Strongly enhanced temperature dependence of the chemical potential in FeSe. / Rhodes, Luke; Watson, Matthew; Haghighirad, A. A. ; Eschrig, Matthias; Kim, Timur K.

In: Physical Review B, Vol. 95, No. 19, 195111, 08.05.2017, p. 1-7.

Research output: Contribution to journalArticlepeer-review

Published

Standard

Strongly enhanced temperature dependence of the chemical potential in FeSe. / Rhodes, Luke; Watson, Matthew; Haghighirad, A. A. ; Eschrig, Matthias; Kim, Timur K.

In: Physical Review B, Vol. 95, No. 19, 195111, 08.05.2017, p. 1-7.

Research output: Contribution to journalArticlepeer-review

Harvard

Rhodes, L, Watson, M, Haghighirad, AA, Eschrig, M & Kim, TK 2017, 'Strongly enhanced temperature dependence of the chemical potential in FeSe', Physical Review B, vol. 95, no. 19, 195111, pp. 1-7. https://doi.org/10.1103/PhysRevB.95.195111

APA

Rhodes, L., Watson, M., Haghighirad, A. A., Eschrig, M., & Kim, T. K. (2017). Strongly enhanced temperature dependence of the chemical potential in FeSe. Physical Review B, 95(19), 1-7. [195111]. https://doi.org/10.1103/PhysRevB.95.195111

Vancouver

Author

Rhodes, Luke ; Watson, Matthew ; Haghighirad, A. A. ; Eschrig, Matthias ; Kim, Timur K. / Strongly enhanced temperature dependence of the chemical potential in FeSe. In: Physical Review B. 2017 ; Vol. 95, No. 19. pp. 1-7.

BibTeX

@article{9986b98ba93844b3a4f708404add5f55,
title = "Strongly enhanced temperature dependence of the chemical potential in FeSe",
abstract = "Employing a 10-orbital tight binding model, we present a new set of hopping parameters fitted directly to our latest high resolution angle-resolved photoemission spectroscopy (ARPES) data for the high temperature tetragonal phase of FeSe. Using these parameters we predict a large 10 meV shift of the chemical potential as a function of temperature. In order to confirm this large temperature dependence, we performed ARPES experiments on FeSe and observed a ∼25 meV rigid shift to the chemical potential between 100 K and 300 K. This unexpectedly strong shift has important implications for theoretical models of superconductivity and of nematic order in FeSe materials.",
author = "Luke Rhodes and Matthew Watson and Haghighirad, {A. A.} and Matthias Eschrig and Kim, {Timur K.}",
year = "2017",
month = may,
day = "8",
doi = "10.1103/PhysRevB.95.195111",
language = "English",
volume = "95",
pages = "1--7",
journal = "Physical Review B",
issn = "1098-0121",
publisher = "American Physical Society",
number = "19",

}

RIS

TY - JOUR

T1 - Strongly enhanced temperature dependence of the chemical potential in FeSe

AU - Rhodes, Luke

AU - Watson, Matthew

AU - Haghighirad, A. A.

AU - Eschrig, Matthias

AU - Kim, Timur K.

PY - 2017/5/8

Y1 - 2017/5/8

N2 - Employing a 10-orbital tight binding model, we present a new set of hopping parameters fitted directly to our latest high resolution angle-resolved photoemission spectroscopy (ARPES) data for the high temperature tetragonal phase of FeSe. Using these parameters we predict a large 10 meV shift of the chemical potential as a function of temperature. In order to confirm this large temperature dependence, we performed ARPES experiments on FeSe and observed a ∼25 meV rigid shift to the chemical potential between 100 K and 300 K. This unexpectedly strong shift has important implications for theoretical models of superconductivity and of nematic order in FeSe materials.

AB - Employing a 10-orbital tight binding model, we present a new set of hopping parameters fitted directly to our latest high resolution angle-resolved photoemission spectroscopy (ARPES) data for the high temperature tetragonal phase of FeSe. Using these parameters we predict a large 10 meV shift of the chemical potential as a function of temperature. In order to confirm this large temperature dependence, we performed ARPES experiments on FeSe and observed a ∼25 meV rigid shift to the chemical potential between 100 K and 300 K. This unexpectedly strong shift has important implications for theoretical models of superconductivity and of nematic order in FeSe materials.

U2 - 10.1103/PhysRevB.95.195111

DO - 10.1103/PhysRevB.95.195111

M3 - Article

VL - 95

SP - 1

EP - 7

JO - Physical Review B

JF - Physical Review B

SN - 1098-0121

IS - 19

M1 - 195111

ER -