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Abstract

Nonparametric density estimators on RK may fail to be consistent when the

sample size n does not grow fast enough relative to reduction in smoothing. For

example a Gaussian kernel estimator with bandwidths proportional to some sequence

hn is not consistent if nhKn fails to diverge to in�nity. The paper studies shrinkage

estimators in this scenario and shows that we can still meaningfully use - in a sense

to be speci�ed in the paper - a nonparametric density estimator in high dimensions,

even when it is not asymptotically consistent. Due to the �curse of dimensionality�,

this framework is quite relevant to many practical problems. In this context, unlike

other studies, the reason to shrink towards a possibly misspeci�ed low dimensional

parametric estimator is not to improve on the bias, but to reduce the estimation

error.
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Estimation, Parametric Model, Shrinkage.
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1 Introduction

Suppose f is a density function (with respect to the Lebesgue measure) with support in

RK , and f̂n is a nonparametric density estimator derived from a sample of n independent

identically distributed (iid) observations from f . When n goes to in�nity, it is often the
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case that a suitable choice of f̂n converges to f in some mode of convergence (e.g. Scott,

1992, and Devroye and Gyor�, 2002). However, the number of observations required for

consistency of the estimator often needs to grow exponentially with respect to K (though,

exceptions may exist for some problems, e.g. Barron 1994).

Hence, in a �nite sample, the performance of the nonparametric estimator might

be disappointing especially if K is large. Moreover, the performance often deteriorates

in the tails of the distribution. This poor �nite sample behaviour can be mimicked

asymptotically by saying that the estimator fails to be consistent: it is too localised

relative to the sample size. This is the framework used in this paper, where no assumption

is made about the consistency of the nonparametric estimator. In such cases, one could

assume that K →∞ with the sample size.

In an e�ort to mitigate the �curse of dimensionality�, many authors have studied

shrunk estimators of one form or the other (e.g. Hjort and Glad, 1995, Hjort and Jones,

1996, Fan and Ullah, 1999, Mays et al., 2001, Gonzalo and Linton, 2000, Naito, 2004,

Hagmann and Scaillet, 2007, El Ghouch and Genton, 2009). These papers assume consis-

tency and derive shrunk estimators that may improve on the bias. Here the point of view

is di�erent, as the dimensionality problem can easily lead to such a poor �nite sample

performance that it makes sense to study the e�ect of shrinkage when consistency may

not be obtained as a result of a nonvanishing estimation error. Hence, the present goal

is to improve on the estimation error. It is worth mentioning that in this framework,

the only explicit requirement on the true density is square integrability. Depending on

the nonparametric density estimator that is used, other restrictions are implicitly needed:

integrability of the cube of the density appears to be a su�cient requirement in most cir-

cumstances. This di�ers substantially from the number of regularity conditions imposed

on the true unknown density as well as the nonparametric estimator in order to derive

the results in the references above. For example, in the present context, K is not required

to be �xed, but can grow with n.

Let f̂n be a localised nonparametric estimator, so that its bias is low relative to the

estimation error. Using the Gaussian kernel example with diagonal smoothing matrix

proportional to h, we can have nhK → c <∞ (using h := hn for ease of notation). Even

for �x h (i.e. bias only growing linearly in K), we can think of what happens when both
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K and n increase. For c → ∞ we need n growing exponentially faster than K. Mutatis

mutandis, this framework is conceptually similar to Kolmogorov asymptotics for vector

valued statistics (e.g. Aivasian et al., 1989). In order to reduce the estimation error, we

shrink f̂n towards a parametric model gθ indexed in a compact Euclidean set Θ. In this

case the estimator becomes f̃n = αgθ + (1− α) f̂n, α ∈ [0, 1], θ ∈ Θ. Mutatis mutandis,

this is similar to large dimensional covariance shrinkage problems (e.g. Ledoit and Wolf,

2004, Sancetta, 2008). The problems are related, as the nonparametric estimator can be

made nearly unbiased, though very noisy in a �nite sample when K is large. Shrinking f̂n

towards the parametric model (gθ)θ∈Θ will reduce the variability of the estimator at the

cost of an increase in bias when f /∈ {gθ : θ ∈ Θ}. This statement will be made precise

below.

Olkin and Spiegelman (1987) have already studied a maximum likelihood estimator

of f̃n, though in a di�erent context. Here, the estimation of α is not based on maximum

likelihood, avoiding Olkin and Spiegelman (1987)'s restrictive conditions that, for exam-

ple, would prevent gθ from being a Gaussian density and would require the nonparametric

estimator to be consistent, ruling out the large K dimensional problem addressed here.

These restrictions are used by Olkin and Spiegelman (1987) because their goal is to devise

a method that is robust against misspeci�cation of the parametric model, hence as a way

to reduce any possible bias. Here, the focus is on the nonparametric estimator being

combined to a low dimensional - hence likely to be misspeci�ed - parametric model to

reduce the estimation error.

A simulation study in Section 3 shall also be used to highlight the behaviour of

the estimator when the parametric model is highly biased. In this case, some of the

conclusions are that the estimator f̃n is less sensitive to the choice of bandwidth than a

kernel density estimator. Moreover, when we choose an "ideal" bandwidth for both f̃n and

the kernel density, f̃n still compares favourably. Alternative semiparametric methods to

improve on nonparametric density estimators have been considered in the last two decades

(e.g. Hjort and Glad, 1995, Hjort and Jones, 1996, and Naito, 2004, who brought unity for

the di�erent methods by local L2 �tting; more recently also Hagmann and Scaillet, 2007).

