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Dear Editor, 

 

I am pleased to submit an original research manuscript entitled “Neoproterozoic Re-Os 

systematics of organic-rich rocks in the São Francisco Basin, Brazil and implications for 

hydrocarbon exploration”. In this article we study three potential source rocks of the São 

Francisco Basin in order to date them using Re-Os geochronology. The study of 

Neoproterozoic strata as components of potential petroleum systems is a new and exciting 

frontier, and one that we feel is entirely appropriate for Precambrian Research. We provide 

the first depositional isochron for the Canastra Group, and explain the complexities and 

issues surrounding the application of the technique to other units. We offer a simple model to 

explain the low TOC values in the Sete Lagoas Formation- a unit representing a cap 

carbonate above the Sturtian glacial and which was expected to have far higher TOC values 

than measured. Demonstration of “successful” isochron acquisition is especially important, as 

in the authors’ experience there has been a general resistance to using this technique in Brazil 

more generally. The article does not include detailed sedimentological investigations, as the 

outcrops are almost universally low lying and patchily exposed- and weathered! Thus, 

samples are limited to cores. 

 

We would suggest the following individuals as potential reviewers: Dr Jonathan Craig 

(jonathan.craig@eni.com), Dr Robert Creaser (Robert.Creaser@ualberta.ca), Dr Alan Collins 

(alan.collins@adelaide.edu.au), Dr Sebastian Luening (sebastian.luening@galpenergia.com). 

We confirm that the manuscript has not been published and is not under consideration for 

publication elsewhere, and look forward to hearing from you in due course.   
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Maria Emilia Bertoni 

 

Postgraduate research student 

Department of Earth Sciences 
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 We assess three formations using the rhenium–osmium (Re–Os) 

geochronometer 
 A depositional age of 1002 ± 45 Ma was obtained for the Paracatú Fm. 
 Fluid flow is suggested responsible for imprecise ages in the Serra do 

Garrote Fm. 
 Dating of the Sete Lagoas Formation was precluded due to low Rhenium 

presence 
 The São Francisco Basin may have petroleum potential since Tonian times 
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Abstract 18 
The São Francisco Basin contains a spectacular archive of Neoproterozoic strata. Its 19 

hydrocarbon-bearing strata are receiving increasing attention as global oil and gas 20 

exploration targets progressively deeper and older rocks. New Re–Os geochronology 21 

for the Paracatú Slate Formation of the Canastra Group, Brazil yields a depositional 22 

age of 1002 ± 45 Ma. This age represents the first successful application of the Re–Os 23 

system to rocks of this group and indicates excellent agreement with previous 24 

published U–Pb detrital zircon age (Rodrigues et al., 2010). Together with TOC 25 

values ~2 wt.% preserved even after green-schist metamorphism, it might be argued 26 

that the São Francisco Basin has had the potential for hydrocarbon generation since 27 

Tonian times. We also report an imprecise Re–Os age (1304 ± 210 Ma) for the Serra 28 

do Garrote Formation, a further potential source rock of the Vazante Group. We 29 

suggest, based on petrological evidence that Re–Os systematics may have been 30 

disturbed by post-depositional fluid flow associated with the Vazante hydrothermal 31 

alteration. An attempt to determine a Re-Os date for the Sete Lagoas Formation, a 32 

putative post-Sturtian cap carbonate, is precluded owing to low Re presence. Major 33 

environmental changes in the aftermath of the Jequitaí glaciation, particularly the 34 

development of palaeotopography such as subglacial tunnel valleys, may account for 35 

the apparent random distribution of TOC enrichment in these Cryogenian post-glacial 36 

deposits. This scenario might thus have major implications for the hydrocarbon 37 
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1.Introduction 49 

 50 
The rhenium–osmium (Re–Os) geochronometer is an increasingly recognized 51 

tool for determining depositional ages of organic-rich rocks (Ravizza and Turekian, 52 

1989; Cohen et al., 1999; Selby and Creaser, 2005a; Georgiev et al., 2011) and 53 

hydrocarbon deposits (Selby et al, 2005; Selby and Creaser, 2005b). Although the 54 

method has yielded absolute dates for Neoproterozoic strata with precision 55 

approaching 1% uncertainty (2σ) in units up to greenschist facies (Kendall et al., 56 

2004; Rooney et al., in press), their concordance with those obtained by conventional, 57 

geochronological techniques remains controversial in some Proterozoic intervals 58 

(Kendall et al., 2006; Kendall et al., 2009a; Mahan et al., 2010).   59 

 60 

In the São Francisco Basin of Brazil (Fig. 1, A) the Re-Os radioisotope system 61 

has been used to provide Meso-Neoproterozoic depositional ages for the Lapa and 62 

Serra do Garrote Formations of the Vazante Group (Geboy, 2006; Azmy et al., 2008). 63 

However, the lack of accurate geochronological data throughout the stratigraphy 64 

severely hinders attempts to develop a chronological framework for the São Francisco 65 

Basin. This is a critical problem for two reasons. First, the São Francisco Basin and its 66 

surrounding belts contains a magnificent stratigraphic archive of Proterozoic time, 67 

extending at least from the Statherian (1750 Ma) to the Ediacaran (610 Ma) (Alkmim 68 

and Martins-Neto, 2012), of wider interest to the Precambrian research community. 69 

For example, it exposes, over a wide area, diamictites and associated cap carbonates 70 

attributable to Marinoan (Caxito et al., 2012), plus evidence of intra-Cryogenian 71 

photosynthetic communities (Olcott et al., 2005).  Second, the São Francisco Basin 72 

has multiple gas shows, which are probably sourced from Meso-Neoproterozoic 73 

organic-rich rocks (Craig et al., 2012 and refs therein). The São Francisco is a frontier 74 

basin for hydrocarbon exploration: the origins of these hydrocarbons, the timing of 75 
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their migration, and mechanism of entrapment, remain unknown. Placing proper 76 

geochronological constraints on organic-rich horizons is key to understanding of the 77 

nature of the depositional environment and fossil hydrocarbon system in this vast 78 

basin. 79 

 80 

The aims of the present paper are threefold: 1) to constrain the depositional 81 

age of the organic-rich strata using Re-Os geochronology; 2) to improve radiometric 82 

calibration of the Brazilian Proterozoic rock record and contribute to a better 83 

understanding of the geological evolution of the Brasília Belt and São Francisco 84 

Basin; 3) to establish whether key intervals are enriched in total organic carbon, and 85 

hence potential hydrocarbon source rocks. A more detailed sedimentological 86 

description of the strata will be presented elsewhere. 87 

 88 
2. Geological setting and existing chronostratigraphy 89 

The São Francisco craton (Fig. 1A), as one of the oldest portions of the Precambrian 90 

nucleus of the South American continent, hosts sedimentary successions deposited 91 

between the Neoarchean (~2800 Ma) and Late Neoproterozoic (580 Ma) (Almeida et 92 

al., 2000). Together with other cratons of South America, it represents the internal 93 

portions of the plates involved in the assembly of West Gondwana by the end of the 94 

