**The minimum Manhattan distance and minimum jump of permutations.** / Blackburn, Simon; Homberger, Cheyne; Winkler, Peter.

Research output: Contribution to journal › Article

Published

- Accepted Manuscript
Accepted author manuscript, 259 KB, PDF document

Licence: CC BY-NC-ND Show licence

Let $\pi$ be a permutation of $\{1,2,\ldots,n\}$. If we identify a permutation with its graph, namely the set of $n$ dots at positions $(i,\pi(i))$, it is natural to consider the minimum $L^1$ (Manhattan) distance, $\br(\pi)$, between any pair of dots. The paper computes the expected value (and higher moments) of $\br(\pi)$ when $n\rightarrow\infty$ and $\pi$ is chosen uniformly, and settles a conjecture of Bevan, Homberger and Tenner (motivated by permutation patterns), showing that when $d$ is fixed and $n\rightarrow\infty$, the probability that $d(\pi)\geq d+2$ tends to $e^{-d^2 - d}$.

The minimum jump $\mj(\pi)$ of $\pi$, defined by $\mj(\pi)=\min_{1\leq i\leq n-1} |\pi(i+1)-\pi(i)|$, is another natural measure in this context. The paper computes the asymptotic moments of $\mj(\pi)$, and the asymptotic probability that $\mj(\pi)\geq d+1$ for any constant $d$.

The minimum jump $\mj(\pi)$ of $\pi$, defined by $\mj(\pi)=\min_{1\leq i\leq n-1} |\pi(i+1)-\pi(i)|$, is another natural measure in this context. The paper computes the asymptotic moments of $\mj(\pi)$, and the asymptotic probability that $\mj(\pi)\geq d+1$ for any constant $d$.

Original language | English |
---|---|

Pages (from-to) | 364-286 |

Number of pages | 23 |

Journal | Journal of Combinatorial Theory, Series A |

Volume | 161 |

Early online date | 11 Sep 2018 |

DOIs | |

Publication status | Published - Jan 2019 |

This open access research output is licenced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

ID: 30951555