
Enhancing Java Runtime Environment for Smart
Cards Against Runtime Attacks

No Author Given

No Institute Given

Abstract. Smart cards are mostly deployed in security-critical environments
in order to provide a secure and trusted access to the provisioned services.
These services are delivered to a cardholder using the Service Provider’s (SPs)
applications on his or her smart card(s). These applications are at their most
vulnerable state when they are executing. There exist a variety of runtime
attacks that can circumvent the security checks implemented either by the
respective application or the runtime environment to protect the smart card
platform, user and/or application. In this paper, we discuss the Java Runtime
Environment and a potential threat model based on runtime attacks. Subse-
quently, we discussed the counter-measures that can be deployed to provide
a secure and reliable execution platform, along with an evaluation of their
effectiveness, incurred performance-penalty and latency.

1 Introduction

An application on a smart card relies on the Smart Card Runtime Environment
(SCRT) for secure and reliable execution. An SCRT contains a library of Application
Programming Interfaces (APIs) that provide a secure and reliable interface between
the installed applications and on-card services. An SCRT is used in order to:

1. Provide a secure and reliable program execution.
2. Enforce an execution isolation and access to memory locations.
3. Provide an interface to access cryptographic algorithms.
4. Protect the platform and applications from malicious or ill-formed applications.
5. Handle communication between applications and with external entities.

In early 2000, fault attacks became the modus operandi of adversaries to subvert
the implemented cryptographic algorithms in the smart card industry. Since then
the technology has evolved to counter these threats to some extent [3–5]. There has
been a growing interest in fault injection and combined attacks [6–8] to subvert the
protection mechanisms on a smart card. In combined attacks both the software (i.e.
attacker’s application) and fault injection are used to achieve the objectives. In this
paper, we analyse the attacks that target the SCRT and provide counter-measures.
The attacks we have considered in this paper are fault and combined attacks targetted
at the SCRT. In this paper, we focus on the Java Cards; therefore, we will constantly
refer to the Java Card Runtime Environment (JCRE) and it is used synonymously
with SCRT. The rationale is that the JCRE has an open specification as compared
to Multos, and new attacks mostly target Java Cards.

1.1 Contributions of the Paper

In this paper, we propose and evaluate the following:

1. A JCRE protection framework referred as “Runtime Protection Mechanism (RPM)”.
2. Inclusion of application developer’s security requirements at the compilation of

the application. If these requirements do not violate the security requirements of
the JCRE, the runtime environment will try to enforce them.

3. A set of countermeasures that include:
(a) Operand Stack Integrity: Safeguarding the JCRE’s operand stack from any

malicious modifications.
(b) Permitted Execution Path Analysis: Evaluate the program flow and verify

whether a particular execution path is allowed or not, based on the security
requirements; defined by the application developer and/or JCRE.

(c) Bytecode Integrity: To verify and validate whether the execution code of an
application, in storage (persistent memory) and while on the non-persistent
memory during its execution has not been modified.

4. Two variants of “Runtime Security Manager (RSM)” referred serial and parallel
mode. The RSM enforces the security requirements defined by the application
developers and JCRE as part of the RPM along with deploying the countermea-
sures. The variants are differentiated based on the architecture of the underlying
hardware and the point at which the RSM verify and validate an application
during its execution.

5. The proposed framework is implemented, and evaluated for security, incurred
performance penalty and latency.

1.2 Structure of the paper:

We begin the discussion with a brief introduction of the JCRE, related work on JCRE
security and our motivation for the paper. In section 3, we describe the attacker
capabilities and security requirements for a secure JCRE. In this section, we also
propose our framework. In section 4, we analyse the proposed framework, which
includes security, incurred performance-penalty, latency and comparative analysis.
Finally, the paper is concluded in section 5.

2 Smart Card Runtime Environment

In this section, we open the discussion with a brief description of the Java Card
Virtual Machine (JCVM) followed by related work, and our motivation for the paper.

2.1 Java Card Virtual Machine

The JCRE consists of APIs, system classes, Java Card Virtual Machine (JCVM),
and native methods. The most crucial component of the JCRE is the JCVM that
actually interpret the application code to execute on the underlying hardware. The
architecture of the JCVM is more or less similar between various Java Card versions.

An application is coded in a subset of Java language that is supported by the
JCVM, which is represented as a Java file. The application is then compiled into a

class file, and it is packaged along with any resource files and supporting libraries
into an installation package (e.g. CAP, or JAR file [9, 10]) that can be downloaded
to a Java Card. On the Java Card, the on-card bytecode verifier would analyse the
downloaded application and validate that it conforms to the Java language semantics.

Class Loader Subsystem

Runtime Data Areas

Heap

Method Area

Java Stacks

PC Registers

Execution Engine
Native Method

Interface
Native Methods

Class Files (bytecode)

Frames

Runtime Constant Pool

Field and Method Data

Code for Methods and Constructors

Numeric Literals

Method and Field

References

Local Variables

Operand Stack

References to Constant Pool

Fig. 1. Architecture of the Java Card Virtual Machine

Figure 1 illustrates the architecture of a typical JCVM. Various components and
their functions are described subsequently with emphasis on how they interact during
the execution of an application.

The JCVM mainly deals with an abstract storage unit called word that is the
smallest storage unit that it can process. The actual size of a word is left to the
JCVM implementers. However, the JCVM specification [9] states that a word should
be large enough to hold a value of byte, short, reference, or returnAddress.

When an application is initiated, the bytecode representation of an application
is loaded to the JCVM memory by a “class loader subsystem”. The class loader
is responsible for locating and loading the class onto the memory areas used by
the JCVM. This memory is divided into sub-areas, where each of them contains
specific information regarding the application. The JCVM memory area is heap and
all data/code related to an application is loaded onto it. The three main storage
structures defined on the heap that are of relevance here are Program Counter (PC)
registers, method area, and Java stacks. These storage structures are briefly discussed
here as they are referred to in the remaining paper (i.e., when we discuss our proposed
counter-measures).

The PC registers store the memory address of the bytecode instruction currently
executing. If the JCVM supports multiple threading then each thread will have its
own PC register.

The method area is a memory space that consists of structures that include run-
time constant pool, field and method data, and code related to methods and con-
structors. The runtime constant pool stores the constant field values (e.g. numeric
literals) and references to the memory address related to methods and fields. The
other two structures store the data and code related to fields and methods, etc.

