
Scalable RFID Security Protocols supporting Tag
Ownership Transfer

Boyeon Songa,1, Chris J. Mitchella,1

aInformation Security Group, Royal Holloway, University of London, Egham, Surrey,
TW20 0EX, UK

Abstract

We identify privacy, security and performance requirements for RFID protocols,
as well as additional functional requirements such as tag ownership transfer.
Many previously proposed protocols suffer from scalability issues because they
require a linear search to identify or authenticate a tag. In support of scalability,
some RFID protocols, however, only require constant time for tag identification,
but, unfortunately, all previously proposed schemes of this type have serious
shortcomings. We propose a novel scalable RFID authentication protocol based
on the scheme presented in [1], that takes constant time to authenticate a tag.
We also propose secret update protocols for tag ownership and authorisation
transfer. The proposed protocols possess the privacy, security and performance
properties and meet the requirements for secure ownership transfer identified
here.

1. Introduction

Radio Frequency Identification (RFID) tags have been widely studied by
both academia and industry [2, 3, 4]. Such tags can be attached to objects,
including products, animals or people, and can subsequently be used to identify
them using radio communications.

An RFID system consists of tags, readers and a back-end server. A tag is
typically made up of an antenna for receiving and transmitting a radio-frequency
(RF) signal, and an integrated circuit for modulating and demodulating the
signal and storing and processing information. When a back-end server wants
to identify one or more tags, a reader emits an RF signal via its antenna. Any
tag within range of the signal responds with certain stored data, such as a tag
identifier. The reader then passes the received tag data to the back-end server
for further processing, including tag identification and information retrieval.

Key features of RFID systems include a lack of physical contact between
readers and tags, and tag scanning out of the line of sight [2, 3]. Moreover,

Email addresses: b.song@rhul.ac.uk (Boyeon Song), c.mitchell@rhul.ac.uk (Chris J.
Mitchell)

Preprint submitted to Elsevier December 26, 2009

a smart tag possesses storage and processing capabilities, and can also per-
form lightweight cryptographic functions. These properties mean that RFID
tags have many possible applications, such as product management, transport
payments, livestock tracking, library book administration, patient medical care
and e-passports. However, the technology also poses threats to user privacy,
including the possibilities of user information leakage and location tracking.

A considerable volume of papers have been published providing possible
solutions to these RFID security and privacy challenges. One approach to pro-
tecting against such privacy and security threats is to use a tag authentication
scheme in which a tag is both identified and verified in a manner that does not
reveal the tag identity to an eavesdropper. A large number of tag authenti-
cation protocols of this type have been proposed. Typically, pseudonyms are
used to provide anonymity to tags; whenever a tag is queried, it responds with
a different cryptographically derived pseudonym. In some of these pseudonym-
based protocols, see for example [5, 6, 7, 8], a back-end server must perform a
linear search of its database to identify a tag. That is, for each tag entry in the
database in turn, it computes the pseudonym that would be produced by that
tag (using stored secrets) and compares it with the received pseudonym. Such a
linear search runs in O(n) time, where n is the number of elements in the back-
end database. Such a costly search function will potentially cause scalability
issues as the tag population increases.

Scalability is a desirable property in almost any system, enabling it to han-
dle growing amounts of work in a graceful manner [9]. A scalable RFID system
should be able to handle large numbers of tags without undue strain, and a
scalable RFID protocol should therefore avoid any requirement for work pro-
portional to the number of tags.

In support of scalability, some RFID pseudonym schemes, see for example
[10, 11, 12, 13], require only O(1) work to identify a tag1. Most such schemes
use look-up tables to match a value with a pseudonym received from a tag,
thereby taking a constant time without the need for a linear search. However,
all previously proposed schemes of this type possess significant security, privacy
or performance shortcomings, as discussed in section 3.

An alternative means of improving the scalability of an RFID system is
delegation. Tag delegation involves giving authorised entities the right to query
and identify certain tags during a specified period. This clearly has the potential
to reduce the back-end server’s workload.

Another possible requirement for RFID systems is secure tag ownership
transfer. In some applications, the owner of an RFID tag may change a number
of times during its lifetime. Ownership transfer means that the server of the
new owner takes over tag authorisation, and so needs to be given the necessary
private information to securely interact with and identify the tag. Thus all in-

1Strictly speaking the work is O(log2 n), where n is the number of tags, but in practice
this amounts to constant work, since log2 n is unlikely to exceed the word length of a modern
PC; we therefore refer throughout to O(1).

2

formation associated with the tag will need to be passed from the old to the
new owner. However, at the moment of tag ownership transfer, both the old
and new owners have the information necessary to authenticate a tag, and this
fact may cause an infringement of tag owner privacy. More specifically, if the
previous owner is malicious, it may still be able to read the tag using retained
tag information after transfer, and/or trace the new owner’s transactions with
the tag. That is, the privacy of the new owner might be compromised by the
previous owner. Conversely, if the new owner is malicious, then it might be
able to trace the previous owner’s past transactions with the tag. That is, the
privacy of the previous owner might be compromised by the new owner.

The goal of this paper is to propose a scalable and efficient RFID pseudonym
protocol having desirable privacy and security properties. To provide scalabil-
ity, our novel protocol possesses two features, namely that a server takes only
constant time to identify a tag, and tag delegation is straightforward. We also
examine the requirements for secure tag ownership transfer, and propose RFID
authentication protocols satisfying such requirements. These protocols originate
from the scheme introduced in [8] (referred to here as the SM protocol).

We first identify desirable privacy, security and performance requirements for
RFID protocols as well as the specific requirements for tag ownership transfer in
section 2. Section 3 introduces related work and section 4 introduces a revised
version of the SM protocol. Section 5 proposes a scalable RFID pseudonym
protocol and section 6 proposes new protocols for secure tag ownership transfer,
designed to provide the identified properties. We next analyse these protocols
against the identified requirements. Finally we summarise the contributions of
the paper.

2. RFID Protocol Requirements

2.1. Assumptions

The RFID protocols considered here operate under the following assump-
tions.

• The communicating parties are a server and a tag.

• The term server is used to mean a combination of a back-end server and
its readers.

• A server and tag communicate via an insecure RF interface.

• A server maintains a secure database of information for the tags that it
owns, and has a significantly greater processing capability than a tag.

• A tag has a rewritable memory that may not be tamper-resistant, and can
perform lightweight cryptographic operations.

We next introduce privacy issues, security threats and performance charac-
teristics relevant to RFID protocols.

3

2.2. Privacy

One of the main concerns of users of RFID systems is user privacy. Unpro-
tected communications between a tag and a server over a wireless channel can
disclose information about a tag, including its location (and, by implication, the
location of its owner).

2.2.1. Threats

Two major privacy issues are as follows [2, 3, 14, 7, 15].

• Tag Information Leakage: in a typical RFID system, when a server
queries a tag, the tag responds with its identifier. If unauthorised en-
tities can also obtain a tag identifier, then they may be able to request
and obtain the private information related to the tag held in the server
database. For example, if the information associated with a tag attached
to a passport, ID-card or medical record could be obtained by any server,
then the damage would be very serious.

