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Abstract

We consider the problem of sequential decision making under uncer-
tainty in which the loss caused by a decision depends on the following
binary observation. In competitive on-line learning, the goal is to design
decision algorithms that are almost as good as the best decision rules
in a wide benchmark class, without making any assumptions about the
way the observations are generated. However, standard algorithms in this
area can only deal with finite-dimensional (often countable) benchmark
classes. In this paper we give similar results for decision rules ranging over
an arbitrary reproducing kernel Hilbert space. For example, it is shown
that for a wide class of loss functions (including the standard square, ab-
solute, and log loss functions) the average loss of the master algorithm,
over the first N observations, does not exceed the average loss of the best
decision rule with a bounded norm plus O(N−1/2). Our proof technique is
very different from the standard ones and is based on recent results about
defensive forecasting. Given the probabilities produced by a defensive
forecasting algorithm, which are known to be well calibrated and to have
good resolution in the long run, we use the expected loss minimization
principle to find a suitable decision.

1 Introduction

In the simple problem of sequential decision making that we consider in this
paper, the loss λ(yn, γn) (maybe negative) caused by a decision γn depends
only on the following binary observation yn. All relevant information available
to the decision maker by the time he makes his decision is collected in what we
call the datum, xn. For example, in time series applications the datum may
contain all or the most recent observations; in pattern recognition, where the
observations are the true classes of patterns, the datum may be the vector of a
pattern’s attributes.

The traditional approach to this problem assumes a statistical model for the
sequence of pairs (xn, yn); e.g., statistical learning theory ([21]) assumes that
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the (xn, yn) are generated independently from the same probability distribu-
tion. A more recent approach, known in learning theory as “prediction with
expert advice” (e.g., [4]) and in information theory as “universal prediction”
(e.g., [6, 14]), avoids making assumptions about the way the observations and
data are generated. Instead, the goal of the decision maker is to compete with
a more or less general benchmark class of decision rules, mapping the xs to the
ys (the framework of prediction with expert advice is usually even more gen-
eral). We will use the phrase “competitive on-line” to refer to this area (as in
[23], emphasizing similarities to competitive on-line algorithms in computation
theory).

First papers on competitive on-line learning with general loss functions (e.g.,
[4, 22]) dealt with countable (often finite) benchmark classes. The next step was
to consider finite-dimensional benchmark classes (e.g., [8, 12, 23]). This paper
continues with infinite-dimensional classes. (Such classes were considered earlier
by Kimber and Long [11, 13], who, however, assumed that the benchmark class
contains a perfect decision rule.) To get an idea of our central results, the reader
is advised to start from Corollaries 1–3.

Our implicit assumption, common with other work in competitive on-line
learning, is that the decision maker is “small”: his decisions do not affect the
future observations. This is not a mathematical assumption: as already men-
tioned, we do not make any assumptions at all about the way observations are
generated; however, interpretation of our results becomes problematic if the de-
cision maker is not small. “Big” decision makers can still use our algorithms for
prediction (cf. Remarks 1 and 3 below).

In conclusion of this section we will briefly describe the content of the paper.
Our main result is stated in §2, and several examples are given in §3. It is proved
in §6; in §4 we describe the main ideas behind the proof and in §5 we prove
some preparatory results for §6. Our decision algorithm is explicitly described
in §7. We conclude with a short list of directions of further research (§8). A
preliminary version of this paper is to appear as [24]. In this new version we
made the title of the paper more specific (the old title was even somewhat
misleading: in prediction with expert advice, the experts are usually completely
free in making their decisions).

2 Main result

Our decision protocol is:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Decision Maker announces γn ∈ Γ.
Reality announces yn ∈ {0, 1}.

END FOR.

At each step (or round) n Decision Maker makes a decision γn whose conse-
quences depend on the observation yn ∈ {0, 1} chosen by Reality. All relevant
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information available to Decision Maker by the time he makes his decision is
collected in xn, called the datum. We assume that the data xn are elements of
a data space X and that the decisions are elements of a decision space Γ (both
sets assumed non-empty).

Remark 1 In this paper we are interested, first of all, in prediction of future
observations. However, our framework allows a fairly wide class of loss functions,
not all of which can be interpreted in terms of predictions (such as, e.g., Cover’s
and long-short games, in the terminology of [23], §2). This is the main reason
why we prefer to talk about decision making in general; another reason is that
in §5 we will deal with a very different kind of prediction (for which we reserve
the term “forecasting”).