A frame is created by the JCVM each time a method is invoked during the
execution of an application. A frame is a construct that stores data, partial results,
return values, and dynamically resolved links, associated with a single method (not
the related class). These frames are stored on a last-in first-out (LIFO) stack called
Java Stack. For each thread, there will be a different Java Stack. For security reasons,
only the JCVM can issue the push and pop instructions to Java Stacks. The data
structures that reside on a frame include an array of local variables, operand stack,
and references to constant pool. The operand stack is a LIFO stack and it is empty
when a frame is created. During the execution of a method, the JCVM will load data
values (of either constant or non-constant variables/fields) onto the operand stack.
The JCVM will operate on the values at the top of the operand stack and push the
results back on it.

The JCVM provide well-defined interfaces to access native methods; however,
contrary to traditional Java virtual machines they do not allow user-defined native
methods. Each JCVM has an execution engine that is responsible for the execution
of the individual instructions (opcodes) in an application code. The design of the
execution engine is dependent on the underlying hardware platform and in a simple
way, it can be considered as a software interface to the platform’s processor.

This section do not exhaustively explain JCRE and the rationale for covering the
aforementioned topics is to make it easy to follow the subsequent discussion in the
paper.

2.2 Related Work on JCRE Security

Earlier work on Java Cards was mainly related to the semantic and formal modelling
of the JCVM [11–14], Java Card firewall mechanism [15, 16], and applets [17–19]. The
JCRE countermeasure against ill-formed applications was based on on-card bytecode
verification [20–23], which became compulsory in the Java Card version 3 [9].

In the early 2000s, side channel analysis and fault attacks on smart card platforms
were mainly focussed on the cryptographic algorithms [2, 24–28]. However, in recent
years, logical and fault attacks are combined to target the JCRE [29–31].

In 2008, Mostowski and Poll [32] loaded an ill-typed bytecode on various smart
cards to test their security and reliability mechanisms. They also noted that smart
cards that had an effective on-card bytecode verifier were less susceptible than others.
In 2009, Hogenboom and Mostowski [33] managed to read arbitrary contents of the
memory. They performed this attack even in the presence of the Java Card firewall
mechanism. Similar results were also shown by Lanet and Iguchi-Cartigny [34]. Sere
et al. [35] use the similar attack of modifying the bytecodes to gain unauthorised
access or skip the security mechanism on a platform. However, Sere et al. relied on
fault attacks to modify the bytecodes rather than modifying them off-card as done
by [32–34]. This way, Sere et al. managed to bypass the on-card bytecode verification.
A countermeasure to this attack provided by Sere et al. relied on tagging the bytecode
instructions with integrity values (i.e. integrity bits) and during the execution, the
JCVM checks these bits and if it fails, the execution terminates.

In 2010, Barbu et al. [7] along with Vétillard and Ferrari [6] used a similar attack
methodology to Sere et al. [35] that later came to be known as combined attacks.
Later, the combined attack technique was extended to target various components of

JCVM in [36–39]. These attacks are significant; nevertheless, they require the loading
of an application designed specifically to accomplish the attack goals.

Dubrile et al. [54] discussed the fault enabled mutants in the Java Cards and
proposed a countermeasure based on the typed stack. In [55] Julien Lancia illustrated
a combined attack on the memory references (object and variable references) and
proposed a countermeasure based on a defensive virtual machine.

The discussion in this section is by no means exhaustive but it accurately intro-
duces the challenges faced by the JCRE.

2.3 Motivation

During an application’s lifetime, the application’s security is dependent on the secu-
rity of the runtime environment. As discussed in section 2.2, a smart card runtime
environment is increasingly facing the convergence of various attack techniques (e.g.
fault and logical attacks). Although, physical protection mechanisms regarding fault
attacks are proposed [40]; however, we consider that the necessary software protec-
tion for the runtime environment cannot be understated. The software protection
can augment the hardware mechanism to protect against the combined attacks, as a
similar approach has yielded successful results in the secure design of cryptographic
algorithms for smart cards [41–43]. Therefore, in this paper, we will focus on the
software protection mechanism.

In literature, several methods are described for software protection mechanism,
including application slicing in which an application is partitioned for performance
[44, 45] or to protect intellectual property [46]. Such partitioning can be used to
tag individual segments of an application with adequate security requirements. The
runtime environment can then take into account the security requirements, tagged
with individual segments during the execution; thus providing configurable runtime
security architecture. A similar approach is proposed by Java Card 3 [9] and as part of
the counter-measures to combined attacks proposed by Sere et al. [39] and Bouffard
et al. [47]. These proposals are based on using Java annotations to tag segments of
an application with required security or reliability levels.

Developers can use Java annotations to provide information regarding an appli-
cation (or its segment), which is used by either the compiler, or runtime environment
(i.e. JCVM). Based on Java annotations, Bouffard et al. [47] and Sere et al. [39] pro-
posed mechanisms to prevent control flow attacks. In addition, Loining et al. [48] used
the Java annotations to ensure a secure and reliable development of applications for
embedded devices (e.g. smart cards). Furthermore, Java Card 3 Connected Edition
also makes provision for Java annotations [9]. The defined annotations by Java Card
3 are integrity, confidentiality, and full (which corresponds to both integrity and con-
fidentiality). In addition, the specification also allows proprietary annotations that
can be used to invoke specific protection mechanisms implemented by the respective
card manufacturer. The Java Card 3 specification does not detail what operations a
JCVM should perform when encountering a particular annotation, which are left to
the discretion of the card manufacturers.

These proposals are useful but a malicious user can use the annotations to his
advantage in order to accomplish his malicious goals. To avoid this we in our proposal
have an on-card analyser that checks the security and reliability requirements of
an application, validate the associated Java annotations (tags) with each segment

of the application, and modify the security annotations where adequate. In such
a scenario, we may assume that tagging segments of an application with security
annotations might be useful. Nevertheless, such an on-card analyser is not available
on smart cards. In this paper, we solely focus on adequately hardening the runtime
environment.

In our proposed framework, we tackle the problem from three aspects: application
compilation, runtime protection, and trusted component. The Java annotations are
used to tag properties of individual segments of an application. Runtime commands
(opcodes) that might be subverted to gain unauthorised access are hardened with
additional protection (security checks), and finally a trusted component is included
to complement the runtime environment for security verification and validation of an
application’s execution.

3 Runtime Protection Mechanism

In this section, we describe the attacker’s capability along with the security require-
ments for an reliable and safe JCRE. Subsequently, we discuss the proposed runtime
protection mechanism and how it provides a secure and reliable framework for JCRE.

