Genesis and evolution of large-scale sediment waves in submarine canyons since the Penultimate Glacial Maximum (ca. 140 ka), northern South China Sea margin. / Zhou, Wei; Chiarella, Domenico; Zhuo, Haiteng; Wang, Yingmin; Tang, Wu; Zou, Mengjun; Xu, Qiang.

In: Marine and Petroleum Geology, Vol. 134, 105381, 14.10.2021.

Research output: Contribution to journalArticlepeer-review

E-pub ahead of print

Documents

  • Accepted Manuscript

    Accepted author manuscript, 5.3 MB, PDF document

    Embargo ends: 14/10/22

    Licence: CC BY-NC-ND Show licence

Abstract

Sediment waves are common on the seafloor, but large-scale ones developed in submarine canyons are rarely reported. In this study, we document for the first time the Quaternary deep-water canyon-confined large-scale sediment waves developed on the northern South China Sea margin based on the analysis of a high-quality 3- D seismic reflection volume combined with a 2-D multichannel seismic reflection profile and three wells. Re-sults show that the onset of these canyon-confined large-scale sediment waves can be dated back to the Penultimate Glacial Maximum (PGM)(ca.140 ka). This was the last period for the Pearl River Delta to prograde over the shelf edge. And these sediment waves have continued to develop and migrate upslope until present. The large-scale sediment waves pertaining to the PGM have a dominant down-slope asymmetrical 2-D morphology with wavelengths of 1.059–6.090 km and wave heights of 3.3–32.5 m. The present large-scale sediment waves show an up-slope asymmetrical 2-D morphology with dimensions of 0.667–5.628 km wavelength and 2.7–14.0 m wave height, which are smaller relative to those at the PGM. Grain sizes of the sediment waves at the PGM and present are interpreted to be coarse, inferred from seismic reflection data by high amplitude reflections (HARs). After a comprehensive analysis of the types of sediment-laden flows, the sediment provenances, the seafloor topography and the features of the sediment waves, these large-scale sediment waves might be interpreted as cyclic steps generated by the down-slope flowing supercritical turbidity currents and associated internal hy-draulic jumps along high gradient (approximately greater than 1.28◦) canyon thalwegs characterized by numerous slope breaks. The evolution of the large-scale sediment waves from partially depositional at the PGM to erosion-dominated at the present is controlled by variations of the sediment supply and the submarine slope accommodation along the canyon thalweg, which is manifested in the co-evolution of the sediment waves with the canyon. The findings of this study tell us that in addition to axial channels and mass-transport complexes, large-scale sediment waves can also develop on the canyon floor, which helps to improve our understanding of the complex canyon processes. The ‘large-scale sediment waves’ described here may be a new potential deepwater-reservoir element for the deep-water hydrocarbon exploration associated with submarine canyons.
Original languageEnglish
Article number105381
JournalMarine and Petroleum Geology
Volume134
Early online date14 Oct 2021
DOIs
Publication statusE-pub ahead of print - 14 Oct 2021
This open access research output is licenced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

ID: 43577449