Stable cycling in quasi-linkage equilibrium : fluctuating dynamics under gene conversion and selection. / Russell, Timothy W.; Russell, Matthew J.; Úbeda, Francisco; Jansen, Vincent A. A.

In: Journal of Theoretical Biology, Vol. 477, 21.09.2019, p. 84-95.

Research output: Contribution to journalArticle

E-pub ahead of print

Documents

  • Accepted Manuscript

    Accepted author manuscript, 6 MB, PDF-document

    Embargo ends: 13/06/20

    Licence: CC BY-NC-ND Show licence

Abstract

Genetic systems with multiple loci can have complex dynamics. For example, mean fitness need not always increase and stable cycling is possible. Here, we study the dynamics of a genetic system inspired by the molecular biology of recognition-dependent double strand breaks and repair as it happens in recombination hotspots. The model shows slow-fast dynamics in which the system converges to the quasi-linkage equilibrium (QLE) manifold. On this manifold, sustained cycling is possible as the dynamics approach a heteroclinic cycle, in which allele frequencies alternate between near extinction and near fixation. We find a closed-form approximation for the QLE manifold and use it to simplify the model. For the simplified model, we can analytically calculate the stability of the heteroclinic cycle. In the discrete-time model the cycle is always stable; in a continuous-time approximation, the cycle is always unstable. This demonstrates that complex dynamics are possible under quasi-linkage equilibrium.
Original languageEnglish
Pages (from-to)84-95
Number of pages12
JournalJournal of Theoretical Biology
Volume477
Early online date13 Jun 2019
DOIs
Publication statusE-pub ahead of print - 13 Jun 2019
This open access research output is licenced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

ID: 34030218