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Abstract

The Lesser Antilles arc isnusualin erupting high MgO lavas relative tanyother
volcanic arcs. This provides a rare opportunity to study early fractionating phases,
such as olivine, with the aim ofming insight into the early petrogenesis of these
lavas as well as shallow level magmatic interactions and storage. Olivine,
plagioclase and clinopyrore crystals were studied from tieentral Guadeloupe

and Dominica) and southern (St. Vincent, Bequratite Martinique, Carriacou and
Grenada) islands of the arc in order to assess how deep (melting and source
processes) and shallodractional crystallisationgrustal contamination and magma

mixing) processes varied along arc strike.

Analysis of mineraktrystak from the Lesser Antilles bahown significant variation
in both textural and chemical signatures in crystal cargoes from the same lava.
Multiple populations are observed in host lavas along the arc.

Geothermobarometric modelling showed the sewtharc clinopyroxenes to have
crystallised at higher temperatures and pressures (with the exception of the Bequia
crystak) than those frorfurthernorth. High forsterite olivines (up to k) and high
anorthite plagioclases (up to & indicate water isrequired in the melts,
particularly in the south of the arc. Bimodal CaO,;@ Cr, Y, Yb and in some
cases Sc contents in the olivines suggest the disaggregation of cunauiali¢hs

before assimilation o the host melts. Assimilation and magma nuxare also
apparent in the plagioclasgystak, as are varying rates of ascent through the
magmatic plumbing systeriffects ofshallow level degassing or decompressioe

visible in the plagioclases aridese processeuld also be a suitable method fo

generating bimodal forsterite contents in the olivines from one Guadeloupe host lava.

Processes identified from the mineral phases show that petrogenesis in the Lesser
Antilles is complex and varies along arc strike, with the southern islands potentially
requiring more water in the melts and deeper crystallisation depths. In general,
deeper processes are more prevalent to the south of the arc, with shallower processes

dominating the nortland centre
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crystallisation of assemblages as shown in the legend. The LCO are outlined.in.rdd.6
Figure 33 7 Ch a n g e s®Oiwinen thd avevagerméneral assemblage calculated during
least squares fractional crystallisation modelling is removed from the CA13 whole rock

U*%0. This trend is Shown by @ grey lin€............coeeveveveueeeeeeeceeeeeeee e 118
Figure 338 Variation in whole rocki®O0 c a | c u | a t'% df thk respentivé diivne U
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Figure 339 Results of adding sediment compositions from Carpentier et al. (2009) to the
DMM composition of Workman and Hart (2005) usthg increment method. Unit 3 from

Site 144 is a black shale unit which has been suggested to be responsible for anomalous Pb
isotopic results for the Lesser Antilles in the literature (Carpeettial, 2008, Carpentiest

al., 2009). Tick marks show 5%drements. Red outlines are around the LCQ......... 120

Figure 340 Variations in olivingi*®0 with subducted sediment and crust addit®wlid

lines represent mixing with the Davidson (1985) mantle endmember, dashed lines represent
mixing with the Davidson (1985) MORB endmember. Crust composition [1] also from
Davidson (1985), [2] subducted sediment and crust compositions from Thirlwall et al.
(1996). Lower graph is a close up of the upper graph..........ccccoeeviiiiiccceiiiiieenene, 122

Figure 341 %0 compared to Li/Yb ratios in the olivines. The LCO are outlined in. e

Figure 342 0?0 contents plotted against CaO concentrations in the olivines. The LCO are
outlined in red, with the dashed line representing 0.11 wt@ (@@= upper limit of the

Figure 343 CaO contents and forsterite contents of the LCO and the higher CaO Lesser
Antilles olivines compared to mantle olivine data from Kamenetsky et al. (2006), De Hoog
et al. (2010) and Hano et al. (2004). The dashed line represents a CaO content of 0.11 wt%.

Figure 344 Cr concentrations and CaO contents of the LCO and mantle olivine .dst28
Figure 345 CaO and AIO; contents of th& CO, the noALCO and the De Hoog et al.

(2010) mantle Xenolith OlIVINES..........cooiiiiiiii e 129
Figure 346 CaO and forsterite contents of the Parkinson et al. (2003) olivines compared to
the LCO, showing the lower forsterite olivines of Parkinsioal.g(2003) having higher CaO
contents more comparable to those in thelnBO............cccccviiiiiiiieeniiie e 130
Figure 347 Ni and CaO concentrations in the Hirano et al. (2004) mantle xenocryst olivines
compared to the LCO. The Hirano et al. (2004) olivines show higher Ni contents at a given

CaO content than many of the LCQ........ccoiiii e 131
Figure 348 Graphs shoiwg how the cumulate xenolith olivines and olivines in the host
lavas containing the cumulate xenoliths compare to the LCO and non.LCO.......... 136

Figure 349 CaO and forsterite contents of the LCO and the Kamenetsky et al. (2006)
olivines, showing that the LCO have comparable CaO contents but lower forsterite contents.