3.1 Attacker’s Capability

Due to the advancement in the chip technology and hardware protection mecha-
nisms [49], we have taken a realistic approach in defining the attacker’s capability,
taking into consideration the current state-of-the-art in attack methodologies for
smart cards. The attacker’s capabilities taken into consideration in the proposed
runtime protection mechanism are listed as below:

1. Has the knowledge of the underlying (hardware and software) architecture.
2. Has the ability to load a customised application onto a given smart card.
3. Has the capability to induce a fault attack at a precise clock cycle.
4. Has the limited capability of changing a byte value to either 0x00 or 0xFF, or a

random value in between.
5. Has the potential to change values stored in a non-volatile memory permanently

within the limits of the capability four.
6. Has the ability to inject multiple faults; however, only in serial fashion (i.e. after

injecting a fault, the attacker waits for the results before injecting the next fault).
The adversary cannot inject multiple faults in parallel — injecting two faults
simultaneously.

7. Can overwrite a whole or part of memory like Electrically Erasable Programmable
Read-Only Memory (EEPROM) or off-card storage.

Capability four restricts an adversary to induce a precise byte error rather than
the precise bit error. This restriction is based on the underlying smart card hardware
architecture. This is not to say that precise bit errors are not possible in smart cards.
On the contrary, they are technically possible but increasing the density of packaging
(i.e. chip fabrication) makes it challenging to change a value of a bit in comparison
to changing the value of a byte.

The rationale behind the choice of multiple fault attacks in serial fashion than
parallel is to give precise control and reproducibility of the attack. In fault attacks
where a malicious user injects multiple faults simultaneously (parallel), it is difficult to
assess whether the first fault injection was successful; therefore, injecting the second
fault may be less productive.

In our proposed framework, we intend to protect the underlying runtime envi-
ronment and applications hosted on it. However, an application can be designed in a
way that it reveals its sensitive data (e.g. its user’s private key that is specific to the
application and not related to the platform or other applications); there is a limit to
what a protection mechanism can do to prevent such leakages.

3.2 Security Requirements for a Runtime Protection Mechanism

In this section, we discuss the set of requirements appropriate for a runtime protection
mechanism to defend against the attacker discussed in the previous section.

1. Customisable: Enables the application developers to define the security require-
ments (if preferred) for their applications, which will be enforced as long as they
do not violate the platform’s and/or other application’s security requirements.

2. Developer Independent: Does not require the application developers to evaluate
the security risks of their application and adequately tag it.

3. Code Integrity: Detect any unauthorised modification to the application code
before it is executed.

4. Stack Integrity: Detect any modification to the values stored on the Java stacks
(e.g. operand stack).

5. Execution Flow Evaluation: Detect any illegal jumps to either restricted areas
(e.g. data or code locations for a different application) or violating the secure
execution flow of the application.

These requirements are revisited in section 4.5, when our proposal is compared
with the existing proposals discussed in section 2.2.

3.3 Overview of the Proposed Runtime Protection Mechanism

The proposed architecture of the runtime protection mechanism is involved at various
stages of the application lifecycle - including the application compilation, on-card
bytecode verification, and execution as shown in figure 2.

On-Card ProcessesOff-Card Processes

Design
Compilation /

Packaging

Off-Card Bytecode

Verifier

On-Card Bytecode

Verifier

Execution

Environment

Trusted ComponentVerification

EnforcementProperty

File

Fig. 2. Generic overview of the proposed runtime protection mechanism

During the compilation/packaging process additional information regarding in-
dividual methods, classes, and objects of an application is generated as part of the

property file, discussed in section 3.4. The property file assists the runtime envi-
ronment to provide a security and reliability service during the execution of the
application. The off-card bytecode verification checks whether the downloaded appli-
cation conforms to the (given) language’s semantics. The on-card bytecode verifier
can also request the trusted component to validate the property file. The trusted
component is the proposed Runtime Security Manager (RSM) discussed in section
3.6 that actively enforces the security and reliability policy of the platform - taking
into account the information included in the property file.

The proposed framework does not require that application developers perform
security assessment of their application(s) to adequately tag application segments.
The framework only requires at minimum that developers compile their applications
in a way that it has a property file that stores information related to the respective
application. The second requirement of the proposed framework is to adequately
harden the runtime environment discussed in section 3.5 along with introducing the
RSM that will enforce the platform security policy (section 3.6).

In subsequent sections, we will extend the generic architecture discussed in this
section and explain how these different components come together.

3.4 Application Compilation

A Java compiler will take a Java file and convert it to a (bytecode) class file. The
class file not only has opcodes, but it also includes information about various seg-
ments (e.g. methods, and classes) of an application that is necessary for the JCVM
to execute the application. However, for our proposal we introduce a property file
that includes additional information about an application. If a JCVM knows how
to process property files then it will proceed with them; otherwise, it will silently
ignore them. In our proposal a property file is stored and used by the RSM during
the execution of the associated application. In order to integrate the RSM into the
runtime environment, the JCVM is required to be modified so it can communicate
with the RSM in order to safeguard the execution environment.

1 App l i c a t i on In f o {
2 App l i c a t i o n I d e n t i f i e r App l i c a t i o n I d e n t i f i e r ;
3 Class In format ion C la s s In f o [c l a s s c oun t] ; }
4 Cla s s In f o {
5 C l a s s I d e n t i f i e r C l a s s I d e n t i f i e r ;
6 MethodInformation MethodInfo [method count] ; }
7 MethodInfo{
8 Method Iden t i f i e r MethodIdent i f i e r ;
9 MethodIntegr i ty HashValue ;

10 PermittedExecutionPath Path [jumps count]}

Listing 1.1. Property file structure of a Java Card application.

The property file contains security and reliability information concerning an ap-
plication that the runtime environment can utilise to execute an application. The
structure of the property file is illustrated in listing 1.1, which includes information
regarding the permitted execution-paths, and integrity matrix (hash values of the
non-mutable part of the individual methods in a class).

The ApplicationInfo data structure includes the application identifier (e.g.
AID) and an array of classes that are part of the respective application. For each class
in the application, we have a ClassInfo structure that contains the MethodInformation

array that contains information regarding all methods associated with the given class.
Each method is represented by the MethodInfo structure that includes the permit-
ted execution-paths that are generated for each method. In the permitted execution-
paths, child nodes represent jumps to other methods, irrespectively of whether they
are from the same application or from a different application. In a way, combining
the method paths of all classes can give the complete permitted execution-path of the
respective application. In addition to the permitted execution-paths, a MethodInfo

also contains the hash value (of non-mutable code) of the respective method. This
hash value can be generated at the compile time and added to the property file, or
at the time of the application installation: the RSM calculates the hash value and
stores it in the property file.

