Non-fermi-liquid behavior in the periodic Anderson model. / Amaricci, A.; Sordi, G.; Rozenberg, M. J.

In: Physical Review Letters, Vol. 101, No. 14, 146403, 03.10.2008.

Research output: Contribution to journalArticlepeer-review

Published

Standard

Non-fermi-liquid behavior in the periodic Anderson model. / Amaricci, A.; Sordi, G.; Rozenberg, M. J.

In: Physical Review Letters, Vol. 101, No. 14, 146403, 03.10.2008.

Research output: Contribution to journalArticlepeer-review

Harvard

Amaricci, A, Sordi, G & Rozenberg, MJ 2008, 'Non-fermi-liquid behavior in the periodic Anderson model', Physical Review Letters, vol. 101, no. 14, 146403. https://doi.org/10.1103/PhysRevLett.101.146403

APA

Amaricci, A., Sordi, G., & Rozenberg, M. J. (2008). Non-fermi-liquid behavior in the periodic Anderson model. Physical Review Letters, 101(14), [146403]. https://doi.org/10.1103/PhysRevLett.101.146403

Vancouver

Amaricci A, Sordi G, Rozenberg MJ. Non-fermi-liquid behavior in the periodic Anderson model. Physical Review Letters. 2008 Oct 3;101(14). 146403. https://doi.org/10.1103/PhysRevLett.101.146403

Author

Amaricci, A. ; Sordi, G. ; Rozenberg, M. J. / Non-fermi-liquid behavior in the periodic Anderson model. In: Physical Review Letters. 2008 ; Vol. 101, No. 14.

BibTeX

@article{f95701b7ebcf485cbf3fd9dc07b930e9,
title = "Non-fermi-liquid behavior in the periodic Anderson model",
abstract = "We study the Mott metal-insulator transition in the periodic Anderson model with dynamical mean field theory (DMFT). Near the quantum transition, we find a non-Fermi-liquid metallic state down to a vanishing temperature scale. We identify the origin of the non-Fermi-liquid behavior as being due to magnetic scattering of the doped carriers by the localized moments. The non-Fermi-liquid state can be tuned by either doping or external magnetic field. Our results show that the coupling to spatial magnetic fluctuations (absent in DMFT) is not a prerequisite to realizing a non-Fermi-liquid scenario for heavy fermion systems.",
keywords = "SYSTEMS, SCALE, INFINITE DIMENSIONS, MEAN-FIELD THEORY, METALS, COHERENCE, PHOTOEMISSION, HEAVY FERMIONS, TEMPERATURE",
author = "A. Amaricci and G. Sordi and Rozenberg, {M. J.}",
year = "2008",
month = oct,
day = "3",
doi = "10.1103/PhysRevLett.101.146403",
language = "English",
volume = "101",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "14",

}

RIS

TY - JOUR

T1 - Non-fermi-liquid behavior in the periodic Anderson model

AU - Amaricci, A.

AU - Sordi, G.

AU - Rozenberg, M. J.

PY - 2008/10/3

Y1 - 2008/10/3

N2 - We study the Mott metal-insulator transition in the periodic Anderson model with dynamical mean field theory (DMFT). Near the quantum transition, we find a non-Fermi-liquid metallic state down to a vanishing temperature scale. We identify the origin of the non-Fermi-liquid behavior as being due to magnetic scattering of the doped carriers by the localized moments. The non-Fermi-liquid state can be tuned by either doping or external magnetic field. Our results show that the coupling to spatial magnetic fluctuations (absent in DMFT) is not a prerequisite to realizing a non-Fermi-liquid scenario for heavy fermion systems.

AB - We study the Mott metal-insulator transition in the periodic Anderson model with dynamical mean field theory (DMFT). Near the quantum transition, we find a non-Fermi-liquid metallic state down to a vanishing temperature scale. We identify the origin of the non-Fermi-liquid behavior as being due to magnetic scattering of the doped carriers by the localized moments. The non-Fermi-liquid state can be tuned by either doping or external magnetic field. Our results show that the coupling to spatial magnetic fluctuations (absent in DMFT) is not a prerequisite to realizing a non-Fermi-liquid scenario for heavy fermion systems.

KW - SYSTEMS

KW - SCALE

KW - INFINITE DIMENSIONS

KW - MEAN-FIELD THEORY

KW - METALS

KW - COHERENCE

KW - PHOTOEMISSION

KW - HEAVY FERMIONS

KW - TEMPERATURE

U2 - 10.1103/PhysRevLett.101.146403

DO - 10.1103/PhysRevLett.101.146403

M3 - Article

VL - 101

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 14

M1 - 146403

ER -