• Tag Tracking: if the responses of a tag are linkable to each other or
distinguishable from those of other tags, then the location of a tag could
be tracked by multiple collaborating unauthorised entities. For example,
if the response of a tag to a server query is a static ID code, then the
movements of the tag can be monitored, and the social interactions of an
individual carrying a tag may be available to third parties without his or
her knowledge.

2.2.2. Privacy Requirements

RFID systems should meet the following privacy requirements in order to
mitigate the two threats described above.

• Tag Information Privacy: RFID systems should be able to resist tag
information leakage. To protect against such a threat, RFID systems
need to be controlled so that only authorised entities are able to access
the information associated with a tag.

• Tag Location Privacy: RFID systems should be able to resist tag track-
ing attacks. If messages from tags are anonymous, then the problem of
tag tracking by unauthorised entities can be avoided.

2.3. Security

Communications between a server and a tag via an insecure wireless channel
are susceptible to eavesdropping. Security threats relevant to RFID systems are
discussed below.

4

2.3.1. Attack Model

We divide possible attackers into two groups, as follows.

• A weak attacker (WA) is a malicious entity that can observe and ma-
nipulate communications between a server and a target tag, but cannot
compromise the tag.

• A strong attacker (SA) is a malicious entity that has compromised a target
tag, in addition to having the capabilities of a weak attacker.

The memory of a low-cost tag is unlikely to be tamper-resistant, and thus a
tag’s internal data are liable to exposure via side-channel attacks [16, 12]. Hence,
threats by an SA as well as a WA should be considered in RFID protocol design.

Security threats to RFID systems can be classified into weak and strong
attacks, in line with the attacker types defined above.

2.3.2. Weak attacks

The following attacks are feasible for a WA [2, 3, 15].

• Tag Impersonation: a WA could impersonate a target tag to a server
without knowing the tag’s internal secrets. It could communicate with a
server instead of the tag and be authenticated as the tag.

• Replay attack: a WA could replay messages exchanged between a server
and a tag without being detected, thereby performing a successful authen-
tication between a tag and a server.

• Man-in-the-Middle (MitM) attack: a WA could interfere with mes-
sages sent between a server and a tag (e.g. by insertion, modification or
deletion).

• Denial-of-Service (DoS) attack: a WA could block messages transmit-
ted between a server and a tag. Such an attack could cause the server and
the tag to lose synchronisation. For example, the server might update its
shared secrets, while the tag does not; as a result, they would no longer
be able to authenticate one another.

2.3.3. Strong attacks

An SA may be able to perform the following attacks, as well as the weak
attacks described above [2, 12, 7].

• Backward Traceability: an SA might be able to trace past transactions
between a server and a compromised tag using knowledge of the tag’s
internal state. That is, given knowledge of the internal state of a target
tag at time t, the attacker is able to identify target tag interactions that
occurred at time t′ < t. The past transcripts of a tag may allow tracking
of the tag owner’s past behaviour.

5

• Forward Traceability: an SA might be able to trace future transactions
between a server and a compromised tag using knowledge of the tag’s
internal state. That is, knowledge of a tag’s internal state at time t can
help to identify tag interactions that occur at time t′ > t. The only
way of maintaining future security once the current tag secrets have been
revealed is to replace compromised secrets as soon as possible after they
have been compromised (and hence undetected compromises remain an
ongoing concern).

• Server Impersonation: an SA might be able to impersonate a legitimate
server to a compromised tag using knowledge of the tag’s internal state.
This attack does not appear to have been widely discussed previously,
despite its potential importance. The SA could, for example, ask the tag
to update its internal state, with the effect that the legal server will no
longer be able to communicate successfully with the tag, although the SA
will. Details of such an attack can be found in [17].

Resistance to backward traceability is sometimes also referred to as forward
security [5, 18, 7, 19]. In the paper, we use the terms backward traceability and
forward traceability defined as in [12] in order to clearly distinguish between
threats to past and future anonymity.

2.3.4. Security requirements

We identify the following security requirements for RFID systems designed
to mitigate the threats of the weak and strong attacks described above.

• Resistance to Tag Impersonation: an adversary should not be able
to impersonate a tag without compromising a tag.

• Resistance to Replay attack: an adversary should not be able to reuse
messages exchanged between a server and a tag, thereby performing a
successful session between the tag and the server.

• Resistance to MitM attack: an adversary should not be able to ma-
nipulate messages sent between a server and a tag without compromising
a tag.

• Resistance to DoS attack: selective blocking of messages transmitted
between a server and a tag should not mean that the server and the tag
can no longer communicate successfully.

• Backward Untraceability: an adversary should not be able to to trace
past transactions between a server and a tag, even if it compromises the
tag.

• Forward Untraceability: an adversary should not be able to to trace
future transactions between a server and a tag, even if it compromises the
tag.

6

• Resistance to Server Impersonation: an adversary should not be able
to impersonate a server to a tag, even if it compromises that tag.

2.4. Performance Requirements

RFID schemes cannot use computationally intensive cryptographic algo-
rithms to provide privacy and security because tight tag cost requirements put
severe limits on tag-side resources (such as processing power, memory and stored
energy). RFID schemes should thus address the following performance issues
[2, 16, 20, 14, 21, 15].

• Storage Capacity: the volume of data stored in a tag should be min-
imised.

• Computation: the complexity of tag computations should be minimised.

• Communication: the number and size of messages exchanged between
a tag and a reader should be minimised.

• Scalability: the server should be able to handle a large tag population.
It should be able to identify multiple tags using the same radio channel.
Requiring a server to perform work proportional to the number of tags
(e.g. as would be required for an exhaustive search to identify individual
tags) becomes infeasible when the number of tags is large. Hence, it is
desirable to design protocols for which the server complexity is O(1) or
O(log n) rather than O(n), given a population of n tags.

2.5. Additional Functional Requirements

In this section, we introduce two functional requirements, tag delegation and
ownership transfer, that are likely to be required in some RFID systems.

2.5.1. Tag Delegation

In RFID systems, a centralised back-end server is often in charge of a large
number of tags. In some systems in which tag responses are anonymous, tag
identification requires the back-end server to compute every possible tag output
in turn until it finds a match [22]. This can seriously damage scalability [22].

A related issue is that many protocols require a reader to interact with the
centralised back-end server in order to identify a tag [22]. In some applica-
tions, this reading latency can be an unacceptable overhead [22]. In addition,
if the database becomes unavailable for some reason, such as network connec-
tivity failure, all interactions with tags relying on that back-end server will be
stopped [22].

Delegation is one possible solution to these performance issues [22]. Delega-
tion enables a back-end server to delegate the right to identify and authenticate
a tag to a specified entity, such as a reader [12, 23, 22].

Delegation may be permanent or temporarily [22]. In the first case, a reader
is given permanent means to interact with a tag in its read range, and the back-
end server is contacted only when a new tag arrives or an old tag leaves the

7

system [22]. In the second case, the back-end server temporarily transfers the
right to interact with a set of tags for a limited number of queries, and updates
or revokes the delegation capability according to a delegation policy [22].

2.5.2. Tag Ownership Transfer

Tag ownership means having authorisation to identity a tag and control all
the related information [12, 23]. Tag ownership transfer implies a shift of such
capabilities to a new owner [12, 23].

In certain RFID systems, changes of tag owner could occur frequently, and
thus a secure and privacy-preserving means of tag ownership transfer is needed.
This feature is supported by some RFID protocols.

