upper mantle, succeeding an older NW-SE trend of the interpreted deeper Tethys anomaly, as a development owing to the passage of India and concluded that the tomography fits the extrusion model of Replumaz and Tapponnier (2003).

Richards et al. (2007) appear to make the interpretation that the slabs imaged to great depth between western Indonesia and the Philippine Sea were all originally part of one single slab north of India and Australia and the slabs imaged now were all either torn from this or deformed. For instance, they proposed tearing between the Molucca Sea and Banda slabs as if these slabs had a common prior history. They follow the earlier interpretations by Widiyantoro and van der Hilst (1996, 1997) and Replumaz et al. (2004) that the deep Tethys anomaly is continuous with the deep mantle anomaly under SE Asia and tore at some point from the Andaman-Sumatra upper segment owing to the passage of the northward moving Indo-Australian plate, west of SE Asia. As discussed below we interpret several of these features in a different way.

Subducted slabs may be expected to deform in the mantle and tear (e.g. Wortel and Spakman, 2000; Spakman and Wortel, 2004; Govers and Wortel, 2005; Richards et al., 2007; Rosenbaum et al., 2008; Spakman and Hall, 2010; Lister et al., 2012; Chertova et al., 2014), and gaps or holes may be created in subducted slabs due to age differences in subducting plates, or as a result of subduction of features such as spreading centres or transform faults (e.g. Dickinson and Snyder, 1979; Thorkelson, 1996; van Wijk et al., 2001). Such features may be identified on the basis of seismicity although seismic gaps may have other causes. Several tears have been postulated in the SE Asian region, as summarised above, below Sumatra and eastern Indonesia, and other gaps in slabs have been suggested from distribution of seismicity or volcanic activity in the Banda region (e.g. Chamalaun and Grady, 1978; McCaffrey, 1989; Das, 2004; Sandiford, 2008), East Java (Hall et al., 2009; Widiyantoro et al., 2011), and the Flores region (Wheller et al., 1987; Ely and Sandiford, 2010). These and other observations of more regional nature are addressed further in the following sections.

4. Tectonic models

The geometry and position of plate boundaries is critical for interpreting velocity anomalies in the upper mantle. However, even for the present-day there is no agreement on how many plates there
are and where their boundaries are. Bird (2003) has recognised 14 large plates and 38 small plates, the majority of which are in SE Asia and the western Pacific in the area of interest to this paper. At the surface it is impossible to draw continuously connected boundaries between major plates (India, Australia, Pacific, Philippine Sea) surrounding SE Asia, for example to join the Java trench to the Philippine trench, and the problem remains even if smaller and smaller plates are postulated.

Particularly around the Philippines and eastern Indonesia trenches are shown on some tectonic maps where there is ambiguous or no evidence for subduction (e.g. Negros, Sulu, New Guinea trenches) and some trenches are often shown as connected when they clearly are not (e.g. Philippine to New Guinea trench). Much of the Banda–Molucca–Philippines–New Guinea region can be considered as a very broad diffuse plate boundary zone (Gordon, 1998), suture zone (Hall and Wilson, 2000) or orogen (Bird, 2003) in which there are no easily defined plates with deformation concentrated at plate boundaries.

If the present is complicated we can expect the past to have been equally complex. Since plate tectonics became the accepted paradigm there has been a myriad of reconstructions for the SE Asian region (e.g. Hamilton, 1979, 1988; Holloway, 1982; Silver et al., 1983, 1985; Taylor and Hayes, 1983; Hall, 1987, 1996, 2002, 2012; Audley-Charles et al., 1988; Metcalfe, 1990, 2011, 2013; Smith and Silver, 1991; Ricou, 1994; Rangin et al., 1997; Villeneuve et al., 1998, 2010; Charlton, 2000; Replumaz and Tapponnier, 2003; Heine et al., 2004; Honza and Fukioka, 2004; Replumaz et al., 2004; Cloos et al., 2005; Heine and Muller, 2005; Hinschberger et al., 2005; Quarles van Ufford and Cloos, 2005; Hafkenschield et al., 2006; Gaina and Muller, 2007; Whittaker et al., 2007; Keep and Haig, 2010; Harris, 2011; Gibbons et al., 2012, 2013; Whittaker et al., 2013; Zahirovic et al., 2014.) Relatively few of these can be easily tested, because most provide only a few maps, typically at widely spaced time intervals. Because of the number of models and reconstructions we have not attempted to compare different models. The reconstructions used in this paper are from Hall (2012) and were made using the ATLAS computer program (Cambridge Paleomap Services, 1993) and the plate motion model for the major plates of Hall (2002). The model uses the Indian-Atlantic hotspot frame of Müller et al. (1993) from 0 to 120 Ma and a palaeomagnetic reference frame before 120 Ma using poles provided by A.G. Smith (pers. comm., 2001). Information about the way in which the model was developed can be found in Hall (1996, 2002, 2012). Animations of the reconstructions that accompany Hall (2012) and Spakman and Hall (2010) can be downloaded from http://searg.rhul.ac.uk/FTP/tecto_2012/ or from http://dx.doi.org/10.1016/j.tecto.2012.04.021. Animations of earlier reconstructions from Hall (1996) and Hall (2002) can be found at http://searg.rhul.ac.uk/current_research/plate_tectonics/index.html.

We first describe the upper mantle structure, and then the lower mantle structure, which we interpret in the context of our reconstructions. We then discuss the principal features in the tomography that should be present or absent in different tectonic models.
5. **Anomalies: Upper mantle**

For the most part, as reviewed in section 4, the upper mantle has a relatively easily understood structure. There are several long linear high velocity anomalies that are broadly parallel to modern subduction zones which move away from the trenches on deeper depth slices consistent with subducted slabs dipping beneath over-riding plates. These are seen in depth slices (Fig. 2; SEA_UU-P07_mapview.mov) and are also illustrated in movies showing Vertical_slices across the whole region (Supplementary\Vertical_slices\Slices_Whole_region) and in selected parts of the region in other subfolders in the folder Supplementary\Vertical_slices.

5.1. **Java-Sumba**

The most obvious and longest feature in the upper mantle is the high velocity anomaly that follows the trace of the subduction zone from Sumatra to Banda (Figs. 2 and 4). Estimating the age at which the slab at the base of the upper mantle began to subduct is important for interpreting lower mantle structure but has some uncertainties. For example, there could have been variations in rates of subduction, and the very low dip of the slab between 0 and 100 km depth along the arc from Sumatra to Java could reflect an increase in the width of the volcanic arc-trench gap, meaning that the slab now at the base of the upper mantle passed the trench later than would be estimated from the total length now observed. However, whatever assumptions are made, all of the anomaly at the base of the upper mantle can be explained by Neogene subduction since between 24 Ma and 13 Ma, depending on location. Subduction has been active since the Eocene, from about 45 Ma, so this implies a significant length of lithosphere subducted in the early Neogene and Paleogene must contribute to the high velocity anomalies in the lower mantle.

The segment of the subduction zone from West Java to Sumba is the simplest (Figs. 2 and 4; SEA_UU-P07_mapview.mov). Subduction is almost orthogonal, currently at a relative convergence rate of c. 7 cm/yr (7.1 cm/yr – NUVEL-1A; 6.3 mm/yr – GPS velocity from Prawirodirdjo et al., 2010), and the volcanic arc-trench gap is about 300 km wide. The subducted slab dips north at about 20° between the trench and the volcanic arc and then dips more steeply at about 60-70° (Vertical_slices\Slices_Whole_region\SEA_UUP07_Sunda_Banda_sli.mov), and may be locally overturned in the lowest part of the seismic zone (Schöffel and Das, 1999). Based on the length of the seismically active slab, observed rates of convergence at the Java trench, and plate reconstructions which imply similar longer-term average rates, the slab now at depths of 660 km would have passed the trench between 11 and 13 million years ago (Fig. 5).

The steep dip of the slab from South Sumatra to Sumba may in part reflect its age. There are no magnetic anomalies on the Indian plate south of Java, probably because this part of the plate was...
formed during the Cretaceous magnetic quiet period. South of Bali the age of the ocean crust is between 154-134 Ma and south of South Sumatra is 100-78 Ma, and is overlain by a number of seamount provinces (Hoernle et al., 2011). Based on joint bulk sound and shear wave velocity anomalies along the subducting slab Gorbatov and Kennett (2003) suggested an abrupt change in its age midway between West Sumatra and Bali (Fig. 6). This fits very well with the age change predicted by the reconstruction at the position of an former India-Australia transform fault (Hall, 2012).