These methods rely on a multiplicative correction term. To the author's experience, these

estimators perform remarkably well in one dimension, while they deteriorate in higher
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dimensions, occasionally performing worse than simple kernel smoothers and/or being

sensitive to the choice of bandwidth. The simulation study of this paper will consider one

of these estimators for comparison reasons.

We introduce some notation. The symbol Pn stands for the empirical measure, e.g.

PnX = n−1
∑n

i=1Xi, where X1, ..., Xn are iid copies of X. The symbol . stands for

inequality up to a �nite absolute constant, � implies equality in order of magnitude; ∧ and

∨ are used for the minimum and maximum between left and right hand side, respectively.

Finally, ‖•‖2,λ and ‖•‖2,P are the norms with respect to the Lebesgue measure λ and the

true measure P.

2 Shrinking the Density Estimator

Given the sample X1, ..., Xn, we estimate the nonparametric estimator f̂n. The best

parametric �t from (gθ)θ∈Θ is denoted by gθ0 . Clearly,

min
α∈[0,1]

∥∥∥αgθ0 + (1− α) f̂n − f
∥∥∥

2,λ
≤
∥∥∥f̂n − f∥∥∥

2,λ
. (1)

The right hand side (r.h.s.) is the integrated square error (ISE) for the nonparametric

density estimator. Hardle and Marron (1986) show that under reasonable assumptions,

ISE and mean square error are asymptotically the same. In the present context, it is

easier to work with the ISE. The r.h.s. of (1) cannot achieve the root-n parametric rate

of convergence.

Example 1 Suppose f has support in RK and f̂n is its estimator based on a �rst order

kernel. Then, under regularity conditions,∥∥∥f̂n − f∥∥∥
2,λ
� n−2/(4+K),

in probability (e.g. Scott, 1992). It is clear that if n is not exponentially larger than K,

the estimator cannot be consistent, e.g. K = 2 lnn− 4 as n→∞ makes the ISE bounded

away from zero for any sample size.

Shrinking towards the parametric model (gθ)θ∈Θ might improve on this slow rate of

convergence. The ideal shrinking parameter α is given by the following:
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Proposition 1 Suppose f̃n = αgθ + (1− α) f̂n. Then,

[(αn ∨ 0) ∧ 1] = arg min
α∈[0,1]

∥∥∥f̃n − f∥∥∥
2,λ
,

where

αn :=

∫ [
gθ0 (x)− f̂n (x)

]
f (x) dx−

∫ [
gθ0 (x)− f̂n (x)

]
f̂n (x) dx∫ [

gθ0 (x)− f̂n (x)
]2
dx

.

Proof. Di�erentiating and factoring terms in α,

d
∥∥∥αgθ0 + (1− α) f̂n − f

∥∥∥2

2,λ

dα

= α

∫ [
gθ0 (x)− f̂n (x)

]2
du+

∫ [
f̂n (x)− f (x)

] [
gθ0 (x)− f̂n (x)

]
dx

= 0.

Solving for α, subject to the constraint, gives the result.

Remark 1 To ease the notation, we shall assume αn ∈ [0, 1] so that αn = [(αn ∨ 0) ∧ 1].

The result of Proposition 1 gives a random value for α because it depends on f̂n.

However, by de�nition αn satis�es∥∥∥αngθ0 + (1− αn) f̂n − f
∥∥∥

2,λ
≤
∥∥∥f̂n − f∥∥∥

2,λ
. (2)

If
∥∥∥f̂n − f∥∥∥

2,λ
→ 0 (in probability) the procedure can also lead to consistent estimation,

but with possibly smaller ISE, as shown in the references cited in the Introduction.

Clearly, we do not know the best parametric approximation in (gθ)θ∈Θ and we do

not know the integral of
[
gθ0 (x)− f̂n (x)

]
f (x) with respect to x. Hence, we shall �nd

sample estimators for these. In particular, θ0 is replaced by an estimator, say θ̂, (e.g. the

maximum likelihood estimator), while∫
gθ0 (x) f (x) dx = Egθ0 (X)

can be approximated by its sample counterpart Pngθ (X) . However,∫
f̂n (x) f (x) dx = Ef̂n (X)

should not be replaced by Pnf̂n (X) because this quantity is biased and has poor variance

properties. A suitable sample estimator can be found using classic leave out estimators.
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Divide {1, ..., n} into V ∈ N blocks A1, ..., AV of mutually exclusive sets, with 1/V = q ∈

(0, 1). Hence, #Av = nq is the cardinality of Av. Then, the problem is solved by using

the leave out estimator

Pn
(
f̂n|q

)
:=

1

V

V∑
v=1

1

qn

∑
i∈Av

f̂n(1−q)

(
Xi; (Xj)j∈Ac

v

)
(3)

where f̂n(1−q)

(
Xi; (Xj)j∈Ac

v

)
is the nonparametric estimator f̂n based on (Xj)j∈Ac

v
only,

where Acv is the complement of Av so that #Acv = n (1− q) (e.g. van der Laan and Dudoit,

2003). An explicit representation is given in Remark 6, below. In the case nq = 1, we

have the usual leave one out estimator. However, leaving out a fraction of the sample n

is often found to perform well, e.g. q = .1 (see discussion in van der Laan and Dudoit,

op.cit.). In our framework, we will see that the leave one out estimator (i.e. nq = 1) is

not a good idea.