Proterozoic Era (Alkmim and Martins-Neto, 2012). The Neoproterozoic Brasiliano-95 

Pan Africano orogenic belts, on the other hand, encompass the margin of those plates 96 

and the intervening accretionary material (Alkmim et al., 2001; Alkmim and Martins-97 

Neto, 2012; Almeida et al., 2000). The Brasilia Belt, which flanks the São Francisco 98 

Basin to the west, exhibits a fundamentally complex tectonic character and variable 99 

metamorphic grade. Therefore, it is essential to briefly outline the structural character, 100 

the stratigraphy, and present geochronology of both the Brasília belt and the São 101 

Francisco basin. 102 

 103 

"Insert Supplementary Figure 1 here" 104 

 105 
2.1 The Brasilia Belt and São Francisco basin  106 

The Brasilia Belt, located on the western margin of the São Francisco Craton (Fig. 107 

1B), is the product of a collision between the Amazon, São Francisco-Congo and 108 

Paranapanema paleocontinents during the amalgamation of Gondwana (Li et al., 109 



2008; Pimentel et al., 2011; Rodrigues et al., 2012). This belt is composed of thrust 110 

sheets verging eastward towards the São Francisco platform (Fig. 1B). Metamorphic 111 

grade increases progressively westward, reaching granulite facies conditions in the 112 

central part of the belt (Dardenne, 2000). 113 

 114 

The southern Brasília Belt, focused in this paper, involves sedimentary rocks 115 

grouped into several lithostratigraphic units (Fig. 1B): the Araxá, Paranoá, Canastra, 116 

and Ibiá groups (Pimentel et al., 2011). Intense deformation, the lack of intercalated 117 

volcanics, and the absence of biostratigraphic controls results in multiple possible 118 

interpretations for this supracrustal succession (Dardenne, 2000; Valeriano et al., 119 

2008; and references therein). Provenance studies suggest that the Paranoá and 120 

Canastra groups are passive margin deposits of the São Francisco paleocontinent, 121 

while the Araxá, and Ibiá groups are synorogenic (fore- or back-arc) basin fill 122 

(Pimentel et al. 2001; Rodrigues et al. 2010; Pimentel et al., 2011).  123 

 124 

The São Francisco basin occupies the ca. 800 km-long NS-trending lobe of the 125 

São Francisco craton  (Alkmim and Martins-Neto, 2012) (Fig.1). Bounded to the west 126 

and to the east by emergent thrust of the adjacent Brasília and Araçuaí orogenic belts 127 

respectively, the basin is filled by Paleo/Mesoproterozoic units (Paranoá Group and 128 

Espinhaço Supergroup), and Neoproterzoic strata of the Vazante Group, Jequitaí 129 

Formation, and Bambuí Group (Fig. 1).  130 

 131 

Below, we briefly summarise the characteristics of the Canastra, Vazante and 132 

Bambuí groups, as well as the Jequitaí Formation, which are the focus of the present 133 

paper. 134 

 135 

2.2 Canastra Group 136 

The Canastra Group, mainly present in the southern portion of the eastern Brasilia 137 

orogen (Fig. 1B), comprises phyllite and quartzite with common carbonate beds. 138 

These have experienced lower greenschist (chlorite) facies metamorphism (Dardenne, 139 

2000). The lithostratigraphy is difficult to unravel owing to numerous thrust faults 140 

(Rodrigues et al., 2010) (Fig. 2), especially for the basal Serra do Landim Formation 141 

(chlorite-rich calc-phyllite and calcschist) and the upper units (Paracatú and the 142 

Chapada dos Pilões formations). The Paracatú comprises slope turbidites and basinal, 143 



carbonaceous phyllites rich in diagenetic pyrite, whereas the Chapada dos Pilões 144 

comprise shallow marine wave and storm-modulated clastics (Pereira et al., 1994). 145 

The coarsening upward succession in the upper Canastra Group thus records a 146 

regressive, continental platform megasequence (Pereira et al., 1994).  147 

 148 

Pimentel et al., (2001) obtained TDM model ages for Canastra rhythmites 149 

from Sm-Nd systematics ranging from 1.9 to 2.3 Ga, suggesting a Paleoproterozoic 150 

source from the São Francisco-Congo craton. The youngest detrital zircons are ca. 151 

1040 Ma (Valeriano et al., 2004; Rodrigues et al., 2010) (Fig. 2), indicative of a 152 

passive margin association within the Brasília Belt (Pimentel et al., 2001, 2011; 153 

Rodrigues et al., 2010). Ore-hosting carbonaceous phyllites of the Morro do Ouro 154 

Member of the Paracatú Formation are estimated at 1000 to 1300 Ma, an assumed 155 

diagenetic age range based on Rb-Sr, K-Ar chlorite and Pb-Pb on galena (Freitas-156 

Silva, 1996). Metamorphism and gold enrichment of this unit is related to the 157 

Brasiliano event at ca. 680 Ma (Freitas-Silva, 1996).  158 

 159 

Thrust contacts characterize the boundaries between the Canastra and lower 160 

grade metamorphic strata of the Vazante, Paranoá and Bambuí groups (Pereira et al., 161 

1994). It has been suggested that the Canastra Group is a lateral equivalent of the 162 

Paranoá Group (Dardenne, 2000; Pimentel et al., 2011).  163 

 164 

"Insert Supplementary Figure 2 here" 165 

 166 

2.3 The Vazante Group 167 

The Vazante Group is divided into seven formations (Fig. 3). Broadly, these comprise 168 

thick pelitic-dolomitic deposits of marine origin. The formations are metamorphosed 169 

to greenschist facies, and are exposed in the eastern Brasilia Belt (Fig. 1B). 170 

Brasiliano-Pan African thrusts and nappes obscure many sedimentary contacts 171 

(Dardenne, 2000), particularly with the Canastra Group to the west and the Bambuí 172 

Group to the east (Rodrigues et al., 2012). Intense deformation in the outcrop area in 173 

the southern segment of the Brasilia belt raises major uncertainties about the internal 174 

stratigraphy and lateral correlation of the units. 175 

 176 

In this paper, we analyzed the Serra do Garrote Formation (Fig. 3). This 177 
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formation is dominantly carbonaceous and pyrite-bearing slate, intercalated with fine 178 

quartzite beds, representing an open marine succession deposited below storm wave 179 

base (Madalosso, 1980; Madalosso and Valle, 1978). The Serra do Poço Verde lies 180 

conformably over the non-carbonate deposits of the Serra do Garrote Formation and is 181 

dominantly dolomitic. It also includes slate, carbonaceous phyllite with pyrite and 182 

marls (Babinski et al., 2005): glendonite pseudomorphs after ikaite, and dropstones in 183 

slates, suggesting paraglacial depositional conditions (Olcott et al., 2005). The Serra 184 

do Poço Verde Formation is conformably overlain by the Morro do Calcário 185 

Formation – a carbonate-dominated succession including stromatolitic bioherms and 186 

biostromes (Dardenne, 2000). This formation is truncated by an unconformity at the 187 

base of the overlying Lapa Formation (Misi et al., 2005). The Lapa Formation 188 

contains organic-rich shale, which taken together with a δ
13

C negative excursion is 189 

interpreted to record the resumption of primary productivity in the aftermath of the 190 