3.5 Execution Environment

The runtime environment is modified to support the inclusion of the RSM that is
shown in figure 3. At the time of application installation, the application bytecode
is stored in the respective SP’s domain along with the associated property file. The
property file is sealed1 so that neither the application nor an off-card entity (e.g. an
SP or/and adversary) can modify it without detection. At the time of execution, the
RSM will retrieve the file, verify the integrity of the file, and then decrypt it. If an
SP wants to update its application then it will proceed with the update command2

that will notify the RSM of the update. At the completion of the update, the RSM
will verify the application security certificate (if available), and update the property
file – if required.

3.6 Runtime Security Manager

The purpose of the RSM is to enforce the security counter-measures (section 3.7)
defined by the respective platform. To enforce the security counter-measures, the
RSM has access to the heap area (e.g. method area, Java stacks) and it can be
implemented as either a serial or a parallel mode.

A serial RSM will rely on the execution engine of the JCVM (figure 1) to perform
the required tasks. This means that when an execution engine encounters instructions
that require an enforcement of the security policy, it will invoke the RSM that will
then perform the checks. If successful the execution engine continues with execution,
otherwise, it will terminate. A parallel RSM will have its own dedicated hardware
(i.e. processor) support that enables it to perform checks simultaneously while the
execution engine is executing an application. Note that having multiple processors
on a smart card is technically possible [50]. The main question regarding the choice
is not the hardware, but the balance between the performance and latency.

Performance, as the name suggests is concerned with the computational speed.
Whereas, latency deals with the number of instructions executed between an injected-
error to the point it is detected. We will return to this discussion later in section 4
where we provide test (simulated) implementation results.

1 Sealed: The data is encrypted (authenticated encryption) by the RSM storage key.
2 Update Command: We do not propose any update command in this paper but simi-

lar commands are defined as part of the GlobalPlatform card specification. The update
command enables an authorise entity (e.g. SP) to modify an application.

text

Class Loader Subsystem

Runtime Data Areas

Heap

Method Area

Java Stacks

PC Registers

Execution Engine
Native Method

Interface
Native Methods

Class Files (bytecode)

Frames

Runtime Constant Pool

Field and Method Data

Code for Methods and Constructors

Numeric Literals

Method and Field

References

Local Variables

Operand Stack

References to Constant Pool

Runtime Security

Manager

textIntegrity Matrix

Fig. 3. Architecture of the Proposed Runtime Environment for COM Devices.

3.7 Runtime Security Counter-Measures

The RSM along with the runtime environment would apply the required security
counter-measures (as part of the runtime protection mechanism) that are discussed
in subsequent sections.

Operand Stack Integrity As discussed in section 2.1, an operand stack is part of
the Java stacks and they are associated with individual Java frames (methods). Dur-
ing the execution of an application, the runtime environment pushes and pops local
variables, constant fields, and object references to the operand stack. The instruc-
tions specified in an application can then process the values at the top of the stack.
Barbu et el. [36] showed that a fault injection that changes the values stored on the
operand stack could have adverse effect on an application’s security. Furthermore,
they also provided three different counter-measures to the proposed attack.

The proposed countermeasure (second-refined method) of Barbu et al. [36] is
based on the idea of operand stack integrity. They define a variable α, and all values
that are pushed on or popped from the operand stack are XORed with the α. On
every jump instruction beyond the scope of the current frame (method), the runtime
environment XORs all the values stored on the operand and compares the result with
α. If they match then the integrity of the operand stack is verified. Their proposal
does not measure the integrity of the operand stack on instructions like if-else or
loops, which could be the target of the malicious user. In their proposed counter-
measures they sacrificed security and (to some extent) performance for the sake of
memory use, whereas our proposal focuses on security rather than saving the memory.

In our proposal, we use a Last In First Out (LIFO) stack referred as integrity
stack. One thing to note is that JCVM knows the size of the operand stack when it
loads a frame (section 2.1); therefore, the RSM just creates an integrity stack of the

size n where n is the size of the respective operand stack. We refer to the integrity
stack as “InS” in listing 1.2.

When a frame is loaded, the JCVM and the RSM will create an operand and in-
tegrity stack, respectively. Furthermore, the RSM will also generate a random number
and stores it as Sr. The rationale for using the random number will become apparent
in the subsequent discussion.

1 // Executed by RSM when a value i s pushed onto an i n t e g r i t y s tack .
2 On Stack Push (pushedValue){
3 push (InS [top] XOR pushedValue) ;}
4 // Executed by RSM when a value i s popped from an operand stack .
5 On Stack Pop (poppedValue){
6 i f (pop (InS) XOR poppedValue := InS [top]) {
7 } e l s e {
8 terminateExecut ion () ;
9 }}

Listing 1.2. Operand stack integrity operations.

When a value Vi is pushed to the operand stack, if it is the first value on the
stack then the value pushed on the InS will be Ii= Vi ⊕ Sr. For all subsequent values
(where i¿1) the values pushed on the Ins will be Ii= Vi ⊕ Vi-1.

The rationale for using a random number is to avoid parallel fault injections that
try to change the values on both operand and integrity stack simultaneously. Such a
parallel fault injection will become difficult if an adversary cannot predict the values
stored on the integrity stack, as each value on the integrity stack will be chained with
the generated random number.

When a value is popped out of the operand stack, we also pop the integrity value
from the integrity stack, XOR it with the popped value from the operand stack and
compare it with the new top value on the integrity stack. If the values match then
the integrity of the popped value from the operand stack is verified; otherwise, it
has been corrupted and the RSM requests the JCVM to terminate the execution as
shown in listing 1.2.

The RSM will continuously monitor the integrity of the operand stack, in com-
parison to the Barbu’s proposal. Furthermore, in this proposal the validation does
not require the calculation of integrity value over the entire operand stack. If we take
the Barbu’s proposal then for an operand stack of length ‘n’, we have to perform
“n-1” XOR operations every time we need to verify the state of the operand stack.
However, in our proposal we only need to perform one XOR operation. We sacrifice
the memory for the sake of performance in our proposal. We consider that operand
stacks are not large data structures so even if we double the memory used by them,
it will not have an adverse effect on the overall memory usage.