The following requirements for secure tag ownership transfer have been iden-
tified [24, 12, 25]:

• New owner privacy: Once ownership of a tag has been transferred to a
new owner, only the new owner should be able to identify and control the
tag. The previous owner of the tag should no longer be able to identify or
trace the tag.

• Old owner privacy: When ownership of a tag has been transferred to
a new owner, the new owner of a tag should not be able to trace past
interactions between the tag and its previous owner.

• Authorisation recovery: In some special cases, such as after-sales ser-
vice for an RFID tagged object, the previous owner of a tag might need
to temporarily recover the means to interact with it. In such a case the
current owner of the tag should be able to transfer its authorisation rights
over the tag to the previous owner.

The possible need for authorisation recovery in an RFID system was first raised
in [24, 6]. However, it seems that no concrete protocol to address this possi-
ble requirement has been proposed. In the next section, we introduce RFID
protocols for tag ownership transfer which support this requirement.

3. Related Work

We next introduce some RFID protocols that use a look-up table to iden-
tify a tag, thereby taking only O(1) time, and hence have desirable scalability
properties. We also outline shortcomings in these schemes.

Henrici and Müller [11] proposed a protocol for RFID tag identification (the
HM scheme), in which the server only needs to perform O(1) work to identify
a tag. However, as described in [26, 5], the scheme allows a degree of tag
tracking. In addition, if a tag is compromised, its previous identifiers can easily
be computed, thereby allowing backward traceability [8].

Dimitriou [10] proposed an RFID authentication protocol (the D scheme),
requiring O(1) work for a server to authenticate a tag. However, a tag identifier
might remain the same between valid sessions because, if an authentication

8

session is unsuccessful, a tag does not update its identifier. Tag tracking is thus
partially possible [10], as in the HM scheme.

The RFID authentication protocol of Lim and Kwon [12] (the LK scheme)
requires a server to maintain a precomputed table of tag information, used to
authenticate tags. The scheme provides a range of security properties, covering
backward and forward traceability and weak attacks. However, it does not
provide location privacy, as described in [27]. Moreover, the scheme may involve
significant on-line computations for tag authentication in a successful session
[12], although it only requires O(1) work for tag identification.

Tsudik [28] presented an RFID identification protocol (the T1 scheme) that
provides only a basic level of tag identification using time-stamps, and proposed
two further schemes (the T2 and T3 schemes) also providing tag authentication.
The schemes use monotonically increasing time-stamps for tracking-resistant tag
authentication. A server maintains a periodically updated hash table in which
each row corresponds to a tag.

The T1 scheme only needs O(1) operations to identify a tag, because a hash
table is used for all look-ups. However, the scheme merely identifies a tag, and
does not provide tag authentication. Additionally, the scheme is susceptible to
a trivial DoS attack in which an attacker can easily incapacitate a tag by feeding
it an inaccurate future time-stamp value [13]. Moreover, the scheme makes the
important assumption that a given tag is never identified (interrogated) more
than once within any time interval [13].

The T2 scheme adds tag authentication to T1 using a challenge-response
method. This scheme also takes a constant time to identify and authenticate a
tag because of its use of a look-up table. However, if a tag has been previously
desynchronised by an attacker, the server must perform O(n) operations to
authenticate the tag. The T2 scheme is susceptible to DoS attacks, like the T1
scheme [13].

The T3 scheme mitigates the DoS vulnerability of T1 and T2 by using a
hash-chain to generate a so-called epoch token, allowing a tag to ascertain that
a time-stamp is not too far into the future. The server only needs to perform
O(1) operations to identify and authenticate a tag, if the tag reply is valid.
If not, the server takes O(n) time. Unfortunately, DoS attacks still remain a
threat [13].

In addition, in T2 and T3, an adversary can potentially distinguish between
synchronised and desynchronised tags by timing server responses, because a
synchronised tag only requires a server to perform a fast table look-up, whereas
a desynchronised tag requires it to perform an exhaustive search. Moreover,
none of these schemes can resist backward traceability because they use a fixed
key.

Burmester, de Medeiros and Motta [29] introduced an anonymous RFID
authentication protocol (the BMM scheme) that supports constant key-lookup,
using a pseudo-random function. However, the scheme has a location privacy
weakness; if an authentication session fails, a tag re-uses the same pseudonym in
the following session. Also, it does not provide backward untraceability because
of the use of a fixed secret key [29].

9

4. The Revised SM protocol

Our novel protocols build on a revised version of the SM protocol [8]. We
first outline the SM protocol and then describe the revised version. The XOR,
concatenation, substitution, right circular shift and left circular shift operators
are represented below by ⊕, ‖, ←, � and �, respectively.

Initially, a server S assigns a string s of l bits to each tag T and computes
t = h(s), where h : {0, 1}∗ → {0, 1}l is a hash function. T stores t, and S stores
(s, t, ŝ, t̂) for every tag it manages, where ŝ and t̂ are the most recent ‘old’ values
of s and t.

The authentication protocol operates as follows (see also Figure 1).

1. S generates a random string r1 of l bits and sends it to T .

2. T generates a random string r2 of l bits as a temporary secret, and com-
putes M1 = t ⊕ r2 and M2 = ft(r1 ⊕ r2). T then sends M1 and M2 to
S.

3. S searches its database for a value t for which M2 = ft(r1 ⊕ M1 ⊕ t),
where r1 is the value sent by S in step 1. If no match is found, the session
terminates. If a match is found, S has authenticated T . S computes
r2 = M1 ⊕ t and M3 = s ⊕ (r2 � l/2), and sends M3 to T . S then
updates stored data for tag T from (ŝ, t̂, s, t) to (s, t, (s � l/4) ⊕ (t �
l/4)⊕ r1 ⊕ r2, h((s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2)).

4. T computes s = M3 ⊕ (r2 � l/2) and checks that h(s) = t. If the
check succeeds, T has authenticated S, and sets t ← h((s � l/4) ⊕ (t �
l/4)⊕ r1 ⊕ r2). If the check fails, the session terminates.

In [30, 31], attacks are described on this protocol, which arise because the
XOR operation is used to construct each of messages M1, M2 and M3. Cai
et al. [30] present a revised scheme in which the construction of M2 uses con-
catenation instead of XOR, and M3 is computed using a hash function as h(r2)
instead of (r2 � l/2). We present here a further revision of the SM protocol. In
our revised scheme, the construction of M2 is the same as in the scheme intro-
duced by Cai et al. [30], i.e. M2 = ft(r1‖r2), and M3 is changed to s⊕ft(r2‖r1).
Figure 1 summarises the revised SM protocol.

5. An RFID Pseudonym Protocol

We introduce here an RFID pseudonym protocol. This protocol is a revised
version of the scheme presented in [1].

5.1. Main Features

The protocol has the following main features:

• To improve scalability, the protocol makes use of a precomputed look-up
table for tag authentication, as in the schemes described in section 3. As
a result, the server takes O(1) work to identify and authenticate a tag,
without needing a linear search.