We denote the feasible estimator of αn by

α̂n :=
Pngθ̂ (X)− Pn

(
f̂n|q

)
−
∫ [

gθ̂ (x)− f̂n (x)
]
f̂n (x) dx∫ [

gθ̂ (x)− f̂n (x)
]2
dx

. (4)

Remark 2 Again, for notational convenience we shall assume α̂n ∈ [0, 1].

The following conditions are used to derive the results of the paper.

Condition 1
(
θ̂n

)
n∈N

is a sequence of random elements (the estimators for the param-

eter of the model) with values inside a compact set Θ ⊂ RS such that∣∣∣θ̂n − θ0

∣∣∣ = Op

(
n−1/2

)
.

Condition 2 There is an open ball B0 centered at θ0, and a q ∈ [1, 2] and a p ∈ [1,∞]

with p−1 + q−1 = 1, such that,

sup
θ∈B0

‖gθ‖p,λ + sup
θ∈B0

‖∇θsgθ‖p,λ <∞ (∀s) ,
∥∥∥f̂n∥∥∥

q,λ
<∞ a.s.

and

sup
θ∈B0

‖gθ‖2,P + sup
θ∈B0

‖∇θsgθ‖1,P <∞ (∀s)

where ∇θsgθ is the sth element of the gradient of gθ with respect to θ, evaluated at θ.
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Condition 3 There exists a function ψn : RK × RK × N → R such that f̂n admits the

following representation

f̂n (x) =
1

n

n∑
i=1

ψn (x,Xi) ,

where E |ψn (X1, X2)|2 <∞ for any �xed n.

Condition 4 gθ0 (x) 6= f̂n (x) for any n; ‖f‖2,λ <∞.

Remark 3 Condition 1 is the standard consistency of parametric estimators for the

pseudo true value θ0.

Remark 4 Condition 2 imposes smoothness restrictions on the parametric model around

the pseudo true value. The required level of smoothness is a function of how localised is

the nonparametric estimator. A very localised nonparametric estimator does require to

shrink towards a smoother parametric model. While the L1 and L2 norm of the pseudo

true parametric model with respect to the true measure is unknown, the user can choose

(gθ)θ∈Θ such that Condition 2 is likely to be satis�ed in practice.

Example 2 By Minkowski inequality∥∥∥f̂n∥∥∥
q,λ
≤
∥∥∥(1− E) f̂n

∥∥∥
q,λ

+
∥∥∥Ef̂n∥∥∥

q,λ
.

Consider the r.h.s. of the above display. For the Gaussian kernel example, the second

term is bounded if f is in L2. The �rst term is always bounded for q = 1. However,

this requires a very smooth parametric model (i.e. p =∞ in Condition 2). On the other

hand, for q = 2, the �rst term in the r.h.s. of the display is almost surely bounded if

limn nh
K > 0. Under this condition, we can impose less restrictions on the parametric

model (i.e. p = 2).

Remark 5 Condition 3 is satis�ed by most nonparametric density estimators: kernels,

orthogonal polynomials, Bernstein polynomials, etc.. Many estimators satisfy even stronger

conditions. In the case of a bounded kernel density estimator, ψn is such that |ψn|∞ :=

supx,y∈RK |ψn (x, y)| � h−Kn where hn is the bandwidth in one dimension. For polynomials

over compact intervals, |ψn|∞ is of the same order as the order of the polynomial.
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Remark 6 By Condition 3, in (3) we have

f̂n(1−q)

(
x; (Xi)i∈Ac

v

)
:=

1

n (1− q)
∑
i∈Ac

v

ψn (x,Xi) .

Remark 7 Condition 4 is technical. The �rst part is required for identi�cation of αn.

Moreover, for obvious reasons f needs to be in L2.

To control the error in the foregoing approximation, we de�ne the following:

ζn := 1 + V ar (EXψn (X,X1)) + V ar (EXψn (X1, X)) + (nq)−1 V ar (ψn (X1, X2)) , (5)

where X is an independent copy of X1 and EX stands for expectation with respect to

X. For ψn (x, y) symmetric, the above expression simpli�es. Note that ζn is arti�cially

de�ned adding a 1 to make sure that infn ζn > 0. This can be equivalently achieved by

imposing a suitable lower bound condition on ψn uniformly in n to make ensure that

infn V ar (EXψn (X,X1)) > 0. We have the following:

Theorem 1 Under Conditions 1, 2, 3, and 4,

α̂n = αn +Op

(√
ζn/n

)
,

and there is a �nite positive constant C, independent of fn, such that∥∥∥α̂ngθ̂ + (1− α̂n) f̂n − f
∥∥∥

