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Abstract 

The Lesser Antilles arc is unusual in erupting high MgO lavas relative to many other 

volcanic arcs. This provides a rare opportunity to study early fractionating phases, 

such as olivine, with the aim of gaining insight into the early petrogenesis of these 

lavas as well as shallow level magmatic interactions and storage. Olivine, 

plagioclase and clinopyroxene crystals were studied from the central (Guadeloupe 

and Dominica) and southern (St. Vincent, Bequia, Petite Martinique, Carriacou and 

Grenada) islands of the arc in order to assess how deep (melting and source 

processes) and shallow (fractional crystallisation, crustal contamination and magma 

mixing) processes varied along arc strike. 

Analysis of mineral crystals from the Lesser Antilles has shown significant variation 

in both textural and chemical signatures in crystal cargoes from the same lava. 

Multiple populations are observed in host lavas along the arc. 

Geothermobarometric modelling showed the southern arc clinopyroxenes to have 

crystallised at higher temperatures and pressures (with the exception of the Bequia 

crystals) than those from further north. High forsterite olivines (up to Fo91) and high 

anorthite plagioclases (up to An96) indicate water is required in the melts, 

particularly in the south of the arc. Bimodal CaO, Al2O3, Cr, Y, Yb and in some 

cases Sc contents in the olivines suggest the disaggregation of cumulate xenoliths 

before assimilation into the host melts. Assimilation and magma mixing are also 

apparent in the plagioclase crystals, as are varying rates of ascent through the 

magmatic plumbing system. Effects of shallow level degassing or decompression are 

visible in the plagioclases and these processes could also be a suitable method for 

generating bimodal forsterite contents in the olivines from one Guadeloupe host lava. 

Processes identified from the mineral phases show that petrogenesis in the Lesser 

Antilles is complex and varies along arc strike, with the southern islands potentially 

requiring more water in the melts and deeper crystallisation depths. In general, 

deeper processes are more prevalent to the south of the arc, with shallower processes 

dominating the north and centre. 
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NHRL  Northern Hemisphere Reference Line (Hart, 1984) 

ol olivine 

opx orthopyroxene 

plag plagioclase 

ppm parts per million 

REE 

TAS 

rare earth elements (La-Lu) 

total alkali silica 
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TIMS  thermal ionisation mass spectrometry 

wt%  weight percentage 
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1 Introduction  

1.1 Brief Overview of Arcs 

Volcanic arcs form as a consequence of subduction where one plate is subducted 

beneath another. As both plates involved in the formation of the Lesser Antilles arc 

are oceanic, it is deemed an intra-oceanic subduction zone. Subduction is important 

as a mechanism of recycling material back into the mantle, creating heterogeneities 

in the upper mantle (Anderson, 2006, Tatsumi & Eggins, 1995, Tatsumi & Kogiso, 

2003). Heterogeneities result from the addition of subducted components to the 

mantle. Such additions include the downgoing crust and sediments overlying this 

(Tatsumi & Kogiso, 2003). In addition, the downgoing lithosphere is cold and thus 

helps to encourage convection in the mantle (Macdonald et al., 2000). Eruption of 

arc lavas also builds continental crust (Tatsumi & Eggins, 1995, Tatsumi & Kogiso, 

2003). 

Macdonald et al. (2000) present an overview of published arc magmagenesis models 

(Arculus, 1994, Pearce & Peate, 1995, Tatsumi & Eggins, 1995) in 5 stages. Firstly, 

amphibolite dehydrates in the downgoing slab at around 50-60 km depth, causing the 

transfer of supercritical fluid phases to the overlying mantle wedge (± the melting of 

sedimentary material on the slab). This causes amphibole to form due to the hydrous 

conditions now present in the wedge. Peridotite bearing amphibole is then subducted 

further until 110 km, where the amphibole is no longer stable. The hydrous phases 

are released and transferred to the mantle wedge. Partial melting results from the 

lowering of the solidus caused by the introduction of fluids and volatiles. Diapirism 

occurs with the lower density melts rising through the denser wedge material. 