10

S T
[T : s, t, ŝ, t̂] [t]
Generate r1

r1
−−− →

Generate r2
M1 = t⊕ r2
M2 = ft(r1‖r2)

r1,M1,M2

← −−−
Find t in the DB
s.t. M2 = ft(r1‖(M1 ⊕ t))

r2 = M1 ⊕ t
M3 = s⊕ ft(r2‖r1)

r1,M3

−−− →
ŝ← s s = M3 ⊕ ft(r2‖r1)
t̂← t If h(s) = t,
s← (s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2 t← h((s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2)
t← h(s)

Figure 1: The revised SM protocol

• The look-up table contains a number of entries for each tag, one for each
element of a tag-specific hash-chain. Elements from this hash-chain are
used as tag identifiers (and as database keys to identify tags). A keyed
hash function is used to generate each hash-chain, using a secret key shared
by the tag and server. The hash-chain length, m, determines the number
of tag identifiers that can be produced using any one key.

• The operation of the protocol (described in detail in section 5.3) can be
divided into three cases, as follows (see also Table 1):

1. Case 1: for each of the first m− 1 queries of a tag, the protocol pro-
cess only involves tag authentication and requires just two messages.
To authenticate a tag, the server searches a look-up table, taking
constant time.

2. Case 2: on the mth query of a tag, the protocol updates the secrets
shared by the server and tag, as well as providing tag authentication.
This process requires an additional message. The server takes O(1)
work to authenticate a tag, as in case 1.

3. Case 3: if a tag is queried more than m times, which should not nor-
mally happen, then a revised version of the SM protocol is performed;
this requires the server to perform a linear search with complexity
O(n).

• For server authentication (in cases 2 and 3), for each tag the server holds
a secret s that only it knows, as in the schemes presented in [12, 8].

11

Table 1: Operation of the protocol

Query number 1, · · · , (m− 1) m (m+ 1), · · ·
Operation Case 1 Case 2 Case 3

State Regular state Irregular state

• In normal operation (cases 1 and 2), a tag does not need to generate
pseudo-random numbers; however, in case 3, a pseudo-random number is
needed to prevent tag tracking.

5.2. Initialisation

The server S chooses values for l, lr and lm and functions e, f , g and h as
follows.

• l is the bit-length of a tag identifier and a shared key. It should be large
enough to ensure that an l-bit key is a strong cryptographic key for the
keyed hash functions, and in particular that an exhaustive search to find
an l-bit tag identifier is computationally infeasible.

• lr (≤ l) is the bit-length of a random string. It should be large enough to
ensure that an exhaustive search to find an lr-bit value is computationally
infeasible.

• lm is the bit-length of an integer m, that defines the length of the hash-
chain used for tag identifiers.

• e : {0, 1}∗ × {0, 1}l → {0, 1}l, f : {0, 1}∗ × {0, 1}l → {0, 1}l and g :
{0, 1}∗ × {0, 1}l → {0, 1}2l+lm are keyed hash functions.

• h is a hash function, h : {0, 1}∗ → {0, 1}l.

• e, f , g and h should be one-way, collision-resistant, and suitable for imple-
mentation in a low-cost tag. (A variety of work on developing such hash
functions is ongoing; see, for example, [32].)

The server S builds a look-up table which is used for tag identification. The
table definition process involves the following steps for each tag T managed by
S.

• S chooses a random l-bit string s, and computes the l-bit key k = h(s),
where s is used for server authentication and k is used as input to the
keyed hash functions e, f and g.

• S chooses a random l-bit string x0, and computes the hash-chain values
xi = ek(xi−1) for 1 ≤ i ≤ m, where the values xi are used as one-time tag
identifiers and m is the length of the hash-chain.

12

• S stores s, k and the identifiers x0, x1, · · · , xm as the entries for T in its
look-up table.

Each tag T stores k, x and a counter c, where x is initially set to x0 and
functions as T ’s identifier, and c is set to m.

5.3. Authentication and Secret Update

The novel protocol has three different stages, in line with the cases described
in section 5.1: tag authentication, secret update (I) and secret update (II). The
stages are as follows (see also Figure 2).

Case 1: Tag Authentication
S generates a random lr-bit string r, and sends r to T .

1. When T receives r, it checks its counter c. If c 6= 0, then the following
steps are performed.

(a) T computes MT = fk(r‖x) and updates its identifier x to ek(x) and
its counter c to c− 1. T sends r, MT and x back to S. If the counter
c is equal to 0, T waits for a server response, keeping r and MT in
short term memory.

(b) When S receives MT and x, it performs the following steps.

i. S searches its look-up table for a value xi equal to the received
value of x. If such a value is found, S identifies T . Otherwise,
the session terminates.

ii. S checks that fk(r‖xi−1) equals the received value of MT , where
k is the key belonging to the identified tag T . If this verifica-
tion succeeds, then S authenticates T . Otherwise, the session
terminates.

iii. If x 6= xm, then the authentication session terminates success-
fully.

Case 2: Secret Update (I)
iv. If x = xm, then S performs the following steps to update the

secrets for T .

A. S chooses a random l-bit string s′ and an integer m′, and
computes a key k′ = h(s′) and a sequence of m′ identifiers
x′i = ek′(x′i−1) for 1 ≤ i ≤ m′, where x′0 is set to x. (These
values can be precomputed.)

B. S computes MS = gk(r‖MT) ⊕ (s‖k′‖m′), and sends r and
MS to T .

C. S updates the set of stored values for T from (ŝ, k̂, s, k, x0,
x1, x2, · · · , xm) to (s, k, s′, k′, x, x′1, x

′
2, · · · , x′m′), where ŝ

and k̂ are the most recent previous values of s and k, respec-
tively.

13

(c) When T receives r and MS , it computes (s‖k′‖m′) = MS⊕gk(r‖MT).
If h(s) is equal to k, T authenticates S and updates k and c to k′

and m′, respectively. (The secret update session then terminates
successfully.) Otherwise, the session terminates.

Case 3: Secret Update (II)

2. When T receives r, if T ’s counter c is equal to 0, then the following steps
are performed. (This irregular case arises if T did not update its shared
secrets correctly in the previous session, that is, if the secret update (I)
step fails.)

(a) T generates a random number rT as a session secret, and computes
M1 = fk(r‖rT) and M2 = rT ⊕ x. T sends r, M1 and M2 back to
S with a request for an update of the shared secrets. T waits for a
server response, keeping r, rT and M1 in short term memory.

(b) When S receives M1 and M2, the following steps are performed.

i. S searches its look-up table for a value x = xm or x = x0 for
which M1 = fk(r‖(M2 ⊕ x)). If such a value is found, S authen-
ticates T . Otherwise, the session terminates.

ii. If x = xm, S performs the following steps. (This case arises
when, although T sent x = xm to S in the previous session, S
did not receive it correctly. Thus, neither S nor T have updated
their shared secrets.)

A. S chooses a random l-bit string s′ and an integer m′, and
computes a key k′ = h(s′) and a sequence of m′ identifiers
x′i = ek′(x′i−1) for 1 ≤ i ≤ m′, where x′0 is set to x. (These
values can be precomputed.)

B. S computes rT = M2 ⊕ x and MS = gk(r‖rT) ⊕ (s‖k′‖m′),
and sends r and MS to T .

C. S updates the set of stored values for T from (ŝ, k̂, s, k, x0,
x1, x2, · · · , xm) to (s, k, s′, k′, x, x′1, x

′
2, · · · , x′m′).

iii. If x = x0, S computes rT = M2 ⊕ x and MS = gk̂(r‖rT) ⊕
(ŝ‖k‖m) and sends r and MS to T . (This case arises if MS

did not reach T correctly in the previous session, and thus T
did not update its secrets, although S did. That is, this step
resynchronises S and T .)