A decision strategy is a strategy for Decision Maker in this protocol (ex-
plicitly defined specific strategies will also be called “decision algorithms”). Its
performance is measured with a loss function λ : {0, 1} × Γ → R, and so its
cumulative loss over the first N rounds is

N
∑

n=1

λ(yn, γn).

The pair (Γ, λ) is the game being played. Decision Maker will compete against
a class F , called the benchmark class, of functions D : X → Γ considered as
decision rules; the cumulative loss suffered by such a decision rule is

N
∑

n=1

λ(yn, D(xn)).

Before stating our main result we define some useful notions connected with
the two main components of our decision framework, the game (Γ, λ) and the
benchmark class F . The reader might want in parallel to read the next section,
which describes some important examples of games and benchmark classes.

Games

The exposure Expλ(γ) ∈ R of a decision γ ∈ Γ is

Expλ(γ) := λ(1, γ) − λ(0, γ)

and the exposure Expλ,D : X → R of a decision rule D at a point x ∈ X is

Expλ,D(x) := λ(1, D(x)) − λ(0, D(x)).

Let λ(p, γ) be the expected loss caused by taking a decision γ when the proba-
bility of 1 is p:

λ(p, γ) := pλ(1, γ) + (1 − p)λ(0, γ). (1)
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We only consider games (Γ, λ) such that

C0 := inf
γ∈Γ

λ(0, γ), C1 := inf
γ∈Γ

λ(1, γ) (2)

are finite. It is convenient (see, e.g., [9]) to summarize a game by its superdeci-
sion set

Σ :=
{

(x, y) ∈ R
2 | ∃γ ∈ Γ : x ≥ λ(0, γ) and y ≥ λ(1, γ)

}

; (3)

elements of this set will be called superdecisions. Superdecisions of the form
(λ(0, γ), λ(1, γ)) will sometimes be called decisions. We will assume, addition-
ally, that the set Σ ⊆ R

2 is convex and closed. The Eastern tail of the game is
the function

f : [C0,∞) → R ∪ {∞}
x 7→ inf{y |(x, y) ∈ Σ} − C1

(4)

and its Northern tail is

g : [C1,∞) → R ∪ {∞}
y 7→ inf{x |(x, y) ∈ Σ} − C0,

(5)

where, as usual, inf ∅ := ∞; it is clear that f and g are nonnegative everywhere
and finite on (C0,∞) and (C1,∞), respectively.

The theorem

A reproducing kernel Hilbert space (RKHS) on X is a Hilbert space F of real-
valued functions on X such that the evaluation functional f ∈ F 7→ f(x) is
continuous for each x ∈ X. By the Riesz–Fischer theorem, for each x ∈ X there
exists a function Kx ∈ F such that

f(x) = 〈Kx, f〉F , ∀f ∈ F .

Let
cF := sup

x∈X

‖Kx‖F ; (6)

we will be interested in the case cF < ∞. With each game (Γ, λ) and each RKHS
F we associate the non-negative (but maybe infinite) constant cλ,F defined by

c2
λ,F := sup

p∈(0,1)

sup
γ∈Γp

sup
x∈X

p(1 − p)
(

Exp2
λ(γ) + ‖Kx‖2

F

)

= sup
p∈(0,1)

sup
γ∈Γp

p(1 − p)
(

Exp2
λ(γ) + c2

F

)

,
(7)

where Γp := argminγ∈Γ λ(p, γ) (and λ(p, γ) is defined by (1)).
The following is our main result.
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Theorem 1 Let the game (Γ, λ) be such that (2) are finite, the superdecision
set Σ is convex and closed, and the tails f and g satisfy

f ′
+(t) = O(t−2), g′+(t) = O(t−2) (8)

as t → ∞, where f ′
+ and g′+ stand for the right derivatives (see, e.g., [15],

§23) of f and g. Let F be an RKHS on X and cF , cλ,F be defined by (6) and
(7). Suppose cF < ∞. Then cλ,F < ∞ and there is a decision strategy which
guarantees that

N
∑

n=1

λ(yn, γn) ≤
N
∑

n=1

λ(yn, D(xn)) + cλ,F

(

∥

∥Expλ,D

∥

∥

F
+ 1
)√

N (9)

for all N = 1, 2, . . . and all D : X → Γ with Expλ,D ∈ F .