Figure 350 Cr concentrations and forsterite contents in the &=atsky et al. (2006)

olivines and the LCO. The Kamenetsky et al. (2006) olivines show higher Cr concentrations
at a given forsterite content than the LCO........ccoooiiiiii oo 138
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Figure 351 CaO and forsterite contents of the LCO andin@@® comparedo the Walter

(1998) OlIVINES.....eeeeiieeeiiiie et eeeee e e e et erer e e e e e e e e e bbb e e e e e e emmmr e e e e e e e e anne 140
Figure 352 CaO and forsterite contents in the Hellebrand et al. (2002) olivines compared to
the LCO and noth.CO. The Hellebrand et al. (2002) olivines have comparable CaO contents
L(0 11 L= 1K PSSRSO 141
Figure 353 Al,O; contents in the Hellebrand et al. (2002) olivines compared to the LCO,
showing that the Hellebrand et al. (2002) olivines are comparable to the LCO in terms of
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Figure 354 Comparison of the LCO with boninite olivines (SOBOLEV &

DANYUSHEVSKY, 1994).....cciiiiiiiiiiiiiiiiie e ceeeteee e e e e e st aa e s emmte e e e e e s s annnsnnnneeeaens 143
Figure 355 Cr concentrations in the LCO and the boninite olivines analysed by Sobolev and
DanYUSNEVSKY (1994).......cci ittt eeer e e e emme e 143
Figure 356 Sr/Y ratios of the host lavas compared to the percentage of analysed olivine
crystals from each host lava that are classified as LCO.................oorieeeiiinnnnnnns 145
Figure 357 Overall summary of olivine petrogenesis in the Lesser Antilles. LEO ar
represented by pale green heXagOmS.........uuu i eeer e 149

Figure 41 Plagioclase phenocrysts photographs taken from the thick section of GU25, all
photographs are shown in plane polarised light. Laser pits are visible as small circles, as
highlighted in A. A shows the subhedral nature of the plagioclases and shows evidence of
disequilibrium features, such as the sieve texture present within the phenocrysts. B shows
further alteration in the core of the Crystal.............ovviiiiee e, 160
Figure 42 Analysed plagioclase phenocrysts (identifiable by the circular laser pits) in SV19
(A and B) and SV20 (C and D) under plane polarised light. A shows extensive
disequilibrium features in the core of a crystal in SV19. B shows a second SV19 phenocryst
with much less evidence of disequilibrium in the core of the crystal but some stepwise
corrosion is apparent around the rim. The darker brown colour present is the ablation blanket
resulting from the LAICP-MS analysis. C and D show examples of spot locatidren

multiple analyses are undertaken in a single crystal. Both C and D show plagioclases with a
different pattern of disequilibrium to that seen in the SV19 crystals. The cores are relatively
fresh, with intermediate bands of extensive sieve texturirighndre adjacent to unaltered

Figure 43 Plagioclase phenocrysts in plane polarised light from BQ19. A shows a relatively
fresh crystal with slight corrosion around the margins of the crystal. B shows a plagioclase
phenocyst with a sieve texture apparent, particularly around the margins of the crystal. The
crystal in the top right of the field represents the largest extent of disequilibrium features
seen in the Bequia thin SECHONS. ... 162
Figure 44 Analysed plagioclase crystals shown on arAnOr ternary plot by island.163
Figure 45 Anorthite contents in all the analysed plagioclases. The y axis is ordered with
host lavasrom the centre of the arc at the top and host lavas from the south at the bottom of
the axis. Each island is shown as a different colour and is separated by a dashedlé¥.
Figure 46 Sr concentrations against anorthite contétthe analysed plagioclase crystals.
Two GU25 crystals are not shown but lie a,2eamd An; with Sr concentrations of 1678

and 1694 PPM rESPECHVELY........uuiiiiiiiieeii i ceeee e ee e 167
Figure 47 K,O and Rb concentrations versus anorthite contents. Negatives appear on

the Rb graph as concentrations were so low as to approach detection limits forl®ie-LA
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Figure 48 Ratios of the interquartile ranges of concentrations for the measured elements
between those crystalsti>Ang, and all the plagioclase crystals.............cccccvvvvvvvieen. 170
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Figure 49 Ba, Pb, La and Eu concentrations versus anorthite content in the analysed

plagioclases in crystal mounts, thick sections and resin blacks.................ceveeernnn. 173
Figure 410 Sm, Gd and Y concentrations in the analysed plagioclases, with Y representing
the HREE contents of the Lesser Antilles plagioclases.................o o eeeevvvvvvivviinnnnn, 176
Figure 411 Eu anomalies in the analysed plagioclases............ccccooocimmniiiiiiineenenn. 177

Figure 412 TiO, contents versus anorthite contents in the analysed plagioclases..178
Figure 413 MgO and Fgs concentrations in the Lesser Antilles plagioclases........ 180
Figure 414 Anorthite variation across @tals from SV20 (A) and one crystal from BQ19

(B). The laser sites are colour graded with the highest An contents being the strongest
colours and the lowest An contents being the weakest shades. It can be seen that the
anorthite contents do not vary smdgtparticularly in the SV20 crystals. K/Ti was used as
an indication of fluid involvement, with K being fluid mobile and Ti fluid immobile..183
Figure 415 An contents of the analysed plagioclases plotted against the Ca/K+Na#Ca rat
for the whole rocks from which they originated. Samples labelled with TS are thick section
analyses, RB are resin block analyses and the remainder are crystal mounted plagioclases.
The Guadeloupe samples originate from the centre of the arc and#iec8nt and Bequia
samples are from the south of the arc. The regression line shows a weak positive trend
between the sampled plagioclases and the whole rock composition, althouglvahesR
suggests this may not be statistically robuSL.................ooooiiieeeiiii e, 188
Figure 416 Petrographic evidence of shallow level degassing and/or decompression in
crystal BQ191. The blue box shows the location of the close up shown in the right hand
photograph. Resorption of the crystal edges and fine sieve textanrgecseen in more

detail in the larger SCale IMaAgE...........oiiiiiiiii e 190
Figure 417 Variations in anorthite content between cores and rims of crystals in the thick
section analyses. The dashed line represents AfdArL.0, analyses plotting loav this

line have lower anorthite contents than the cores of the respective crystals.......... 192
Figure 418 Photograph of SV2B showing fine sieve texturing and breakdown and
resorption Of the CryStal EAQE. .......uuii i 192
Figure 419 Results from Putirka (2008) modelling using the analysed plagioclase crystals in
crystal mounts, thick section and resin bIOCKS................oooviiiieeeeciciicceee e 195
Figure 420 Putirka (2008) modelling fohe thick section analyses, separated by population.