(c) When T receives r and MS , it computes (s‖k′‖m′) = MS⊕gk(r‖rT).
If h(s) is equal to k, T authenticates S and updates k and c to k′

and m′, respectively. (The secret update session then terminates
successfully.) Otherwise, the session terminates.

6. Tag Delegation and Ownership Transfer

As we now describe, the protocol described in section 5 (referred to here as
P1) can also be used to provide tag delegation and ownership transfer in an
effective way.

14

S T

[T : ŝ, k̂, s, k, (x0, · · · , xi, · · · , xm)] [k, x, c]

Generate r
r

−−− →
If c 6= 0,
MT = fk(r‖x)
x← ek(x), c← c− 1

Case 1:
r,MT ,x

← −−−
Search for xi = x in the DB
Check MT = fk(r‖xi−1)
. .
Case 2:
If x = xm, MS = gk(r‖MT)⊕ (s‖k′‖m′)

r,MS

−−− →
Update secrets for T (s‖k′‖m′) = MS ⊕ gk(r‖MT)

ŝ← s, k̂ ← k, s← s′, k ← k′, x0 ← x If h(s) = k,
xi (1 ≤ i ≤ m)← x′i (1 ≤ i ≤ m′) k ← k′, c← m′

If c = 0,
Generate rT
M1 = fk(r‖rT)
M2 = rT ⊕ x

Case 3:
r,M1,M2

← −−−
Search for x = xm(or x0)
for which M1 = fk(r‖(M2 ⊕ x))
rT = M2 ⊕ x
If x = xm, MS = gk(r‖rT)⊕ (s‖k′‖m′)
If x = x0, MS = gk̂(r‖rT)⊕ (ŝ‖k‖m)

r,MS

−−− →
Update secrets for T (s‖k′‖m′) = MS ⊕ gk(r‖rT)
s← s′, k ← k′, x0 ← x If h(s) = k,
xi (1 ≤ i ≤ m)← x′i (1 ≤ i ≤ m′) k ← k′, c← m′

Figure 2: RFID authentication and secret update

15

6.1. Tag Delegation

Tag delegation enables a server to delegate the right to identify and au-
thenticate a tag to a specified entity for a limited time period [12, 23]. Such a
procedure could be used to reduce the computational load on a server.

In P1, tag delegation is straightforward. When S wants to delegate T to
an entity, it transfers the secret k and the identifiers x0, x1, · · · , xm for T to
the entity via a secure channel. As a result, the entity can authenticate T a
maximum of m times. However, the entity receiving the delegation right cannot
update the tag secrets, as it does not know s.

Multiple delegations of a tag T are also possible. If S transfers the secret k
and the identifiers x0, x1, · · · , xm for T to multiple entities, then these entities
can all authenticate T during the same limited period, that is, until x = xm is
reached.

If the delegated tag T is queried m times, then S will need to update T ’s
secret and identifiers and, if necessary, S can now delegate the right to query
the tag again. Note that it is always necessary for S to update the tag secret
and identifiers, since, as noted above, only S knows s.

6.2. Tag Ownership Transfer

Unlike delegation, tag ownership transfer means that the tag owner transfers
all rights over the tag to a new owner [12, 23]. In order to achieve ownership
transfer of a tag T using protocol P1, S must transfer the secrets s and k and the
identifier x for T , along with any other necessary information, to the new owner
via a secure channel. This transfer should only take place after the old owner
has updated the secrets and identifiers for T , in order to protect the privacy of
previously conducted transactions against possible tracking by the new owner.
The server of the new owner should also update the tag secrets after receiving
them from the old owner, in order to protect the privacy of future transactions
against possible tracking by the old owner. This latter update needs to take
place in an environment where there is no possibility of eavesdropping by the
old owner. Once this is complete, only the server of the new owner will be able
to authenticate T and update the secrets for T .

We introduce a protocol to update tag secrets for secure tag ownership trans-
fer, as well as a protocol to provide authorisation recovery, in line with the re-
quirements identified in section 2.5.2. These protocols are revised versions of
the schemes described in a unpublished presentation given at the RFIDSec 08
workshop [33].

6.2.1. Secret Update Protocol

When tag ownership is to be transferred, a new owner can perform P1 to
update the tag secrets. However, we propose using a novel secret update protocol
(referred to as P2) to improve performance, in which the cryptographic function
computations of a tag and the messages exchanged between a server and a tag
are less than in P1. Such efficiency gains are possible because the server knows
the identity of the newly acquired tag.

16

S T
[T : s, k, x] [k, x, c]
Choose s′& m′

k′ = h(s′)
Generate r
MS = gk(x‖r)⊕ (s‖k′‖m′)

r,MS

−−− → (s‖k′‖m′) = MS ⊕ gk(x‖r)
If h(s) = k,
k ← k′, c← m′

MT = fk(r‖x)

If MT = fk′(r‖x),
MT

← −−−
ṡ← s, k̇ ← k
s← s′, k ← k′, x0 ← x
xi = ek(xi−1) (1 ≤ i ≤ m′)

Figure 3: The secret update protocol

Prior to running P2, we assume that the server S of the new owner has
secrets (s, k, x) for a tag T , obtained as a result of the tag information transfer
described above; we also suppose that T has secrets (k, x, c). The secret update
protocol P2 involves the following steps.

1. S chooses a new secret s′ of l bits for T and an integer m′, and computes
k′ = h(s′). S generates a random string r, computes MS = gk(x‖r) ⊕
(s‖k′‖m′), and then sends r and MS to T .

2. When T receives r and MS from S, it performs the following steps:

(a) T computes (s‖k′‖m′) = MS ⊕ gk(x‖r).
(b) If h(s) = k, T has authenticated S as an authorised server. Other-

wise, the session terminates.
(c) T updates its secret k to k′ and its counter c to m′.
(d) T computes MT = fk(r‖x) using the new secret k, and sends MT to

S.

3. S checks that MT is equal to fk′(r‖x). If the validation succeeds, S now
knows that T has received the new secret k′, and updates secrets s and
k for T to s′ and k′, respectively. S computes the hash-chain values,
xi = ek(xi−1) for 1 ≤ i ≤ m′, where x0 is set to x. Otherwise, S goes to
step 1, and starts a new session.

If P2 completes successfully (and the old owner does not eavesdrop on the
messages), S and T share new secrets known only to them, and the old owner
is no longer able to identify or trace T . Both the old and new owners can also
keep the pair of the tag secrets provided by the old owner, denoted by (ṡ, k̇), for
use in the event that the old owner needs to identify T again. P2 is summarised
in Figure 3.

17

6.2.2. Authorisation Recovery Protocol

As discussed above, the previous owner of a tag may need to temporarily
interact with the tag again. The following authentication protocol (referred to
as P3) enables this to occur.

P3 allows the server S to make T change its secret back to the value it
had when S took ownership of T from the old owner. Prior to running P3, we
assume that S stores the following information for tag T : the current secrets
(s, k), the most recent secrets (ŝ, k̂), and the old secrets also known to the old
owner (ṡ, k̇); we also suppose that tag T has secrets (k, x, c).