Serra de Poço Verde glaciation (Azmy et al., 2006). 191 

 192 

Based on C and Sr isotope curves (Azmy et al., 2006), the Lapa Formation is 193 

correlated with the “Sturtian” glacial event (ca. 715 Ma; Macdonald et al., 2010). 194 

Globally, the chronometry of the Sturtian glaciation is considered to encompass a ~60 195 

Myr window, based on U-Pb zircon and Re-Os geochronology of syn- and postglacial 196 

deposits associated with the Rapitan glacials in north western Canada (Macdonald et 197 

al., 2010; Rooney et al., in press). Previous Re-Os analyses have yielded depositional 198 

ages for organic rich shales of the Serra do Garrote (1353 ± 69 Ma) and Serra do Poço 199 

Verde (1126 ± 47 Ma) formations, respectively (Fig. 3; Geboy, 2006). The same 200 

technique together with U-Pb measurements on detrital zircons of the Lapa Formation 201 

(Azmy et al, 2008) indicated that deposition occurred ca. 1000–1100 Ma. Thus, a late 202 

Mesoproterozoic age, rather than a Sturtian assignment, is currently preferred (Azmy 203 

et al, 2008). Finally, U–Pb detrital zircon analyses using SHRIMP (Rodrigues et al., 204 

2012) sampled five formations of the Vazante Group. This work identified the 205 

youngest population (ca. 930 Ma) at the base of the group, and older populations 206 

(ranging ca. 1200-1000 Ma) toward the top (Fig. 3). This suggests either that the 207 

Neoproterozoic source was isolated or covered during the evolution of the basin, or 208 

that tectonic discontinuities led to tectonic inversion of part of the lithostratigraphic 209 

units of the group.  210 

 211 
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Despite the complex history of this group, the detrital zircon age pattern of the 212 

Serra do Garrote Formation (~1.29 Ga, Rodrigues et al., 2012) is coherent with the 213 

isochron Re-Os age (~1.35 Ga, Geboy, 2006) obtained for the same formation. 214 

However, the Re-Os isochron (1353 ± 69 Ma) is associated with high MSWD value 215 

(26) and the interval of deposition remains quite broad. This raises the possibility that 216 

the detrital zircon age is even younger than the Re-Os isochron. Therefore, further 217 

provision of radiometric ages is clearly necessary, and motivates our attempts to date 218 

the formation.  219 

 220 

"Insert Supplementary Figure 3 here" 221 

 222 

2.4 Neoproterozoic glacials and the Jequitaí Formation 223 

Evidence for glaciation in the Jequitaí Formation and its correlatives, the Bebedouro 224 

Formation and Macaúbas Group, exposed respectively in the northern São Francisco 225 

craton and Araçuaí belt (Fig.1), is compelling (e.g. Cukrov et al., 2005; Uhlein et al., 226 

2007; Chaves et al., 2010). The preceding authors have cited a striated pavement cut 227 

into the Espinhaço Supergroup in the northeastern portion of the São Francisco basin, 228 

together with abundant diamictites with exotic lonestones, some of which are well 229 

stratified and exhibit unequivocal impact structures implying ice-rafted debris. 230 

Furthermore, Martins-Ferreira et al. (2013) describe a ca. 4km-wide valley carved in 231 

the sandstones of the Paranoá Group and filled by a package of sandstones, 232 

diamictites and tillite of the Jequitaí Formation. These glaciogenic rocks are in turn 233 

covered by cap dolomites that mark the base of the Bambuí Group in the western 234 

portion of the São Francisco basin. With the exception of the striated pavement, each 235 

of these facies are recognised in proprietary cores across the subsurface of the basin. 236 

Thus, clear evidence for glacial sedimentary processes at outcrop guides subsurface 237 

interpretations.  238 

 Zircons extracted from the Jequitaí Formation and the correlative Macaúbas 239 

Group yielded maximum deposition ages of 880Ma and 864Ma, respectively 240 

(Pedrosa-Soares et al., 2000; Rodrigues et al., 2008). 241 

Regional seismic sections across the São Francisco Basin (Fig. 4) reveal the 242 

presence of major incisions that cut through the top of the Espinhaço II sequence 243 

(Alkmim and Martins-Neto, 2012) on the eastern margin of the basin. The dimensions 244 

of these valleys range from ~1.5 to ~4 km width and ~100m to ~500 m depth. Their 245 
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morphology is variable, including forms with flat bottoms and steep sides, and others 246 

with a characteristic “v” profile. Almost universally, deformation at the valley 247 

margins, in the form of downwarped strata below the incisions, is recognized (Fig. 4). 248 

Within the valleys, transparent seismofacies are characteristic. The scale of the 249 

palaeovalleys is exactly analogous to Sturtian incisions observed elsewhere, such as in 250 

Namibia (Le Heron et al., 2012) and in Oman (Van der Vegt et al., 2012). 251 

 252 

Whilst further work is clearly required, we tentatively interpret the 253 

palaeovalleys as subglacial tunnel valleys. Their dimensions are analogous to 254 

Pleistocene examples of such incisions (Lonergan et al., 2006; Stewart and Lonergan, 255 

2011), which are cut under hydrostatically elevated conditions beneath a retreating ice 256 

mass. Their dimensions bear a close resemblance to Sturtian examples previously 257 

interpreted as such (Le Heron et al., 2012). Furthermore, the downwarped strata at the 258 

valley margins are typical of subglacial incisions, with the deformation resulting from 259 

ice loading the substrate. The style of fill is presently uncertain, as the palaeovalleys 260 

are undrilled, although the seismic transparency of the fill may imply coarse (e.g. 261 

diamictite) fill. Assuming a stratigraphic position beneath the Bambuí, it is likely that 262 

the incisions are related to the Jequitaí glaciation. Even if the thickness of the 263 

Macaúbas Group where the palaeovalleys are imaged (Fig. 4) is not compatible with 264 

the average thickness of the Jequitaí Formation exposed in adjacent areas (~200 m, F. 265 

Alkmim pers. comm.), this unit tends to thinner to the centre of the basin (Fig. 4). 266 

Therefore, if there were palaeovalleys further inland, these would have been probably 267 

infilled with the Jequitaí and basal portion of the Sete Lagoas Formation (as in 268 

Martins-Ferreira et al., (2013)). Thus, these incisions are suggested to record the 269 

retreat of Jequitaí ice sheets (880 Ma, Rodrigues 2008), which took place during the 270 

late rift stage of the Macaúbas basin.  271 

 272 

"Insert Supplementary Figure 4 here" 273 

 274 

2.5 Bambuí Group 275 

These epicontinental deposits, of alternating siliciclastics and carbonates are the most 276 

widely distributed unit in the São Francisco basin (Fig. 1), draping the Jequitaí 277 

diamictites and sandstones. They form a shallowing upwards sequence (Dardenne, 278 