Melting continues through adiabatic decompression and the diapirs reaching hotter 

mantle away from the cold slab. The subduction of the slab creates a drag force, 

which pulls the less denser diapir material back towards the slab via convection. 

Resulting volcanism occurs above the shallow corner zone of the wedge, where the 

partial melts collect (Macdonald et al., 2000). 

Figure 1-1 shows an example of arc structure, via a cross-section of the Lesser 

Antilles arc in the vicinity of St. Vincent and Barbados (Westbrook et al., 1984).  



27 

 

 

Figure 1-1 Cross-section through the Lesser Antilles arc at St. Vincent and Barbados, modified from Westbrook et al. (1984). 



1.1.1 General Characteristics of Arc Magmas 

There are three principal common features of arc magmas (Macdonald et al., 2000), 

with each arc then having its own individual characteristics, Tatsumi and Eggins 

(1995) commented that each arc system is different. 

¶ High water contents 

¶ High oxidation states 

¶ LILE enrichment compared to LREE, HFSE and Th contents 

 

Pichavant and Macdonald (2003) suggested in general there are up to four 

components to primitive basalts generated in arc settings: 

¶ The mantle wedge 

¶ Aqueous fluid 

¶ Subducted sediment 

¶ Shallow crustal sediment 

Components thought to be contributing to the Lesser Antilles arc are discussed in 

section 1.5. 

1.2 General Geology of the Lesser Antilles Arc 

The Lesser Antilles arc is an intra-oceanic arc formed by the westward subduction of 

the North American plate beneath the Caribbean plate, currently at a rate of 

approximately 2cm/year, although previously this figure was thought to be 4 cm/year 

(Leat & Larter, 2003, Macdonald et al., 2000). This is a relatively low figure in 

terms of global arc convergence rates, which have been shown to extend up to 24 

cm/year in the northern Tonga-Kermadec arc (Leat & Larter, 2003). Leat and Larter 

(2003) suggest that rates of between 5 and 13 cm/year are more conventional. The 

Lesser Antilles arc also shows low rates of magma production compared to other 

convergent zones, such as Central America, suggesting that the slow convergence 

rate of the arc as a possible cause (Wadge, 1984). The rate of convergence is four 

times higher in Central America compared to the Lesser Antilles, with production 

rates estimated to be an order of magnitude greater than in the Lesser Antilles 
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(Wadge, 1984). The active part of the Lesser Antilles extend from Saba in the north 

to Grenada in the south (Figure 1-2). 

 

Figure 1-2 Map showing the Lesser Antilles, modified from Carpentier et al. (2008) and Van 

Soest et al. (2002). The islands coloured in beige are ones from which data were obtained. The 

squares to the left of the name of the islands indicate which mineral phases were analysed from 

that island. Purple pentagons indicate the location of the sediment data detailed in Carpentier et 

al. (2008). 

1.2.1 Geological History 

Subduction began when the Caribbean plate moved eastwards from its original 

location in the Pacific and collided with the North American and South American 

plates. This resulted in the formation of the now extinct Aves Ridge between 88-59 

Ma (Bouysse, 1984, Bouysse et al., 1990, Macdonald et al., 2000, Neill et al., 2011). 

Following this, in the Palaeocene to early Eocene, volcanism stopped and the 

Grenada Basin opened, as described by Neill et al. (2011) and references therein. 
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Rollback of the subduction zone occurred, shifting the volcanic front to form the 

Lesser Antilles arc in its current location (Neill et al., 2011). 

Bifurcation of the Arc 

During the Miocene, there was a shift in volcanism westwards, as noted by 

Westbrook et al., (1984) and references therein. Bifurcation of the arc occurred at 9 

Ma (Baker, 1984), originating at Martinique and affecting the islands to the north 

(Bouysse et al., 1990). The two branches of the arc have been named as follows: the 

'Limestone Caribbees' are those now inactive islands (and parts of islands) to the east 

and the 'Volcanic Caribbees' are located on the current front of active volcanism to 

the west (Bouysse, 1984). Baker (1984) provides date ranges for the activity of each 

branch of the arc, with the Limestone Caribbees being active between 38-10 Ma and 

the Volcanic Caribbees commencing volcanism from 7.7 Ma and continuing until the 

present day. The southern part of the arc has been active since the Eocene. 