P3 is the same as P2 except that k′ and m′ are set equal to k̇ and 0,
respectively, without the step generating new secrets s′ and k′. After successful
execution of P3, T stores k̇ as its secret. As a result, the old owner can identify
T again by executing the SM protocol.

The current owner can recover authorisation rights over T from the old owner
by executing P2.

7. Analysis

7.1. Privacy and Security

P1 involves performing a tag authentication (TA) process to authenticate
a tag. When a tag is queried for the mth time, the server and tag update
their shared secrets using the secret update (I) (SU1) process. If SU1 does
not complete successfully, in the following session the secret update (II) (SU2)
process is performed. SU1 and SU2 make use of a key transfer protocol and
involve mutual authentication.

Note that both TA (case 1) and SU1 (case 2) are ‘normal’ cases of the
protocol, but SU2 (case 3) will only occur if the protocol fails to operate as it
should. This case arises if a message transfer in SU1 fails.

The security of P1 relies on the tag secrets k and s and the hash functions e,
f , g and h. Under the assumption that the l-bit key k is a strong cryptographic
key for e, f and g, an exhaustive search to find the l-bit values s and x is
computationally infeasible. Also, given that hash functions e, f , g and h are
one-way and collision-resistant, as stated in section 5, P1 has the following
privacy and security properties.

• Tag Information Privacy (P1): we assume in section 2 that the server
database is secure. Thus only the server that has the secrets related to a
tag can identify the tag and access the tag information.

• Tag Location Privacy (P2): a tag reply (x,MT) is anonymous to an eaves-
dropper that does not know k, because x is updated to ek(x) in every query
and MT depends on r and x. A tag reply (M1,M2) in SU2 is also anony-
mous to an eavesdropper, because M1 and M2 are computed using the
key k and a session secret rT . As a result, an adversary cannot track the
location of a tag simply by eavesdropping on tag messages.

18

The protocol resists the following attacks feasible for a WA.

• Tag Impersonation (W1): to impersonate a tag, a WA needs to compute x
and MT (or M1 and M2). However, a WA cannot compute them without
knowing k.

• Replay Attack (W2): a WA cannot reuse messages used in previous ses-
sions because each response is a cryptographic function of a fresh random
number. More specifically, MT and MS in TA and SU1 depend on r, and
M1, M2 and MS in SU2 depend on r and rT .

• MitM Attack (W3): a WA cannot interfere with the exchanged messages
by inserting or modifying messages, because of the use of the secrets k
and s and a random number r.

• DoS Attack (W4): if the second or third message in SU1 is blocked, SU2

will be performed in the following session. If the third message MS in
SU2 is blocked, the server and tag will become desynchronised, because
the server will update the shared secrets but the tag will not. However, in
the next session, the server will detect such an event, because the tag will
send as identifier the value x0 in the server’s look-up table. The server
can thus recover synchronisation with the tag.

We next consider the degree to which P1 can resist the security threats posed
by an SA, identified in section 2.

• Backward Traceability (S1): one significant feature of the protocol is that,
when x = xi in TA, MT is computed as a function of xi−1. As a result, it
is difficult for an SA to trace transactions in previous sessions except for
the immediately previous session in which xi is included in the tag reply.
An SA could intercept a tag identifier from a previous transaction, and
compute the compromised identifier x by iteratively applying keyed hash
function e to the previous identifier. However, the previous transactions
were anonymous to the attacker at that time. Thus, in practice, tracing
past transactions will not be simple. Obviously, if tag past transactions
were computed using keys different from the compromised key k, it will
be infeasible for an SA to trace them, because the previous keys will have
no relation to the key k.

• Forward Traceability (S2): an SA can trace future transactions in which
the compromised key is used. However, once the server and the compro-
mised tag update their shared secrets, and assuming that the SA does
not intercept the values of either r or MS , it will not be able to compute
the updated secrets and thus will no longer be able to trace tag transac-
tions. Therefore, a server should immediately replace the tag secrets if it
suspects that a tag may have been compromised.

19

• Server Impersonation (S3): an SA could try to update the secrets of a
target tag by impersonating a legitimate server. If such an attack was
possible, then the legitimate server would no longer be able to identify the
tag, whereas the attacker would. One advantage of the protocol is that
such a server impersonation attack is not straightforward. The reason for
this is that an SA cannot computeMS just by compromising a tag, because
s is known only by the server. An SA must perform a more sophisticated
attack in which it intercepts MS in order to learn s.

P2 and P3 are mutual authentication protocols. In these schemes, when
tag T receives r and MS from server S, T authenticates S by obtaining s from
the messages and checking that h(s) = t. This works because s is a secret for
T known only by S. S authenticates T by checking that the received MT is
correct, since it is computed using a shared secret k which is known only to T
and S. S can also confirm that T has the same new secret k as S.

The schemes protect against tag information leakage because T ’s responses
are a function of its secret k, and thus only the server that knows the secret is
able to identify T and access the tag information. The schemes protect against
tag location tracking because T ’s responses are anonymous, since they are a
hash of r and x, and are independent of one another.

The messages exchanged between the server and tag are computed using a
random string r, secrets k and s, and keyed hash functions f and g. Thus,
the protocols can resist replay attacks and man-in-the-middle attacks. To im-
personate a tag, an attacker must be able to compute a valid response MT .
However, it is difficult to compute such a message without knowledge of the
secret k, because an attacker cannot learn the updated key k′ from the message
MS sent by S and thus cannot compute MT since it is a function of k′.

Denial-of-service attacks on P2 and P3 are not practical. S knows the iden-
tity of a tag when it starts a session with the tag, and the purpose of these
schemes is to update the tag secrets. Thus, if S does not receive a tag reply to
its query, it can immediately detect the error and fix it. Suppose that message
MT does not reach S in P2 (or P3). Then T will update its identifier, but S
will not. However, S knows the updated value of k, and can use it to recover
synchronisation with T .

Suppose that a tag T is compromised after P2 has been performed. The
protocols do not enable backward traceability, because, in P2, T ’s new secret k′

does not have any relationship to previous keys, and then, in P1, it is updated
using a non-invertible hash function h. The schemes also resist forward trace-
ability if an adversary does not obtain the values of either r or MS exchanged
between the server and tag in P1. Even if an adversary has compromised T ,
it cannot impersonate a legitimate server in P2 or P3 without additional infor-
mation. This is because the server’s message MS is a function of the secret s
known only to the server, and the adversary cannot obtain the value, even if it
compromises T . To succeed in such an attack, the adversary must first perform
other attacks to obtain s.

Table 2 summarises the privacy and security properties of the protocols P1,

20

Table 2: Privacy and security properties

P1 P2 W1 W2 W3 W4 S1 S2 S3

HM
√

· · · ·
√

· · ·
D

√
·

√ √ √
·

√
· ·

LK
√

·
√ √ √ √ √

∗ ∗
T1

√ √ √ √ √
· · · ·

T2
√ √ √ √ √

· · · ·
T3

√ √ √ √ √
· · · ·

BMM
√

·
√ √ √ √

· · ·
TA

√ √ √ √ √ √
∗ ∗ ∗

P1 SU1
√ √ √ √ √ √

∗ ∗ ∗
SU2

√ √ √ √ √ √ √
∗ ∗

P2 & P3
√ √ √ √ √ √ √

∗ ∗
√

: resists such an attack

∗ : partially resists such an attack, under certain assumptions

· : does not protect against such an attack

P2 and P3, and compares the protocols to the prior art introduced in section 3.