Remark 2 If the loss function λ is bounded, (8) holds trivially. The right
derivatives in (8) can be replaced by the corresponding left derivatives, since
∣

∣f ′
+

∣

∣ ≤
∣

∣f ′
−

∣

∣ and
∣

∣g′+
∣

∣ ≤
∣

∣g′−
∣

∣ (see, e.g., [15], Theorem 24.1). Condition (8)
can be interpreted as saying that the tails should shrink fast enough. The case
f(t) = g(t) = t−1 can be considered borderline; Theorem 1 is still applicable in
this case, but it ceases to be applicable for tails that shrink less fast.

3 Examples

In this section we first define a specific RKHS and then describe three important
games.

Kernels as source of RKHS

We start by describing an equivalent language for talking about RKHS. The
kernel of an RKHS F on X is

K(x, x′) := 〈Kx,Kx′〉F
(equivalently, we could define K(x, x′) as Kx(x′) or as Kx′(x)). There is a
simple internal characterization of the kernels K of RKHS.

It is easy to check that the function K(x, x′), as we defined it, is
symmetric (K(x, x′) = K(x′, x) for all x, x′ ∈ X) and positive definite
(
∑m

i=1

∑m

j=1 αiαjK(xi, xj) ≥ 0 for all m = 1, 2, . . ., all (α1, . . . , αm) ∈ R
m,

and all (x1, . . . , xm) ∈ Xm). On the other hand, for every symmetric and
positive definite K : X2 → R there exists a unique RKHS F such that K is the
kernel of F ([1], Théorème 2).

We can see that the notions of a kernel of RKHS and of a symmetric positive
definite function on X2 have the same content, and we will sometimes say “kernel
on X” to mean a symmetric positive definite function on X2. Kernels in this
sense are the main source of RKHS in learning theory; see, e.g., [21], [16], and
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[18] for numerous examples. Every kernel on X is a valid parameter for our
decision algorithm; to apply Theorem 1 we can use the equivalent definition of
cF ,

cF := sup
x∈X

√

K(x, x).

A long list of RKHS together with their kernels is given in [3], §7.4. For
concreteness, in this section we will use the Sobolev space S of absolutely con-
tinuous functions f on R with finite norm

‖f‖S :=

√

∫ ∞

−∞

f2(x) dx +

∫ ∞

−∞

(f ′(x))2 dx; (10)

its kernel is

K(x, x′) =
1

2
exp (− |x − x′|)

(see [20] or [3], §7.4, Example 24). From the last equation we can see that
cS = 1/

√
2.

The square loss game

For the square loss game, Γ = [0, 1] and λ(y, γ) = (y − γ)2, and so we have

Expλ(γ) = λ(1, γ) − λ(0, γ) = (1 − γ)2 − γ2 = 1 − 2γ, (11)

λ(p, γ) = p(1 − γ)2 + (1 − p)γ2 = p(1 − p) + (γ − p)2,

and
Γp = {p}. (12)

Therefore,

cλ,F =

{

cF/2 if cF ≥ 1

(1 + c2
F )/4 if cF < 1;

in particular, cλ,S = 3/8 for the Sobolev space (10), and Theorem 1 implies

Corollary 1 Suppose the decision space is X = R. There is a decision strategy
that guarantees that, for all N and all decision rules D ∈ S,

N
∑

n=1

(yn − γn)2 ≤
N
∑

n=1

(yn − D(xn))2 +
3

8
(‖2D − 1‖S + 1)

√
N

(2D − 1 is the decision rule “normalized” to take values in [−1, 1]).

Remark 3 The games of this section illustrate Remark 1: here the decisions
γn are best interpreted as predictions of yn. Loss functions λ satisfying (12)
are called proper scoring rules. Such loss functions “encourage honesty”: it is
optimal to predict with the true probability (provided it is known). We will
later see another loss function of this type (the log loss function).
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To illustrate Corollary 1, suppose there are constants c > 1 and d > 1 and
a good absolutely continuous decision rule D : R → [0, 1] such that |xn| ≤ c,
n = 1, 2, . . ., and |D′(x)| ≤ d for all x ∈ X. At rounds N ≫ cd2 the average loss
of our decision algorithm will be almost as good as (or better than) the loss of
D. We refrain from giving similar illustrations for the other corollaries in this
section.