1.2.2 Strike and Dip of the Benioff Zone 

Wadge and Shepherd (1984) conducted a study based on earthquake seismicity in the 

Lesser Antilles region and concluded that both the strike and dip of the Benioff zone 

beneath the arc changes from north to south. From Martinique northwards, the 

Benioff zone dips at 60-50° and trends NNW. The southern section from St. Lucia 

and southwards shows a dip of 50-45°, however at the southernmost reaches of the 

arc, the Benioff zone shows a vertical dip (the change in dip occurring beneath 

Grenada) (Wadge & Shepherd, 1984). The zone trends NNE in the southern section. 

1.2.3 Fore-arc Region and Accretionary Prism 

The Lesser Antilles arc is accretionary, with material being built up since the Eocene 

(Speed & Larue, 1982, Westbrook et al., 1988), although most modern arcs are non-

accretionary (Leat & Larter, 2003). The dimensions of the fore-arc change from 

north to south, both in width and depth. To the north, the sequence is both narrower 

and deeper, being 8 km deep (Chase & Bunce, 1969) and 150 km wide (Macdonald 

et al., 2000). In the south of the arc, the fore-arc is 450 km wide and hosts the 

accretionary complex known as the Barbados Ridge (Carpentier et al., 2009). 
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Barbados forms the surface expression of the accretionary prism (Macdonald et al., 

2000). The trench in the north of the arc is thought to be over 6 km deep, whereas in 

the south the trench is completely filled with the fore-arc sequence, which is up to 20 

km thick (Van Soest et al., 2002). 

A décollement exists between sediment being scraped off the descending slab and 

being accreted and that which remains with the slab during subduction (Plank & 

Langmuir, 1993). In the Lesser Antilles, this occurs at a depth of around 200 m 

(Macdonald et al., 2000, Plank & Langmuir, 1993). The material which is not being 

subducted needs to be taken into consideration when modelling sediment 

contribution to the parent melts, as the accreted material will have no effect on melt 

composition. 

1.3 Rock Types and Cumulates 

Table 1-1 shows a summary of igneous rocks found in the arc (Macdonald et al., 

2000). Basalts are much more dominant in the southern part of the arc than the 

central and northern parts. Petrologically, the northern and central sections exhibit 

more evolved lavas although some basalt is still present. 

Region Extent Rock Types 

Northern  Saba to 

Montserrat 

Dominantly andesite, some basalt, dacite, rare 

rhyolite. 

Central Guadeloupe to 

St. Lucia 

Dominantly andesite, some basalt, dacite, rare 

rhyolite. 

Southern St. Vincent to 

Grenada 

Dominantly basalt and basaltic andesite, some 

andesite, rare dacite. 

Table 1-1 Summary of rock types found in each section of the arc, with sections being based on 

seismic subdivisions (Macdonald et al., 2000, Wadge & Shepherd, 1984). 

In addition to eruptive products, the Lesser Antilles is also host to many cumulates, 

with examples being found across the arc on every island bar Nevis and Guadeloupe 

(Arculus & Wills, 1980, Macdonald et al., 2000). The cumulates have been 

extensively studied, showing compositional and textural differences (Arculus & 

Wills, 1980, Coulon et al., 1984, Parkinson et al., 2003, Stamper et al., 2014, Tollan 

et al., 2012). Minerals found in cumulates include amphibole, plagioclase, 
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clinopyroxene, orthopyroxene, olivine, magnetite, biotite, quartz, ilmenite and 

apatite, with proportions being changeable (Arculus & Wills, 1980, Macdonald et 

al., 2000). 

1.4 Changing Geochemistry of Lavas Along Arc Strike 

Brown et al. (1977) first noted the change composition of magmas along arc strike, 

noting a trend of tholeiitic compositions in the north of the arc, calc-alkaline 

compositions in the central section and alkaline compositions in the south of the arc. 