Beneath East Java there is gap in seismicity between about 250 and 500 km. Although tomographic image resolution is not perfect, we infer from the spatial resolution tests (Fig 3; SVVideo_Resolution_1.mov and SVVideo_Resolution_2.mov) that seismic anomalies on the scale of this gap (up to c. 200 km) would be detectable which provides sufficient justification for exploring its origin. Tomography slices suggest that the East Java gap is not an aseismic section of the subduction zone but a hole in the slab (Widiyantoro et al., 2011) which has an along-strike length of about 400 km (Figs. 4 and 5; Vertical_slices\Slices_Whole_region movies SEA_UUP07_Sunda_Banda_sli.mov). Further east, there is a similar but smaller hole in the slab beneath east Sumbawa between about 200 and 400 km with an along-strike length of about 150 km long (Fig. 4). The cause of these features could be structural, e.g. a local absence or considerable thinning of lithospheric mantle, either already present as a lithosphere heterogeneity prior to subduction or created during subduction. It is less likely that lithospheric mantle with a strongly different composition or only locally thermally weakened lithosphere entered the trench could be an explanation for the tomographic images. Whatever the cause, they are interpreted to result from a positively buoyant crust/lithosphere that entered the trench and subducted with consequences for the tectonic evolution of East Java. Here we explore the possibility of a hole created during subduction.

Hall et al. (2009) suggested a hole was produced by blocking of subduction after buoyant thickened oceanic crust arrived at the trench south of East Java (Fig. 5). This object may have resembled the Roo Rise, which is beginning to subduct beneath East Java, and is currently causing deformation of the forearc and shallowing of the trench (Kopp et al., 2006; Shulgin et al., 2011). However, the object was not the Roo Rise, as sometimes suggested (e.g. van der Werff et al., 1994; Simandjuntak and Barber, 1996; Garwin, 2002), because the dimensions and position of the hole imply that it was created at about 8 Ma. The estimate of age is consistent with the timing of widespread thrusting in Java (Lunt et al., 2009; Cross, 2013; Lunt, 2013), which was followed by cessation of normal arc magmatism in East Java in the Late Miocene and resumption in the Late Pliocene (Cross, 2013). We suggest that a tear developed in the downgoing slab in front of the buoyant plateau which was unable to subduct. However, along the rest of the arc normal subduction continued, initiating the hole. This forced the plateau, forearc and arc to deform causing contraction, producing folding and thrusting in and south of Java island. Subduction later resumed behind the plateau, leaving a hole in the subducting slab, and leaving the deformed lithosphere beneath the widened forearc. The
imaged depth extent of c. 200 km is likely to be an overestimate as local vertical sagging of the slab accommodated by vertical slab tearing directly below the hole may also have contributed to enlarging the hole and may have thickened the slab in the mantle transition zone. As the hole passed beneath the arc, and fluid flux from the subducting slab diminished, normal calc-alkaline volcanism ceased. The passage of a hole beneath East Java can explain the short-lived activity of K-rich volcanoes (Edwards et al., 1991, 1994), now inactive, to the north of the calc-alkaline volcanoes of the modern arc and with greater depths to the Benioff zone. With the mantle wedge melt component ‘switched off’, K-rich melts, produced from a deeper mantle component that remained undiluted, dominated arc volcanism. As the hole became deeper, normal calc-alkaline volcanic activity resumed as the slab following the hole was subducted, the fluid flux was restored, and K-rich volcanism ceased. Reconstructing the entire slab (Fig. 4) shows that the slab hole is a relatively minor feature compared to the length and depth of the subducted slab from Sumatra to Sumba which makes it easier to comprehend how it formed and was subducted.

The Sumbawa hole may have developed in a similar way. There are young K-rich volcanoes (Turner et al., 2003) in northern Sumbawa also with greater depths to the Benioff zone than typical of the normal calc-alkaline arc. The smaller size and shallow depth of this hole suggests it was formed at about 4 Ma. The position of the volcanoes suggest that the hole could be related to an object fully subducted or to arrival of part of the Australian continental margin at the subduction zone.

There is a discontinuous zone of thrusts north of Wetar and Flores identified from marine geophysics (Silver et al., 1983) which is often interpreted to mark a reversal of subduction polarity. A similar thrust zone is seen on many oil company seismic lines further west, to the north of Bali, that can be traced towards East Java. Widiyantoro et al. (2011) show tomographic images interpreted to indicate south-dipping back-arc lithosphere directly north of Bali. It is plausible that this feature is related to the south-dipping thrusts observed at the surface. However, although there is intense seismicity down to 100 km beneath the active arc in Flores and the inactive segment in Wetar, it is diffuse and there is no clear indication of the slab shape nor any obvious feature on the tomographic sections to show south-dipping subduction. If this is the beginning of polarity reversal the discontinuity of the thrust zone, and absence of a significant trench-like bathymetric feature, suggest that subduction has been initiated only recently, and will not continue for long since there is little oceanic lithosphere north of the arc to be subducted. North of Bali, with the exception of an E-W trough less than 1.5 km deep, the sea bed is mostly shallower than 0.5 km and is unlikely to be underlain by oceanic crust, and the deeper area north of Flores (> 4 km) is very narrow. We therefore prefer the alternative interpretation offered by Widiyantoro and Fauzi (2005) that the seismicity reflects backthrusting within a complex backarc region related to the Pliocene collision of the Australian continental margin with SE Asia in the south Banda region.
5.2. Sumatra

Northwest of Java subduction becomes increasingly oblique beneath Sumatra and India–SE Asia relative motion is partitioned into trench-normal subduction and trench-parallel movement on the Sumatran and other strike-slip faults. There are a few hypocentres between 300 and 500 km below South Sumatra but further northwest there are no hypocentres below 300 km and therefore it is not possible to determine the subducted slab shape and length from seismicity. Recent tomographic studies (Pesicek et al., 2008, 2010) have significantly improved images of the subducted slab and beneath North Sumatra they interpret the slab to have the form of a large NNE- to NE-plunging fold. Our tomographic images (Vertical_slices\Slices_Whole_region movies SEA_UUP07_Sunda_Banda_sli.mov and SEA_UUP07_regional_sli.mov) resemble those of Pesicek et al. (2008), although we have drawn Benioff zone contours slightly differently to them (Fig. 7). The tomographic slices show that the slab dip decreases significantly at about 1°N. South of this latitude the slab dips steeply and can be traced into the lower mantle but to the north the slab remains in the transition zone and can be followed to the NE (Fig. 4). The slab dip changes again north of 4°N. Fauzi et al. (1996) interpreted a bend in the slab between 1°N and 4°N based on hypocentres shallower than 200 km. This was interpreted as the northern limb of the fold by Pesicek et al. (2008, 2010) who identified a slab to depths of at least 530 km from tomographic images (Fig. 8).

An alternative interpretation to a fold limb is that of a NNE-trending tear in the slab (Fig. 8). We prefer this interpretation because west of our proposed tear the slab dips more steeply and about 800 km of subducted slab is imaged, whereas east of the tear the slab can be traced to about 550 km depth and much further to the NE, with a total length of about 1200 km. The tectonic reconstruction model suggests this length of slab was subducted in about 22-23 Ma; NUVEL1-A velocities would require 24 Ma and present-day GPS velocities of Prawirodirdjo et al. (2010) would require 27 Ma. The position of the postulated tear (Fig. 8) is now beneath the volcanic centre of Toba (Chesner et al., 1991, 1998; Chesner, 2012). Toba has been linked to subduction of the Investigator Fracture Zone on the Indian plate (e.g. Page et al., 1979), who suggested a tear at the fracture zone. Its cause could be a weakness due to the fracture zone which is being subducted subparallel to the postulated tear. In contrast, Fauzi et al. (1996) suggested there was no conclusive evidence of a tear in the slab but that high seismicity along the subducted portion of the Investigator Fracture Zone was the result of the intersection of the fracture zone and the bend in the slab where it is under compressive stress. Das et al. (2000) also suggested lateral compression and thickening would be produced in the Sunda slab as it subducts and encounters a barrier at the transition zone; beneath Sumatra lateral compression could result from deformation caused by the strong curvature of the subduction zone.

Whether or not a fold or tear interpretation is preferred there is an offset in the linear anomaly at depth (Fig. 7) which suggests a northward offset in the position of the Early Miocene trench from
Central to North Sumatra. Unfortunately, the geological record of subduction-related volcanic activity (Crow, 2005) is not yet adequate to do more than speculate on the former position of the trench and more geological investigations of North Sumatra are required to identify this.

We have deliberately chosen not to discuss here the mantle structure further north, from the Andaman Sea to Burma, because of its complexity which requires a more detailed analysis and longer discussion than can be provided here.

5.3. **Banda**

Between South Sumatra and Sumba tomographic images show a strong high velocity anomaly that can be traced from the seismically active slab to depths of approximately 1000 km and we consider that the subducted slab continues into the lower mantle. This is discussed further below. East of about 118°E (Fig. 9) the mantle structure changes. The deep high velocity anomaly is absent and in the Banda region seismicity defines a strongly curved Benioff zone known for many years (e.g. Hamilton, 1974, 1979; Cardwell and Isacks, 1978; Bowin et al., 1980). There have been two contrasting explanations for this seismicity: deformation of a single subducted slab or two different slabs subducted from north and south.

