Processes on the young Earth and the habitats of early life

Nicholas T. Arndt, Euan Nisbet

Research output: Contribution to journalArticlepeer-review

Abstract

Conditions at the surface of the young (Hadean and early Archean) Earth were suitable for the emergence and evolution of life. After an initial hot period, surface temperatures in the late Hadean may have been clement beneath an atmosphere containing greenhouse gases over an ocean-dominated planetary surface. The first crust was mafic and it internally melted repeatedly to produce the felsic rocks that crystallized the Jack Hills zircons. This crust was destabilized during late heavy bombardment. Plate tectonics probably started soon after and had produced voluminous continental crust by the mid Archean, but ocean volumes were sufficient to submerge much of this crust. In the Hadean and early Archean, hydrothermal systems around abundant komatiitic volcanism may have provided suitable sites to host the earliest living communities and for the evolution of key enzymes. Evidence from the Isua Belt, Greenland, suggests life was present by 3.8 Gya, and by the mid-Archean, the geological record both in the Pilbara in Western Australia and the Barberton Greenstone Belt in South Africa shows that microbial life was abundant, probably using anoxygenic photosynthesis. By the late Archean, oxygenic photosynthesis had evolved, transforming the atmosphere and permitting the evolution of eukaryotes.
Original languageEnglish
Pages (from-to)521-549
JournalAnnual Review of Earth and Planetary Sciences
Volume40
DOIs
Publication statusPublished - May 2012

Cite this