Davidson and Wilson (2011) pointed out that once more detailed studies of 

individual volcanic centres were undertaken, large ranges in magmatic composition 

can also be observed at this scale, suggesting that the trend proposed by Brown et al. 

(1977) is oversimplified. Nonetheless, the magmas with MgO contents of >8 wt% 

MgO are exclusively observed in the south of the arc (Davidson & Wilson, 2011). 

This study has analysed olivines (a mineral requiring reasonable MgO contents in the 

melt) from whole rocks from Guadeloupe and Dominica, but these were sampled 

from host lavas with 4-6 wt% MgO and 5 wt% MgO respectively. MgO contents of 

olivine host lavas from the south of the arc extended up to 17 wt%. 

Macdonald et al. (2000) and references therein show there is relatively smooth 

transition from lower K2O whole rock contents at a given SiO2 in the north of the arc 

through to higher K2O compositions in the south of the arc, with Macdonald et al. 

(2000) specifically showing the K2O contents of the Grenada lavas relative to those 

seen in northern and central islands. 

White and Dupre (1986) report wide variations in isotopic compositions of lavas in 

the Lesser Antilles. The 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios measured by White and 

Dupre (1986) were also compared by the authors to oceanic island values and were 

shown to overlap with oceanic island basalts. White and Dupre (1986) deemed the 

signatures of the Lesser Antilles lavas to be "enriched", more so than the signatures 

of most other island arcs. 
143

Nd/
144

Nd isotope ratios decrease from north to south 

(Carpentier et al., 2008), whilst the 
87

Sr/
86

Sr ratios show a more complicated trend, 

with the central islands showing an extensive range in values (Figure 1-3). 
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Figure 1-3 Sr and Nd isotopic ratios from across the Lesser Antilles arc, modified from 

Macdonald et al. (2000). Data from Macdonald et al. (2000) and references therein. 

The Pb isotopic composition of the arc lavas have been a topic of note in many 

papers published about the Lesser Antilles (Carpentier et al., 2008, Carpentier et al., 

2009, Macdonald et al., 2000, White & Dupre, 1986, White et al., 1985). The 

principal point of interest is that in the south of the arc (from Martinique to Grenada, 

Carpentier et al., 2009), the Pb isotope ratios extend to very radiogenic values 

(Carpentier et al., 2008, Carpentier et al., 2009, White & Dupre, 1986, White et al., 

1985) and are the highest observed in intra-oceanic arcs (Carpentier et al., 2008) 

Figure 1-4. Pb isotopic ratios extend up to 20.16 (
206

Pb/
204

Pb) and 15.85 (
207

Pb/
204

Pb) 

(White & Dupre, 1986). The unusually radiogenic Pb isotope ratios have been 

attributed to the sediments being subducted in this region of the arc, either solely 
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(Labanieh et al., 2010, Turner et al., 1996, White & Dupre, 1986) or in conjunction 

with crustal contamination (Davidson, 1985, Davidson, 1986, Davidson, 1987, 

Davidson & Harmon, 1989, Smith et al., 1996, Thirlwall & Graham, 1984, Thirlwall 

et al., 1996). Sediments will be discussed more in section 1.5.2. 

 

Figure 1-4 Summary of Pb isotopic data from Lesser Antilles arc lavas compared to lavas from 

other intra -oceanic arc settings, modified from Carpentier et al. (2008). Data from Carpentier et 

al. (2008) and references therein. 

Broadly speaking, in the north of the Lesser Antilles arc, the lavas are comparable to 

other oceanic island arcs, whilst in the south the isotopic compositions do not 

resemble conventional arc data, being more 'crust-like' (Labanieh et al., 2012, 

Labanieh et al., 2010, White & Dupre, 1986). 
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Of the basaltic lavas found on Grenada, two main suites can be identified: the M-

series and the C-series (Hawkesworth et al., 1979, Thirlwall & Graham, 1984). 