2,λ
≤
∥∥∥αngθ0 + (1− αn) f̂n − f

∥∥∥
2,λ

+C

(
1 +

∥∥∥f̂n − f∥∥∥
2,λ

)√
ζn
n

in probability, which by (2) also implies

∥∥∥α̂ngθ̂ + (1− α̂n) f̂n − f
∥∥∥

2,λ
≤
∥∥∥f̂n − f∥∥∥

2,λ
+ C

(
1 +

∥∥∥f̂n − f∥∥∥
2,λ

)√
ζn
n
,

in probability

3 Discussion and Simulation Study

Theorem 1 shows that what would determine the success of the procedure is that ζn =

o

(
n
∥∥∥f̂n − f∥∥∥2

2,λ

)
, in which case, the ISE of the shrunk estimator is of smaller order of

magnitude than the original ISE. Depending on the nonparametric estimator, this implies

extra restrictions on f as we need V ar (EXψn (X,X1)) < ∞. For a Gaussian kernel
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density estimator, this requires f3 to be integrable. In general, if V ar (EXψn (X,X1)) <

∞ in (5), one should think about some very unnatural (non-consistent) estimators for

ζn = o

(
n
∥∥∥f̂n − f∥∥∥2

2,λ

)
not to be true. A speci�c example can provide some further

insights into this claim:

Example 3 Suppose ψn (x, y) is the K dimensional Gaussian kernel with smoothing

matrix proportional to h. Under regularity conditions on f (including ‖f‖3,λ < ∞),

if we leave out a �x fraction of the sample (i.e. q is �xed), direct calculations give

ζn . 1 + n−1h−K , and
∥∥∥f̂n − f∥∥∥2

2,λ
� h + n−1h−K , so that ζn = o

(
n
∥∥∥f̂n − f∥∥∥2

2,λ

)
as long as nh→∞. Hence, the shrunk estimator is guaranteed to perform asymptotically

as well if not better than f̂n. Note that in this example we can have K → ∞ with n; all

we need is limn nh =∞.

From the above example, we deduce that the nonparametric estimator has a second

order e�ect on α̂n and the ISE of the shrunk estimator. Moreover, we can see why the

leave one out estimator is not the best choice: the last term in ζn is

V ar (ψn (X1, X2))

nq
= O

(
h−K

nq

)
= O

(
h−K

)
if nq = O (1), so that in the previous example, we have ζn . 1 + h−K , instead. We shall

still have ζn = o

(
n
∥∥∥f̂n − f∥∥∥2

2,λ

)
, for nh → ∞, but in a �nite sample, the di�erence

might not be negligible.

Under consistency, asymptotic normality of the shrunk estimator can be studied.

Unfortunately, the present context is not amenable to such analysis: Theorem 1 does not

say anything about the consistency of the nonparametric estimator f̂n, as all the analysis

is relative to
∥∥∥f̂n − f∥∥∥2

2,λ
without any consistency condition on it. In fact, via Condition

2, Theorem 1 allows us to consider di�erent situations where divergence is also possible.

The estimator should have an advantage over usual nonparametric estimators in terms

of variance and not bias. The following experimental results show that αn also allows us

to counterbalance either oversmoothing or undersmoothing in the nonparametric density

estimator f̂n (x) .
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3.1 Experimental Results: Shrinking Towards a Very Biased Paramet-

ric Model

It is clear that if we choose a low dimensional parametric model whose bias is relatively

low, the shrunk estimator will perform well even when K increases. Hence, it is of interest

to understand the loss incurred in using the shrunk estimator when the parametric model

is highly biased (misspeci�ed). In this case, the reduction in estimation error is more than

compensated by the increase in bias. Therefore, we cannot expect the shrunk estimator

to perform better than a nonparametric estimator, but we still hope the performance to

be reasonable even in these extreme cases. The goal of this experiment is to evaluate the

estimator in some sort of worse case scenario. The relevant question is, how robust is the

shrunk estimator to high levels of misspeci�cation in the parametric term? As mentioned

in the introduction, shrunk estimators have already been studied by other authors and

numerous simulation results have been produced. Hence, here we are trying to look at

the problem from a di�erent point of view.

To this end, we simulate data from a mixtures of Gaussian and exponential density

functions:

pdfX (x) = pφ (x) + (1− p) {x ≥ 0} exp {−x} ,

where φ (x) is the standard normal density and {x ≥ 0} exp {−x} is the exponential den-

sity with mean one (and clearly positive support only). We also simulate data from the

K-dimensional analog (K = 2, 3):

pdfX (x1, ..., xK) = pφK (x1, ..., xK ; ρ) + (1− p)
K∏
k=1

{xk ≥ 0} exp {−xk} ,

where φK (x1, x2; ρ) is the K-dimensional standard Gaussian density with covariance ma-

trix with diagonal entries equal to one and o� diagonal entries equal to ρ = .25 (i.e. equal

correlation between variables). We consider the following cases: p = .25, .5, .75 and sam-

ples of n = 40, 80 observations. A sample size of n = 40 is considered to be quite small for

a three dimensional kernel density estimator. Recall that nhK → ∞ is needed, because

the variance of the kernel density estimator is O
(
n−1h−K

)
. Therefore, what matters is

not n but nhK . For example, when h = .1, n = 40, and K = 3, we have nhK = .04.

The density is estimated by kernel smoothing with Gaussian kernel (NP estimator) and

by a Gaussian density with mean and variance matrix estimated by method of moments (P
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estimator). For the latter estimator, misspeci�cation is quite pronounced even for p = .75

becoming very pronounced for p = .25. Figure 1 shows the quite evident asymmetry of

the density in one dimension, when p = .75, .5, .25. The Gaussian density (p = 1) is also

plotted for reference.