Figure 421 Methods of generating compositionally different cores and rims in plagioclases
through magmatic plumbing. Modified from Davidson et al. (2QQ7)............ccvvvvvvnnn 198
Figure 422 Heavily sieved zones seen in two populations from differing lavas from St.
Vincent. Photograph A shows S\:B3and does not exhibit a fresher core region.

Photograph B shows SVZ2Z)which has fresher material preserved in the abftelst the

rim material appears fresher there is still evidence of some resorption of the crystal edges,
possibly caused by shallow level degassing/decompression................eveeereeeeennn. 199
Figure 423 Anorthite contents in both populations from SV20. S¥29the population

thought to be antecrysts whereas SW2@ay originate from the host melt. The upper graph
shows the absolute anorthite contents in the core and rim analyses. The lower graph shows
the anorthite contents relative to the core value of eaatal..............oooeviviiiivieeennee. 200
Figure 424 Concentrations of a compatible, LILE, HFSE and REE element across the
analysed populations in SV20. The grey rectangle shows the approximate potential point of

entrainment during growth of the crystals...........cccooe oo, 201
Figure 425 Examples of synneusis in SV20 (A) and BQ19 (B), possibly as a result of self
convective magma mixing in shallow magma chambers prior to eruption.............. 204
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Figure 426 GU253 which is in populatiolsU25b. The core shows coarse sieving (likely
to be a result of decompression) followed by three finely sieved zones which may result
10T 0 a0 F=To a0 =T 0 01011 o TSR 205
Figure 427 Anorthite content (solid symbols) and Sr concentration (halwmbols)

variation across two crystals from population Bl @vhich is thought to show evidence of
magma mixing. The dashed lines on the photographs and graph represent the locations of the
sieve texturing numbered in the photographs.............ccvvvviiiieeeieeee e 206
Figure 428 Whole rock graphs for selected elements and element ratios against MgO
content to show fractional crystallisation of olivine, clinopyroxene and plagioclase in the
lavas from which the analysed plagioclases originate. Hollow grey dgmépresent whole
rock analyses from the same islands that the plagioclases were sampled from (squares:
Guadeloupe, diamonds: St. Vincent and triangles: Bequia; Thirlwall, unpublished data).

Individual sample legends are as shown in the upper left graph................ooccee. 209
Figure 429 La/Y ratios of the thick section plagioclase analyses versus % distance from the
FIM OF tNE CIYSTAIS.... .. 211

Figure 430 Observed analysed plagioclase compositions plotted against the whkole roc

(WR) CaO/NaO ratios from which they were sampled. Partition coefficients used are from
Sisson and Grove (1993). The dashed lines represent plagioclases in equilibrium using the
published K C*Nafor each water content, at a given whole rock Ca@Naio. ............ 213

Figure 431 K/Y and Ba/Y ratios in the analysed plagioclases against anorthite catbfht.
Figure 432 Whole rock (WR) CaO/N® and AO4/SiO, ratios (Thirlwall, unpublished

data) compared to the analysed plagioclase anorthite compositions. The legend for the lower

graph is as shown in the upper diagram............cccuvviiiiieeeiiie e 216
Figure 433 Variations in anorthite content relative to theecanalysis in the plagioclase
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Figure 434 Variations in modelled temperature with anorthite content using the Putirka
(2008) and Bindeman et al. (2008) models. The Bindeman et al. (2008) model is not
designd for use above Ay, illustrated by the grey rectangle and is shown by the dashed
= PR 218
Figure 435 An contents (solid symbols) and Sr concentrations (hollow symbols) ratioed to
the core analyses for both GU25 populationsragid&io distance from the rim.............. 220
Figure 436 La concentrations with % distance from rim in the GU25 thick section analyses.

Figure 437 Concentrations of Ba and Sr in the analysed plagioclases raftbetiewvhole

rock concentrations compared to analysed plagioclase anorthite contents. The dashed black
lines represent the partition coefficients calculated using Blundy and Wood (1991), with the
solid black line using temperatures calculated from th&/sed plagioclases using the

Bindeman et al. (1998) equation. The grey ellipse shows a group of plagioclases with
unexpectedly low [Sgl.{[Srlwr at a given anorthite content.................occeevveeeeeeee 224

Figure 438 Lesser Antilles plagioclase data comguhto the partition coefficient trend of

Ren et al. (2003), represented by the dashed line, showing a more suitable gradient than that
seen using the Blundy and Wood (1991) partition coefficient equations................. 227

Figure 439 [Sr.d[Sr]wr calculated for the analysed plagioclases against anorthite content.
The dashed lines represent the Blundy and Wood (1991 pK500°C and 1500°C.