Differentiation between the two uses the relationship between CaO and MgO in the 

lavas, the M-series exhibit lower CaO contents at a given MgO compared to the C-

series. The C-series also show much higher proportions of augite than the M-series 

(Thirlwall & Graham, 1984). The authors concluded that the C-series lavas 

originated from picritic parents before undergoing assimilation fractional 

crystallisation (AFC). The M-series evolved from picritic parents without the 

addition of crustal material (Thirlwall et al., 1996). 

1.5 Components of Lesser Antilles Arc Magmas 

The arc magmas of the Lesser Antilles require three principal components in the 

mantle wedge: an N-MORB type source, at least one type of hydrous fluid (possibly 

up to three, Bouvier et al., 2008) and sediment material (possibly from partial 

melting of subducted sediments) (Macdonald et al., 2000, Thirlwall et al., 1996, 

Turner et al., 1996). The proportions of these contributors vary along arc strike, with 

sediment being more dominant in the south of the arc than the north (Macdonald et 

al., 2000). After generation of the primary magmas in the mantle wedge, many are 

then thought to be affected by crustal contamination. The sub-sections below provide 

further details on these components. 

1.5.1 Mantle Beneath the Lesser Antilles 

The mantle beneath the Lesser Antilles arc is thought to be of an N-MORB 

composition (Bouvier et al., 2008, Macdonald et al., 2000). General characteristics 

of the whole rocks are given by Macdonald et al. (2000) as follows (relative to 

MORB): the LREE and LILE are enriched and the HREE, MREE, HFSE are 

depleted, Ti/V ratios are lower and LILE/LREE ratios are higher. The authors 

suggested this could be resolved either by the lavas being derived from mantle 

sources with heterogeneous depletion in incompatible trace elements or by starting 

with an N-MORB source which is subsequently enriched in both LREE and LILE, 

potentially by fluids. The LREE and LILE enrichment is thought to result from a 

contribution from the downgoing slab. If this contribution is in the form of a fluid, 

the degree of partial melting may be increased by the lowering of the solidus. The 
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latter theory appears to agree with the findings of Bouvier et al. (2008) who 

proposed a three stage contamination by varying fluids in order to explain their melt 

inclusion compositions. However, the findings of Davidson (1996) (based on Zr/Nb 

ratios) could suggest that the former argument is true and the mantle wedge is 

heterogeneous, with some areas being enriched and others being depleted. 

Macdonald et al. (2000) proposed that this is supported by the low Ti/V ratios. 

Overall, Macdonald et al. (2000) and references therein outline the mantle source to 

be heterogeneous N-MORB, with subsequent enrichment of LILE and LREE from 

the addition of a slab derived component (such as fluid). Degree of melting is 

thought to be higher than MORB to generate the primary magmas (Macdonald et al., 

2000). 

REE concentrations in the lavas provide information on potential sources. When the 

magmas have high MgO, with the literature suggesting contents of above of 6 wt% 

MgO to be adequate (Macdonald et al., 2000, Thirlwall et al., 1994a), it is thought 

that the effects of fractional crystallisation are effectively filtered out. 

Arc magmas can be subdivided based on their Ce/Yb ratios (Hawkesworth et al., 

1993a, Hawkesworth et al., 1993b). Most island arcs exhibit only one group of 

magmas, either high or low Ce/Yb. However, the Lesser Antilles is unusual in that 

both Ce/Yb groups are present in the arc, suggesting either differing sources or 

partition coefficients and/or degree of partial melting (Macdonald et al., 2000). 

1.5.2 Contribution from Subducting Slab 

LREE and LILE enrichment of arc lavas is thought to result from a contribution from 

the slab (Macdonald et al., 2000). This can be in the form of a fluid component, e.g. 

released during the dehydration of the subducted altered oceanic crust or from a 

partial melt of the slab and/or sediments, or potentially a combination of both. Partial 

melting of sediments has been proposed by Hawkesworth et al. (1997) to be 

responsible for increased Th/Ce ratios and less radiogenic 
143

Nd/
144

Nd ratios in the 

island arcs of the Aeolian Islands, the Philippines and Indonesia. A further 

possibility is the bulk addition of sediment to the mantle wedge through 

delamination (Macdonald et al., 2000). 
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The fluid component in the Lesser Antilles is thought to be dominantly water (with a 

10:1 ratio to CO2) (Macdonald et al., 2000, Peacock, 1990, Stolper & Newman, 

1994), with potentially higher Cl concentrations that seen in other arcs worldwide, 

based on melt inclusion data (Bouvier et al., 2008, Bouvier et al., 2010, Devine & 

Sigurdsson, 1995, Heath et al., 1998a, Young et al., 1998). Macdonald et al. (2000) 

also suggested that fluids would have high H2S contents as a result of breaking down 

sulphides hosted in the descending slab materials. 

