A polynomial kernel for line graph deletion. / Eiben, Eduard; Lochet, William.

28th Annual European Symposium on Algorithms, ESA 2020. ed. / Fabrizio Grandoni; Grzegorz Herman; Peter Sanders. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020. p. 1-15 42 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 173).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Published

Standard

A polynomial kernel for line graph deletion. / Eiben, Eduard; Lochet, William.

28th Annual European Symposium on Algorithms, ESA 2020. ed. / Fabrizio Grandoni; Grzegorz Herman; Peter Sanders. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020. p. 1-15 42 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 173).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Harvard

Eiben, E & Lochet, W 2020, A polynomial kernel for line graph deletion. in F Grandoni, G Herman & P Sanders (eds), 28th Annual European Symposium on Algorithms, ESA 2020., 42, Leibniz International Proceedings in Informatics, LIPIcs, vol. 173, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 1-15, 28th Annual European Symposium on Algorithms, ESA 2020, Virtual, Pisa, Italy, 7/09/20. https://doi.org/10.4230/LIPIcs.ESA.2020.42

APA

Eiben, E., & Lochet, W. (2020). A polynomial kernel for line graph deletion. In F. Grandoni, G. Herman, & P. Sanders (Eds.), 28th Annual European Symposium on Algorithms, ESA 2020 (pp. 1-15). [42] (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 173). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ESA.2020.42

Vancouver

Eiben E, Lochet W. A polynomial kernel for line graph deletion. In Grandoni F, Herman G, Sanders P, editors, 28th Annual European Symposium on Algorithms, ESA 2020. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2020. p. 1-15. 42. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.ESA.2020.42

Author

Eiben, Eduard ; Lochet, William. / A polynomial kernel for line graph deletion. 28th Annual European Symposium on Algorithms, ESA 2020. editor / Fabrizio Grandoni ; Grzegorz Herman ; Peter Sanders. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020. pp. 1-15 (Leibniz International Proceedings in Informatics, LIPIcs).

BibTeX

@inproceedings{dc1f4f7b78d2430384800833a3c76e8a,
title = "A polynomial kernel for line graph deletion",
keywords = "Graph modification problem, H-free editing, Kernelization, Line graphs",
author = "Eduard Eiben and William Lochet",
year = "2020",
month = aug,
day = "26",
doi = "10.4230/LIPIcs.ESA.2020.42",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
pages = "1--15",
editor = "Fabrizio Grandoni and Grzegorz Herman and Peter Sanders",
booktitle = "28th Annual European Symposium on Algorithms, ESA 2020",
note = "28th Annual European Symposium on Algorithms, ESA 2020 ; Conference date: 07-09-2020 Through 09-09-2020",

}

RIS

TY - GEN

T1 - A polynomial kernel for line graph deletion

AU - Eiben, Eduard

AU - Lochet, William

PY - 2020/8/26

Y1 - 2020/8/26

KW - Graph modification problem

KW - H-free editing

KW - Kernelization

KW - Line graphs

UR - http://www.scopus.com/inward/record.url?scp=85092466171&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.ESA.2020.42

DO - 10.4230/LIPIcs.ESA.2020.42

M3 - Conference contribution

AN - SCOPUS:85092466171

T3 - Leibniz International Proceedings in Informatics, LIPIcs

SP - 1

EP - 15

BT - 28th Annual European Symposium on Algorithms, ESA 2020

A2 - Grandoni, Fabrizio

A2 - Herman, Grzegorz

A2 - Sanders, Peter

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

T2 - 28th Annual European Symposium on Algorithms, ESA 2020

Y2 - 7 September 2020 through 9 September 2020

ER -