Annotations show the effect of possible processes affecting the system which may move the
analysed ystals away from the Blundy and Wood (1991) lines. The coloured arrows and
matching processes in the text box to the right indicate the direction in which the
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plagioclases would be shifted as a result of the processes discussed below, the length of the
aImrowWs Dears NO SIGNIfICANCE..........cceiiiii e e e 228

Figure 440 Schematic representation of processes occurring throughout the Lesser Antilles
arc observed in analysed plagioclases. Temperature estimates are calculated from Putrika
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Figure 51 Clinopyroxenes shown in PPL from GU20 (left hand side photographs) and
GU25 (right hand side photograph).............ccciviiiiiiieee e 242
Figure 52 Crystal GU251 shown in thick section in PPL showing zoning. The circular
structues are the pits ablated during lBP-MS analysiS..........ccccccvvvvviiiiiimnnneeeeeeennn. 242
Figure 53 Fine scale inclusions within a clinopyroxene from SV20 seen in PPL. Again, the
circles present show the location of the-l@P-MS spots...............ccoooviiiiiiiieeeicciccn, 243
Figure 54 Glomerocryst in SV3, shown in PPL in the left hand photograph and XPL in the
right hand PhotOgraph.........ooiiii e e 243

Figure 55 Clinopyroxene BQ14 (left hand side) and another unanalysed crystal from

BQ19 (right hand sidg)hotographed in PPL. Zoning is apparent in BQ1@s are the LA
ICP-MS sites). Fine scale inclusions are seen in the clinopyroxene bordering the plagioclase
crystal in the centre of the right hand side photograph...........ccccoovvvvieeeiiiiiieenn, 244
Figure 56 Glomerocryst in CU28 in PPL (left hand side) and XPL (right hand side). The
clinopyroxenes are small, with the overall size of the glomerocryst being less than 1 mm
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Figure 58 Clinopyroxene crystal from 468 photographed in PPL (left hand side) and XPL
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Figure 510 Mg# numbers of the clinopyroxene crystals, including crystaintehick

section and resin block analyses. Islands are ordered by latitude on the y axis. Each island is

Shown as a differ@Nt COIOUL...........uiiiiiiiiee e 248
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Figure 523 REE profiles of the clinopyroxes. Each graph shows a different island, with

the shaded areas representing the range in concentrations normalised to the values of
Nakamura (1974) with individual dashed lines representing discrete clinopyroxene analyses.
The two CAS3 crystals shown by sblines on the Carriacou graph exhibit different trends to
the remaining CA3 ClINOPYIOXENES...........uiiiiiiiiiee et ammne e 265
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Figure 537 La concentrations in clinopyroxenes from BQ19. Blue diamonds are analyses in
between the core and the rims in BRI With rim analyses from this crystal being light

blue. Orange diamonds are analyses intermediate between core and rim frof, Bqth9

light orange being rims. Dark green diamond is a B®&8re analysis with light green
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Figure 538 Dy/Yhy and La/Yly ratios of the melt compositions back calculated using the
partition coefficients of Wood and Blund¥997) and Wood and Blundy (2002). The upper
graph shows all the compositions whilst the lower shows more detail of the lowerLa/Yb
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Figure 539 Comparison of the average La{Ydnd Dy/Yk, ratios of the back calculated
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1 Introduction

1.1 Brief Overview of Arcs

Volcanic arcs form as a consequence of subduction where one plate is subducted
beneath another. As both plates involved in the formation of the Lesser Antilles arc
are oceanic, it is deemed an intrgeanic subduction zone. Subduction is important
as a melganism of recycling material back into the mantle, creating heterogeneities
in the upper mantléAnderson, 2006Tatsumi & Eggins, 1995Tatsumi & Kogiso,
2003. Heterogeneities result from the addition of subducted components to the
mantle. Such additions include the downgoing crust and sediments overlying this
(Tatsumi & Kogiso, 2008 In addition, the downgoing lithosphere is cold and thus
helps to encourage convection in the maMacdonaldet al, 200Q. Eruption of

arc lavas also builds continental cr@Batsumi & Eggins, 1995Tatsumi & Kogiso,
2003.

Macdonald et al(2000 present an overview of published arc magmagenesis models
(Arculus, 1994 Pearce Peate, 1995Tatsumi & Eggins, 1995n 5 stages. Firstly,
amphibolite dehydrates in the downgoing slab at arourgd5m depth, causing the
transfer of supercritical fluid phases to the overlying mantle wétltfee melting of
sedimentary material on the slab). This causes amphibole to form due to the hydrous
conditions now present in the wedge. Peridotite bearing amphibole is then subducted
further until 110 km, where the amphibole is no longer stable. The inygrioases

are released and transferred to the mantle wedge. Partial melting results from the
lowering of the solidus caused by the introduction of fluids and volatiles. Diapirism
occurs with the lower density melts rising through the denser wedge material.
Melting continues through adiabatic decompression and the diapirs reaching hotter
mantle away from the cold slab. The subduction of the slab creates a drag force,
which pulls the less denser diapir material back towards the slab via convection.
Resultingvolcanism occurs above the shallow corner zone of the wedge, where the
partial melts collec(Macdonaldet al, 200Q.

Figure 1-1 shows an example of arc structure, via a ceastion of the Lesser
Antilles arc in the vicinity of St. Vincent and Barbad@gestbrooket al, 1989.
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1.1.1 General Characteristics of Arc Magmas

There are three principal common features of arc magktasdonaldet al, 2000,
with each arc then having its own individual characteristics, Tatsumi and Eggins

(1995 commented that each arc system is different.

1 High water contents
1 High oxidation states
91 LILE enrichment compared to LREE, HFSE and Th contents

Pichavant and Macdonal@003 suggested in general there are up to four

components to primitive basalts generated in arc settings:
The mantle wedge
Aqueous fluid

Subducted sediment

A =_ =4 =4

Shallow crustal sediment

Compaents thought to be contributing to the Lesser Antilles arc are discussed in

sectionl.5.