The absolute loss game

In this game, λ(y, γ) = |y − γ| with Γ = [0, 1]. We find:

Expλ(γ) = λ(1, γ) − λ(0, γ) = (1 − γ) − γ = 1 − 2γ

(the same as in the square loss case, (11)),

λ(p, γ) = p(1 − γ) + (1 − p)γ = p + (1 − 2p)γ,

and

Γp =











{0} if p < 1/2

{1} if p > 1/2

[0, 1] if p = 1/2.

Therefore,

cλ,F =
1

2

√

1 + c2
F

(in particular, cλ,S =
√

6/4), and we have the following corollary of Theorem 1.

Corollary 2 Let X = R. There is a decision strategy that produces decisions
γn such that, for all N and all D ∈ S,

N
∑

n=1

|yn − γn| ≤
N
∑

n=1

|yn − D(xn)| +
√

6

4
(‖2D − 1‖S + 1)

√
N. (13)

The log loss game

For the log loss game, Γ = (0, 1) and

λ(y, γ) = −y ln γ − (1 − y) ln(1 − γ).

For this game, cλ,F < ∞ (assuming cF < ∞) since its tails satisfy

f ′(t) = g′(t) = − 1

et − 1
∼ −e−t = O(t−2);

this will be also clear from the following direct calculation. Since

Expλ(γ) = λ(1, γ) − λ(0, γ) = − ln γ + ln(1 − γ) = ln
1 − γ

γ
,
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λ(p, γ) = −p lnγ − (1 − p) ln(1 − γ) = λ(p, p) + D(p, γ)

(where D(p, γ) := p ln p
γ

+(1− p) ln 1−p
1−γ

is the Kullback distance between p and

γ, known to take its minimal value in γ at γ = p), and Γp = {p}, we can bound
cλ,F from above as follows:

c2
λ,F = sup

p∈(0,1)

p(1 − p)

(

(

ln
1 − p

p

)2

+ c2
F

)

≤ c2
F/4 + sup

p∈(0,1)

p(1 − p)

(

ln
1 − p

p

)2

≈ c2
F/4 + 0.439 ≤ c2

F/4 + 0.44.

Of course, for specific values of cF it is better to find the supp∈(0,1) directly,
without using this bound. Such a direct calculation shows that cλ,S ≈ 0.693 ≤
0.7, and Theorem 1 now implies the following.

Corollary 3 Some decision strategy in the log loss game with X = R produces
decisions γn such that, for all N and all D : X → (0, 1) with the log-likelihood
ratio ln D

1−D
in S,

N
∑

n=1

λ(yn, γn) ≤
N
∑

n=1

λ(yn, D(xn)) + 0.7

(∥

∥

∥

∥

ln
D

1 − D

∥

∥

∥

∥

S

+ 1

)√
N.

4 Idea of the proof of Theorem 1

This section describes the intuition behind the proof. The following sections,
which carry out the proof, are formally independent of this section. We will also
describe a general research program that may lead, it can be hoped, to many
other results.

Game-theoretic probability

Our proof technique is based on a game-theoretic alternative to the standard
measure-theoretic axioms of probability ([17]). Many of the standard laws of
probability, including the weak and strong laws of large numbers, the central
limit theorem, and the law of the iterated logarithm, can be restated in terms
of perfect information games involving three key players: Reality, Forecaster,
and Skeptic. A typical game-theoretic law of probability states that Skeptic has
a strategy which, without risking bankruptcy, greatly enriches him if the law is
violated. All such strategies for Skeptic were explicitly constructed continuous
functions; game-theoretic laws of probability with a continuous strategy for
Skeptic will be called “continuous laws of probability”.

Game-theoretic probability as developed in [17] was to a large degree par-
allel to measure-theoretic probability. Following [7] and the literature that this
paper spawned, paper [27] pointed out a surprising feature of game-theoretic
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probability: for any continuous law of probability, Forecaster has a strategy
that prevents Skeptic’s capital from growing (cf. Lemma 1 below). In other
words, for any continuous law of probability there is a forecasting strategy that
is perfect as far as this law is concerned (we will say “perfect relative to” this
law). This result was obtained in [27] for binary forecasting, and in [26] it was
extended to more general protocols. Forecasting strategies obtained in this way
from various laws of probability were called “defensive forecasting” strategies.

