Decoding natural sounds in early “visual” cortex of congenitally blind individuals. / Vetter, Petra; Bola, Lukasz; Reich, Lior; Bennett, Matthew; Muckli, Lars; Amedi, Amir.

In: Current Biology , 18.06.2020.

Research output: Contribution to journalArticle

E-pub ahead of print
  • Petra Vetter
  • Lukasz Bola
  • Lior Reich
  • Matthew Bennett
  • Lars Muckli
  • Amir Amedi

Abstract

Complex natural sounds, such as bird singing, people talking or traffic noise, induce decodable fMRI activation patterns in early visual cortex of sighted blindfolded participants [1]. That is, early visual cortex receives non-visual and potentially predictive information from audition. However, it is unclear whether the transfer of auditory information to early visual areas is an epiphenomenon of visual imagery or, alternatively, whether it is driven by mechanisms independent from visual experience. Here we show that we can decode natural sounds from activity patterns in early “visual” areas of congenitally blind individuals who lack visual imagery. Thus, visual imagery is not a prerequisite of auditory feedback to early visual cortex. Furthermore, the spatial pattern of sound decoding accuracy in early visual cortex was remarkably similar in blind and sighted individuals, with an increasing decoding accuracy gradient from foveal to peripheral regions. This suggests that the typical organisation by eccentricity of early visual cortex develops for auditory feedback even in the lifelong absence of vision. The same feedback to early visual cortex might support visual perception in the sighted [1] and drive the recruitment of this area for non-visual functions in blind individuals [2,3].
Original languageEnglish
JournalCurrent Biology
Early online date18 Jun 2020
DOIs
Publication statusE-pub ahead of print - 18 Jun 2020
This open access research output is licenced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

ID: 38209881