Removing connected obstacles in the plane is FPT. / Eiben, Eduard; Lokshtanov, Daniel.

36th International Symposium on Computational Geometry, SoCG 2020. ed. / Sergio Cabello; Danny Z. Chen. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020. p. 1-14 LIPIcs-SoCG-2020-39 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 164).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Published

Standard

Removing connected obstacles in the plane is FPT. / Eiben, Eduard; Lokshtanov, Daniel.

36th International Symposium on Computational Geometry, SoCG 2020. ed. / Sergio Cabello; Danny Z. Chen. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020. p. 1-14 LIPIcs-SoCG-2020-39 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 164).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Harvard

Eiben, E & Lokshtanov, D 2020, Removing connected obstacles in the plane is FPT. in S Cabello & DZ Chen (eds), 36th International Symposium on Computational Geometry, SoCG 2020., LIPIcs-SoCG-2020-39, Leibniz International Proceedings in Informatics, LIPIcs, vol. 164, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 1-14, 36th International Symposium on Computational Geometry, SoCG 2020, Zurich, Switzerland, 23/06/20. https://doi.org/10.4230/LIPIcs.SoCG.2020.39

APA

Eiben, E., & Lokshtanov, D. (2020). Removing connected obstacles in the plane is FPT. In S. Cabello, & D. Z. Chen (Eds.), 36th International Symposium on Computational Geometry, SoCG 2020 (pp. 1-14). [LIPIcs-SoCG-2020-39] (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 164). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.SoCG.2020.39

Vancouver

Eiben E, Lokshtanov D. Removing connected obstacles in the plane is FPT. In Cabello S, Chen DZ, editors, 36th International Symposium on Computational Geometry, SoCG 2020. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2020. p. 1-14. LIPIcs-SoCG-2020-39. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.SoCG.2020.39

Author

Eiben, Eduard ; Lokshtanov, Daniel. / Removing connected obstacles in the plane is FPT. 36th International Symposium on Computational Geometry, SoCG 2020. editor / Sergio Cabello ; Danny Z. Chen. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020. pp. 1-14 (Leibniz International Proceedings in Informatics, LIPIcs).

BibTeX

@inproceedings{0353d0157781415f8d41550f6985f0dd,
title = "Removing connected obstacles in the plane is FPT",
keywords = "Barrier coverage, Barrier resilience, Colored path, Minimum constraint removal, Motion planning, Parameterized complexity and algorithms, Planar graphs",
author = "Eduard Eiben and Daniel Lokshtanov",
year = "2020",
month = jun,
day = "8",
doi = "10.4230/LIPIcs.SoCG.2020.39",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
pages = "1--14",
editor = "Sergio Cabello and Chen, {Danny Z.}",
booktitle = "36th International Symposium on Computational Geometry, SoCG 2020",
note = "36th International Symposium on Computational Geometry, SoCG 2020 ; Conference date: 23-06-2020 Through 26-06-2020",

}

RIS

TY - GEN

T1 - Removing connected obstacles in the plane is FPT

AU - Eiben, Eduard

AU - Lokshtanov, Daniel

PY - 2020/6/8

Y1 - 2020/6/8

KW - Barrier coverage

KW - Barrier resilience

KW - Colored path

KW - Minimum constraint removal

KW - Motion planning

KW - Parameterized complexity and algorithms

KW - Planar graphs

UR - http://www.scopus.com/inward/record.url?scp=85086504473&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.SoCG.2020.39

DO - 10.4230/LIPIcs.SoCG.2020.39

M3 - Conference contribution

AN - SCOPUS:85086504473

T3 - Leibniz International Proceedings in Informatics, LIPIcs

SP - 1

EP - 14

BT - 36th International Symposium on Computational Geometry, SoCG 2020

A2 - Cabello, Sergio

A2 - Chen, Danny Z.

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

T2 - 36th International Symposium on Computational Geometry, SoCG 2020

Y2 - 23 June 2020 through 26 June 2020

ER -