[Figure 1 Here]

We shrink the NP estimator towards the biased P estimator using the shrinkage param-

eter in (4) and will refer to the shrunk estimator as the S estimator where, in (3), q = .1.

We also shrink the NP estimator towards the P estimator for �xed α = 0, .1, .2, ..., 1 and,

for each p, n and K, report results for the best performing α referring to this as the D

estimator. For comparison, we also compute the nonparametric estimator of Hjort and

Glad (1995) with Gaussian parametric term and refer to it as the HG estimator. This

is a special case of the L2 �tting density estimators studied in Naito (2004). The latter

density estimator usually improves on the asymptotic bias of the fully nonparametric esti-

mator, but does not provide an improvement on the asymptotic variance. It appears that

the only way to reduce variance in the nonparametric estimator is to shrink it towards

a less variable constrained estimator. Estimators based on multiplicative correction do

not possess this property. For this reason it is instructive to compare estimators that

try to improve on fully nonparametric estimators but by di�erent routes. Note that as p

decreases we move even further away from the P estimator and the leading term in the

HG estimator.

The bandwidth is chosen to be the standard deviation in the Gaussian kernel smoother

and it is set equal to h = .1, .3, .5, .7, .9 times the identity matrix. To compute the ISE

we used Monte Carlo integration based on 1000 simulated uniform random variables in

[−5, 5] when K = 1. When K > 1, the ISE is computed by Monte Carlo integration

based on 10000 simulated uniform random variables in [−5, 5]K . Results are in Tables

1-6, for the K = 1, 2, 3 dimensions, respectively. Tables 1-6 report the integrated square

error, averaged over 1000 samples for the S, NP, HJ and D estimators, together with

standard errors (rounded to second decimal place). The percentage relative improvement

in average loss (PRIAL) of the estimators is also reported (rounded to �rst decimal place),
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where

PRIAL (w) := 100
E
∥∥∥f̂n − f∥∥∥2

2,λ
− E ‖w − f‖22,λ

E
∥∥∥f̂n − f∥∥∥2

2,λ

,

and w is the estimator (i.e. the S, NP, HG and D estimator). Hence, PRIAL (NP) = 0

by de�nition, so that we measure the improvement relative to the NP estimator. All

expectations are of course approximated using the mean over the 1000 simulated samples.

[Tables 1-6 Here]

The results show that the performance of the S estimator is often comparable to the

NP and HG estimators. This is particularly so in high dimensions. In high dimensions,

when n is small, as in here, nonparametric estimators perform poorly because of high

variability, unless we oversmooth. The results con�rm the theory in suggesting that the

S estimator can be considered as a competitor to NP estimators, particularly in high

dimensions and when a P estimator is useful to provide further structure for the data

analysis. The PRIAL of the S estimator seem to con�rm this, particularly when p > .25.

When K = 3 the S estimator is usually superior to the HG estimator, which often

performed worse than the NP estimator (as already anticipated in the Introduction). It

is evident that the S estimator improves on the NP and HG estimators when nhK is small

even for the very misspeci�ed parametric model (i.e. p = .25).

The performance of the HG estimator was very poor when h = .9. An explanation for

negative outcomes when the bandwidth is large can be provided. Suppose that the kernel

is bounded below by a constant c for all sample values when the bandwidth is large. In

this case, the HG estimator is bounded below by

φ (x)
1

n

n∑
i=1

ψn (x,Xi)

φ (Xi)
≥ φ (x) c

1

n

n∑
i=1

1

φ (Xi)
.

The right hand side can be particularly large in some occasions, as shown in Table 6 when

h = .9 and n = 80. (Note that we used the same seed numbers for all computations, hence,

in the sample when n = 80 there must have been at least an observation that led to the

aforementioned phenomenon). Hjort and Glad (1995) suggest to trim the multiplicative

term to avoid this instability. Since trimming involves and additional parameter to be

tuned, for comparison reasons it was preferred to avoid this, as this problem only occurred
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for h = .9. The goal of this experiments is to shed some light into the behaviour of these

estimators in some special circumstances. Of course, the use of a less biased parametric

model would have shown more substantial improvement in both the S and HG estimator

relative to the NP estimator.

4 Further Remarks

The above experiment shows that the best estimator really depends on the situation and

the extent of previous knowledge of the problem at hand. For high dimensional problems

it is quite di�cult to pick up a unique best model and/or estimation approach. Hence,

a shrunk procedure could be considered as a relative safe option for di�cult problems.

The asymmetry in the true distribution was not captured at all by the parametric model.

Nevertheless the increase in bias due to �wrongly choosing� the parametric estimator did

not lead to considerable loss in performance in the S estimator.

The main feature of a shrunk estimator is robustness (also in terms of bandwidth

selection, in this context). Indeed, a shrunk estimator is just a simple version of model

combination and many of the insights of that literature can also be applied here (e.g.

Timmermann, 2006, for a review). In the context of model combination, it is well known

that combining models that are quite di�erent might provide the highest bene�t.