Permitted Execution Path (PEP) Analysis In our proposal, we are concerned
with jumps that refer to external resources. The term external resources in the context
of PEP analysis means any jump that goes beyond the scope of the current Java
frame (i.e. method) while it is still on the Java stack. Once a method completes its
execution, the JCVM will remove the associated Java frame from the Java stacks
(figure 1). Examples of such jumps defined in Java virtual machine specification [51]
are invokeinterface, invokestatic, invokevirtual, areturn, etc.

1 byte B(byte inputValue){
2 byte a = 1 ;
3 i f (inputValue != a){ C(inputValue) ;
4 } e l s e {D(inputValue)}
5 re turn SG(inputValue) ;}

Listing 1.3. Code for an example method B.

To explain the Permitted Execution Path Analysis further, we consider an ex-
ample method B that has three jumps before it reaches the return statement that
completes the execution of the method. The method B’s code is shown in listing 1.3.
Each invocation of a method (e.g. C, D, and SG) is represented by a symbolic method
name (i.e. alphanumeric form that is easily readable/recognisable by humans) that
has an associated unique byte sequence referred as method identifier. For example,
unique method identifier of methods B, C, D, and SG are 0xF122, 0xF123, 0xF124,
and 0xF125, respectively. For explanation we have used method identifiers that con-
sist of two bytes. Along with the method identifier the property file also includes
PermittedExecutionPath, which is a set of PEPs sanctioned for the given method.

The PermitedExecutionPath in the property file (listing 1.1) is simply con-
structed by taking into account every possible (legal) execution path of a method.
Taking the example method B, the first jump can either be to method C or D depend-
ing upon the input. The construction of the PermitedExecutionPath (set of legal
jumps) is constructed by XORing the method identifiers of individual jumps.

The PEP analysis requires that the RSM have a PEP variable “cfa” that stores
the path taken by an application as cfa = Σn

j=1Cj . Where Cj represents the jumps
taken during execution of an application. During the execution of a method, when the
JCVM encounters a jump to another method the RSM XORs the method identifier
with the current value of “cfa” and lookup the PermitedExecutionPath of the given
method in the associated property file. If it finds a matching value, the JCVM will
proceed with the execution; if not it will terminate the execution.

Our scheme also deals with the loop instructions that contain jumps to multiple
methods depending upon the loop condition. For example, for an odd value of ‘i’ jump
to method B and for even values jump to method C. The loop iterates through the
values of ‘i’ until it meets the condition that might be based on runtime values (i.e.
unpredictable at the time of the compilation of the application). Consider a control
flow graph of four methods: A, B, C, and D. Methods B and C are part of a loop as
discussed before and illustrated in listing 1.4. The PermitedExecutionPath set will
be Acfa-Set = {A⊕B, A⊕C, A⊕D, A⊕B⊕D, A⊕C⊕D, A⊕B⊕C⊕D}. For a potential
execution path A→B→C→B→C→B→C→D, if we compute the “cfa” it would be
A⊕B⊕C⊕B⊕C⊕B⊕C⊕D that is effectively A⊕B⊕C⊕D, which is a member of the
PermitedExecutionPath set Acfa-Set.

1 byte A(byte inputValue){
2 f o r (byte i =0; i<inputValue ; i++){
3 i f (i % 2 == 0){C(inputValue) ;
4 } e l s e {B(inputValue) ;}}
5 re turn D(inputValue) ;}

Listing 1.4. Handling loop statements in the Permitted Execution Path Analysis.

Bytecode Integrity The property file associated with an application stores the hash
values of individual methods. When the runtime environment fetches an application,

the RSM will measure the integrity value of individual methods of the application and
compare them with the hash values in the property file. Therefore, any method that
is loaded to the heap goes through the integrity validation. This validation protects
against the fault attacks on an application stored while it is stored on a non-volatile
memory.

The hashes of the individual methods (code and constant local-data variables)
along with the integrity values (hash values) generated on the global persistent data
can create a whole application integrity matrix. During the execution of an applica-
tion, when it jumps from one method to another, it can be assured that the execution
path is going to an (potentially) trusted method or the integrity of the called method
will be verified. The RSM also tracks the integrity of the global variables and update
the hash values if any authorised changes are being performed by the application.

4 Analysis of the Runtime Protection Mechanism

In this section, we evaluate the suitability of countermeasures against the attacks
discussed in section 2.2 under the adversary’s capability detailed in section 3.1. Fur-
thermore, we provide the latency and incurred overhead analysis for both serial and
parallel RSMs.

4.1 Security Analysis

In this section, we discuss how the proposed counter-measures protect against the
combined attacks under the attacker’s capability detailed in section 3.1.

Operand Stack Integrity We proposed a more refined approach to Barbu et al. [36]
and removed the need to perform integrity measurement of the entire operand stack
on each validation. In addition, we made the validation process continuous thus
checking the integrity of the operand stack on each pop and push operation. If a
malicious user changes values on the operand stack, the RSM can not only detect the
modification but can also provide error correction service by providing the correct
value that was stored on the operand stand. Furthermore, by using a random number,
our proposal makes it difficult for an adversary to know the values stored on the
integrity stack, even if he has the knowledge of all values on the operand stack.

PEP Analysis The PEP analysis performed by the RSM during the execution of
an application effectively prevents execution path attacks. If an attacker has the ca-
pability of multiple fault injections simultaneously, (which is beyond the capability of
our attacker as stated in section 3.1) then he can in theory affect the RSM execution.
Nevertheless, even with simultaneous injections the attacker may be able to skip a
node in the execution tree but the RSM calculation on the subsequent nodes will
reveal an illegal path of execution. Therefore, even in the parallel injection model the
RSM will detect the erroneous execution path, unless the attacker will constantly
keep on introducing injections for the whole execution of an application.

Bytecode Integrity Our countermeasure prevents an adversary from changing an
application while it is stored on a non-volatile memory (capability four of an adversary
discussed in section 3.1). To avoid such modifications, the RSM generates a hash of
individual methods that are requested by the JCVM. If the hash matches the value
stored (MethodIntegrity in listing 1.1) in the respective property file, the JCVM
will proceed with the execution of the method; otherwise, the RSM will signal the
termination of the application (and possibly mark it malicious and up for deletion).
Furthermore, this protection mechanism can also safeguard the dynamic loading of
applications/classes/routines as part of the web server or other applications, which
are stored on off-card storage.

4.2 Evaluation Context

For evaluating the proposed counter-measures, we have selected four sample appli-
cations. Two of the applications selected are part of the Java Card development kit
distribution: Wallet and Java Purse. The other two applications are offline attestation
algorithm [52] and STCPSP protocol [53].