7.2. Performance

P1 has the following performance characteristics.

• Scalability: a server uses a look-up table for tag identification. As a re-
sult, a server can match a received anonymous identifier to a tag using its
look-up table in O(1) time, without needing a linear search. The protocol
is scalable in the sense that a server only takes constant time to authen-
ticate a tag, and tag delegation is straightforward, as stated in section 6.
However, if a tag is queried more than m times without updating the tag
secrets (case 3), the tag will reply with M1 and M2, and in this case the
server needs to perform a linear search to authenticate the tag.

• Computation: in normal operation, i.e. when using TA and SU1, a tag
does not need to generate any pseudo-random numbers. However, in SU2,
a tag needs to generate a pseudo-random number in order to prevent it
being traced. A tag needs to perform two hash function computations
(which are significantly more computationally complex than arithmetic
and logical operations) in the most common case (TA), four hash function
computations in SU1, and three hash function computations in SU2. A
server performs only one hash function computation in TA. In SU1 and
SU2, a server must perform m′ hash function computations in order to
generate a new secret and new identifiers for a tag; fortunately these
values can be precomputed.

• Communication: TA involves only two messages. SU1 and SU2 require
one additional message.

21

Table 3: Performance properties

C1 C2 C3 C4

HM I, a, a′ 3HF 0 3
D I 4HF 1 3
LK s, w, c 4PRF 1 3
T1 k, t, tm 1HF 0/1 2
T2 k, t, tm 2HF 1/2 2
T3 k, t, tm (ν+2)HF 1/3 2
BMM k, r, q, b, c 1/2PRF 0 3

TA 2HF 0 2
P1 SU1 k, x, c 4HF 0 3

SU2 3HF 1 3
P2 & P3 k, x, c 3HF 0 2

C1 : The type of secrets stored in a tag

C2 : The type and number of cryptographic function computations required in a tag

C3 : The number of pseudo-random numbers required in a tag

C4 : The number of exchanged messages

• Storage Capacity: a tag needs a long term memory of 2l+ lm bits to store
k, x and c.

P2 and P3 are efficient in terms of computation and communication, because
a tag does not need to generate any pseudo-random numbers, and only two
messages need to be exchanged to provide mutual authentication between the
server and tag.

P2 and P3 have modest computational requirements. The only crypto-
graphic functions required by P2 or P3 are at most three hash function compu-
tations in the tag and the server. In P2, both T and S need to compute each
of h, f and g once. In P3, T needs to compute each of h, f and g once, and S
needs to compute f and g once.

Therefore, in order to update a tag’s secrets after transfer of ownership,
performing P2 is more economical than performing P1 again.

The performance of the protocols P1, P2 and P3 is compared to the prior
art in Table 3. The comparison shows that the performance of the proposed
protocol compares favourably with existing schemes. In Table 3, HF is a hash
function computation, PRF is a pseudo-random function computation, I is a
tag identifier, a is a transaction number, a′ is the last successful transaction
number, s is a tag secret, w is a server validator, c is a counter, k is a key,
k is a time-stamp, tm is the highest possible time-stamp, ν is the number of
successive iterations of a hash function, r is a one-time pseudonym, q is a seed,
b is a boolean variable mode, and / denotes or.

22

7.3. Tag Ownership Transfer

The protocols proposed in section 6.2 meet the three requirements for tag
ownership transfer identified in section 2.5.2.

First, P2 is designed to protect the privacy of the new owner from the old
owner of a tag T . That is, future interactions between the new owner and T are
secure against tracing by the old owner. When ownership of T is transferred
to the new owner, the new owner and T establish new secrets using P2. As a
result, the old owner is no longer able to read T .

Next, the protocols also protect the privacy of the old owner from the new
owner of T . The old owner should update secrets s and k for T , before transfer-
ring the updated secrets to the new owner. As a result, the new owner cannot
trace previous transactions between the old owner and the tag since it only
knows the updated secrets.

Finally, P3 provides authorisation recovery, the third requirement described
in section 2.5.2. P3 causes T to change its secret k to k̇, which the new owner
received from the old owner when ownership of T was transferred. As a result,
the old owner recovers authorisation rights for T , and thus can read T again
and look up the tag information.

8. Conclusions

We have identified desirable privacy, security and performance properties
for RFID authentication protocols, and have examined three requirements for
secure and privacy-preserving tag ownership transfer: new owner privacy, old
owner privacy, and authorisation recovery. We have reviewed previously pro-
posed scalable RFID identification and authentication protocols which take only
constant time to identify a tag using a look-up table. All these schemes have
significant security or performance drawbacks.

One of the main contributions of this paper is to propose a scalable RFID
pseudonym protocol (P1) that meets the identified requirements. The protocol
has two features supporting scalability; a server takes only O(1) work for tag
authentication, and tag delegation is straightforward.

In some RFID applications it is necessary to allow for transfer of tag owner-
ship. We have proposed novel RFID authentication protocols for tag ownership
transfer that meet the three identified requirements: a secret update protocol
(P2) and an authorisation recovery protocol (P3).

We have also analysed and compared P1, P2 and P3 to the prior art. The
schemes satisfy the identified privacy and security requirements and have desir-
able performance characteristics; a tag does not need to generate any pseudo-
random numbers and has reasonable storage and cryptographic function com-
putation overheads.

[1] B. Song, C. J. Mitchell, Scalable RFID Pseudonym Protocol, in: 3rd In-
ternational Conference on Network & System Security — NSS 2009, IEEE
Computer Society, Gold Coast, Queensland, Australia, 2009, pp. 216–224.

23

[2] G. Avoine, Cryptography in radio frequency identification and fair ex-
change protocols, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne
(EPFL), Lausanne, Switzerland (December 2005).

[3] A. Juels, RFID security and privacy: A research survey, IEEE Journal on
Selected Areas in Communications 24 (2006) 381–394.

[4] S. Weis, Security and privacy in radio-frequency identification devices, Mas-
ter’s thesis, Massachusetts Institute of Technology (MIT), Massachusetts,
USA (May 2003).

[5] H. Chien, C. Chen, Mutual authentication protocol for RFID conforming
to EPC class 1 generation 2 standards, Computer Standards & Interfaces
29 (2) (2007) 254–259.

[6] S. Fouladgar, H. Afifi, A simple privacy protecting scheme enabling dele-
gation and ownership transfer for RFID tags, Journal of Communications
2 (6) (2007) 6–13.

[7] M. Ohkubo, K. Suzki, S. Kinoshita, Cryptographic approach to “privacy-
friendly” tags, in: RFID Privacy Workshop, MIT, MA, USA, 2003, http:
//www.rfidprivacy.us/2003/agenda.php.

[8] B. Song, C. J. Mitchell, RFID authentication protocol for low-cost tags,
in: V. D. Gligor, J. Hubaux, R. Poovendran (Eds.), ACM Conference on
Wireless Network Security — WiSec ’08, ACM Press, Alexandria, Virginia,
USA, 2008, pp. 140–147.