1.2 General Geology of the Lesser Antilles Arc

The Lesser Antilles arc is antiaoceanic arc formed by the westward subduction of
the North American plate beneath the Caribbean platarrently at a rate of
approximately 2cityear, although previously this figure was thought to be 4 cm/year
(Leat & Larter, 2003 Macdonaldet al, 200Q. This is a relatively low figure in
terms of global arc convergence rates, which have been shown to extend up to 24
cm/year in the northern Tongéermadec ar¢Leat & Larter, 2003 Leat and Larter
(2003 suggest that rates of between 5 and 13 cm/year are more convertranal.
Lesser Antilles arc also shows low rates of magma production compared to other
convergent zoes, such as Central America, suggesting that the slow convergence
rate of the arc as a possible ca(dé&adge, 1981 The rate of convergence is four
times higher in Central America compared to the Lesser Antilles, with production

rates estimated to be an order of magnitude greater than in the Lesser Antilles



(Wadge, 1981 The active part of the Lesser Antilles extend from Saba in the north

to Grenada in the soutkigurel-2).
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Figure 1-2 Map showing the Lesser Antilles, modified from Carpentier et al(2008 and Van
Soest et al(2002. The islands coloured in beige are ones from which data were obtained. The
squares to the left of the name of the islands indicate which mineral phases were analysed from
that island. Purple pentagons indicate the location of the sediment data dsted in Carpentier et

al. (2008.

1.2.1 Geological History

Subduction began when the Caribbean plate moved eastwards from its original
location in the Pacific and collided with the North American and South American
plates. This resulted in the formation of the now extinct Aves Ridge betweg® 88

Ma (Bouysse, 198Bouysseet al, 1999 Macdonaldet al, 200Q Neill et al, 2017).
Following this, in the Palaeocene to early Eocene, volcanism stopped and the
Grenada Basin opened, as described by Meill. (2011 and references therein.
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Rollback of the subduction zone occurred, shifting the volcanic front to form the

Lesser Antilles arc in its current locati@eill et al, 2017).

Bifurcation of the Arc

During the Miocene, there was hift in volcanism westwards, as noted by
Westbrook et al.(1984 andreferences therein. Bifurcation of the arc occurred at 9

Ma (Baker, 1984, originating at Martinique and affecting the islands to the north
(Bouysseet al, 1990. The two branches of the arc havem@amed as follows: the
‘Limestone Caribbees' are those now inactive islands (and parts of islands) to the east
and the 'Volcanic Caribbees' are located on the current front of active volcanism to
the west(Bouysse, 1984 Baker(1984) provides date ranges for the activity of each
branch of the arc, with the Limestone Caribbees being active betwekh & and

the Volcanic Caribbees commencing volcanism from 7.7 Ma and continuing until the

present day. The southern part of the acligen active since the Eocene.

1.2.2 Strike and Dip of the Benioff Zone

Wadge and Shephe(i984 conducted a study based on earthquake seismicity in the
Lesser Antilles region and concluded that both the strike and dip of the Benioff zone
beneath the arc changes from north to south. From Martinique northwards, the
Benioff zone dips at 660° and trends NNW. The southern section from St. Lucia
and southwards shows a dip of-85°, however at the southernmost reaches of the
arc, the Benioffzone shows a vertical dip (the change in dip occurring beneath
GrenadaWadge & Shepherd, 1984The zone trends NNE in the southern section.

1.2.3 Fore-arc Region and Accretionary Prism

The Lesser Antilles ans accretionary, with material being built up since the Eocene
(Speed & Larue, 1982Vestbrooket al, 1988, although most modern arcs are xion
accretionary(Leat & Larter, 2008 The dimensions of the fo@c change from

north to south, both in width and depth. To the north, the sequence is both narrower
and deeper, being 8 km de@phase & Bunce, 196%nd 150 km widéMacdonald

et al, 2000. In the south of the arc, the feaec is 450 km wide and hosts the

accretionary complex known as the Barbados Ri(fQarpentieret al, 2009.
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Barbados forms the surface expression of the accretionary (Maondonaldet al,

2000. The trench in the north of the arc is thought to be over 6 km deep, whereas in
the south the trench is completélied with the forearc sequence, which is up to 20

km thick (Van Soeset al, 20039).

A décollement exists between sediment being scraped off the descending slab and
being accreted and that which remains with the slab during subdPtimk &
Langmuir, 1993 In the Lesser Antilles, this occurs at a depth miuad 200 m
(Macdonaldet al, 200Q Plank & Langmuir, 1998 The material which is not being
subducted needs to be taken into consideration when modelling sediment
contribution to the parent melts, as the accreted material will have no effect on melt

compositon.

1.3 Rock Types and Cumulates

Table 1-1 shows a summary of igneous rocks found in the(&tacdorald et al,
2000. Basalts are much more dominant in the southern part of the arc than the
central and northern parts. Petrologically, the northern and central sections exhibit

more evolved lavas although some basalt is still present.

Region  Extent Rock Types
Northern Saba to Dominantly andesite, some basalt, dacite, rare
Montserrat rhyolite.

Central  Guadeloupe to Dominantly andesite, some basalt, dacite, |
St. Lucia rhyolite.

Southern St. Vincentto Dominantly basalt and basaltic andesitspme
Grenada andesite, rare dacite.