2000; Santos et al., 2000), divisible into three coarsening upward megacycles (Fig. 5; 279 



Dardenne, 2000) clearly observed in seismic profile in the cratonic area of the São 280 

Francisco basin (Martins-Neto, 2009) Fig. 6. The first megacycle is represented by 281 

the Sete Lagoas Formation, the second includes the Serra de Santa Helena and Lagoa 282 

do Jacaré formations and the last cycle comprises the Serra da Saudade and Três 283 

Marias formations (Martins and Lemos, 2007).  284 

 285 

"Insert Supplementary Figure 5 here" 286 

"Insert Supplementary Figure 6 here" 287 

 288 

The Sete Lagoas Formation, for which we present data in this paper, 289 

comprises a succession of pelitic-calcareous sediments, grading upwards into 290 

microcrystalline limestones and lately to dolostones. Its upper section contains the 291 

most extensive shallow water carbonates of the basin with laminated and columnar 292 

Gymnosolenide stromatolites (Dardenne, 1978) and evidence for subaerial exposure 293 

(Martins and Lemos 2007). Its basal contact is characterized by an unconformity: the 294 

formation rests on granite-gneiss basement, on the glaciogenic Jequitaí Formation, or 295 

on conglomerates of the Carrancas Formation, exposed along the southern border of 296 

basin (Dardenne, 2000, Alkmin and Martins-Neto, 2001, Vieira et al. 2007).   297 

 298 

The absence of volcanic ash horizons throughout the Bambuí, in addition to 299 

hampering geochronology, has stimulated discussion regarding the tectonic setting for 300 

this group (e.g. Alkmim and Martins-Neto, 2001; Zalán and Silva, 2007) and its 301 

relationship with the Jequitaí diamictites (Babinski et al. 2007, 2012; Misi et al., 302 

2011; Caxito et al., 2012). A large suite of isotopic and chemostratigraphic data are 303 

available (e.g. Iyer et al, 1995; Babinski et al 1999, D‟Agrella-Filho et al., 2000; 304 

Santos et al., 2000; Misi et al, 2007; Vieira et al. 2007), yet its depositional age 305 

remains unknown. A Pb-Pb age of 740 ± 22 Ma (Fig. 5) from basal carbonates of the 306 

Sete Lagoas Formation (Babinski et al. 2007) is the only published estimate for its 307 

depositional age. In tandem with stable isotope analysis, this date led Babinski et al. 308 

(2007) and Vieira et al. (2007) to propose that the Sete Lagoas is a post-Sturtian cap 309 

carbonate. These interpretations contrast sharply with maximum depositional ages 310 

from U-Pb detrital zircons in the upper Sete Lagoas pelites (610 Ma) (Fig. 5), and 311 

from the overlying Serra de Santa Helena (650 Ma) and Serra da Saudade (612 Ma) 312 

respectively (Rodrigues, 2008).  313 
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 314 

Detrital zircons from the underlying Jequitaí Formation yield a maximum 315 

depositional age of 880 Ma (Rodrigues, 2008), loosely supporting potential 316 

correlation with the Sturtian glaciation, even if the depositional age of the Bambuí 317 

Group, and specifically the Sete Lagoas Formation, remains highly contentious. The 318 

different ages suggest a substantial hiatus. On the other hand, identical typically 319 

Ediacaran 
87

Sr/
86

Sr values (0.7074-0.7076) are obtained both below and above the 320 

unconformity thus arguing against a long hiatus (Caxito et al., 2012). The latter 321 

authors thus interpret most of the Sete Lagoas as Ediacaran in age, with its basal strata 322 

a cap carbonate deposited following the end-Cryogenian (Marinoan) glaciation.  323 

 324 

From the above, it is clear that despite the importance in regional and global 325 

studies of the Proterozoic, the understanding of the Sete Lagoas Formation sequence 326 

still suffers from a lack of precise and accurate radiometric ages. 327 

 328 

3. Geochemistry and Re-Os geochronology methodology 329 

3.1 Sampling 330 

Samples of the 3 formations in this study were collected from proprietary drill cores 331 

(Fig. 1). The Paracatú and Serra do Garrote formations cores were provided by 332 

Votorantim Mine, and a mine company from the Arcos region supplied the Sete 333 

Lagoas Formation samples. In the MASW03 (Paracatú) core (Fig. 7) the sampled 334 

interval spans 47.10 to 55.70 m (MD) and include dark grey to black slates, with 335 

sporadic quartz as thin veins together with pyrite. VZCF001 (Serra do Garrote) core 336 

samples (Fig. 8) extend from 280.10 to 292.65 m and include black slates, with 337 

considerable carbonaceous material (staining). Pyrite is present, both as lamina-338 

parallel mineralization, and as crosscutting veins and framboid nodules. Finally, 339 

LMR1009 (Sete Lagoas) core samples (Fig. 9) were obtained from four intervals; 1, 340 

from 36-47 m (microbial dolomite and mudstones); 2, from 111-118 m (laminated 341 

limestones with carbonaceous seams); 3, from 144-157 m (clay-rich limestones); 4, 342 

from 158-165 m (argillites). Following Kendall et al. (2009a), ~100g samples were 343 

collected at 1 m intervals in each core. Sub-sampling at further 0.4 m intervals was 344 

undertaken to detect further changes in Re and Os abundance and isotope 345 

composition. Care was taken to avoid zones of hydrothermal alteration and 346 

mineralization. 347 
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 348 

3.2 Total organic carbon (TOC)   349 

TOC values for the all samples were determined at the School of Civil Engineering 350 

and Geoscience of Newcastle University, UK. An accurately weighed 0.1 g of 351 

powdered rock was digested in hot (60-70°C) hydrochloric acid (4 mol/L) to remove 352 

the inorganic (carbonate) carbon. The decarbonated and washed samples (in deionised 353 

water) were then dried overnight in an oven at 65°C. The organic carbon in the 354 

decarbonated samples was determined using a Leco CS230 Carbon-Sulphur analyser 355 

(previously calibrated on standard samples), which combusted the sample in pure 356 

oxygen. Any carbon present was fully oxidized and converted to CO2 and the gaseous 357 

phase was passed into an infrared detector, which measures the mass of CO2 present 358 

and converts it to percent carbon based on the dry sample weight. 359 

 360 

3.3 Re-Os geochronology   361 

For Re-Os analysis, the core samples were polished to eliminate any metal 362 

contamination (e.g. cutting and drilling marks). Each sample was dried at 60 °C for 363 

24h and then crushed to a powder (c. 30 μm) in a zirconium dish using an automated 364 

shatterbox. Rhenium and Os isotope analyses were carried out at Durham University's 365 

TOTAL laboratory for source rock geochronology and geochemistry at the Northern 366 