Tomographic images of the Banda slab show it is entirely confined to the upper mantle, and there is a c. 300 km wide flat-lying portion of the slab at the bottom of the upper mantle (Fig. 10). The slab has the form of a lithospheric fold that plunges west, that has been described as resembling a spoon-shape (Widiantoro and van der Hilst, 1997) or the prow of a boat (Pownall et al., 2013). There is a prominent tear in the slab on its north side, beneath Buru and west Seram, that narrows eastwards. The contrast in mantle structure from west to east indicates a different history of subduction in the Java and Banda segments with major slab rollback in the Banda region. We have shown (Spakman and Hall, 2010) that the differences from east to west, and the shape of the Banda slab, can be explained by long-term subduction at the Java trench but that this subduction zone rolled back into a Jurassic oceanic embayment within the Australian continental margin only from about 15 Ma (Pownall et al., 2014) to form the Banda arc. We have a broadly similar conception of the 3-D shape of the subducted lithosphere to many others (e.g. Cardwell and Isacks, 1978; McCaffrey, 1989; Das, 2004; Richards et al., 2007) and support those who have advocated subduction of a single slab (e.g. Hamilton, 1979; Charlton, 2000; Milsom, 2001) but we differ from them in several ways. We consider that the Banda slab is not the simple continuation of a single long-lived subduction zone north of Australia, nor part of an even larger slab connected to Pacific subduction. It is the result of rollback into the Banda embayment located within the Australian continent which began when the northern boundary of the embayment became aligned with the Java trench. The lithospheric fold is not merely the result of rollback but has been tightened in a N-S direction by slab-mantle coupling. The Timor–Tanimbar–
Seram Trough is not a subduction trench, nor a single continuous feature, and has a complex origin. As suggested by others, it is in places a flexural topographic expression of loading of the Australian continental margin during collision. Recent high resolution multibeam images and seismic lines crossing the Aru and Tanimbar Troughs show that in some places the trough is an inherited feature that pre-dates subduction (Hall, 2014). In addition, we have shown (Spakman and Hall, 2010) that the size of the high velocity Banda anomaly is greater than the area of the former Jurassic Banda embayment oceanic crust and we proposed that the lithospheric fold in the mantle also includes delaminated sub-continental lithosphere from the surrounding Australian margin. The Seram and Timor Troughs are located at the limit of delamination of the continental margin. Incidentally, although we consider that part of the folded high velocity Banda anomaly is sub-continental lithosphere we differ from some authors who have proposed that continental crust has subducted beneath the volcanic arc (Hilton et al., 1992; Elburg et al., 2004; Fichtner et al., 2010). In our view all of the chemical features suggested to indicate continental crust subduction can be accounted for by melting of continental crust basement of the Banda volcanic arc.

Various active tears in the slab have been proposed in the slab subducting under the Sumba–Aru segment from analysis of earthquake focal mechanisms (e.g. McCaffrey et al., 1985; Das, 2004; Sandiford, 2008; Ely and Sandiford, 2010) or tomography (Widiyantoro et al., 2011). These inferred tear zones are beyond the local resolution of tomographic model UU-P07. Slab tearing in the southern limb of the Banda slab may result from a combination of overriding motion of the Australian plate and resistance of the mantle to northward movement of the slab (Spakman and Hall, 2010). The complex spatial variation of focal mechanisms along the entire slab under the Banda Sea has been key information in developing arguments in support of the two-slab hypothesis (Cardwell and Isacks, 1987; Das 2004). Our 2010 paper advocated the importance of slab folding resulting from the interplay between regional plate motions, subduction, and slab-mantle coupling. We suggest that a next step forward could be a reassessment of focal mechanisms of the Banda slab based on a quantitative analysis of the stress-field in the slab as a function of regional plate motion and slab-mantle interaction by 3-D thermo-mechanical modelling. This may shed new light on the forcing of inferred slab tears in the southern segment, the absence of seismicity between 100 and 300 km beneath East Timor, and the complex seismicity elsewhere in the heavily deforming, perhaps even disintegrating, slab.

5.4. Molucca Sea-Sangihe

The Molucca Sea region is famous as the only present-day example of active arc-arc collision and the inverted U-shape of the subducted plate has been known for many years (e.g. Hatherton and Dickinson, 1969; Silver and Moore, 1978; Hamilton, 1979; Cardwell et al., 1980; McCaffrey et al., 1980, Hall, 1987) with slabs dipping to west and east under the two active volcanic arcs of Sangihe.
and Halmahera on the west and east sides of the Molucca Sea. Although there are now no clear subduction trenches in the Molucca Sea because there is an elevated collision complex produced by the two converging arcs, there are two slabs subducting to west and east as explained above. We refer to the west-dipping part of the Molucca Sea plate traceable from seismicity to the base of the upper mantle beneath the Celebes Sea, as the Sangihe slab, and shorter east-dipping slab as the Halmahera slab (Fig. 11). The tomography slices show that neither slab penetrates into the lower mantle and the total length of subducted slab estimated from tomography and seismicity is in good agreement (Vertical_slices\Slices_Molucca_Sea movie Molucca_sli.mov). The Sangihe slab reaches the base of the upper mantle with an average dip of 45° indicating about 900-950 km of subducted slab. The Halmahera slab reaches 300 km with a similar average dip and has a length of about 400-450 km. Adding a flat section between the subduction hinges of 100-200 km indicates a total length of subducted lithosphere of about 1500 to 1600 km.

The length of the Molucca Sea slabs is of importance in reconstructing the Philippine Sea plate. The Molucca Sea plate (Hamilton, 1979; Moore and Silver, 1983) was once part of the Philippine Sea plate (Hall, 1987), but the Philippine Sea plate is surrounded by subduction zones and was therefore for many years omitted from global plate models using plate circuits with rotation poles determined by conventional methods based on spreading centres and transform faults. A model based on palaeomagnetic data from the Philippine Sea plate provided the basis for reconstructing eastern Indonesia and the western Pacific (Hall et al., 1995a,b,c; Hall, 1996). Palaeomagnetic data allow an estimate of rotation history and northward movement of the plate but these data alone only identify a zone within which Euler poles can lie (Hall et al., 1995a). Hall et al. (1995a,b,c) estimated a realistic position for the pole based on one additional geological condition – collision of the Halmahera arc with the Australian margin at about 25 Ma, after which Halmahera arc moved west by subduction of the Molucca Sea. The total amount of subduction was unknown and it was not expected that present-day seismicity would record it. The Halmahera arc was therefore reconstructed at the easternmost possible position on the Australian margin. The tomography slices indicate that the length of the seismically active slab is the total actually subducted, i.e. about 1500-1600 km, and is about 700 km less than postulated by Hall et al. (1995a,b,c) and used in the Hall (1996, 2002) model. Those models placed Halmahera at the eastern end of New Guinea in the Manus region at 25 Ma, whereas the length estimated from tomography indicates a position closer to the Bird's shoulder of western New Guinea. The 25 Ma reconstruction should thus look more like the Hall (1996, 2002) 15 Ma reconstruction. As discussed below, this suggestion is supported by observations of the lower mantle.

The position of the slabs in the mantle indicate that the Molucca Sea has moved in the later part of its history as an independent plate completely separate from all surrounding plates but subducting beneath both the Sangihe arc and the Halmahera arc. It is unlikely that subduction would have occurred simultaneously over a long period on both sides of the Molucca Sea. The simplest model that
accounts for the present configuration is as follows. Subduction began on the west side under the
Sangihe arc and was driven by Philippine Sea plate rotation at about 20 Ma. Up to 900 km of slab was
subducted. At about 10 Ma subduction ceased on the Sangihe side and began on the Halmahera side.
Continued motion of the Philippine Sea plate initiated volcanic activity in the Halmahera arc by 8 Ma
(Baker and Malaihollo, 1996). 11-12 Ma volcanic rocks on Obi (Baker and Malaihollo, 1996; Ali et
al., 2001), in the Bird's Head (Pieters et al., 1983), and western New Guinea (Weiland, 1999) are
probably related to minor subduction within the northern New Guinea strike-slip zone. The Halmahera
hinge rolled back rapidly until about 2 Ma when the arcs began to collide. During this period the
Molucca Sea plate moved northwards pushed by Australia. Arc-arc collision has produced young
volcanic activity from the eastern tip of North Sulawesi through Sangihe to Mindanao.

5.5. North Sulawesi trench subduction

The configuration of subducting slabs in the North Sulawesi region (Fig. 9) is possibly the most
complex in the eastern Indonesian-Philippines region; if not the most complex it is certainly the most
difficult to unravel. Movies that show different slices across the region are in the folders
Vertical_slices\Slices_North_Sulawesi, Vertical_slices\Slices_Sula and
Vertical_slices\Slices_Molucca_Sea.