Table 1-1 Summary of rock types found in each section of the arc, with sections being based on
seismic subdivisiongMacdonald et al, 200Q Wadge & Shepherd, 198%

In addition to eruptive products, the Lesser Antiiegalso host to many cumulates,

with examples being found across the arc on every island bar Nevis and Guadeloupe
(Arculus & Wills, 1980 Macdonald et al, 200Q. The cumulates have been
extensively sidied, showing compositional and textural differen¢asculus &

Wills, 198Q Coulonet al, 1984 Parkinsoret al, 2003 Stamperet al, 2014 Tollan

et al, 2013. Minerals found in cumulates includamphibole, plagioclase,
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clinopyroxene, orthopyroxene, olivine, magnetite, biotite, quartz, ilmenite and
apatite, with proportions being changeabPfeculus & Wills, 1980 Macdonaldet
al., 2000.

1.4 Changing Geochemistry of Lavas Along Arc Strike

Brown et al.(1977) first noted the change composition of magmas along arc strike,
noting a trend of holeiitic compositions in the north of the arc, calkaline
compositions in the central section and alkaline compositions in the south of the arc.
Davidson and Wilson(2011) pointed out that once more detailed studies of
individual volcanic centres were undertaken, large ranges in magmatic composition
can also be observed at this scale, suggesting that the trend proposed by Brown et al.
(1977 is oversimplified. Nonetheless, the magmas with MgO contents of >8 wt%
MgO are exclusively observed in the south of the(Ba&vidson & Wilson, 2011

This study has analysed olivines (a mineral requiring reasonable MgO contents in the
melt) from whole rocks from Guadeloupe and Dominica, but these seenpled

from host lavas with 4 wt% MgO and 5 wt% MgO respectively. MgO contents of

olivine host lavas from the south of the arc extended up to 17 wt%.

Macdonald et al(2000 and references therein show there is relatively smooth
transition from lower KO whole rock contents at a given i@ the north of the arc

through to higher KO compositions in the south of the arc, with Macdonald et al.
(2000 specifically showing the JO contents of the Grenada lavas relative to those

seen in northern and central islands.

White and Duprg1986 report wide variations in isotopic compositions of lavas in
the Lesser Antilles. Th&’Srf°Sr and'**Nd/A*/Nd ratios measured by White and
Dupre (1986 were also compared by the authors to oceanic island values and were
shown to overlap with oceanic island basaltthite and Duprg1986 deemed the
signatures of the Lesser Antilles lavas to be "enriched", more sdhbaignatures

of most other island arc$*Nd/*‘Nd isotope ratios decrease from north to south
(Carpentieret al, 2009, whilst the®’Srf°Sr ratios show a more complicated trend,

with the central islands showing an extensive range in vahigsré1-3).
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Figure 1-3 Sr and Nd isotopic ratios from across the Lesser Antilles arc, modified from
Macdonald et al.(2000. Data from Macdonald et al.(2000 and references therein.

The Pb isotopic composition of the arc lavas have been a topic of note in many
papers published about thedser AntillegCarpentieret al, 2008 Carpentieret al,

2009 Macdonaldet al, 200Q White & Dupre, 1986 White et al, 1989. The
principal point of interest is that in the south of the arc (from Martinique to Grenada,
Carpentier et al., 2009the Pb isotope ratios extend to very radiogenic values
(Carpentieret al, 2008 Carpentieret al, 2009 White & Dupre, 1986White et al,

1985 and are the highest observed in iateeanic arcgCarpentieret al, 2009
Figure1-4. Pb isotopic ratios extend up to 20.18Rb7°Pb) and 15.85¢'Pb”*Pb)
(White & Dupre, 19858 The unusually radiogenic Pb isotope ratios have been

attributed to the sediments being subducted in this region of the arc, either solely
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(Labaniehet al, 201Q Turneret al, 1996 White & Dupre, 198%or in conjunction
with crustal cotamination (Davidson, 1985 Davidson, 1986 Davidson, 1987
Davidson & Harmon, 198%mithet al, 1996 Thirlwall & Graham, 1984Thirlwall
et al, 1999. Sediments will be discussed more in seclicn2
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Figure 1-4 Summary of Pb isotopic data from Lesser Antilles arc lavas compared to lavas from
other intra-oceanic arc settings, modified from Carpentier et al(2008. Data from Carpentier et
al. (2008 and references therein.

Broadly speaking, in the north of the Leséntilles arc, the lavas are comparable to
other oceanic island arcs, whilst in the south the isotopic compositions do not
resemble conventional arc data, being more ‘dikest (Labaniehet al, 2012
Labaniehet al, 201Q White & Dupre, 198%
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Of the basaltic lavas found on Grenada, two main suites can be identified: the M
series and the -Geries(Hawkesworthet al, 1979 Thirlwall & Graham, 198
Differentiation between the two uses the relationship between CaO and MgO in the
lavas, the Mseries exhibit lower CaO contents at a given MgO compared to-the C
series. The Geries also show much higher proportions of augite than tserMs
(Thirlwall & Graham, 1984 The authors concluded that thes€ries lavas
originated from picritic parents before undergoing assimilation fractional
crystallisation (AFC). The Mseries evolved from picritic parents without the

addition of crustal materidThirlwall et al, 1996.

1.5 Components of Lesser Antilles Arc Magmas

The arc magmas of the Lesser Antilles iieguhree principal components in the
mantle wedge: an fMORB type source, at least one type of hydrous fluid (possibly
up to three, Bouvier et al., 200&nd sediment material (possibly from partial
melting of subducted sediment&)lacdonaldet al, 200Q Thirlwall et al, 1996
Turneret al, 1996. The proportions of these contributors vary along arc strike, with
sediment being more dominant in the southhef arc than the norttMacdonaldet

al., 2000Q. After generation of the primary magmas in the mantle wedge, many are
then thought to be affected by crustal contaminafitve. subsections below provide

further details on these components.

