Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data. / Sharma, Pankaj.

In: Stroke, Vol. 50, No. 7, 01.07.2019, p. 1734-1741.

Research output: Contribution to journalArticle

Published

Standard

Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data. / Sharma, Pankaj.

In: Stroke, Vol. 50, No. 7, 01.07.2019, p. 1734-1741.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

BibTeX

@article{24f8cfa0deec4f53b69660fc0b72e800,
title = "Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data",
author = "Pankaj Sharma",
year = "2019",
month = "7",
day = "1",
doi = "10.1161/STROKEAHA.119.025373",
language = "English",
volume = "50",
pages = "1734--1741",
journal = "Stroke",
number = "7",

}

RIS

TY - JOUR

T1 - Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data

AU - Sharma, Pankaj

PY - 2019/7/1

Y1 - 2019/7/1

U2 - 10.1161/STROKEAHA.119.025373

DO - 10.1161/STROKEAHA.119.025373

M3 - Article

VL - 50

SP - 1734

EP - 1741

JO - Stroke

JF - Stroke

IS - 7

ER -