General procedure

Now we are ready to describe a general procedure whose implementation leads,
in the most straightforward case, to Theorem 1.

Choose a goal which could be achieved if you knew the true probabilities
generating the observations. It is important that this goal should be “prac-
tical”, in the sense of being stated in terms of observable quantities, such as
data, decisions, and observations. The goal is not allowed to contain theoretical
quantities, such as the true probabilities themselves, and it should be achievable
no matter what the true probabilities are. Construct a decision strategy which,
using the true probabilities, leads to the goal.

Realistically, however, we do not know the true probabilities. To get rid of
them, isolate the law of probability on which the proof that your decision strat-
egy achieves the goal depends; typically, this law can be stated as a continuous
game-theoretic law of probability. (If the proof depends on several laws, they
should first be merged into a single law.) There is a forecasting strategy whose
forecasts are at least as good as (and often better than) the true probabilities,
as far as the law you have just isolated is concerned. It remains to feed your
decision strategy with those forecasts.

Implementing this procedure for various interesting goals appears to be a
promising research program.

Introduction to the proof

In this paper our goal is to achieve (9), which we roughly rewrite as

N
∑

n=1

λ(yn, γn) /
N
∑

n=1

λ(yn, D(xn)),

where the informal notation / is used to mean that the left-hand side does not
exceed the right-hand side plus a quantity small as compared to N . The goal
is stated in terms of the observables.

Let us see how our goal could be achieved if we knew the true probabilities
pn that yn = 1 (slightly more formally, pn is the conditional probability that
yn = 1 given the available information). By the law of large numbers (see,
e.g., [19], Theorem VII.5.4, for a suitable measure-theoretic statement and [17],
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Theorem 4.1, for its game-theoretic counterpart), we expect

∣

∣

∣

∣

∣

N
∑

n=1

f(pn, xn)(yn − pn)

∣

∣

∣

∣

∣

≪ N (14)

if f is a bounded function (assumed measurable in the measure-theoretic case).
If f is allowed to range over a function class F that is not excessively wide, (14)
will still continue to hold uniformly in f .

Suppose, for simplicity, that Γp is a singleton for all p ∈ [0, 1]; the only
element of Γp will be denoted G(p). Our decision strategy will make the decision
G(pn) at round n, i.e., the decision that leads to the smallest expected loss. We
will sometimes say that G is our “choice function”.

Notice that

λ(y, γ) − λ(p, γ) = (y − p)
(

λ(1, γ) − λ(0, γ)
)

always holds (this can be checked by subtracting (1) from λ(y, γ) := yλ(1, γ) +
(1 − y)λ(0, γ)). In conjunction with the law of large numbers (14) this implies

N
∑

n=1

λ(yn, γn) =

N
∑

n=1

λ(yn, G(pn))

=
N
∑

n=1

λ(pn, G(pn)) +
N
∑

n=1

(

λ(yn, G(pn)) − λ(pn, G(pn))
)

=

N
∑

n=1

λ(pn, G(pn))+

N
∑

n=1

(yn−pn)
(

λ(1, G(pn))−λ(0, G(pn))
)

/
N
∑

n=1

λ(pn, G(pn))

≤
N
∑

n=1

λ(pn, D(xn)) =

N
∑

n=1

λ(yn, D(xn)) −
N
∑

n=1

(

λ(yn, D(xn)) − λ(pn, D(xn))
)

=

N
∑

n=1

λ(yn, D(xn)) −
N
∑

n=1

(yn − pn)
(

λ(1, D(xn)) − λ(0, D(xn))
)

/
N
∑

n=1

λ(yn, D(xn)). (15)

This shows that we can achieve our goal if we know the true probabilities, and
it remains to replace the true probabilities with the forecasts that are perfect
relative to the law of large numbers.

For clarity, let us summarize the idea of the proof expressed by (15). To
show that the actual loss of our decision strategy does not exceed the actual
loss of a decision rule D by much, we notice that:

• the actual loss
∑N

n=1 λ(yn, G(pn)) of our decision strategy is approxi-
mately equal, by the law of large numbers, to the (one-step-ahead condi-

tional) expected loss
∑N

n=1 λ(pn, G(pn)) of our strategy;

10



• since we used the expected loss minimization principle, the expected loss
of our strategy does not exceed the expected loss of D;

• the expected loss
∑N

n=1 λ(pn, D(xn)) of D is approximately equal to its

actual loss
∑N

n=1 λ(yn, D(xn)) (by the law of large numbers).