On the west side of the Molucca Sea is the west-dipping Sangihe slab (Fig. 11) traceable from
seismicity to the base of the upper mantle and imaged clearly beneath the Celebes Sea by tomography
(Vertical_slices\Slices_Molucca_Sea movie Molucca_sl1.mov). Seismicity and tomography show that
at depths below 400 km this slab is straight and strikes NNE. There is a second slab below the North
Arm of Sulawesi, which we term the Celebes slab, that subducts Celebes Sea lithosphere southwards
from the North Sulawesi trench (Fig. 11). The geometry of this system has been interpreted to result
from rotation of the North Arm about a pole near the eastern end of the arm (Hamilton, 1979; Silver et
al., 1983). The subduction trench terminates at its eastern end, close to Manado, and at its western end
terminates at the offshore continuation of the Palu-Koru Fault. In the central part of the subduction
zone the subducted slab reaches a depth of just over 200 km, based on seismicity (Fig. 12).

Palaeomagnetic evidence (Surmont et al., 1994) and GPS observations of rates of motion on the Palu-
Koro Fault (Socquet et al., 2006) suggest this has been subducted in the last 5 Ma.

Running approximately E-W from the central Molucca Sea ridge beneath the axis of Gorontalo
Bay is a steep zone of earthquakes (Fig. 12). Mapping the slabs and their geometry from earthquake
hypocentres is extremely difficult in this region because it is not possible to identify hypocentres with
specific slabs. East of 123°E the hypocentres can be explained as marking the edge of the west-dipping
Sangihe slab. Further west relatively few hypocentres are above the Sangihe slab. On different N-S
profiles the hypocentres appear to define a vertical slab, in the central part of the bay near Una-Una the
steep segment of a south-dipping slab, and on some sections a north-dipping slab. Gudmundsson and Sambridge (1998) produced a global regionalised mantle model by an automated process and the results are portrayed by Di Leo et al. (2012 a,b) with slab identifications and contours in the Molucca Sea and North Sulawesi region. They considered all hypocentres to result from subduction of two slabs, the Sangihe slab and the Celebes slab, both of which bend through about 90° in the upper 200 km of the mantle beneath North Sulawesi. The Sangihe slab was traced in a similar way by Walpersdorf et al. (1998) and Kopp et al. (1999).

In the late 1990s almost nothing was known about Gorontalo Bay (Fig. 11), the area between the North and East Arms of Sulawesi, but in recent years a great deal has been learned from new fieldwork and dating on land, and from offshore oil industry exploration seismic and detailed multibeam bathymetric data. Based on these new data, the previously proposed slab shapes are difficult to reconcile with the geological observations. The 90° bend in the Celebes slab interpreted by Gudmundsson and Sambridge (1998) implies 150 km of subduction from the west, from the Makassar Strait of Palu-Koro Fault, for which there is no evidence. Seismicity indicates subduction was from the North Sulawesi trench and shows that the deepest seismicity of the Celebes slab is in its central part while suggesting diminishing slab length to the east and west consistent with the tomographic images.

The almost 90° bend in Sangihe slab interpreted by Gudmundsson and Sambridge (1998) is suggested by Walpersdorf et al. (1998) to join the Sangihe slab subducted from the east to a north-dipping slab joined to the northern edge of the Sula microcontinent. Based on hypocentres this requires the slab to increase in strike length at shallower depths, and be deformed most strongly at shallowest depths. Restoring the inferred subducted slab implies a major separation between the North Arm and the Sula Spur in the Late Miocene and Pliocene, whereas geological observations show they collided in the Early Miocene, emplacing the ophiolite on the Sula Spur, and since then have been close together. Recent studies of the offshore and onshore geology show that during the Late Miocene and Pliocene this region has extended rather than contracted (Spencer et al., 2010, 2011; Hennig et al., 2012, 2014, 2015; Pezzati et al., 2014a,b; Advokaat et al., 2014). The Early Miocene suture zone is now overlain by a several kilometre thick sequence of almost undeformed sediments (Pholbud et al., 2012).

We suggest a new interpretation (Fig. 13) based on the earthquake hypocentres and tomography slices that is consistent with the geological observations. Rather than two slabs we explore the possibility of a slab dipping northwards, as previously proposed by others, but which we consider not to be part of the Sangihe slab but as a separate third slab which we name the Sula slab. Silver et al. (1983a) tentatively suggested a north-dipping Benioff zone beneath Gorontalo Bay continuing north from the Sula microcontinental block. The recently acquired industry seismic lines support a north-dipping thrust interpretation north of the Sula Islands (Ferdian et al., 2009; Watkinson et al., 2011). It is also consistent with cross-sections drawn by Walpersdorf et al. (1998) although we interpret
differently their postulated continuity of the Sangihe slab and our Sula slab. The Banda tectonic reconstruction (Spakman and Hall, 2010; Hall, 2012) shows how this situation could have evolved (http://dx.doi.org/10.1016/j.tecto.2012.04.021). Before collision of the Sula Spur and the North Arm in the Early Miocene there was a north-dipping slab subducting below the North Arm bounded by slab tears at its east and west ends (Fig. 14). The deeper part of this slab broke off after collision and sank into the lower mantle (as discussed below) leaving a short length of about 200 km still attached (Fig. 15). The tear at the eastern end became a new subduction zone at the west side of the Molucca Sea, and the Sangihe slab began to subduct westwards. Interaction with the nearby NW-subducting Sangihe slab (since c. 24 Ma) and S-subducting Celebes slab (since c. 5 Ma) may have affected the morphology of the Sula slab leading to steeper dips. At present, at shallow depths earthquakes could mark delamination of the lower continental lithosphere, as in the Banda arc. The deeper, vertical part of the Sula slab imaged in the tomography slices is currently almost aseismic.

The total length of the slab interpreted from the tomography slices is about 400 km (Fig. 13), of which up to half may be continental lithosphere, suggested by the observation that the overthrust Sula Spur continental crust may extend as far north as the North Arm of Sulawesi, based on zircon age data from young granites in the North Arm (Rudyawan et al., 2014). Thus, although it may be unusual to find a slab remnant still attached after collision, most of the slab did detach, leaving only a short hanging length of a few hundred kilometres. Recent slab detachment modelling (Duretz et al., 2011) shows that lithosphere older than ~80 Ma, as is the case here, can detach below ~300 km.

Our proposition of a third slab is tentative but consistent with the seismicity, recent geological evidence and the tectonic reconstruction. Moving an inactive slab of c. 200 km length hundreds of kilometres to the north in the last 20 Ma raises some geodynamic questions, although the much larger Molucca Sea plate must also have moved north by a similar amount as it subducted to the west and east. Thermo-mechanical modelling of 3-D slab evolution has helped constrain tectonic evolution models elsewhere (e.g. Chertova et al., 2014) and may contribute to assessing this proposal.

5.6. Philippines

For reasons of length we do not discuss the upper mantle structure of the West Pacific further north and east of the Philippines. Lallemand et al. (2001), Lin et al. (2004), Cheng (2009), Cheng et al. (2012), and Huang et al. (2014) are among many authors who have discussed tomography and complexities of reconstructions north of the Philippines. For the Philippines themselves, the history of the Philippine Sea plate is relevant, and modification of the reconstructions have been suggested above in the light of tomographic images that show the length of subducted Molucca Sea slabs. We consider that the tomographic images of the West Pacific support models suggesting Neogene rotation of the Philippine Sea plate (Supplementary\Mapview_movies movie Philip_Sea_Plate.mov). The eastern
boundary of the plate is seen clearly to migrate eastwards during the past 15 Ma, the time corresponding to the depth of the slab imaged as far as the base of the upper mantle, with a flat section interpreted to record subduction since c. 20 Ma. The eastern and northern boundaries of the plate have been discussed by Miller and Kennett (2006) and Miller et al. (2006) who suggested modifications of previous reconstructions for the past 25 Ma based on Euler poles estimated from earthquake slip vectors, observed GPS velocities, and data from the NUVEL-1 and -1A global plate motion models. It is difficult to see how such data can be used much beyond the recent past as all are measurements of present-day plate motions, and it has been shown that the present-day Philippine Sea plate rotation pole (Seno et al., 1993) cannot account for the motion of the plate before 5 Ma recorded by palaeomagnetic data (Hall et al., 1995a,b,c). Nonetheless Miller et al. (2006) concluded their reconstruction confirmed the basic characteristics of models by previous workers (Seno and Maruyama, 1984; Seno et al., 1993; Hall et al., 1995b,c; Hall, 2002) and used the rotation poles of Hall et al. (1995c) for their reconstructions older than 5 Ma. We suggest the history of the Philippine Sea plate before c. 20 Ma is recorded in the lower mantle as discussed further below.