One may actually decide to shrink a nonparametric estimator towards multiple para-

metric models. This might be a more stable approach than selecting a single parametric

model to shrink to. Indeed, it is well known that subset model selection tends to be

noisier than model combination (e.g. Breiman, 1996). Some of these remarks will be

considered in some future studies.

Finally, this paper was only concerned with estimation starting from a nonparametric

estimator and not with inference. Indeed, one could utilise α̂n to check goodness of �t

of the parametric model. This requires derivation of the asymptotic distribution of the

shrinkage parameter. Under the null that the true density f ∈ (gθ)θ∈Θ, then, αn → 1,

which is equivalent to a test of the true parameter at the boundary under the null. It is

well known (e.g. Andrews, 1999) that in these case, the asymptotic distribution of the

estimator is not normal. Analysis of this problem shall be the subject of future research.

13



5 Proof of Theorem 1

For ease of reference, we state the mean value theorem.

Lemma 1 Suppose r : Θ→ R. Inside Θ,

r
(
θ̂
)

= r (θ0) +∇θr (θ∗)
′
(
θ̂ − θ0

)
,

where θ∗ = θ (ρ) = ρθ̂n + (1− ρ) θ0, ρ ∈ [0, 1], and ∇θr (θ∗) is the gradient of r (θ)

evaluated at θ∗, and the prime is used for the transpose.

We show that the estimated parametric leading term can be replaced by the best

parametric approximation.

Lemma 2 Under Conditions 1 and 2,∫ [
gθ̂ (x)− f̂n (x)

]
f̂n (x) dx =

∫ [
gθ0 (x)− f̂n (x)

]
f̂n (x) dx+Op

(
n−1/2

)
.

Proof. By Lemma 1∫ [
gθ̂ (x)− f̂n (x)

]
f̂n (x) dx =

∫ [
gθ0 (x)− f̂n (x)

]
f̂n (x) dx+

∫
∇θgθ∗ (x)′

(
θ̂ − θ0

)
f̂n (x) dx.

By Holder and Minkowski inequalities,∣∣∣∣∫ ∇θgθ∗ (x)′
(
θ̂ − θ0

)
f̂n (x) dx

∣∣∣∣ ≤ max
s∈{1,...,S}

∣∣∣θ̂s − θ0s

∣∣∣ S∑
s=1

‖∇θsgθ∗‖p,λ
∥∥∥f̂n∥∥∥

q,λ

= Op

(
n−1/2

)
,

by Conditions 1 and 2.

Lemma 3 Under Conditions 1 and 2,∫ [
gθ̂ (x)− f̂n (x)

]2
dx =

∫ [
gθ0 (x)− f̂n (x)

]2
dx+Op

(
n−1/2

)
Proof. By Lemma 1∫ [

gθ̂ (x)− f̂n (x)
]2
dx =

∫ [
gθ0 (x)− f̂n (x)

]2
dx

+2

∫ (
θ̂ − θ0

)′
∇θgθ∗ (x)

[
gθ∗ (x)− f̂n (x)

]
dx

≤
∫ [

gθ0 (x)− f̂n (x)
]2
dx

+2 max
s∈{1,...,S}

∣∣∣θ̂s − θs0∣∣∣ S∑
s=1

‖∇θsgθ∗‖p,λ
∥∥∥gθ∗ − f̂n∥∥∥

q,λ
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by similar arguments as in the proof of Lemma 2. Since∥∥∥gθ∗ − f̂n∥∥∥
q,λ

≤ sup
θ∈B0

‖gθ‖q,λ +
∥∥∥f̂n∥∥∥

q,λ
,

then,

max
s∈{1,...,S}

∣∣∣θ̂s − θs0∣∣∣ S∑
s=1

‖∇θsgθ∗‖p,λ
∥∥∥gθ∗ − f̂n∥∥∥

q,λ
= Op

(
n−1/2

)
by Conditions 1 and 2.

Lemma 4 Under Conditions 1 and 2,

Pngθ̂ (X) =

∫
gθ0 (x) f (x) dx+Op

(
n−1/2

)
.

Proof. By Lemma 1

Pngθ̂ (X) = Pngθ0 (X) +

S∑
s=1

(
θ̂s − θs0

)
Pn∇θsgθ∗ (X) .

Hence, by Condition 2 and Chebyshev's inequality

Pngθ0 (X) =

∫
gθ0 (x) f (x) dx+Op

(
n−1/2

)
,

and

S∑
s=1

(
θ̂s − θs0

)
Pn∇θsgθ∗ (X) ≤ max

s∈{1,...,S}

∣∣∣θ̂s − θ0s

∣∣∣ S∑
s=1

|Pn∇θsgθ∗ (X)| = Op

(
n−1/2

)
,

by Condition 1 and 2.

Finally we have the following consistency of the cross-validated estimator.

Lemma 5 Suppose ζn is as in Theorem 1,

Pn
(
f̂n|q

)
=

∫
f̂n (x) f (x) dx+Op

(√
ζn/n

)
.