4.3 Latency Analysis

As discussed before, latency is the number of instructions executed after an adversary
mounts an attack and the system becomes aware of it. Therefore, in this section we
analyse the latency of the proposed counter-measures under the concepts of serial
and parallel RSMs that are listed in table 1 and discussed subsequently.

Table 1. Latency measurement of individual countermeasure

Counter-measures Serial RSM Parallel RSM

Operand Stack Integrity 0 + i 3 + i

Permitted Execution Path Analysis 0 3(Cn)

Bytecode Integrity 0 0

In case of the operand stack integrity, the serial RSM finds the occurrence of an
error (e.g. fault injection) with latency “0+i”, where ‘i’ is the number of instructions
executed before the manipulated value reaches the top of the operand stack. Similarly,
the latency value in case of the operand stack integrity for the parallel RSM is
“3+i”, where ‘3’ is the number of instructions required to perform a comparison on
pop operation (On_Stack_Pop(poppedValue) in listing 1.2). The latency value of the
parallel RSM is higher than the serial. This has to do with the fact that while parallel
RSM is applying the security checks the JCVM does not need to stop the execution
of subsequent instructions.

Regarding the PEP analysis, the serial RSM has a latency of zero where the
parallel RSM has latency value of “3(Cn)”, where the value Cn represents the number
of legal jumps in the respective PermittedExecutionPath set. To explain this further,
consider the example in listing 1.3. The PermittedExecutionPath of method B has
four possible values (Bcfa-Set in section 3.7). Thereby, the latency value for a jump in
the method B in the worse case is “3(4) = 12”. The value ‘3’ represents the number
of instructions required to execute individual comparison.

A notable point to mention here is that all latency measurements listed in table
2 are based on the worst-case conditions. Furthermore, it is apparent that it might
be difficult to implement a complete parallel RSM. To explain our point, consider
two consecutive jump instructions in which the parallel RSM has to perform PEP
analysis. In such a situation, there might be a possibility that while the RSM is
still evaluating the first jump, the JCVM might initiate the second jump instruction.
Therefore, this might create a deadlock between the JCVM and parallel RSM — we
consider that either JCVM should wait for the RSM to complete the verification, or
for the sake of performance the RSM might skip certain verifications. We opt for the
parallel RSM that will switch to the serial RSM mode, restricting the JCVM to pro-
ceed with next instruction until the RSM can apply the security checks. This situation
will be further explained during the discussion on the performance measurements in
the next section.

4.4 Incurred Overhead Analysis

To evaluate the performance impact of the proposed counter-measures we developed
an abstract virtual machine that takes the bytecode of each Java Card applet and
then computes the computational overhead for individual countermeasure. When
a Java application is compiled the Java compiler (javac) produces a class file as
discussed in section 2.1. The class file is Java bytecode representation, and we utilise
the javap tool that comes with Java Development Kit (JDK) as it produces the
bytecode representation of a class file in human-readable mnemonics as represented
in the JVM specification [51]. The abstract virtual machine takes the mnenomic
bytecode representation and searches for push, pop, and jump (e.g. method invokes)
opcodes. Subsequently, we calculated the number of extra instructions required to be
executed in order to implement the counter-measures discussed in previous sections.

Table 2. Performance measurement (percentage increase in computational cost)

Applications Serial RSM Parallel RSM

Wallet +29% +22%

Java Purse +30% +26%

Offline Attestation [52] +27% +23%

STCPSP [53] +39% +33%

To compute the incurred overhead as a number of instructions that are going to
be executed by an application that our countermeasures verify/validate. After this
measurement, we have associated costs based on additional instructions executed for
each JCVM instruction and calculated as an (approximate) increase in the percentage
of computational overhead and listed in table 2. Furthermore, the computational cost
of generating a hash is dependent on individual hardware configuration. The same
is also true for the execution of each of the instructions. This is the reason why we
opt for the evaluation based on the number of increased instructions rather then the
performance as it provides us a hardware agnostic cost.

For each application, the counter-measures have different computational overhead
values because they depend upon how many times certain instructions that invoke the

counter-measures are executed. Therefore, the computational overhead measurements
in table 2 can only give us a measure of how the performance is affected in individual
cases - without generalising for other applications.

4.5 Comparative Analysis

In this section, we will compare our proposed framework with the existing state-of-
the-art discussed in section 2.2 in the context of security requirements for a JCRE
(listed in section 3.2).

Table 3. Comparison between Proposed and Existing Proposals

Requirement Barbu et al. [7] Sere et al. [39] Dubreuil et al. [54] Lancia [55] RSM

Customisable Limited Yes No No Yes

Developer Independent Yes No Yes Yes Yes

Code Integrity No Yes No Yes Yes

Stack Integrity Yes No Yes No Yes

Execution Flow Evaluation No No No No Yes

Table 3 illustrates that our proposed framework in comparison to other propos-
als, in the context of our attacker capabilities and security requirements, performs
comparatively better. One thing to note is that other proposals compared in table 3
do not provide any matrix for performance degradation due to their countermeasures
— similar to one presented in sections 4.3 and 4.4

5 Conclusion

In this paper we discussed the smart card runtime environment by taking the Java
Card as a running example. The JCRE was described with its different data struc-
tures that it uses during the execution of an application. Subsequently, we discussed
various attacks that target the smart card runtime environment and most of these
attacks are based on perturbation of the values stored by the runtime environment.
These perturbations are called fault injection, which was defined and mapped to an
adversary’s capability in this paper. Based on these recent attacks on the smart card
runtime environment, we proposed an architecture that includes the provision of a
RSM. We also proposed three counter-measures and provided the computational cost
imposed by them. The overall protection framework is then compared with the ex-
isting frameworks and we showed that our proposal provides comparatively a better
protection. No doubt, counter-measures that do not change the core architecture the
Java virtual machine, will almost always incur extra computational cost. Therefore,
we concluded in this paper that a better way forward would be to change the archi-
tecture of the Java virtual machine. Finally, in the context of this paper we showed
that current architecture can be hardened at the reasonable cost of a computational
penalty.

References

1. R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,” in Se-
curity Protocols, B. Christianson, B. Crispo, M. Lomas, and M. Roe, Eds. Springer,
1998, vol. 1361, pp. 125–136.

2. P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in CRYPTO ’99:
Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology. London, UK: Springer-Verlag, 1999, pp. 388–397.