The potential for slab melting is effectively ruled out by Macdonald et al. (2000) on 

the basis of the findings of (Davies & Stevenson, 1992, Nichols et al., 1994, 

Peacock, 1996, Peacock et al., 1994). The latter suggest that in order for slab melting 

to occur, the downgoing lithosphere needs to be both hot and young. Given that the 

subducting North American plate in the Lesser Antilles is between Jurassic and 

Cretaceous in age, it is likely to be too old and cold to undergo melting. 

However, partial melting of sediments on the subducting slab has been suggested to 

contribute to high Ta/Zr ratios in Grenada whole rocks (Turner et al., 1996).  

1.5.3 Sediment Being Subducted 

The type and thickness of sediment being subducted with the North American plate 

changes along arc strike. Thicker sequences of terrigenous sediment are subducted to 

the south of the arc, as a result of this section's proximity to the South American 

continent. Material eroded from the Guyana Highland (part of the South American 

craton) is transported principally by the Orinoco River (Carpentier et al., 2008, 

Carpentier et al., 2009, Macdonald et al., 2000, Westbrook et al., 1984, White & 

Dupre, 1986, White et al., 1985). Westbrook et al. (1984) also suggest some 

sediment transport via the Amazon River, which has its mouth further to the south 

than the Orinoco, emptying directly into the Atlantic Ocean off the east coast of 

Brazil. Moving northwards along arc strike and away from the South American 

continent, the volume of terrigenous material decreases. The sediment subducted is 

more pelagic in nature than in the south of the arc. The sediment pile is thought to be 

10 km thick to the south of the arc and less than 1 km thick in the north (Carpentier 

et al., 2008, Carpentier et al., 2009, Westbrook et al., 1984).  
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In addition to the geochemical zoning observed in the lavas, the sediments on the 

downgoing North American plate are also thought to change composition from north 

to south (White et al., 1985). Studies on sediment compositions have largely 

involved analysing sediment sampled from Site 543 (Plank & Langmuir, 1993, 

White et al., 1985) and Site 144 of the DSDP (Carpentier et al., 2008, Carpentier et 

al., 2009). In addition, the Carpentier et al. (2008, 2009) analysed sediment sampled 

from Barbados. Locations from which sediments have been analysed are shown on 

Figure 1-2. Carpentier et al. (2008) found that the Nd and Pb isotopic compositions 

of sediments mirror the changes observed in the lavas by White and Dupre (1986). 

The Pb isotope ratios get more radiogenic further to the south, with this change being 

attributed to the subduction of black shale sequences (found in the Site 144 

sediments) comprising part of the downgoing sediment load in the south of the arc 

(Carpentier et al., 2008, Carpentier et al., 2009). 

1.5.4 Crustal Contamination 

This is evident through the inclusion of metamorphic xenoliths in many of the arc 

lavas. Assimilation fractional crystallisation has been suggested as a key process by 

several authors (Bezard et al., 2014, Davidson, 1985, Davidson & Wilson, 2011, 

Davidson, 1986, Davidson, 1987, Davidson & Harmon, 1989, Smith et al., 1996, 

Thirlwall & Graham, 1984, Thirlwall et al., 1996, Van Soest et al., 2002), based in 

part on ŭ
18

O results. The effects of crustal contamination have been particularly well 

studied on Martinique (Davidson, 1985, Davidson & Wilson, 2011, Davidson, 1986, 

Davidson, 1987, Davidson & Harmon, 1989). However, other authors dispute the 

importance of AFC, such as Devine and Sigurdsson (1995), who found little 

evidence for the process in the same series of lavas as those studied by Thirlwall et 

al. (1996). Overall, crustal assimilation is thought to play an important role in the 

central islands of the arc (with the exception of St. Vincent) but not in the northern 

islands; as previously mentioned, the importance of AFC processes in Grenada is 

subject to debate (Macdonald et al., 2000). 