None of the tomographic studies have been concerned with the western boundary of the Philippine Sea plate in the Philippines and further south in eastern Indonesia (Fig. 9). At the south of the Philippines the Cotobato trench on the SW side of Mindanao has no clear tomographic expression, as expected from its short length and lack of seismicity below about 100 km, suggesting a trench that is just beginning. The Negros trench, often shown on tectonic maps on the west side of the central Philippines, has no tomographic or seismic expression. On the east side of the Philippines there is little or no indication of a slab subducting from the Philippine trench, again consistent with the lack of a seismically well-defined slab and relatively recent (Pliocene or younger) initiation of subduction. Cardwell et al. (1980) identified the key features of subduction geometry, and larger and better located seismic data sets (Engdahl et al., 1998; ISC, 2015) including events acquired since their study have not changed the picture they interpreted. A slab subducting from the Philippine trench can be traced to little more than 100 km depth between 15°N and 3°N and cannot be identified more clearly from the tomographic sections (Vertical_slices\Slices_Philippines movie Philippines_sli.mov). This is surprising considering how well defined the Philippine trench is, and its great depth of more than 9 km east of Mindanao. It is however, consistent with absence of obvious volcanoes associated with subduction at the Philippine trench; volcanoes in the southern and central Philippines appear to be associated with the Philippine fault, or have no obvious link to any slabs subducting below the western Philippines, except in Luzon (Fig. 9). Subduction at the Philippine trench is young and the partitioning of oblique subduction into trench-normal subduction and strike-slip motion on the Philippine fault may reflect re-use of a much older strike-slip fault zone. Long lived strike-slip faulting in the Philippines has been discussed by many authors (e.g. Rutland, 1968; Karig, 1983; Karig et al., 1986; Stephan et al., 1986; Pubellier et al., 1991; Quebral et al., 1996; Yumul et al., 2004).
The northern part of the Sangihe slab is clearly identified from hypocentres beneath Mindanao in a position consistent with the tectonic reconstruction (Vertical_slices\Slices_Molucca_Sea movie Molucca_sli.mov and Supplementary\Mapview_movies movie SEA_east_mapv.mov). At the north end of the Philippines, beneath Luzon, the South China Sea slab subducted at the Manila trench can be identified to about 300 km depth from seismicity and a little deeper from the tomography slices (Supplementary\Mapview_movies movie Manila_sli.mov). Between them, is a complex pattern of high velocity anomalies, which are at different depths, mainly below 200 km, mostly aseismic, and vary in their dip. There is a particularly large and strong steep-dipping anomaly beneath the central Philippines at depths between 200 and 600 km (Supplementary\Mapview_movies movie SEA_east_mapv.mov). The tectonic reconstruction simplifies this region and shows a number of different subduction zones on the east and west side of the Philippines linked intermittently by strike-slip faults, in part reflecting the difficulty of understanding and reconstructing such a complex region (e.g. Rangin, 1991; Rangin et al., 1991; Queano et al., 2007; Yumul et al., 2008, 2009) based on present knowledge. Tomographic models have not yet provided the detail needed to help unravel this complexity but as they support models that include significant rotation of the Philippine Sea plate, this implies a complex strike-slip dominated mobile belt at its western side, rather than simple northward translation during the Cenozoic.

Below the South China Sea and possibly traceable beneath the northern Philippines is a broad flat lying high velocity anomaly in the transition zone (Fig. 2; Supplementary\Mapview_movies movie Philip_Sea_Plate.mov). There is nothing in our tectonic reconstruction, nor to our knowledge in any other reconstruction, that accounts for this anomaly. Our tentative hypothesis is that this is an anomaly produced during a much earlier episode of subduction than any other anomaly in the upper mantle of the region, which can all be related to Cenozoic subduction. In a study of the SW Pacific (Hall and Spakman, 2002, 2003) we suggested that large flat anomalies that are identified there could have been produced during major episodes of subduction rollback and could remain in the transition zone for very long periods before entering the lower mantle. A candidate in the western Pacific for major rollback, possibly associated with flat slab subduction, that could have left a wide flat anomaly, is the west-directed Mesozoic subduction beneath the Asian margin. This subduction was marked by granite magmatism from Vietnam to East China and terminated in the Cretaceous at about 80-90 Ma (e.g. Zhou and Li, 2000; Nguyen et al., 2004; Li and Li, 2007).

5.7. North Borneo to Sulu Sea

In the northern part of the area of interest of this paper, beneath the South China Sea and its margins, there are no obvious anomalies in the upper mantle at depths less than 500 km but this is an area with very little resolution as indicated by the resolution tests (Fig. 3; SVedio_Resolution_1.mov
and SVideo_Resolution_2.mov). However, based on the resolution tests it should be possible to image subducted slabs in the upper parts of the upper mantle beneath the Sulu Sea from the Philippines as far west as northern Borneo. There is a relatively large anomaly beneath northern Borneo at depths between 100 and 250 km (Fig. 2) but this is on the edge of the area with limited or inadequate resolution so this feature could be an artefact. Regional surface wave tomography (Tang and Zheng, 2013) shows high velocities in the lithosphere suggesting the anomaly is real. Assuming it is not an artefact, a possible explanation for this feature is a slab subducted northwards from the Celebes Sea in the Middle and Late Miocene (c. 15 to 5 Ma), now broken off, which created the Sulu arc (Cottam et al., 2013; Hall, 2013). However, if this was the case it would be expected that the slab would be imaged beneath the Sulu Sea and it is not (Vertical_slices\Slices_Sulu movie Sulu_sli.mov and Vertical_slices\Slices_Proto_SCS movie Proto_SCS_sli.mov). The anomaly is directly beneath Mt Kinabalu which is a granite pluton emplaced between 8-7 Ma (Cottam et al., 2010) and rapidly exhumed during the Late Miocene to Early Pliocene (Cottam et al., 2013). An alternative explanation is that the anomaly represents a thickened lithosphere beneath northern Borneo, formed during collision of the Dangerous Grounds microcontinental block with the Sabah–Cagayan volcanic arc, which has recently detached and is sinking into the mantle below Mt Kinabalu (Cottam et al., 2013).

The absence of a high velocity anomaly beneath the Sulu Sea is surprising since there is a volcanic arc, the Sulu arc, between Sabah and the Zamboanga peninsula of Mindanao, although there is no seismicity and little other geological or geophysical evidence to support active or recent subduction. Hamilton (1979) suggested both south- and north-directed subduction beneath the now inactive arc at different times since the Oligocene, and many tectonic maps show a Sulu trench on the north side of the Sulu arc. On Sabah, Middle to Upper Miocene volcanic rocks are typical calc-alkaline arc products (Chiang, 2002) interpreted as the result of north-directed subduction. However, ODP drilling results (Rangin and Silver, 1991; Silver and Rangin, 1991; Silver et al., 1991) show no oceanic crust was produced in the Sulu Sea in what would have been the backarc of this north-directed subduction, and the maximum extension between Palawan and the Sulu arc during the Miocene was less than 200 km. If this was entirely the result of subduction rollback (Hall, 2013) the length of subducted slab could have been very small, and would be no deeper than about 150 km. Plio-Pleistocene volcanic rocks are chemically different from the Miocene volcanics in Mindanao (Sajona et al., 1996, 2000), the Sulu arc (Castillo et al., 2002) and Sabah (Macpherson et al., 2010). The differences have been attributed to melting of a subducted slab (Sajona et al., 1996, 2000), an interpretation excluded by later workers. Castillo et al. (2002) proposed that the mantle already contained an enriched component that melted during later subduction whereas Macpherson et al. (2010) suggested that Plio-Pleistocene magmatism was not subduction-related but resulted from upwelling of OIB-like domains in the upper mantle into lithospheric thin spots formed during earlier Miocene subduction. Therefore, the absence of any high velocity anomalies beneath the Sulu Sea is
interpreted here to reflect a very short length of slab subducted in the Miocene, with younger volcanism unrelated to subduction, and possibly reflecting extension (Hall, 2013). In passing it is also worth reiterating that the so-called Negros and Sulu trenches often shown on the east and southeast side of the Sulu Sea (Fig. 9) have no seismically-defined, nor tomographically imaged, slab associated with them, and seismic lines crossing them show nothing more than shallow thrusting.

6. **Anomalies: Lower mantle**

Tomography studies showed some years ago that there is a different structure in the lower mantle compared to the upper mantle beneath SE Asia (e.g. Widiyantoro and van der Hilst, 1997; Bijwaard et al., 1998; Hafkenscheid et al., 2001, 2006). Furthermore, the deep structure changes from west to east (Fig. 16). Recent tomography models (UU-P07 used here; Li et al., 2008) show that what was previously imaged in earlier models as a broad and deep anomaly below SE Asia has a clearer internal structure and we argue below that many of the features can be identified with older subduction zones recognised in the tectonic reconstructions.

6.1. Sunda–Java–Banda

West of about 110°E there are several broadly NW-SE linear high velocity anomalies interpreted first by van der Voo et al. (1999) as different subducted Tethyan slabs now over-ridden by India (Fig. 16) trending roughly NW-SE. The prominent southern linear anomaly is now accepted to mark an early Cenozoic India–arc collision (e.g. Aitchison and Davis, 2004; Aitchison et al., 2007; Hall et al., 2008; Hall, 2012; van Hinsbergen et al., 2012; Jagoutz et al., 2015). This anomaly dips steeply southwards and can be traced eastwards beneath North Sumatra, where it strikes approximately E-W, below the north-dipping Sunda slab (Fig. 17).