3. D. Sauveron, “Multiapplication Smart Card: Towards an Open Smart Card?” Inf. Secur.
Tech. Rep., vol. 14, no. 2, pp. 70–78, 2009.

4. R. N. Akram and K. Markantonakis, “Smart Cards: State-of-the-Art to Future Di-
rections, Invited Paper,” in IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT 2013), C. Douligeris and D. Serpanos, Eds. Athens,
Greece: IEEE CS, December 2013.

5. K. Markantonakis, K. Mayes, D. Sauveron, and I. Askoxylakis, “Overview of security
threats for smart cards in the public transport industry,” in Proceedings of the 2008
IEEE International Conference on e-Business Engineering. IEEE CS , 2008.

6. E. Vétillard and A. Ferrari, “Combined Attacks and Countermeasures,” in Smart Card
Research and Advanced Application, 9th IFIP International Conference, CARDIS 2010,
ser. LNCS, D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny, Eds., 2010.

7. G. Barbu, H. Thiebeauld, and V. Guerin, “Attacks on Java Card 3.0 Combining Fault
and Logical Attacks,” in Smart Card Research and Advanced Application, 9th IFIP
WG 8.8/11.2 International Conference, CARDIS 2010, ser. LNCS, D. Gollmann, J.-L.
Lanet, and J. Iguchi-Cartigny, Eds., vol. 6035/2010, 2010, pp. 148–163.

8. S. Chaumette and D. Sauveron, “An Efficient and Simple Way to Test the Security of
Java Cards,” in Security in Information Systems, E. Fernández-Medina, J. C. H. Castro,
and L. J. G. Castro, Eds. INSTICC Press, 2005, pp. 331–341.

9. Java Card Platform Specification, Oracle Std. v3.0.1, May 2009.

10. Java Card Platform Specification, Sun Microsystem Inc Std. v2.2.2, March 2006.

11. G. Barthe, G. Dufay, L. Jakubiec, B. P. Serpette, and S. a. M. d. Sousa, “A Formal
Executable Semantics of the JavaCard Platform,” in Proceedings of the 10th European
Symposium on Programming Languages and Systems, ser. ESOP ’01. London, UK:
Springer-Verlag, 2001, pp. 302–319.

12. P. H. Hartel and L. Moreau, “Formalizing the safety of Java, the Java virtual machine,
and Java card,” ACM Comput. Surv., vol. 33, no. 4, pp. 517–558, 2001.

13. G. Barthe, G. Dufay, L. Jakubiec, and a. M. d. Sousa, Sim “A Formal Correspondence
between Offensive and Defensive JavaCard Virtual Machines,” in VMCAI ’02: Revised
Papers from the Third International Workshop on Verification, Model Checking, and
Abstract Interpretation. London, UK: Springer-Verlag, 2002, pp. 32–45.

14. G. Barthe and S. Stratulat, “Validation of the JavaCard Platform with Implicit Induc-
tion Techniques,” in RTA, 2003, pp. 337–351.

15. M. Éluard, T. P. Jensen, and E. Denney, “An Operational Semantics of the Java
Card Firewall,” in Proceedings of the International Conference on Research in Smart
Cards: Smart Card Programming and Security, ser. E-SMART ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 95–110.

16. M. Éluard and T. Jensen, “Secure Object Flow Analysis for Java Card,” in CARDIS’02:
Proceedings of the 5th conference on Smart Card Research and Advanced Application
Conference. Berkeley, CA, USA: USENIX Association, 2002, pp. 11–11.

17. J. L. Lanet and A. Requet, “Formal Proof of Smart Card Applets Correctness,”
in Proceedings of the The International Conference on Smart Card Research and
Applications. London, UK: Springer-Verlag, 2000, pp. 85–97.

18. H. Meijer and E. Poll, “Towards a Full Formal Specification of the JavaCard API,”
in Smart Card Programming and Security, ser. LNCS, I. Attali and T. Jensen, Eds.
Springer Berlin / Heidelberg, 2001, vol. 2140, pp. 165–178, 10.1007/3-540-45418-7 14.

19. V. Almaliotis, A. Loizidis, P. Katsaros, P. Louridas, and D. Spinellis, “Static Program
Analysis for Java Card Applets,” in CARDIS ’08: Proceedings of the 8th IFIP WG
8.8/11.2 international conference on Smart Card Research and Advanced Applications.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 17–31.

20. D. A. Basin, S. Friedrich, J. Posegga, and H. Vogt, “Java Bytecode Verification by Model
Checking,” in CAV ’99: Proceedings of the 11th International Conference on Computer
Aided Verification. London, UK: Springer-Verlag, 1999, pp. 491–494.

21. X. Leroy, “On-Card Bytecode Verification for Java Card,” in E-SMART ’01: Proceedings
of the International Conference on Research in Smart Cards. UK, Springer, 2001.

22. D. A. Basin, S. Friedrich, and M. Gawkowski, “Verified Bytecode Model Checkers,” in
TPHOLs ’02: Proceedings of the 15th International Conference on Theorem Proving in
Higher Order Logics. London, UK: Springer-Verlag, 2002, pp. 47–66.

23. X. Leroy, “Bytecode verification on Java smart cards,” Softw. Pract. Exper., vol. 32,
no. 4, pp. 319–340, 2002.

24. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
in Proceedings of the 17th Annual International Cryptology Conference on Advances in
Cryptology. London, UK: Springer-Verlag, 1997, pp. 513–525.

25. T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of power analysis
attacks on smartcards,” in Proceedings of the USENIX Workshop on Smartcard
Technology on USENIX Workshop on Smartcard Technology. Berkeley, CA, USA:
USENIX Association, 1999, pp. 17–17.

26. S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction Attacks,” in Revised
Papers from the 4th International Workshop on Cryptographic Hardware and Embedded
Systems, ser. CHES ’02. London, UK, UK: Springer-Verlag, 2003, pp. 2–12.

27. J.-J. Quisquater and D. Samyde, Eddy current for Magnetic Analysis with Active Sen-
sor. Springer, 2002.

28. C. Aumller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault Attacks on
RSA with CRT: Concrete Results and Practical Countermeasures,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, Springer, 2003, vol. 2523, pp. 81–95.

29. “Joint Interpretation Library - Application of Attack Potential to Smartcards,” Online,
Tech. Rep., Apirl 2006.

30. O. Vertanen, “Java Type Confusion and Fault Attacks,” in Fault Diagnosis and Toler-
ance in Cryptography, ser. LNCS, L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert,
Eds. Springer Berlin / Heidelberg, 2006, vol. 4236, pp. 237–251, 10.1007/11889700 21.