1.5.1 Mantle Beneath the Lesser Antilles

The mantle beneath the Lesser Antilles arc is thought to be of-MORB
composition(Bouvier et al, 2008 Macdonaldet al, 2000. General characteristics

of the whole rocks are given by Macdonald et(28D00 as follows (relative to
MORB): the LREE and LILE are enriched and the HREE, MREE, HFSE are
depleted, Ti/V ratios are lower and LILE/LREE ratios are higher. The authors
suggested this could be resolved either by the lavas being derived from mantle
sources with hetegeneous depletion in incompatible trace elements or by starting
with an NMORB source which is subsequently enriched in both LREE and LILE,
potentially by fluids. The LREE and LILE enrichment is thought to result from a
contribution from the downgoing slalf this contribution is in the form of a fluid,

the degree of partial melting may be increased by the lowering of the solidus. The
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latter theory appears to agree with the findings of Bouvier e(2808 who
proposed a three stage contamination by varying fluids in order to explain their melt
inclusion compositions. However, the findings of Davidéb®96 (based on Zr/Nb
ratios) could suggest that the former argument is true and the mantle wedge is
heterogeneous, with some areas bemwyiched and others being depleted.

Macdonald et al(2000 proposed that this is supported by the low Ti/V ratios.

Overall, Macdonald et a(2000 and references therein outline the mantle source to
be heterogeneous-MORB, with subsequent enrichment of LILE and LREE from
the addition of a slab derived component (such as fluid). Degree dihgned
thought to be higher than MORB to generate the primary magviexsdonaldet al,
2000.

REE concentrations irhé lavas provide information on potential sources. When the
magmas have high MgO, with the literature suggesting contents of above of 6 wt%
MgO to be adequat@Macdonaldet al, 200Q Thirlwall et al, 19943, it is thought

that the effects of fractional crystallisation are effectively filtered out.

Arc magmas can be subdivided based on their Ce/Yb r@tiaskesworthet al,

1993a Hawkesworthet al, 1993). Most island arcs exhibit only one group of
magmas, either high or low Ce/Yb. However, the Lesser Antilles is unusual in that
both Ce/Yb groups are present in the arc, suggesting either differing sources or
partition coefficientand/or degree of partial meltiflylacdonaldet al., 2000.

1.5.2 Contribution from Subducting Slab

LREE and LILE enrichmentfarc lavas is thought to result from a contribution from

the slab(Macdonaldet al, 200Q. This can be in the form of a fluid component, e.qg.
released during the dehydration of the subducted altered oceanic crust or from a
partial melt of the slab and/or sediments, or potentially a combination of both. Partial
melting of sediments has been posed by Hawkesworth et a1997 to be
responsible for increased Th/Ce ratios and less radio§&nid/**/Nd ratios in the

island arcs of the Aeolian Islands, the Philippines and Indonesia. A further
possibility is the bulk addition of sediment tthe mantle wedge through
delaminationMacdonaldet al, 2000Q.
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The fluid componenin the Lesser Antilles is thought be dominantly water (with a
10:1 ratio to CQ (Macdonaldet al, 200Q Peacock, 1990Stdper & Newman,
1994, with potentially higher Cl concentrations that seen in other arcs worldwide,
based on melt inclusion datBouvier et al, 2008 Bouvier et al, 201Q Devine &
Sigurdsson, 1999Heathet al, 1998a Younget al, 1999. Macdonald et al(2000

also suggested that fluids would have higis ldontents as a result of breaking down

sulphides hosted in the descergislab materials.

The potential for slab melting is effectively ruled out by Macdonald €2@00 on

the basis of the findings ofDavies & Stevenson, 199ichols et al, 1994
Peacock, 199@Peacoclet al, 1999. The latter suggest that in order for slab melting

to occur, the downgoing lithosphere needs to be both hot and young. Given that the
subducting North American plate in the Lesser Antilles is betw&urassic and

Cretaceous in age, it is likely to be too old and cold to undergo melting.

However, partial melting of sediments on the subducting slab has been suggested to
contribute to high Ta/Zr ratios in Grenada whole rddkgneret al, 1999.

1.5.3 Sediment Being Subducted

The type and thickness of sediment being sigbetl with the North American plate
changes along arc strike. Thicker sequences of terrigenous sediment are subducted to
the south of the arc, as a result of this section's proximity to the South American
continent. Material eroded from the Guyana Highl§pait of the South American
craton) is transported principally by the Orinoco Riy€arpentieret al, 2008
Carpentieret al, 2009 Macdonaldet al, 200Q Westbrooket al, 1984 White &

Dupre, 1986 White et al, 1985. Westbrook et al(1984 also suggest some
sediment transport via the Amazon River, which has its mouth further to the south
than the Orinoco, emptying directly into the Atlantic Ocean off the east coast of
Brazil. Moving northwards along arc strike and away from the South America
continent, the volume of terrigenous material decreases. The sediment subducted is
more pelagic in nature than in the south of the arc. The sediment pile is thought to be
10 km thick to the south of the arc and less than 1 km thick in the (@atpentier

et al, 2008 Carpentieret al, 2009 Westbrooket al,, 1989.
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In addition to the geochemical zoning observed in the lavas, the sediments on the
downgoing North American plate are also thought to change composition from north
to south (White et al, 1985. Studies on sediment compositions have largely
involved analysing sediment sampled from Site §R8&nk & Langmuir, 1993

White etal., 1985 and Site 144 of the DSDfarpentieret al, 2008 Carpentieret

al., 2009. In addition, the Carpentier et al. (2008, 2009) analysed sediment sampled
from Barbados. Locations from which sediments have been analysed are shown on
Figure1-2. Carpentier et al2008 found that the Nd and Pb isotopic compositions

of sedimerg mirror the changes observed in the lavas by White and [{L98§).