To get the strongest possible result, we will have to use more specific laws of
probability than the general law of large numbers. It will be convenient to use
the following informal terminology introduced in [25]. Let pn be the forecasts
output by some forecasting strategy (rather than the true probabilities). We
say that the forecasting strategy has good calibration-cum-resolution if the left-
hand side of (14) is much less than N for a relatively wide class of functions
f : [0, 1] × X → R and large N . We say that the strategy has good calibration
if

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(pn)

∣

∣

∣

∣

∣

≪ N

for a wide class of functions f : [0, 1] → R and large N . Finally, we say that the
strategy has good resolution if

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(xn)

∣

∣

∣

∣

∣

≪ N

for a wide class of f : X → R and for large N . For a detailed discussion and
examples, see [25].

Notice that in applying the law of large numbers to establishing the two
approximate inequalities in (15) we need not general f = f(p, x) but only f =
f(p) (known in advance) and f = f(x). In particular, we only need calibration
and resolution separately, not calibration-cum-resolution. These are the two
specific probability laws we will be concerned with.

The requirement that Γp should always be a singleton (in fact, we will even
need the function G(p) to be continuous) is restrictive: for example, it is not
satisfied for the absolute loss function. To deal with this problem, we will have to
consider forecasting strategies that output extended forecasts (pn, qn) ∈ [0, 1]2,
where pn is the forecast of yn and the extra component qn will play a more
technical role.

The next section is devoted to constructing a perfect forecasting strategy
relative to the law of large numbers. In the following section we will be able to
prove Theorem 1.

5 The algorithm of large numbers

This section is the core of our proof of Theorem 1. First we describe a forecasting
protocol in which Forecaster tries to predict the observations chosen by Reality.
Following [17], we introduce another player, Skeptic, who is allowed to bet at
the odds implied by Forecaster’s moves.
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Binary Forecasting Game I
Players: Reality, Forecaster, Skeptic
Protocol:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Forecaster announces (pn, qn) ∈ [0, 1]2.
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

END FOR.

The real forecast is pn (the “probability” that yn = 1), which is interpreted
as the price Forecaster charges for a ticket paying yn; sn is the number of
tickets Skeptic decides to buy. The protocol describes not only the players’
moves but also the changes in Skeptic’s capital Kn; its initial value K0 can be
an arbitrary real number. Skeptic demonstrates that the forecasts are poor if
he manages to multiply his initial capital (assumed positive) manyfold without
risking bankruptcy (i.e., Kn becoming negative). Forecaster also provides an
additional number qn ∈ [0, 1] which does not affect Skeptic’s capital; intuitively,
the role of qn is to help those of Forecaster’s customers who find themselves in
a position of Buridan’s ass (find two or more actions equally attractive in view
of the forecast pn) to break the tie.

The main difference between our decision protocol (stated at the beginning
of §2) and the protocols of this section is that in the latter Forecaster implicitly
claims (by pricing the tickets) that he has the fullest possible knowledge of the
way Reality chooses the observations, and Skeptic tries to prove him wrong by
gambling against him. In the decision protocol, Decision Maker does no make
any such claims and simply tries to minimize his losses.

It will be convenient to make the set [0, 1]2 from which the forecasts (pn, qn)
are chosen into a topological space. The lexicographic square £ is defined to be
the set [0, 1]2 equipped with the following linear order: if (x1, y1) and (x2, y2)
are two points in £, (x1, y1) < (x2, y2) means that either x1 < x2 or x1 =
x2, y1 < y2. (Cf. [5], Problem 3.12.3(d).) The topology on the lexicographic
square is, as usual, generated by the open intervals

(a, b) := {u ∈ £ |a < u < b} ,

a and b ranging over £. As a topological space, the lexicographic square is
normal ([5], Problem 1.7.4(d)), compact ([5], Problem 3.12.3(a), [10], Problem
5.C), and connected ([5], Problem 6.3.2(a), [10], Problem 1.I(d)).