East of about 110°E under SE Asia instead of linear anomalies there is broad high velocity anomaly trending roughly NE-SW which is particularly prominent between 800 and 1100 km. This anomaly can be seen on lower mantle depth slices (Fig. 2; SEA_UU-P07_mapview.mov) to have an internal structure. We interpret there to be several parts to this anomaly which represent different subduction zones (Fig. 18). The first of these is north of Java where the anomaly strikes E-W and can be traced with steep dip to about 900 km and then less steeply to about 100 km below southern Borneo just south of the equator. Volcanic activity related to this subduction began at about 42 Ma in East Java (Smyth et al., 2007, 2008) and West Java (Clements and Hall, 2011; Clements et al., 2012). The position of the deep anomaly is consistent with the Java trench remaining relatively fixed in a mantle reference frame during the Cenozoic.

Further east, positive anomalies in the lower mantle between Timor and Sulawesi at depths between c. 700 and 950 km are interpreted as remnants of the slab that subducted under the North Arm
of Sulawesi prior to the Early Miocene collision with the Australian Sula Spur (Fig. 14). Slab detachment and vertical sinking following this collision fits the present-day lower mantle position of the slab remnant in the reconstructions of Spakman and Hall (2010) and Hall (2012).

6.2. North Borneo – Proto-South China Sea

On the 800 km depth slice (Fig. 18) the two parts of the deep anomaly are separated but below 900 km to depths of about 1100 km they merge (Fig. 2). The lower mantle anomaly north of the equator can be traced from below central Borneo with a SW-NE strike to 15°N under the central Philippines. We suggest this SW-NE striking anomaly is the Proto-South China Sea which subducted SE-wards from 45 to 20 Ma beneath North Borneo and the Cagayan arc, now southeast of Palawan. Subduction beneath Borneo, and rotation of Borneo, was suggested many years ago based on pioneering palaeomagnetic studies (Haile, 1979, 1981), and incorporated in the earliest plate tectonic models for the South China Sea (Taylor and Hayes, 1980, 1983; Holloway, 1982) which also included a then unnamed Proto-South China Sea. Fuller et al. (1999) reviewed the palaeomagnetic evidence and concluded there had been rigid plate rotation of much of Kalimantan, Sarawak and southern Sabah of about 50° CCW between 30 and 10 Ma, and attributed this to convergence between Australia and SE Asia.

Nonetheless, the size and subduction history of the Proto-South China Sea remain controversial (e.g. Hall, 1996, 2002; Rangin et al., 1999; Replumaz and Tapponnier, 2003; Replumaz et al., 2004; Cullen, 2010, 2014; Cullen et al., 2010). Tang and Zheng (2013) interpreted regional surface wave tomography to show a Proto-South China Sea slab of 500 km length in the upper mantle beneath northern Borneo which is longer than estimated by Rangin et al. (1999) but smaller than interpreted by the Hall (1996, 2002, 2012) reconstructions. The P-wave tomography has poor resolution in this region, as discussed above, and we do not see this feature in the upper mantle (Vertical_slices\Slices_Proto_SCS movie Proto_SCS_sli.mov). However, we suggest that those looking for theProto-South China Sea directly beneath Borneo are looking in the wrong place because of the rotation of Borneo and SE margin of Sundaland. Fig. 18 shows a tectonic reconstruction for 30 Ma compared to a tomography depth slice at 800 km. In the lower mantle the P-wave tomography images show an anomaly with a lateral extent consistent with a wide Proto-South China Sea in the Paleogene which narrowed and terminated towards the SW, and a position consistent with a large Neogene rotation of Borneo, all features of the tectonic reconstructions (Hall, 1996, 2002, 2012). We suggest this anomaly in the lower mantle, like almost all other velocity anomalies to depths of c. 1200 km, is a slab subducted before subduction ceased at about 20 Ma and represents the Proto-South China Sea.
6.3. Philippine Sea plate margins 40-25 Ma north and south sides

The anomalies in the lower mantle below the Philippines and southern part of the Philippine Sea plate have a very different orientation and position to inferred Neogene and modern-day subduction zones. East of the interpreted Proto-South China Sea discussed above, there are several broadly linear anomalies that strike ESE, most clearly seen at 800 km but visible on depth slices from 760 to 900 km. On the other hand, these anomalies are in a position consistent with subduction at the margins of the Philippine Sea plate, and beneath the North Arm of Sulawesi. All of the main subduction zones (Proto-South China Sea, North Arm of Sulawesi, south side of Philippine Sea plate, north side of Philippine Sea plate) were stationary during the interval between 40 and 25-15 Ma which was a period of no rotation of the Philippine Sea plate, based on palaeomagnetic data (Hall et al., 1995 a,b,c). The tectonic reconstruction for 30 Ma, in the middle of this period, is compared to the tomography depth slice at 800 km in Fig. 18. Most anomalies are in good agreement with the reconstructed positions of the major subduction zones. There is one north-south anomaly beneath the Philippines for which we currently have no explanation. It is parallel to, and east of, the Proto-South China Sea slab and appears to be traceable to greater depths (Fig. 18A). It suggests a more complex subduction history at the Paleogene NW side of the Philippine Sea plate, which could include either double or opposed subduction zones, for which there may be evidence in complex geology of the Philippines.

North of the Philippine Sea plate a subduction zone was interpreted on the reconstructions (Fig. 18B) in the Paleogene from approximately Luzon to Japan. There is no tomographic support for this. West-directed subduction beneath Japan during the Paleogene is commonly interpreted (e.g. Maruyama et al., 1997; Taira, 2001; Lewis and Byrne, 2003) although it may have ceased at times (von Huene et al., 1982) but where subduction boundaries were to the south of Japan in unknown. Resolution in the mantle beneath the Pacific is poor, but it is possible that the subduction boundary of the Kula or Pacific plates continued southwards to join the east end of the Philippine Sea plate where there is a weak high velocity anomaly trending northwards (Fig. 18A).

7. Discussion: tomography and tectonic models

Based on the premise that positive seismic P-wave velocity anomalies in the mantle are primarily the product of subduction, the tomographic images of the mantle from UU-P07 record subduction beneath the SE Asian region to depths of approximately 1600 km. As explained above the anomalies in the upper mantle mainly record subduction during the last 10 to 25 Ma, depending on the region considered. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.
7.1. Upper mantle: results from tomography

In Section 3 we reviewed previous interpretations of tomographic models. The quality and resolution of recent models has improved but in general there are few significant differences between them and the majority of high velocity anomalies in the upper mantle can be linked to present subduction zones. We conclude that most anomalies record Neogene subduction mostly younger than suggested by some previous authors (e.g. Li and van der Hilst, 2010).

For the Sunda–Java subduction zone we postulate a tear rather than a fold in the slab beneath Sumatra, and like Widiyantoro et al. (2011) we infer there are holes in the slab below East Java and Flores–Sumbawa which are interpreted to result from buoyant obstacles on the subducting plate. Our interpretation of slab geometry from Sunda to Banda is similar to that of Richards et al. (2007), but we differ in particular from them and earlier workers in our interpretation of the development of the Banda region. The crucial differences are the recognition that the Banda subduction began only in the last 15 Ma, and the geometry of the slab reflects the shape of the pre-existing Banda embayment, and Neogene eastwards rollback into the embayment while the Australian plate moved northward.

Beneath Sulawesi we propose a new interpretation of slab geometry consistent with seismicity, tomographic images and recently acquired geological observations that suggests a third slab. From the Molucca Sea northwards into the Philippines region the subducted slabs are segmented, and several subduction zones are not imaged because of the short slab lengths consistent with their young age (Cotobato trench, Philippine trench, Celebes Sea subduction beneath the Sulu arc). The oldest subduction zone in the Philippines region that can be connected to a modern trench is the slab subducting eastwards from the Manila Trench. However, high velocity anomalies in lower part of the upper mantle suggest a subduction history more complex than shown in model reconstructions.

There is a broad positive velocity anomaly in the transition zone (400–650 km) below the South China Sea with weak amplitudes which is not explained by any tectonic model. We tentatively suggest this could be a possible remnant of a flat slab section from a westward-directed Cretaceous subduction zone at the Pacific margin. If correct, this would imply this slab has been in the mantle in this position since about 80–90 Ma and would be the oldest subduction system that is identifiable beneath SE Asia.

7.2. Lower mantle: results from tomography

The UU-P07 model resolves more structure in the lower mantle than seen in previous models. We suggest this can now identify subduction zones which mainly pre-date about 15 Ma.

Previous interpretations of the lower mantle high velocity anomaly beneath SE Asia have invariably proposed a single anomaly linked to the Tethyan anomalies which can be traced to the Eastern Mediterranean. We propose a separation of this huge SE Asia anomaly from the Tethys anomaly. The most prominent, and southern, Tethyan linear anomaly extends beneath Sumatra at
depths below c. 850 km but only to about 110°E. To the east of this there are several parts to the broad anomaly at depths from 800 to 1100 km. There is a Java trench-related part (NE-directed subduction from 45 to 15 Ma), a Sula subduction zone, subduction Philippine Sea plate margins, and a Proto-South China slab which occurred between 45 and 25 Ma.