[9] A. Bondi, Characteristics of scalability and their impact on performance, in:
the 2nd International Workshop on Software and Performance — WOSP
2000, ACM Press, Ottawa, Ontario, Canada, 2000, pp. 195–203.

[10] T. Dimitriou, A lightweight RFID protocol to protect against traceability
and cloning attacks, in: Conference on Security and Privacy for Emerging
Areas in Communication Networks — SecureComm 2005, IEEE, Athens,
Greece, 2005, pp. 59–66.

[11] A. Henrici, P. Müller, Hash-based enhancement of location privacy
for radio-frequency identification devices using varying identifiers, in:
R. Sandhu, R. Thomas (Eds.), International Workshop on Pervasive Com-
puting and Communication Security — PerSec 2004, IEEE Computer So-
ciety, Orlando, Florida, USA, 2004, pp. 149–153.

[12] C. Lim, T. Kwon, Strong and robust RFID authentication enabling per-
fect ownership transfer, in: P. Ning, S. Qing, N. Li (Eds.), Conference on
Information and Communications Security — ICICS ’06, Vol. 4307 of Lec-
ture Notes in Computer Science, Springer-Verlag, Raleigh, North Carolina,
USA, 2006, pp. 1–20.

24

[13] G. Tsudik, A family of dunces: Trivial RFID identification and authenti-
cation protocols, in: N. Borisov, P. Golle (Eds.), Privacy Enhancing Tech-
nologies, 7th International Symposium — PET 2007, Vol. 4776 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Ottawa, Canada, 2007,
pp. 45–61.

[14] P. Najera, J. Lopez, RFID: Technological Issues and Privacy Concerns, in:
A. Acquisti, S. Gritzalis, C. Lambrinoudakis, S. di Vimercati (Eds.), Digi-
tal Privacy: Theory, Technologies and Practices, Taylor & Francis Group,
2008, Ch. 14, pp. 285–306.

[15] S. Weis, S. Sarma, R. Rivest, D. Engels, Security and privacy aspects of
low-cost radio frequency identification systems, in: D. Hutter, G. Müller,
W. Stephan, M. Ullmann (Eds.), International Conference on Security in
Pervasive Computing — SPC 2003, Vol. 2802 of Lecture Notes in Computer
Science, Springer-Verlag, Boppard, Germany, 2003, pp. 201–212.

[16] G. Avoine, P. Oechslin, A scalable and provably secure hash based RFID
protocol, in: International Workshop on Pervasive Computing and Com-
munication Security — PerSec 2005, IEEE Computer Society Press, Kauai
Island, Hawaii, USA, 2005, pp. 110–114.

[17] B. Song, Server Impersonation Attacks on RFID Protocols, in: Second
International Conference on Mobile Ubiquitous Computing, Systems, Ser-
vices and Technologies — UBICOMM 08, IEEE Computer Society, Valen-
cia, Spain, 2008, pp. 50–55.

[18] D. N. Duc, J. Park, H. Lee, K. Kim, Enhancing security of EPCglobal gen-2
RFID tag against traceability and cloning, in: Symposium on Cryptogra-
phy and Information Security — SCIS 2006, The Institute of Electronics,
Information and Communication Engineers, Hiroshima, Japan, 2006.

[19] T. van Le, M. Burmester, B. de Medeiros, Universally composable and
forward-secure RFID authentication and authenticated key exchange, in:
R. Deng, P. Samarati (Eds.), ACM Symposium on information, Computer
and Communications Security — ASIACCS ’07, 2007, pp. 242–252.

[20] S. Karthikeyan, N. Nesterenko, RFID security without extensive cryptog-
raphy, in: Workshop on Security of Ad Hoc and Sensor Networks — SASN
’05, ACM Press, Alexandria, Virginia, USA, 2005, pp. 63–67.

[21] I. Vajda, L. Buttyán, Lightweight authentication protocols for low-cost
RFID tags, in: Second Workshop on Security in Ubiquitous Computing —
Ubicomp 2003, Seattle, WA, USA, 2003.

[22] Y. Zhang, P. Kitsos, Security in RFID and Sensor Networks, Auerbach
Publications, 2009.

25

[23] D. Molnar, A. Soppera, D. Wagner, A scalable, delegatable pseudonym pro-
tocol enabling ownership transfer of RFID tags, in: B. Preneel, S. Tavares
(Eds.), Selected Areas in Cryptography — SAC 2005, Vol. 3897 of Lecture
Notes in Computer Science, Springer-Verlag, Kingston, Canada, 2005, pp.
276–290.

[24] S. Fouladgar, H. Afifi, An efficient delegation and transfer of ownership
protocol for RFID tags, in: First International EURASIP Workshop on
RFID Technology, Vienna, Austria, 2007.

[25] K. Osaka, T. Takagi, K. Yamazaki, O. Takahashi, An efficient and secure
RFID security method with ownership transfer, in: Y. Wang, Y. Cheung,
H. Liu (Eds.), Computational Intelligence and Security — CIS 2006, Vol.
4456 of Lecture Notes in Computer Science, Springer-Verlag, 2006, pp.
778–787.

[26] G. Avoine, P. Oechslin, RFID traceability: A multilayer problem, in:
A. Patrick, M. Yung (Eds.), Financial Cryptography — FC’05, Vol. 3570 of
Lecture Notes in Computer Science, IFCA, Springer-Verlag, Roseau, The
Commonwealth Of Dominica, 2005, pp. 125–140.

[27] K. Ouafi, R. C.-W. Phan, Traceable Privacy of Recent Provably-Secure
RFID Protocols, in: S. Bellovin, R. Gennaro, A. Keromytis, M. Yung
(Eds.), 6th International Conference on Applied Cryptography and Net-
work Security — ACNS 2008, Vol. 5037 of Lecture Notes in Computer
Science, Springer-Verlag, New York City, New York, USA, 2008, pp. 479–
489.

[28] G. Tsudik, YA-TRAP: Yet another trivial RFID authentication protocol,
in: Fourth IEEE Annual Conference on Pervasive Computing and Commu-
nications — PerCom 2006, IEEE Computer Society, Pisa, Italy, 2006, pp.
640–643.

[29] M. Burmester, B. de Medeiros, R. Motta, Anonymous RFID authentication
supporting constant-cost key-lookup against active adversaries, Journal of
Applied Cryptography 1 (2) (2008) 79–90.

[30] S. Cai, Y. Li, T. Li, R. Deng, Attacks and Improvements to an RFID
Mutual Authentication Protocol and its Extensions, in: Second ACM Con-
ference on Wireless Network Security — WiSec’09, ACM Press, Zurich,
Switzerland, 2009, pp. 51–58.

[31] T. van Deursen, S. Radomirović, Attacks on RFID Protocols, Cryptology
ePrint Archive, Report 2008/310 (July 2008).

[32] A. Shamir, SQUASH — A New MAC with Provable Security Properties for
Highly Constrained Devices Such as RFID Tags, in: K. Nyberg (Ed.), Fast
Software Encryption: 15th International Workshop — FSE 2008, Revised
Selected Papers, Vol. 5086 of Lecture Notes in Computer Science, Springer-
Verlag, Lausanne, Switzerland, 2008, pp. 144–157.

26

[33] B. Song, RFID Tag Ownership Transfer, in: Workshop on RFID Security
— RFIDSec 08, Budapest, Hungary, 2008.

27

