**A tutorial on conformal prediction.** / Shafer, Glenn; Vovk, Vladimir.

Research output: Working paper

Published

**A tutorial on conformal prediction.** / Shafer, Glenn; Vovk, Vladimir.

Research output: Working paper

@techreport{f4b7cc51107044ffb121b2fdc2c5594e,

title = "A tutorial on conformal prediction",

abstract = "Conformal prediction uses past experience to determine precise levels ofconfidence in new predictions. Given an error probability $\epsilon$, togetherwith a method that makes a prediction $\hat{y}$ of a label $y$, it produces aset of labels, typically containing $\hat{y}$, that also contains $y$ with probability $1-\epsilon$. Conformal prediction can be applied to any method for producing $\hat{y}$: a nearest-neighbor method, a support-vector machine, ridge regression, etc. Conformal prediction is designed for an on-line setting in which labels are predicted successively, each one being revealed before the next is predicted.The most novel and valuable feature of conformal prediction is that if the successive examples are sampled independently from the same distribution, then the successive predictions will be right $1-\epsilon$ of the time, even though they are based on an accumulating dataset rather than on independent datasets. In addition to the model under which successive examples are sampled independently, other on-line compression models can also use conformalprediction. The widely used Gaussian linear model is one of these. This tutorial presents a self-contained account of the theory of conformal prediction and works through several numerical examples. A more comprehensive treatment of the topic is provided in {"}Algorithmic Learning in a Random World{"}, by Vladimir Vovk, Alex Gammerman, and Glenn Shafer (Springer, 2005).",

keywords = "cs.LG, stat.ML",

author = "Glenn Shafer and Vladimir Vovk",

note = "58 pages, 9 figures",

year = "2007",

month = jun,

day = "21",

language = "English",

type = "WorkingPaper",

}

TY - UNPB

T1 - A tutorial on conformal prediction

AU - Shafer, Glenn

AU - Vovk, Vladimir

N1 - 58 pages, 9 figures

PY - 2007/6/21

Y1 - 2007/6/21

N2 - Conformal prediction uses past experience to determine precise levels ofconfidence in new predictions. Given an error probability $\epsilon$, togetherwith a method that makes a prediction $\hat{y}$ of a label $y$, it produces aset of labels, typically containing $\hat{y}$, that also contains $y$ with probability $1-\epsilon$. Conformal prediction can be applied to any method for producing $\hat{y}$: a nearest-neighbor method, a support-vector machine, ridge regression, etc. Conformal prediction is designed for an on-line setting in which labels are predicted successively, each one being revealed before the next is predicted.The most novel and valuable feature of conformal prediction is that if the successive examples are sampled independently from the same distribution, then the successive predictions will be right $1-\epsilon$ of the time, even though they are based on an accumulating dataset rather than on independent datasets. In addition to the model under which successive examples are sampled independently, other on-line compression models can also use conformalprediction. The widely used Gaussian linear model is one of these. This tutorial presents a self-contained account of the theory of conformal prediction and works through several numerical examples. A more comprehensive treatment of the topic is provided in "Algorithmic Learning in a Random World", by Vladimir Vovk, Alex Gammerman, and Glenn Shafer (Springer, 2005).

AB - Conformal prediction uses past experience to determine precise levels ofconfidence in new predictions. Given an error probability $\epsilon$, togetherwith a method that makes a prediction $\hat{y}$ of a label $y$, it produces aset of labels, typically containing $\hat{y}$, that also contains $y$ with probability $1-\epsilon$. Conformal prediction can be applied to any method for producing $\hat{y}$: a nearest-neighbor method, a support-vector machine, ridge regression, etc. Conformal prediction is designed for an on-line setting in which labels are predicted successively, each one being revealed before the next is predicted.The most novel and valuable feature of conformal prediction is that if the successive examples are sampled independently from the same distribution, then the successive predictions will be right $1-\epsilon$ of the time, even though they are based on an accumulating dataset rather than on independent datasets. In addition to the model under which successive examples are sampled independently, other on-line compression models can also use conformalprediction. The widely used Gaussian linear model is one of these. This tutorial presents a self-contained account of the theory of conformal prediction and works through several numerical examples. A more comprehensive treatment of the topic is provided in "Algorithmic Learning in a Random World", by Vladimir Vovk, Alex Gammerman, and Glenn Shafer (Springer, 2005).

KW - cs.LG

KW - stat.ML

M3 - Working paper

BT - A tutorial on conformal prediction

ER -