Below Java the steep anomaly in the upper mantle passes through and overlaps the deep flatter anomaly which extends further south. This is what would be expected based on the tectonic model (Hall, 2012) which shows advance of the subduction hinge between 25 and 15 Ma as a result of Borneo (SE Sundaland) rotation. From about 1200 km to greater depths the anomaly becomes NE-SW oriented – explained as NW-directed subduction from 65 to 50 Ma in the tectonic model. This deep anomaly disappears by about 1500 km and suggests that the oldest subduction being seen is latest Cretaceous (c. 65 Ma). The tectonic model predicts no subduction beneath the region from 90 Ma so no high velocity anomaly is expected at depths greater than about 1500 km.

As explained by Spakman and Hall (2010) the deep mantle structure changes further east below the Banda region where the folded slab in the upper mantle cannot be traced into the lower mantle. Unlike several previous authors we therefore do not identify Tethyan subduction zones below the Banda region. In the lower mantle below the Banda Sea and into the West Pacific north of New Guinea there are remnants of 45 to 25 Ma subduction, including the broken off Sula slab, subduction below the East Philippines (Fig. 18) and Halmahera (Hall and Spakman, 2002, 2003).

7.3. **Key points concerning tectonic models**

For the Neogene the tomographic images broadly confirm the subduction history that is inferred from present trenches and geological observations. However, the improving resolution of the tomographic models now makes it possible to link the subduction history to geological observations of the upper crust. Thus, the holes interpreted in subducted slabs, arc deformation, and changes in arc magma chemistry can now be linked for areas like East Java, and plausibly interpreted in other areas such as Sumbawa–Flores. Age variations in the subducted slabs can be identified (Gorbatov and Kennett, 2003) and are consistent with predictions of our tectonic model. The boundary between Cretaceous and much younger Cenozoic crust is now beneath SE Sumatra. Tomography shows this is where slab dip begins to change from very steep below Java (Cretaceous crust subducted) to much less steep below Sumatra in areas where there are few hypocentres. The relative age of the subducted slab may have contributed to the way in which the subducted slab has deformed.

A significantly improved understanding of the Banda arc evolution has been acquired with the aid of tomographic models, supporting the one-slab model and deformation of the subducted slab in the upper mantle first proposed by Hamilton (1979), and linking surface deformation to slab-mantle interaction. In this region the resolution of the tomographic models can also exclude some tectonic
interpretations, such as the Miocene initiation of faulting at the Tarera-Aiduna fault, accompanied by subduction of several hundred kilometres of oceanic lithosphere (Hinschberger et al., 2005) which should be clearly visible in tomography sections. Beneath Sulawesi, tomography can rule out suggestions of major east-directed subduction on the east side of the Makassar Straits and, as we have shown above, can also suggest new tectonic interpretations in areas of complex seismicity and deformation.

For subduction before the Cenozoic the lower mantle tomography does not greatly aid tectonic interpretation because most high velocity anomalies are due to Cenozoic subduction. However, the change in lower mantle structure west and east of 110°E implies a major change in subduction history north of India compared to that north of Australia. If subduction beneath Indonesia had been continuous during the Mesozoic, as often suggested, we would expect the lower mantle anomalies to be traceable to much greater depths. In our view, this therefore favours the tectonic reconstruction (Hall, 2012) in which subduction ceased for a period from about 90 Ma to 45 Ma and accounts for the absence of a high velocity anomaly associated with subduction at the Java trench deeper than about 1600 km.

We discussed various features of the SE Asia region, centred on Borneo, in an earlier paper (Hall et al., 2008) and concluded that some tectonic interpretations of the region could not be distinguished using the tomographic images. However, the resolution of the tomographic models has significantly improved since then and we have argued above that lower mantle structure can now be interpreted in terms of several different subduction zones, including the Proto-South China Sea. We therefore suggest that simplified models which include a single rigid block for SE Asia, that rotated clockwise due to indentation of Asia by India (e.g. Replumaz and Tapponnier, 2003; Replumaz et al., 2004), do not account for the complexities of lower mantle structure imaged by tomography under SE Asia. Furthermore, the identification of the Proto-South China Sea subduction zone also supports the counter-clockwise rotation of Borneo and the SE corner of Sundaland following Australia–SE Asia collision in the Early Miocene.

8. Conclusions

SE Asia is geologically a particularly complex region and remains relatively understudied because of difficulties of access, vegetation and climate. It is important because it is a region in which the active tectonic processes that are more advanced in older mountain belts can be observed and for which numerous tectonic models have been proposed, many of which are speculative and difficult to assess. The abundant seismicity of the region means that high-resolution tomographic models can be developed and the subduction history of the region interpreted. We have focused on assessment of independent models of tectonic evolution and mantle structure concerned with the region and we
conclude that there is now significant convergence between them. The tectonic model can explain many of the key features of the tomography, and the tomography has in many parts of the region offered new insights into tectonic interpretations.

The next steps are to modify the tectonic reconstructions in some parts in the light of the tomographic models, and also to reconsider some features that are unexplained (e.g. high velocity anomaly in the transition zone below the South China Sea, details of upper and lower mantle structure below the Philippines). In several areas improved resolution of the tomography would aid tectonic interpretation, and thermo-mechanical modelling of 3-D slab evolution may help constrain tectonic evolution models.

Acknowledgments

WS acknowledges support by the Netherlands Research Centre for Integrated Solid Earth Science (ISES) and support by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223272. RH thanks the SE Asia Research Group and its members at Royal Holloway, funded over many years by a changing consortium of oil companies, and support at times from the Royal Society, the London University Central Research Fund, and the Natural Environment Research Council. We thank Tim Horscroft for his encouragement and patience during the preparation of this paper.
9. List of supplementary material

Supplementary\Mapview_depth_slices_UU-P07
SEA_UU-P07_mapview.mov
UU-P07 model

Supplementary\Resolution_movies
SVideo_Resolution_1.mov and SVideo_Resolution_2.mov
Sensitivity tests for spatial resolution of UU-P07 with synthetic velocity models. 90 panels of sensitivity test results from 14 different synthetic block models. Fig. 3 introduces these panels and its caption provides the necessary technical information. The organization of the panels is by depth only, which increases from left to right and from top to bottom.

Supplementary\Mapview_depth_slices_different_models
SEA_mapv_4mod.mov
Comparison of depth slices for different models for the region

Supplementary\Mapview_movies
Philip_Sea_Plate.mov and SEA_east_mapv.mov
Comparison of depth slices for eastern part of the region

Supplementary\Vertical_slices
Supplementary\Vertical_slices\Slices_Whole_region
SEA_UU_P07 Sunda_Banda_sli.mov and SEA_UU_P07_regional_sli.mov
Movies showing Vertical_slices of UU-P07 crossing the entire region

Supplementary\Vertical_slices
Slices_Celebes
Slices_Cotobato
Slices_Manila_Trench
Slices_Molucca_Sea
Slices_North_Sulawesi
Slices_Philippines
Slices_Proto_SCS
Slices_Sula
Slices_Sulu
Slices_Tolo
Movies showing Vertical_slices of UU-P07 for specific areas
References

Fichtner, A., de Wit, M., van Bergen, M., 2010. Subduction of continental lithosphere in the Banda Sea region: Combining evidence from full waveform tomography and iso"

Rangin, C., Spakman, W., Pubellier, M., Bijwaard, H., 1999. Tomographic and geological constraints on subduction along the eastern Sundaland continental margin (South-East Asia). Bulletin de la Société Géologique de France 170, 753-788.

Figure Captions

Fig. 1. A. DEM of the region including SE Asia, the Western Pacific, eastern Indian Ocean and northern Australia from satellite gravity-derived bathymetry combined with SRTM topography (Sandwell and Smith, 2009). Red filled triangles are volcanoes from the Smithsonian Institution Global Volcanism Program (Siebert and Simkin, 2002). B. Seismicity in and around SE Asia with hypocentre depths (Engdahl et al., 1998).

Fig. 2. Tomographic slices through model UU-P07 (Amaru, 2007) at selected depths. Colours indicate the P-wave wave-speed anomalies relative to the radial reference model ak135 of Kennett et al. (1995). Notice that the limits of the wave-speed anomaly scale change with depth. This depth variation follows the scaling between temperature and wave-speed anomalies as used in Goes et al. (2005). Blue colours correspond to positive and red to negative wave-speed anomalies. Extra contour lines indicate regions where anomalies are in excess of the colour contour limits by multiples of 1%. White dot denote earthquake hypocentres from the EHB data set (Engdahl et al., 1998) used in tomography. Only events within 5 km of the depth of the tomographic slice are plotted. Small crosses denote the longitude-latitude grid at 5° intervals. Solid lines indicate coastlines, plate boundaries or other major tectonic lineaments in the region.