31. A. Lemarechal, “Introduction to fault attacks on smartcard,” in On-Line Testing Sym-
posium, 2005. IOLTS 2005. 11th IEEE International, july 2005, p. 116.

32. W. Mostowski and E. Poll, “Malicious Code on Java Card Smartcards: Attacks and
Countermeasures,” in CARDIS ’08. Berlin, Heidelberg: Springer-Verlag, 2008.

33. J. Hogenboom and W. Mostowski, “Full Memory Read Attack on a Java Card,” in 4th
Benelux Workshop on Information and System Security, O. Pereira, J.-J. Quisquater,
and F.-X. Standaert, Eds. Belgium: Springer, November 2009.

34. J.-L. Lanet and J. Iguchi-Cartigny, “Developing a Trojan applet in a Smart Card ,”
Journal in Computer Virology, vol. 6, no. 1, 2009.

35. A. A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, “Automatic Detection of Fault At-
tack and Countermeasures,” in Proceedings of the 4th Workshop on Embedded Systems
Security, ser. WESS ’09. New York, NY, USA: ACM, 2009, pp. 71–77.

36. G. Barbu, G. Duc, and P. Hoogvorst, “Java Card Operand Stack: Fault Attacks, Com-
bined Attacks and Countermeasures,” in The tenth Smart Card Research and Advanced
Application IFIP Conference (CARDIS2011), E. Prouff, Ed. Belgium, September 2011.

37. G. Barbu and H. Thiebeauld, “Synchronized Attacks on Multithreaded Systems - Appli-
cation to Java Card 3.0-,” in The tenth Smart Card Research and Advanced Application
IFIP Conference (CARDIS2011), ser. LNCS, E. Prouff, Ed. Springer, September 2011.

38. G. Bouffard, J. Iguchi-Cartigny, and J.-L. Lanet, “Combined Software and Hardware
Attacks on the Java Card Control Flow,” in The tenth Smart Card Research and Ad-
vanced Application IFIP Conference, E. Prouff, Ed. Belgium: Springer, September
2011.

39. A. A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, “Evaluation of Countermeasures Against
Fault Attacks on Smart Cards,” in International Journal of Security and its Applica-
tions, vol. 5, no. 2, April 2011.

40. O. Derouet. (2007, September) Secure Smartcard Design Againist Laser Fault. (Invited
Speaker) In 4th Workshop on Fault Diagnosis and Tolerance in Cryptography (FDRC
2007). IEEE-CS. Vienna, Austria.

41. S.-K. Kim, T. H. Kim, D.-G. Han, and S. Hong, “An efficient CRT-RSA algorithm
secure against power and fault attacks,” Journal of Systems and Software, vol. 84,
no. 10, pp. 1660–1669, 2011.

42. S. Liu, B. King, and W. Wang, “A CRT-RSA Algorithm Secure against Hardware
Fault Attacks,” 2006 2nd IEEE International Symposium on Dependable Autonomic
and Secure Computing, pp. 51–60, 2006.

43. E. Trichina and R. Korkikyan, “Multi Fault Laser Attacks on Protected CRT-RSA,”
2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 75–86, 2010.

44. S. Zhou, B. R. Childers, and N. Kumar, “Profile Guided Management of Code Parti-
tions for Embedded Systems,” in DATE ’04: Proceedings of the conference on Design,
automation and test in Europe. Washington, DC, USA: IEEE CS, 2004, p. 21396.

45. T. Zhang, S. Pande, and A. Valverde, “Tamper-resistant Whole Program Partitioning,”
in LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference on Language, com-
piler, and tool for embedded systems. New York, NY, USA: ACM, 2003, pp. 209–219.

46. X. Zhuang, T. Zhang, H.-H. S. Lee, and S. Pande, “Hardware Assisted Control Flow
Obfuscation for Embedded Processors,” in CASES ’04, USA: ACM, 2004.

47. G. Bouffard, J.-L. Lanet, J.-B. Machemie, J.-Y. Poichotte, and J.-P. Wary, “Evaluation
of the Ability to Transform SIM Application into Hostile Application,” in the Tenth
Smart Card Research and Advanced Application Conference (CARDIS 2011, ser. LNCS,
E. Prouff, Ed. Leuven, Belgium: Springer, September 2011.

48. J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, “Identification and Verification of
Security Relevant Functions in Embedded Systems Based on Source Code Annotations
and Assertions,” in Information Security Theory and Practices. Security and Privacy of
Pervasive Systems and Smart Devices, ser. LNCS, P. Samarati, M. Tunstall, J. Posegga,
K. Markantonakis, and D. Sauveron, Eds. Springer, 2010, vol. 6033, pp. 316–323.

49. A.-A.-K. Séré, J. Iguchi-Cartigny, and J.-L. Lanet, “Checking the Paths to Identify
Mutant Application on Embedded Systems,” in Future Generation Information Tech-
nology - Second International Conference (FGIT 2010), ser. LNCS, T.-H. Kim, Y.-H.
Lee, B. H. Kang, and D. Slezak, Eds., Korea,: Springer, December 2010, pp. 459–468.

50. W. Rankl and W. Effing, Smart Card Handbook, 3rd ed. New York, NY, USA: John
Wiley & Sons, Inc., 2003.

51. T. Lindholm and F. Yellin, The Java Virtual Machine Specification, 2nd ed. Addison-
Wesley Longman, Amsterdam, April 1999.

52. , “Remote Attestation Mechanism for User Centric Smart Cards using Pseudorandom
Number Generators,” in 5th International Conference on Information and Communi-
cations Security, S. Qing and J. Zhou, Eds. Beijing, China: Springer, November 2013.

53. ——, “A Secure and Trusted Channel Protocol for the User Centric Smart Card Own-
ership Model,” in 12th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications. Australia: IEEE CS, July 2013.

54. J. Dubreuil, G. Bouffard, J. Lanet, and J. Cartigny, “Type Classification against Fault
Enabled Mutant in Java Based Smart Card,” in Availability, Reliability and Security
(ARES), 2012 Seventh International Conference on, Aug 2012, pp. 551–556.

55. J. Lancia, “Java Card Combined Attacks with Localization-Agnostic Fault Injection,”
in Smart Card Research and Advanced Applications, ser. LNCS, S. Mangard, Ed.
Springer Berlin Heidelberg, 2013, vol. 7771, pp. 31–45.

	Enhancing Java Runtime Environment for Smart Cards Against Runtime Attacks