Proof. To avoid trivialities in the notation, assume V = 1/q ∈ N and qn ∈ N. With

no loss of generality, assume that ψn (x, y) is symmetric, as if not it can always be replaced

by a symmetrised version (e.g. Arcones and Giné, 1992, eq 2.4). Note that

Pn
(
f̂n|q

)
=

1

V

V∑
v=1

1

qn

∑
i∈Av

1

n (1− q)

n∑
j∈Ac

v

ψn (Xi, Xj)

=
1

V (V − 1)

∑
1≤v1 6=v2≤V

∑
i∈Av1

∑
j∈Av2

ψn (Xi, Xj)

n2q2

 ,
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which has a representation as a U-statistic of order 2 because the sets Av1 and Av2 do

not overlap. Hence, computing the variance using the Hoe�ding's decomposition of U

statistics we have (e.g. Ser�ing, 1980, Lemma A, p.183)

V ar
(
Pn
(
f̂n|q

))
.

1

V
V ar

∑
i∈Av1

∑
j∈Av2

ψn (Xi, Xj)

n2q2

 .

By direct calculation (without assuming symmetrization) we have

1

V
V ar

∑
i∈Av1

∑
j∈Av2

ψn (Xi, Xj)

n2q2


=

1

V

(
Cov (ψn (X1, X2) , ψn (X1, X3)) + Cov (ψn (X1, X2) , ψn (X3, X2))

2nq
+
V ar (ψn (X1, X2))

(nq)2

)
.

1

n
ζn,

for ζn as de�ned in (5) and we deduce that

Pn
(
f̂n|q

)
= EPn

(
f̂n|q

)
+Op

(√
ζn/n

)
= Eψn (X1, X2) +Op

(√
ζn/n

)
Hence, it is su�cient to show that∫

f̂n (x) f (x) dx = Eψn (X1, X2) +Op

(√
ζn/n

)
.

Suppose X is a copy of X1 independent of X1, ..., Xn. Then, using EX for expectation

with respect to X only,∫
f̂n (x) f (x) dx = EX f̂n (X)

=
1

n

n∑
j=1

EXψn (X,Xj) .

By the Chebyshev's inequality, EX f̂n (X) = Eψn (X1, X2)+Op

(√
V ar (EXψn (X,X1)) /n

)
.

Hence,

Pn
(
f̂n|q

)
=

∫
f̂n (x) f (x) dx+Op

(√
ζn/n

)
noting that

V ar (EXψn (X,X1)) = Cov (ψn (X1, X2) , ψn (X3, X2)) ≤ V ar (ψn (X1, X2)) ,

by stationarity.

The following two lemmata give Theorem 1. First, we show consistency of the shrink-

age parameter.
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Lemma 6 Under the conditions of Theorem 1,

α̂n = αn +Op

(√
ζn/n

)
.

Proof. We need to show

Pngθ̂ (X)− Pn
(
f̂n|q

)
−
∫ [

gθ̂ (x)− f̂n (x)
]
f̂n (x) dx∫ [

gθ̂ (x)− f̂n (x)
]2
dx

=

∫ [
gθ0 (x)− f̂n (x)

]
f (x) dx−

∫ [
gθ0 (x)− f̂n (x)

]
f̂n (x) dx∫ [

gθ0 (x)− f̂n (x)
]2
dx

+Op

(√
ζn/n

)
.

By Lemma 3, the fact that gθ0 (x) 6= f̂n (x) and that the numerator is Op (1), an applica-

tion of the delta method gives

Pngθ̂ (X)− Pn
(
f̂n|q

)
−
∫ [

gθ̂ (x)− f̂n (x)
]
f̂n (x) dx∫ [

gθ̂ (x)− f̂n (x)
]2
dx

=
Pngθ̂ (X)− Pn

(
f̂n|q

)
−
∫ [

gθ̂ (x)− f̂n (x)
]
f̂n (x) dx∫ [

gθ0 (x)− f̂n (x)
]2
dx

+Op

(
n−1/2

)
.

Using again the fact that gθ0 (x) 6= f̂n (x) , Lemmata 2 and 5 gives

Pngθ̂ (X)− Pn
(
f̂n|q

)
−
∫ [

gθ̂ (x)− f̂n (x)
]
f̂n (x) dx∫ [

gθ0 (x)− f̂n (x)
]2
dx

=

∫ [
gθ0 (x)− f̂n (x)

]
f (x) dx−

∫ [
gθ0 (x)− f̂n (x)

]
f̂n (x) dx∫ [

gθ0 (x)− f̂n (x)
]2
dx

+Op

(√
ζn/n

)
,

proving the result.

To conclude, here is the proof of the last statement in Theorem1:

Proof. By the triangle inequality, we have the following chain of inequalities,∥∥∥α̂ngθ̂ + (1− α̂n) f̂n − f
∥∥∥

2,λ

≤
∥∥∥α̂ngθ0 + (1− α̂n) f̂n − f

∥∥∥
2,λ

+ α̂n
∥∥gθ̂ − gθ0∥∥2,λ

≤
∥∥∥αngθ0 + (1− αn) f̂n − f

∥∥∥
2,λ

+ |αn − α̂n|
∥∥∥gθ0 − f̂n∥∥∥

2,λ
+ α̂n

∥∥gθ̂ − gθ0∥∥2,λ
(6)

and it is enough to bound the last two terms on the r.h.s.. To this end,∥∥∥gθ0 − f̂n∥∥∥
2,λ

≤
∥∥∥f − f̂n∥∥∥

2,λ
+ ‖gθ0 − f‖2,λ

. 1 +
∥∥∥f − f̂n∥∥∥

2,λ
,
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as both gθ0 and f are in L2. Hence, an application of Lemma 6 gives the result, noting

that the third term on the r.h.s. of (6) is Op
(
n−1/2

)
by similar arguments as in Lemmata

2 and 3.