Fig. 3. Examples of sensitivity test results of imaging various synthetic block models. Black lines show coastlines and plate boundaries and the location of isolated synthetic blocks with seismic wave-speed anomaly amplitudes of +5% or −5% with respect to the 1-D reference model ak135 of Kennett et al. (1995). The input blocks can have an irregular shape, which is due to the parameterization of the tomographic model with cells of variable dimension. This is also the reason for the absence of synthetic blocks of a particular size in some parts of the model. The colours shows the tomographic image of the input model using the same procedure as when real data are on input. Gaussian noise was added to the synthetic data prior to tomographic inversion to attain a comparable similar variance reduction. More details can be found in Spakman et al. (1993) and Bijwaard et al. (1998). Comparison of ‘input’ and ‘output’ models leads to qualitative assessment of lack of spatial resolution. Lack of resolution can be detected where large amplitudes occur between the blocks, where block anomalies smear into the model, or when block anomalies are not recovered at all. The eight panels illustrate results at different depths and for different input block-models. The last number in the model label at the lower left of each panel gives the characteristic lateral spatial dimension of the input blocks in degrees, i.e. 1.0° at 60 km, 5.0° at 1500 km. The thickness of the blocks is usually half of this size. Note that a lateral distance of 5.0° at 1500 km depth (e.g., last panel) corresponds to ~400 km.
Fig. 4. Simplified 3-D figures showing the form of the subducted slab from Sumatra to Banda to depth of 600 km. Colour shades correspond to 50 km intervals. A. View looking approximately eastwards from west of Sumatra. B. View looking approximately westwards from east of Halmahera.

Fig. 5. Profiles across the slab subducted beneath Java showing interpreted hole in the slab and its inferred development. A. Map of seismicity with hypocentre depths below 50 km. B, C, D. Profiles across the selected areas of map A showing estimated position of the slab top and the prominent aseismic gap below East Java. E. Interpreted age (Ma) since slab entered trench based on the present trench position (dashed red line and grey numbers) and inferred position of trench assuming a sudden southward shift in its position (solid red line and black numbers) after blocking of subduction due to arrival of buoyant object at trench. Red filled triangle marks position of modern calc-alkaline arc (CA arc) and magenta filled triangle marks position of high-K volcanoes (HK volcanoes) north of the arc. F to I. Cartoons showing interpreted sequence of events as buoyant object (blue) arrived at trench, blocked subduction, leading to deformation on land in Java and southward jump in position of trench. J to M. Cartoons showing interpreted sequence of events with upper plate removed as blocking of subduction by buoyant object caused hole to form. As the hole passed beneath the volcanic arc normal calc-alkaline magmatism ceased as fluid flux from slab diminished and K-rich component was no longer diluted resulting in short period of high-K magmatism behind former arc. After hole was subducted to greater depths normal calc-alkaline magmatism resumed.

Fig. 6. A. Variation in bulk-sound speed and shear wave-speed anomalies along the slab subducted at the Sunda-Java trench zone correlated with interpreted age of the subducted lithosphere by Gorbatov and Kennett (2003). B. Present-day tectonic map showing position of inferred subducted India-Australia transform fault from Hall (2012) where there is a major change in age of the subducted lithosphere from Cretaceous in the east to Cenozoic in the west. Red dashed line is continuation of the transform in the subducted slab and black line is the approximate profile of the slab shown in A.

Fig. 7. A, B, C. Depth contours on subducted slab from Pesicek et al. (2008) overlain on depth slices at 200 km, 350 km and 500 km from UU-P07. D, E, F. Our interpreted depth contours on the subducted slab overlain on depth slices at 200 km, 350 km and 500 km from UU-P07.

Fig. 8. Simplified 3-D figures showing form of the subducted slab beneath Sumatra to depth of 600 km viewed from the north. Colour shades correspond to 50 km intervals. A. Interpreted fold in Sumatra slab based on contours from Pesicek et al. (2008). B. Interpreted tears in Sumatra slab based on our depth contours from UU-P07.
Fig. 9. Major trenches and troughs in Philippines to east Indonesia region discussed in the text.

Fig. 10. Simplified 3-D figure showing form of the subducted slab beneath the Banda region to depth of 600 km viewed from the west. Colour shades correspond to 50 km intervals. The slab tear in interpreted to have propagated east as rollback into the Banda embayment proceeded. B. 4 Ma reconstruction from Spakman and Hall (2010) showing subduction zone rolling back into Banda embayment with trace of tear corresponding to zone of strike-slip faulting in west Seram.

Fig. 11. 3-D cartoon showing principal subduction zones in the southern Philippines and east Indonesia region. Dashed red line is inferred northern limit of subducted continental crust of the Sula Spur which extends beneath part of the Sulawesi North Arm.

Fig. 12. Seismicity and subducted slabs in the North Sulawesi and Molucca Sea region modified from Cottam et al. (2011). A. Hypocentres interpreted to be related to subduction of Celebes slab from North Sulawesi trench. Hypocentres shown in purple were all related to 1983 eruption of Una-Unca volcano. B. Profile on red box shown in A showing slab dipping south from North Sulawesi trench to depth of c. 250 km. Note the Una-Unca hypocentres are all south of the dipping slab. C. Hypocentre depths in the region. Note the very abrupt termination of deeper seismicity at approximately W-E line in centre of Gorontalo Bay between the East and North Arms of Sulawesi. Almost all events south of this line have depths less than 50 km.

Fig. 13. A. 3-D cartoon showing interpreted slabs in the North Sulawesi and Molucca Sea region. This portrays the upper surfaces of the three slabs. B: approximately E-W slice across the southern end of the Molucca Sea plate which obliquely intersects the south-dipping Celebes slab. C: approximately E-W slice across the northern part of the Molucca Sea plate showing the Sangihe and Halmahera slabs. D, E: NNW-SSE slices crossing Gorontalo Bay which cut the south-dipping Celebes slab and the sub-vertical Sula slab (south-dipping and overturned in the west and steeply north-dipping further east). The Sangihe slab is cut very obliquely in the transition zone.

Fig. 14. A. Depth slice at 820 km from UU-P07 showing high velocity anomalies. Su is the interpreted slab subducted beneath the North Arm of Sulawesi which broke off after collision at c. 24 Ma between Sula Spur and North Arm. B. Reconstruction at 26 Ma for the Banda region shortly before collision of Sula Spur and Sulawesi North Arm from Spakman and Hall (2010).

Fig. 15. Inferred development of Sula slab following collision of Sula Spur and Sulawesi North Arm. By 20 Ma oceanic lithosphere has broken off and at present day is in the lower mantle (Fig. 14).
Extension at 15 Ma was associated with beginning of Banda rollback further SE. By 10 Ma Sangihe slab is subducting from the Molucca Sea to the east into the plane of the section and contributes to steepening of Sula slab. Subduction of Celebes Sea lithosphere beneath the North Arm and steepening of dip of Sula slab begins delamination of Sula Spur contributing to extension and rapid subsidence of Gorontalo Bay, and magmatism in North Arm. Celebes slab has now reached depth of c. 200 km beneath Gorontalo Bay, and Una-Una volcano is product of localised melting accompanying crustal thinning and delamination of Sula Spur as Sula slab becomes vertical.

Fig. 16. 1100 km depth slice of UU-P07 showing change in lower mantle structure from west to east. Linear anomalies west of 110°E record Mesozoic and early Cenozoic Tethyan subduction north of India, later overridden by India. Broad deep anomaly below Indonesia east of 110°E records Cenozoic subduction.

Fig. 17. A. 3-D images showing the Tethyan slab at depth below the Sunda slab. Below Sumatra the Sunda slab is in the upper mantle but further SE below South Sumatra and Java the subducted slab penetrates the lower mantle. Below Java and Sumatra the part of the slab at depths greater than 600 km is omitted for clarity. B. 1000 km depth slice of UU-P07 showing the eastern end of the elongate Tethyan anomaly and the broad deep anomaly below Indonesia east of 110°E which is due to Cenozoic subduction.

Fig. 18. A. Depth slice at 800 km from UU-P07 showing high velocity anomalies. Tethyan linear anomaly marked with magenta line interpreted to record northward subduction north of India in Late Cretaceous and early Cenozoic. Anomalies east of about 110°E are interpreted as the result of subduction since 45 Ma. Symbol P? marks a linear feature in the deep anomaly that could represent a subduction zone not in tectonic model. B. Reconstruction at 30 Ma from Hall (2012) showing interpreted subduction zones. Sunda-Java trench subduction, Proto-South China Sea subduction, subduction below North Sulawesi-East Philippines, and subduction below NE side of Philippine Sea plate all fit well with position of high velocity anomalies in lower mantle. There is no evidence from tomography to support the interpreted subduction at the east side of the Pacific, north of the Philippine Sea plate.
Slab break-off following collision of North Arm arc and Sula Spur

Extension between North Arm and East Arm

Sangihe slab subducting from east causes Sula slab to steepen

Sula slab steepens, and partly delaminates
Influx of mantle induces melting in North Arm, renewed extension

Celebes slab reaches c.200 km, Sula slab vertical

Present-day