The Pb isotope ratios get more kgknic further to the south, with this change being
attributed to the subduction of black shale sequences (found in the Site 144
sediments) comprising part of the downgoing sediment load in the south of the arc
(Carpentieret al, 2008 Carpentieret al, 2009.

1.5.4 Crustal Contamination

This is evident through the inclusion of metamorphic xenoliths in many of the arc
lavas. Assimilation fractional crystallisation has been suggested as a key process by
several author¢Bezardet al, 2014 Davidson, 1985Davidson & Wilson, 2011
Davidson, 186, Davidson, 1987Davidson & Harmon, 1989Smith et al, 1996
Thirlwall & Graham, 1984Thirlwall et al, 1996 Van Soeset al, 2002, based in

part onii*®0 results. The effects of @tal contamination have been particularly well
studied on MartiniquéDavidson, 1985Davidson & Wilson, 201,1Davidson, 1986
Davidson, 1987Davidson & Harmon, 1989 However, other authors dispute the
importance of AFC, such as Devine and Sigurds€®95, who found little
evidence for the process in the same series of lavas as those studied by Thirlwall et
al. (1996. Overall, crustal assimilation is thought to play an important role in the
central islands of the arc (with the exception tf\8ncent) but not in the northern
islands; as previously mentioned, the importance of AFC processes in Grenada is
subject to debat@Macdonaldet al, 2000.

1.5.5 Contamination by Sediments at Source or in the Crust?

Whilst there has been debate in favour of both mechanisms, as of yet no overall

conclusion has been made as to whether Lesser Antilles arc lavas are being
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contanminated dominantly by sediments in the mantle wedge or by -crustal
assimilation(Macdonaldet al, 2000. Both methods hee been suggested to be able

to generate some of the more extreme whole rock isotopic compositions that set the
Lesser Antilles lavas apart from those from other oceanic arcs. Macdonald et al.
(2000 proposed that as a very general test, the Sr and Nd isotopic ratios could be
used to suggest where sediment contamination had occurred. An Sr F480°86r
>0.706 coupled with an Nd ratio dfNd/ *Nd <0.5127 was put forward as an
indicator that the lava had been contaminated in the (Matdonaldet al, 200Q.
Howeer, crustal contamination should alson c r é%@,swheredis adding fluid

from the subducting slab to the mantle source is not thought to greatly alter oxygen
isotope compositionfDavidson & Harmon, 1989 When oxygen isotope ratios are
used in combination witf'SrP®Sr ratios, the shape of mixing curves between source
and contaminant endmembers can be used to suggest whether contamgatio
occurring in the crust or at sourtEmes, 1981 Whole rocki*?0 can be changed

from magmatic values during low temperature hydration and secondary alteration
and thus careful correction is reqedr to obtain meaningful interpretations
(Macdonaldet al, 200Q.

1.6 What Makes the Lesser Antilles Arc Interesting toStudy?

The presence of high MgO basaltic lavas in the Lesser Antilles is unusual for an
intra-oceanic island ar¢Macdonatl et al, 2000. As a result, the Lesser Antilles
provides an excellent opportunity to study near primary melts in an island arc setting
as basalts are found across the whole arc, though primarily in the southern islands
(Macdonaldet al, 200Q. Using minerals in particular provides an excellent window
into petrogenesis before fractionation can alter the compositithre ghelt as phases

that crystallise early (such as olivine) can be studied and compared to later

crystallising minerals.

The Lesser Antilles show wide variations in the whole rocks along arc strike, both
isotopically and compositionally, as first noted Bsown et al.(1977). This will be

explored further in sectioh.3and is one of the most notable features of the arc.

Macdonald et al(2000 comment that as arc crust thickens, magmas of basaltic

composition pond and require fractionation to lower density and permit ascent
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through the crust. Average crustal thickness beneath the Lesser Antilles is 30 km
(White & Dupre, 198k Studying minerals allows further insight into this process, as
crystals formed at different timemnd in different parts of the magmatic plumbing
system can show different characteristics. This information is lost when looking at
only homogenised whole rock compositions. Given that basaltic magmas can be rare
in arc settings, the Lesser Antilles prd@ian excellent location to use mineral

chemistry to probe the processes occurring within the plumbing system.

Figurel-5 shows a summary of the varyitrgnds along arc strike.

Saba to Montserrat
A Low K tholeiites

<1 km thick sediments (pelagic)
10% sediment subduction

Guadeloupe to St. Lucia

Intermediate K calalkaline basalts

St. Vincent to Grenada

High K alkalic baslts
>10 km thick sediments (turbiditic)
1% sediment subduction

Increasing Sto N
13Nd/M*Nd ratios || ®'SrFP°Srratios(?)

Terrigenous Pelagic sediment || Radiogenic Pb
sediment input isotope ratios
Proportion of K,0
evolved lavas Turbiditic

sediment input
Sediment age,
thickness

Figure 1-5 Summary diagram showing principal changes along arc strikgCarpentier et al,
2008 Macdonald et al, 200Q Westbrook et al, 1984 White & Dupre, 1986). Legend for map i¢
as inFigure 1-2.

Variationin the whole rock chemistrig seen int**Nd/*Nd ratios,®®SrF’Sr ratios,
U/Th ratios, KO and MgO concentrations from the south to the north of the arc
(Macdonaldet al, 200Q White & Dupre, 1988 It is suggested in the literature that

these variations in part arise from varying degrees and types of sediment input along
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