Centre for Isotopic and Elemental Tracing (NCIET) using methods outlined in Selby 367 

and Creaser (2003) and Selby (2007).  Between 0.2 and 0.4 g of each sample was 368 

digested and equilibrated in a borosilicate carius tube in 8 ml of Cr
VI
–H2SO4 together 369 

with a mixed tracer (spike) solution of 
190

Os and 
185

Re at 220 °C for 48 h. The Cr
VI
–370 

H2SO4 solution was used to liberate hydrogenous Re and Os, restricting the 371 

incorporation of non-hydrogenous Re and Os (Kendall et al., 2004). Solvent 372 

extraction (CHCl3) for Re and Os purification, micro-distillation and anion 373 

chromatography methods were employed as outlined by Cumming et al., (2013). The 374 

purified Re and Os fractions were loaded onto Ni and Pt filaments, respectively 375 

(Selby, 2007), with the isotopic measurements determined by Negative Thermal 376 

Ionization Mass Spectrometry using a Thermo Electron TRITON mass spectrometer 377 

via static Faraday collection for Re and ion-counting using a secondary electron 378 

multiplier in peak-hopping mode for Os. Total procedural blanks during this study 379 

were 14.6 ± 0.16 pg and 0.05 ± 0.01 pg (1σ S.D., n = 3) for Re and Os, respectively, 380 

with an average 
187

Os/
188

Os value of 0.61 ± 0.03 (n = 3). Uncertainties for 
187

Re/
188

Os 381 
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and 
187

Os/
188

Os were determined by error propagation of uncertainties in Re and Os 382 

mass spectrometer measurements, blank abundances and isotopic compositions, spike 383 

calibrations and reproducibility of standard Re and Os isotopic values. The Re–Os 384 

isotopic data including the 2σ calculated uncertainties for 
187

Re/
188

Os and 
187

Os/
188

Os 385 

and the associated error correlation function (rho) were regressed to yield a Re–Os 386 

date using Isoplot V. 4.0 and the λ 
187

Re constant of 1.666 × 10-11a-1 (Smoliar et al., 387 

1996; Ludwig, 2003). The age uncertainty including the uncertainty of 0.35 % in the 388 

187
Re decay constant only affects the third decimal place (Smoliar et al., 1996; Selby, 389 

2007). 390 

 391 

To evaluate mass spectrometry reproducibility, two in-house Re and Os 392 

(Durham Romil Osmium Standard = DROsS) solution standards were analyzed. The 393 

Re solution standard yields an average 
185

Re/
187

Re ratio of 0.598071 ± 0.001510 (1 394 

S.D., n = 67), which is in agreement with the value reported for the AB-1 standard 395 

(Rooney et al., 2010). The measured difference in 
185

Re/
187

Re values for the Re 396 

standard solution and the accepted 
185

Re/
187

Re value (0.5974; Gramlich et al., 1973) is 397 

used to correct the measured sample Re isotope composition. The Os isotope 398 

reference solution (DROsS) gave an 
187

Os/
188

Os ratio of 0.160892 ± 0.000559 (1 S.D., 399 

n = 67), which is in agreement with previous studies (Rooney et al., 2010). 400 

 401 

4. Results 402 

4.1 TOC  403 

The TOC results for all samples are presented in Table 1 and Fig. 7, 8 and 9.  The 404 

Sete Lagoas Formation has the lowest TOC of the 3 analyzed cores (<0.01 to 0.49 405 

wt%), while the Serra do Garrote and Paracatú formations possess the highest TOC 406 

values (0.75 to 2.12% and 0.07 to 2.15 wt% respectively). According to these 407 

samples, the basin possesses fair quality as a potential hydrocarbon source rock, both 408 

in carbonates and shales (c.f. Craig et al., 2012). As Re-Os geochronology has been 409 

applied successfully to rocks with 0.5% TOC (Kendall et al. (2004), this cut off was 410 

used to select the samples for Re-Os analysis. Whole rock Rock-Eval pyrolysis 411 

(Espitalié et al., 1977) permits rapid evaluation of the organic matter type, quantity 412 

and maturity, however a minimum amount of organic matter is needed to obtain 413 

reliable results. As only the samples from the Paracatú and Serra do Garrote 414 

formations provided ≥1wt% TOC (Fig. 7 and 8), in low-grade metamorphic rocks, 415 



maturation analyses (Rock Eval) were not performed.  416 

  417 

"Insert Supplementary Figure 7 here" 418 

"Insert Supplementary Figure 8 here" 419 

"Insert Supplementary Figure 9 here" 420 

"Insert Supplementary Table 1 here" 421 

 422 

4.2 Paracatú Slate Formation: Re-Os data  423 

The Paracatú Slate samples have Re (0.3 – 4.1 ppb) and Os (53 – 297 ppt) abundances 424 

(Table 2) that are close to or less than that of average continental crustal values of 1 425 

ppb and 50 ppt, respectively (Esser and Turekian, 1993; Peucker-Ehrenbrink and 426 

Jahn, 2001; Hattori et al., 2003). The 
187

Re/
188

Os ratios display a limited range from 427 

24.2 to 79.6 and present-day 
187

Os/
188

Os ratios range from 0.667 to 1.593 (Table 2). 428 

Regression of the Re–Os isotope data yield a Re–Os age of 1002 ± 45 Ma (2σ, n=4, 429 

Model 1, Mean Square of Weighted Deviates [MSWD] = 1.2, initial 
187

Os/
188

Os = 430 

0.25 ± 0.04; Fig. 10). 431 

 432 

"Insert Supplementary Table 2 here" 433 

"Insert Supplementary Figure 10 here" 434 

 435 

4.3 Serra do Garrote Formation: Re-Os data  436 

The Serra do Garrote slates are enriched in Re (4 – 28 ppb) and Os (137 – 585 ppt; 437 

Table 2) and present a large spread in 
187

Re/
188

Os ratios (205.1 - 601.2) and 438 

187
Os/

188
Os ratios (3.628 - 12.207) (Fig. 10). Replicate analysis of one Serra do 439 

Garrote sample (VZCF-6r) show good reproducibility in Re and Os abundances and 440 

187
Re/

188
Os  and 

187
Os/

188
Os ratios. Contrary to the Paracatú Formation, the regression 441 

of the isotope data for the Serra do Garrote Formation yields an imprecise, Model 3 442 

age of 1304 ± 210 Ma with a negative initial Os isotope composition of -1.0 ± 1.4 and 443 

an MSWD = 96. 444 

 445 

4.4 Sete Lagoas Formation: Re-Os data 446 

The samples of the Sete Lagoas Formation are strongly depleted in Re, with 447 

abundances <100 ppt, which are lower than estimated average (present-day) upper 448 

continental crust and were not investigated further. 449 



 450 

5. Discussion 451 

5.1 Paracatú Formation 452 

New Re–Os geochronology for the Paracatú Formation yields a depositional age of 453 

1002 ± 45 Ma, which is in agreement, within uncertainty, of U–Pb geochronology 454 

(detrital zircons ca. 1040 Ma; Valeriano et al. 2004; Rodrigues et al., 2010). This 455 

relatively precise age represents the first successful application of the Re–Os system 456 

in samples of this Group and the first direct depositional age geochronometer. The 457 

new Re–Os geochronology data adds credence to previous studies that suggest that 458 

there is no significant disturbance in the Re-Os systematics of carbonaceous organic-459 

rich rocks which have experienced low degree of metamorphism (Kendall et al., 2004; 460 