References

[1] Aivasian, S.A., V.M. Buchstaber, I.S. Yenyukov, L.D. Meshalkin (1989).

Applied Statistics. Classi�cation and Reduction of Dimensionality. Moscow

(in Russian).

[2] Andrews, D. (1999) Estimation when a Parameter is on a Boundary. Econo-

metrica 67, 1341-1383.

[3] Arcones, M.A. and E. Giné (1992) On the Bootstrap of U and V Statistics.

Annals of Statistics 20, 655-674.

[4] Barron, A.R. (1994) Approximation and Estimation Bounds for Arti�cial

Neural Networks. Machine Learning 14, 113-143.

[5] Breiman, L. (1996) Heuristics of Instability and Stabilization in Model Se-

lection. Annals of Statistics 24, 2350-2383.

[6] Devroye L. and L. Gyor� (2002) Distribution and Density Estimation. In

L. Gyor� (ed.) Principles of Nonparametric Learning, pp. 211-270, Vienna:

Springer-Verlag.

[7] El Ghouch, A. and M. G. Genton (2009) Local Polynomial Quantile Regres-

sion With Parametric Features. Journal of the American Statistical Associ-

ation 104, 1416-1429.

[8] Fan, Y., and A. Ullah (1999) Asymptotic Normality of a Combined Regres-

sion Estimator. Journal of Multivariate Analysis 71, 191-240.

[9] Gonzalo, P. and O. Linton (2000) Local Nonlinear Least Squares: Using

Parametric Information in Nonparametric Regression, Journal of Economet-

rics 99, 63-106.

18



[10] Hagmann, M. and O. Scaillet (2007) Local Multiplicative Bias Correction

for Asymmetric Kernel Density Estimators. Journal of Econometrics 141,

213-249.

[11] Hjort, N.L. and I.K. Glad (1995) Nonparametric Density Estimation with a

Parametric Start. The Annals of Statistics 23, 882�904.

[12] Hjort, N.L. and M.C. Jones(1996) Locally Parametric Nonparametric Den-

sity Estimation. Annals of Statistics 24, 1619-1647.

[13] Van der Laan, M. and S. Dudoit (2003) Uni�ed Cross-Validation Method-

ology For Selection Among Estimators and a General Cross-Validated

Adaptive Epsilon-Net Estimator: Finite Sample Oracle Inequalities and

Examples. U.C. Berkeley Division of Biostatistics Working Paper 130.

http://www.bepress.com/ucbbiostat/paper130.

[14] Ledoit, O. and M. Wolf (2004) A Well-Conditioned Estimator for Large-

Dimensional Covariance Matrices. Journal of Multivariate Analysis 88, 365-

411.

[15] Marron, J.S. and W. Härdle (1986) Random Approximations to Some Mea-

sures of Accuracy in Nonparametric Curve Estimation. Journal of Multivari-

ate Analysis 20, 91-113.

[16] Mays, J.E., J.B. Birch and B.A. Starnes (2001) Model Robust Regression:

Combining Parametric, Nonparametric, and Semiparametric Methods. Jour-

nal of Nonparametric Statistics 13, 245-277.

[17] Naito, K. (2004) Semiparametric Density Estimation by Local L2-Fitting.

The Annals of Statistics 32, 1162-1191.

[18] Olkin, I. and C. Spiegelman (1987) A semiparametric Approach to Density

Estimation. Journal of the American Statistical Association 82, 858-865.

[19] Sancetta, A. (2008) Sample Covariance Shrinkage for High Dimensional De-

pendent Data. Journal of Multivariate Analysis 99, 949-967.

19



[20] Scott, D.W. (1992) Multivariate Density Estimation. Theory, Practice and

Visualization. New York: Wiley.

[21] Ser�ing, R.J. (1980) Approximation Theorems of Mathematical Statistics.

New York: Wiley.

[22] Timmermann, A. (2006) Forecast Combinations. In G. Elliott, C.W.J.

Granger and A. Timmermann, Handbook of Economic Forecasting. Ams-

terdam: North-Holland.

20



Figure 1: Densities for Di�erent Values of p.
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Table 1: Average Integrated Squared Errors, n= 40, K=1. * Smallest Loss, ** Second

Smallest Loss, *** Third Smallest Loss.
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Table 2: Average Integrated Squared Errors, n= 40, K=2. * Smallest Loss, ** Second

Smallest Loss, *** Third Smallest Loss.
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Table 3: Average Integrated Squared Errors, n= 40, K=3. * Smallest Loss, ** Second

Smallest Loss, *** Third Smallest Loss.
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Table 4: Average Integrated Squared Errors, n= 80, K=1. * Smallest Loss, ** Second

Smallest Loss, *** Third Smallest Loss.
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Table 5: Average Integrated Squared Errors, n= 80, K=2. * Smallest Loss, ** Second

Smallest Loss, *** Third Smallest Loss.
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Table 6: Average Integrated Squared Errors, n= 80, K=3. * Smallest Loss, ** Second

Smallest Loss, *** Third Smallest Loss.
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