1.5.5 Contamination by Sediments at Source or in the Crust? 

Whilst there has been debate in favour of both mechanisms, as of yet no overall 

conclusion has been made as to whether Lesser Antilles arc lavas are being 
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contaminated dominantly by sediments in the mantle wedge or by crustal 

assimilation (Macdonald et al., 2000). Both methods have been suggested to be able 

to generate some of the more extreme whole rock isotopic compositions that set the 

Lesser Antilles lavas apart from those from other oceanic arcs. Macdonald et al. 

(2000) proposed that as a very general test, the Sr and Nd isotopic ratios could be 

used to suggest where sediment contamination had occurred. An Sr ratio of 
87

Sr/
86

Sr 

>0.706 coupled with an Nd ratio of 
143

Nd/
144

Nd <0.5127 was put forward as an 

indicator that the lava had been contaminated in the crust (Macdonald et al., 2000). 

However, crustal contamination should also increase ŭ
18

O, whereas adding fluid 

from the subducting slab to the mantle source is not thought to greatly alter oxygen 

isotope compositions (Davidson & Harmon, 1989). When oxygen isotope ratios are 

used in combination with 
87

Sr/
86

Sr ratios, the shape of mixing curves between source 

and contaminant endmembers can be used to suggest whether contamination is 

occurring in the crust or at source (James, 1981). Whole rock ŭ
18

O can be changed 

from magmatic values during low temperature hydration and secondary alteration 

and thus careful correction is required to obtain meaningful interpretations 

(Macdonald et al., 2000). 

1.6 What Makes the Lesser Antilles Arc Interesting to Study? 

The presence of high MgO basaltic lavas in the Lesser Antilles is unusual for an 

intra-oceanic island arc (Macdonald et al., 2000). As a result, the Lesser Antilles 

provides an excellent opportunity to study near primary melts in an island arc setting 

as basalts are found across the whole arc, though primarily in the southern islands 

(Macdonald et al., 2000). Using minerals in particular provides an excellent window 

into petrogenesis before fractionation can alter the composition of the melt as phases 

that crystallise early (such as olivine) can be studied and compared to later 

crystallising minerals. 

The Lesser Antilles show wide variations in the whole rocks along arc strike, both 

isotopically and compositionally, as first noted by Brown et al. (1977). This will be 

explored further in section 1.3 and is one of the most notable features of the arc. 

Macdonald et al. (2000) comment that as arc crust thickens, magmas of basaltic 

composition pond and require fractionation to lower density and permit ascent 
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through the crust. Average crustal thickness beneath the Lesser Antilles is 30 km 

(White & Dupre, 1986). Studying minerals allows further insight into this process, as 

crystals formed at different times and in different parts of the magmatic plumbing 

system can show different characteristics. This information is lost when looking at 

only homogenised whole rock compositions. Given that basaltic magmas can be rare 

in arc settings, the Lesser Antilles provide an excellent location to use mineral 

chemistry to probe the processes occurring within the plumbing system. 

Figure 1-5 shows a summary of the varying trends along arc strike. 

Variation in the whole rock chemistry is seen in 
143

Nd/
144

Nd ratios, 
88

Sr/
87

Sr ratios, 

U/Th ratios, K2O and MgO concentrations from the south to the north of the arc 

(Macdonald et al., 2000, White & Dupre, 1986). It is suggested in the literature that 

these variations in part arise from varying degrees and types of sediment input along 
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Figure 1-5 Summary diagram showing principal changes along arc strike (Carpentier et al., 

2008, Macdonald et al., 2000, Westbrook et al., 1984, White & Dupre, 1986). Legend for map is 

as in Figure 1-2. 












































































































































































































































































































































































































































































































































































































































