Rooney et al., 2011).  461 

 462 

Based on our Re-Os data, the Canastra Group was deposited at or around the 463 

Meso-Neoproterozoic boundary. This endorses tectonostratigraphic models of a 464 

passive margin sequence, deposited along the SW margin of the São Francisco-Congo 465 

paleocontinent (Pimentel et al., 2001, 2011; Rodrigues et al., 2010). The dates place 466 

the Canastra Group as considerably younger than the early Mesoproterozoic Paranoá 467 

Group (Matteini et al., 2012), with which it has been previously correlated. 468 

 469 

The Osi value for seawater at the time of deposition of the Paracatú Formation 470 

(0.25) is much less radiogenic than the present day value (~1.06; Levasseur et al., 471 

1998) indicating that the dominant input of Os to seawater was unradiogenic. This Osi 472 

value is consistent with marine Os budget dominated by extraterrestrial and 473 

ultramafic-mafic magmatic / hydrothermal inputs with minor contribution of 474 

dissolved radiogenic crustal Os, as has been demonstrated for Mesoproterozoic 475 

seawater Os isotope composition (Kendall et al., 2009a; Rooney et al., 2010). 476 

Additionally, there is a close similarity in Osi values from the Paracatú Formation 477 

with the Lapa deposits (0.33 ± 0.30; Azmy et al. 2008). The Paracatú Formation Osi 478 

provides an important additional datapoint to that available for Precambrian seawater, 479 

indicating that the change in global patterns of oxidative weathering and Os influx 480 

was of little importance, at least until the Tonian.  481 

 482 

Considering the amount of organic matter preserved even after maturation, it 483 



is likely that the Paracatú Formation of the Canastra Group constituted an extensive 484 

hydrocarbon source rock. Despite no remaining potential for further hydrocarbon 485 

generation, it is not implausible that between deposition (~1000 Ma) and prior to the 486 

last tectono-metamorphic event recognised in the Brasília Belt (ca. 600 Ma; Pimentel 487 

et al., 1999), the rock expelled hydrocarbons. However, the data available is 488 

insufficient to determine the precise timing of generation / migration, as the intense 489 

deformation during the Brasiliano-Pan African events and the posthumous erosion has 490 

obliterated true stratigraphic thicknesses and has conditioned seismic imaging.  491 

 492 

5.2 Serra do Garrote Formation 493 

Although the Paracatú Formation experienced regional metamorphism, these samples 494 

yield a nominally precise depositional age with a low degree of scatter about the 495 

linear regression of the Re–Os data (1002 ± 45 Ma, MSWD = 1.2). In contrast, the 496 

Serra do Garrote Formation which has also experienced regional Brasiliano 497 

metamorphic event (Dardenne, 2000) show a large scatter about the Re–Os regression 498 

line (Model 3, 1304 ± 210, MSWD = 96) together with a negative initial Os isotope 499 

composition (-1.0 ± 1.4) suggestive of disturbances to the Re–Os systematics. This 500 

imprecise age may result from either depositional and/or post-depositional processes. 501 

The presence of detrital Os with variable initial 
187

Os/
188

Os composition, which tends 502 

to induce imprecise and geologically meaningless ages (Kendall et al., 2004, 2009a), 503 

is considered unlikely because the Cr
VI

-H2SO4 digestion technique used in this study 504 

has successfully allowed the generation of Model 1 ages for organic-rich rocks 505 

containing low Re and Os abundances (Kendall et al., 2004, 2006, 2009a; Rooney et 506 

al., 2011). Another feasible cause of geological uncertainty for the Re-Os systematics 507 

can be represented by variations in seawater Os isotope compositions during 508 

deposition (Selby and Creaser, 2003). In order to avoid heterogeneity in the 509 

contemporaneous seawater Os isotope composition, short stratigraphic sampling 510 

intervals (~0.6 m) were used. Os isotope composition, however, show variations that 511 

span far beyond those expected from temporal evolution in seawater (unless 512 

sedimentation rates were anomalously low). Thus, these variations may not fully 513 

account for the complex Re–Os systematics in the Serra do Garrote Formation.  514 

 515 

Weathering and metamorphism are unlikely explanations for the scattered Re-516 



Os isotope systematics because drill core samples were used for the analysis. 517 

Additionally, metamorphic conditions of the Serra do Garrote Formation related to the 518 

Brasiliano-Pan African Orogeny did not exceed greenschist facies (Dardenne, 2000; 519 

Misi et al., 2005, 2007). Petrologic evidence (coarse pyrite aggregates, quartz veinlets 520 

and pervasive faulting and fracturing) suggests the Serra do Garrote Formation has 521 

been affected by hydrothermal fluid flow. Although we avoided sampling material 522 

with abundant quartz veins, the scatter in the Re–Os regressions for the Serra do 523 

Garrote Formation and the Osi signature of the samples is indicative of a 524 

hydrothermal alteration origin, implying that there might have been some 525 

mobilization of Re and Os by fluid flow. Similar Re-Os behavior has been observed 526 

by Rooney et al., (2011) for the Leny Limestone and by Kendall et al., (2009b) for the 527 

Wollogorang Formation. Although the Vazante Ore deposit is located in the overlying 528 

Serra do Poço Verde Formation (Soares Monteiro et al., 2006), we do not discount the 529 

possibility that the same mineralizing and oxidant fluids may have affected the unit 530 

under study due to the proximity of well VZCF001 to brecciated metadolomites and 531 

epigenetic willemitic ore bodies along the Vazante Shear Zone (Fig. 1B). Therefore, it 532 

is possible that the high-temperature (> 250°C), oxidizing and moderate saline (~ 15 533 

wt. % NaCl equiv.) brines that leached base metals from the basement and ascended 534 

to finally interact with the host dolostones of the Serra do Poço Verde (Monteiro et 535 

al., 2003; Misi et al., 2005) have hydrated the Serra do Garrote slates, resulting in 536 

disturbance of the Re–Os geochronometer. 537 

  538 

It is likely that the extensive hydrothermal activity recorded in the Vazante 539 

Group, and associated with the abundant Zn deposits (Soares Monteiro et al., 2006) 540 

had intrinsic relation with hydrocarbon generation, possibly sourced by the Serra do 541 

Garrote Formation. Pyrobitumen has been observed within hydrothermal veins in the 542 

carbonates of the overlying Morro do Calcário Formation (Rubo and Soares Monteiro, 543 

2010; Tonietto, 2011) and hydrocarbon inclusions were described in sulfides of the 544 

Vazante ore deposit (L. Soares Monteiro pers. comm.). Future dating of these 545 

hydrocarbon products with the 
187

Re-
187

Os radioisotope system (e.g., Selby and 546 

Creaser, 2005b) could help constraining the timing of emplacement, the source of 547 

migrated hydrocarbons and the temporal relation of the mineralization and 548 

hydrocarbon accumulation.  549 

 550 



 551 

5.3 Sete Lagoas Formation 552 

The lack of Re in the carbonate of the Sete Lagoas could be intrinsically associated 553 

with the low TOC observed for the unit. Re and Os are organophilic and redox-554 

sensitive, therefore in reducing pore waters Re is removed at the sediment–water 555 

interface, remaining physically associated with organic matter (Selby & Creaser 2003, 556 

Kendall et al., 2004, 2009a and refs therein). If the sediments lacked enough organic 557 

matter and / or if the environment of deposition was neither euxinic nor anoxic, it is 558 

likely that hydrogenous Os was not incorporated into the sediments. On the other 559 

hand, the observed low organic content can also be related to thermal maturation 560 

(Peters and Cassa, 1994) which may cause as a loss of 30-50% of the assumed 561 

original amount of TOC (Buchardt et al., 1986). With the intention of accounting for 562 

the effects of maturation, biomarkers studies were performed by the author. However, 563 

results proved inconclusive likely due to low volumes of organic matter analysed.  564 

 565 

Several isotopic studies have demonstrated negative excursion of δ
13

C and 
18

O 566 

for the base of the Sete Lagoas Formation (Alvarenga et al., 2007; Kuchenbecker, 567 

2011). This behaviour, together with its stratigraphic position, sitting on top of the 568 

Jequitaí diamictite deposits, led to interpretations of a typical postglacial cap 569 

carbonate sequence related either to Sturtian (Babinski et al.  2007; Babinski and 570 

Kaufman, 2003) or Marinoan (Caxito et al., 2012) deglaciation.  571 

 572 

The recognition of palaeovalleys on seismic and outcrop data (Martins-573 

Ferreira et al. 2013) and information of their infill with the Jequitaí Diamictites and 574 

Bambuí dolomites has important implications.  Bechstädt et al. (2009) provided TOC 575 

data from the Maieberg Formation in northern Namibia, a laminated cap dolostone 576 

sitting on top of the Ghaub Formation diamictite, and which corresponds to a late 577 

Cryogenian (“Marinoan”) glacial deposit. Noting that there is local enrichment of 578 

TOC in the dololaminites, Bechstädt et al. (2009) draw on analogues of deglaciation 579 

from the Lower Palaeozoic of North Africa to explain this phenomenon. Deglaciation 580 

from the Hirnantian ice age left behind a complex, glacially sculpted topography 581 

produced by a combination of subglacial abrasion and meltwater. Accumulation of 582 

organic material, with primary productivity stimulated by meltwater release and 583 

aeolian dust (Gabbott et al. 2010), occurred. During transgression, however, 584 



palaeovalleys were flooded first. Initially, these were disconnected from one another, 585 

and thus euxinic to anoxic conditions developed. Later during the transgression, 586 

organic-lean shales were deposited as circulation resumed and palaeovalleys were 587 

overspilled (Lüning et al., 2000). The presence of lingering ice sheets lowered the 588 

preservation potential of organic material, because oxygen-rich brines released during 589 

sea ice production diminish euxinia at the sea floor (Le Heron et al., 2013). Thus, by 590 

analogy, the distribution of TOC enrichment in Cryogenian post-glacial deposits has 591 

been hard to predict (Bechstädt et al. 2009). If the base of the Sete Lagoas Formation 592 

was deposited under these circumstances, some of the complex factors linked to 593 

restricted / open circulation within / out palaeovalleys may explain oxidizing versus 594 

anoxic conditions for organic preservation and associated Rhenium complexation. 595 

The lack of diamictites underlying the carbonates of the Sete Lagoas Formation in 596 

well LMR1009 (opposed to other cores of the region; F. Pimenta pers. comm.) could 597 

indicate its position away from a paleodepression (Fig. 11), justifying the low TOC 598 

values observed in this particular location. This interpretation can only be tentative, 599 

however, because the location of the well used for this analysis is not imaged in 600 

seismic section. Nevertheless, considering that post-glacial shales in North Africa, 601 

have charged more than 50 major oil and gas fields ( u ning et al., 2000), and that 602 

enrichment of up to ~6%TOC has been reported in other parts of the basin for the Sete 603 

Lagoas Formation (Iyer et al., 1995), it is likely that post-Jequitaí sediments might 604 

represent a hydrocarbon source rock interval.  605 

 606 

"Insert Supplementary Figure 11 here" 607 

 608 

6. Conclusions 609 

 610 

 New Re–Os geochronology for the Paracatú Formation yields a depositional 611 

age of 1002 ± 45 Ma and is in agreement, within uncertainty, of U–Pb detrital 612 

geochronology. This relatively precise age coupled with the excellent linear fit 613 

of the Re–Os isotope data provides a more precise chronostratigraphic 614 

framework for understanding the tectonic evolution of the Canastra Group and 615 

the onset of sedimentation within the basin.  616 

 617 



 Disturbance of Re–Os systematics in the Serra do Garrote Formation is 618 

evident by a very imprecise and inaccurate age along with a negative value for 619 

the Osi value. These factors together with petrological evidence strongly 620 

suggest that the Re–Os system was disturbed in response to hydrothermal fluid 621 

flow, possibly associated with the mineralized bodies of the Vazante ore 622 

deposits. The circulation of fluids through the Vazante Group is suggested to 623 

be the cause for the gain of Re and Os and loss of reliable depositional age 624 

information. Care is consequently necessary when applying the Re–Os 625 

deposition-age geochronometer to sedimentary rocks subject to tectonic 626 

deformation and affected by hydrothermal fluids. 627 

 628 

 The lack of Rhenium enrichment in the base of the Sete Lagoas Formation 629 

could be explained by the control on the distribution of the organically enrich 630 

facies which, similarly to the Early Silurian deglacial shales ( u ning et al., 631 

2000), was inherited from glacial topography, and is directly related to 632 

incisions cut during ice advance and ice retreat.  633 

 634 
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Figure Captions 1029 
 1030 
Figure 1: Location and geology of the study area. A – São Francisco Craton, São 1031 
Francisco Basin and surrounding belts (BFB=Brasilia Fold belt; Araçuaí Fold Belt). B 1032 
- Simplified geological map of the Brasília Belt (after Dardenne, 2000). 1033 
 1034 
Figure 2: Lithostratigraphic column of the Canastra Group (modified from Dardenne, 1035 
2000). Youngest concordant age interpreted as maximum depositional age (

(1)
 1036 

Rodrigues et al., 2010). 1037 
 1038 
Figure 3: Lithostratigraphic column of the Vazante Group (modified from Dardenne, 1039 
2000). Youngest concordant age interpreted as maximum depositional age (

(1) 1040 
Rodrigues et al., 2012) and Re-Os isochron interpreted as depositional age (

(2)
Geboy, 1041 

2006; 
(3)

Azmy et al., 2008). 1042 
 1043 
Figure 4: Seismic interpretation of the São Francisco Basin, with tunnel valleys and 1044 
downwarped strata developed on the Espinhaço II Sequence. 1045 
 1046 
Figure 5: Lithostratigraphic column of the Bambuí Group (modified from Dardenne, 1047 
2000). Youngest concordant age interpreted as maximum depositional age (

(1)
 1048 

Rodrigues, 2008) and Pb-Pb isochron interpreted as depositional age (
(2)

Babinski et 1049 
al.,2007). 1050 
 1051 
Figure 6: Seismic profile in the cratonic area of the São Francisco basin showing the 1052 
expression of the three shallowing-upward 2

nd
 order sequences of the Bambuí 1

st
 1053 

order sequence (based on Martins-Neto, 2009) 1054 
 1055 
Figure 7: Stratigraphic levels of the Paracatú slate samples used for TOC and Re–Os 1056 
measurements. 1057 
 1058 
Figure 8: Stratigraphic levels of the Serra do Garrote slate samples used for TOC and 1059 
Re–Os measurements. 1060 
 1061 
Figure 9: Stratigraphic levels of the Sete Lagoas samples used for TOC and Re–Os 1062 
measurements. 1063 
 1064 
Figure 10: Re–Os isochron diagram for the Paracatú Formation organic-rich slates, 1065 
drillhole MASW03. 1066 
 1067 
Figure 11: Tentative explanation for variance of depositional TOC across the basal 1068 
Sete Lagoas Formation. Core A would represent well LMR1009. 1069 
 1070 
Tables 1071 
 1072 
Table 1: TOC content for the Canastra, Vazante and Bambuí groups. 1073 
 1074 
Table 2: Re-Os isotope data for the Paracatú and Serra do Garrote formations. *Rho is 1075 
the associated error correlation at 2σ ( udwig, 1980). 

§
Osi is the initial 

187
Os/

188
Os 1076 

isotope ratio calculated at 1002 Ma for the Paracatú Formation and 1300 Ma for the 1077 
Serra do Garrote Formation. VZCF-6r is a repeat analysis and was not included in the 1078 



regression 1079 
 1080 



 

Formation Sample 
Depth 

[m] 

TOC 

[wt%] 

Serra do 

Garrote 

VZCF001-1 280.23 0.85 

VZCF001-2 281.33 1.53 

VZCF001-3 281.55 0.07 

VZCF001-4 281.78 2.15 

VZCF001-5 282.00 0.87 

VZCF001-6 282.23 2.10 

VZCF001-7 285.78 0.72 

VZCF001-8 286.63 0.20 

VZCF001-9 287.78 0.93 

VZCF001-10 288.43 1.48 

VZCF001-11 288.98 0.62 

VZCF001-12 289.15 1.98 

VZCF001-13 289.60 1.50 

VZCF001-14 289.98 1.38 

VZCF001-15 292.55 1.89 

Paracatú  

MASW03-33 47.6 2.12 

MASW03-34 48.0 1.76 

MASW03-35 48.3 1.75 

MASW03-36 48.6 1.56 

MASW03-37 49.9 1.48 

MASW03-38 50.4 1.03 

MASW03-39 50.7 1.42 

MASW03-40 51.0 0.92 

MASW03-41 52.3 1.23 

MASW03-42 52.6 1.19 

MASW03-43 52.9 1.16 

MASW03-44 53.2 0.99 

MASW03-45 53.5 1.59 

MASW03-46 55.6 0.75 

MASW03-47 55.9 1.13 

Sete Lagoas 

LIMR1009-U4S15 35.85 0.08 

LIMR1009-U4S14 36.85 0.17 

LIMR1009-U4S13 37.85 0.03 

LIMR1009-U4S12 38.85 0.05 

LIMR1009-U4S11 39.85 0.02 

LIMR1009-U4S10 40.85 0.04 

LIMR1009-U4S9 41.85 0.02 

LIMR1009-U4S8 42.85 0.04 

LIMR1009-U4S7 43.85 0.10 

LIMR1009-U4S6 44.85 0.03 

LIMR1009-U4S5 45.85 0.04 

LIMR1009-U4S4 46.25 0.02 

LIMR1009-U4S3 46.65 0.01 

LIMR1009-U4S2 47.05 0.02 

LIMR1009-U4S1 47.57 0.01 

LIMR1009-U3S8 112.34 0.01 
LIMR1009-U3S7 113.34 0.01 
LIMR1009-U3S6 114.34 0.02 
LIMR1009-U3S5 115.34 0.08 
LIMR1009-U3S4 116.34 0.01 
LIMR1009-U3S3 116.74 0.04 
LIMR1009-U3S2 117.14 0.03 
LIMR1009-U3S1 117.54 0.02 

LIMR1009-U2S15 145.75 0.00 
LIMR1009-U2S14 146.75 0.00 
LIMR1009-U2S13 147.75 0.00 
LIMR1009-U2S12 148.75 0.02 
LIMR1009-U2S11 149.75 0.00 
LIMR1009-U2S10 150.75 0.02 
LIMR1009-U2S9 151.75 0.08 
LIMR1009-U2S8 152.75 0.00 
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LIMR1009-U2S7 153.75 0.01 
LIMR1009-U2S6 154.75 0.01 
LIMR1009-U2S5 155.75 0.00 
LIMR1009-U2S4 156.15 0.01 
LIMR1009-U2S3 156.55 0.06 
LIMR1009-U2S2 156.95 0.02 
LIMR1009-U2S1 157.35 0.13 
LIMR1009-U1S1 158.15 0.32 

LIMR1009-U1S2 158.55 0.22 

LIMR1009-U1S3 158.95 0.24 

LIMR1009-U1S4 159.35 0.24 

LIMR1009-U1S5 159.75 0.22 

LIMR1009-U1S6 160.75 0.06 

LIMR1009-U1S7 161.75 0.36 

LIMR1009-U1S8 162.75 0.14 

LIMR1009-U1S9 163.75 0.49 

LIMR1009-U1S10 164.75 0.33 

 

 



 

Sample Re 

(ppb) 

± Os ± 187Re/188Os ± 187Os/188Os ± Rho* Osi§ 

  

Paracatú  

MASW03-36 0.30 0.001 64.8 1.2 24.2 0.3 0.667 0.038 0.705 0.260 
MASW03-38 0.36 0.001 52.7 1.0 36.1 0.7 0.847 0.030 0.705 0.239 
MASW03-40 4.11 0.013 296.5 2.1 79.6 0.8 1.593 0.040 0.656 0.253 
MASW03-42 1.31 0.004 175.1 1.0 39.8 0.6 0.934 0.030 0.654 0.264 

 
Serra do Garrote 
VZCF-6 18.7 0.06 507.2 5.2 317.9 2.8 6.167 0.070 0.656 -0.793 
VZCF-6r 18.9 0.06 515.7 9.3 314.3 6.4 6.136 0.174 0.698 -0.746 
VZCF-11 9.2 0.03 260.2 2.5 269.9 2.4 4.654 0.053 0.657 -1.255 
VZCF-13 28.3 0.09 584.6 7.0 601.2 5.2 12.207 0.139 0.656 -0.956 
VZCF-3B 4.0 0.01 136.8 2.2 205.1 4.2 3.628 0.103 0.699 -0.862 
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