As in [27], we will see that for any continuous strategy for Skeptic there
exists a strategy for Forecaster that does not allow Skeptic’s capital to grow,
regardless of what Reality is doing. To state this observation in its strongest
form, we make Skeptic announce his strategy for each round before Forecaster’s
move on that round rather than announce his full strategy at the beginning of
the game. Therefore, we consider the following perfect-information game:

12



Binary Forecasting Game II
Players: Reality, Forecaster, Skeptic
Protocol:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Skeptic announces continuous Sn : £ → R.
Forecaster announces (pn, qn) ∈ £.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn, qn)(yn − pn).

END FOR.

Lemma 1 Forecaster has a strategy in Binary Forecasting Game II that ensures
K0 ≥ K1 ≥ K2 ≥ · · · .

Before proving this lemma, we will need another lemma, which will play the
role of the Intermediate Value Theorem, used in [25].

Lemma 2 If a continuous function f : £ → R takes both positive and negative
values, there exists x ∈ £ such that f(x) = 0.

Proof A continuous image of a connected compact set is connected ([5], The-
orem 6.1.4) and compact ([5], Theorem 3.1.10). Therefore, f(£) is a closed
interval.

Proof of Lemma 1 Forecaster can now use the following strategy to ensure
K0 ≥ K1 ≥ · · · :

• if the function Sn(p, q) takes value 0, choose (pn, qn) such that Sn(pn, qn) =
0;

• if Sn is always positive, take pn := 1 and choose qn ∈ [0, 1] arbitrarily;

• if Sn is always negative, take pn := 0 and choose qn ∈ [0, 1] arbitrarily.

A kernel K on £×X is forecast-continuous if the function K((p, q, x), (p′, q′, x′))
is continuous in (p, q, p′, q′) ∈ £2, for each fixed (x, x′) ∈ X2. (Kernels on £×X

are defined analogously to kernels on X.) For such a kernel the function

Sn(p, q) :=

n−1
∑

i=1

K((p, q, xn), (pi, qi, xi))(yi−pi)+
1

2
K((p, q, xn), (p, q, xn))(1−2p)

(16)
is continuous in (p, q) ∈ £.

The lexicographic algorithm of large numbers (£ALN)
Parameter: forecast-continuous kernel K on £ × X

FOR n = 1, 2, . . . :
Read xn ∈ X.

13



Define Sn(p, q) by (16), (p, q) ∈ £.
Output any root (p, q) of Sn(p, q) = 0 as (pn, qn);

if there are no roots,
set pn := (1 + signSn)/2 and set qn to any number in [0, 1].

Read yn ∈ {0, 1}.
END FOR.

(Notice that signSn is well defined by Lemma 2.) It is well known that there
exists a function Φ : £ × X → H (a feature mapping taking values in a Hilbert
space H) such that

K(a, b) = Φ(a) · Φ(b), ∀a, b ∈ £ × X. (17)

(For example, we can take the RKHS on £ × X with kernel K as H and take
a 7→ Ka as the feature mapping Φ; there are, however, easier and more trans-
parent constructions.) It can be shown that Φ(p, q, x) is forecast-continuous,
i.e., continuous in (p, q) ∈ £ for each fixed x ∈ X, if and only if the kernel K

defined by (17) is forecast-continuous (see, e.g., [25], Appendix B).

Theorem 2 Let K be the kernel defined by (17) for a forecast-continuous fea-
ture mapping Φ : £ × X → H. The lexicographic algorithm of large numbers
with parameter K outputs (pn, qn) such that

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, qn, xn)

∥

∥

∥

∥

∥

2

≤
N
∑

n=1

pn(1 − pn) ‖Φ(pn, qn, xn)‖2
(18)

always holds for all N = 1, 2, . . . .

Proof Following £ALN Forecaster ensures that Skeptic will never increase his
capital with the strategy

sn :=

n−1
∑

i=1

K ((pn, qn, xn), (pi, qi, xi)) (yi − pi)

+
1

2
K ((pn, qn, xn), (pn, qn, xn)) (1 − 2pn). (19)

Using the formula

(yn − pn)2 = pn(1 − pn) + (1 − 2pn)(yn − pn)

(which can be checked by setting yn := 0 and yn := 1), we can see that the
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increase in Skeptic’s capital when he follows (19) is

KN −K0 =

N
∑

n=1

sn(yn − pn)

=

N
∑

n=1

n−1
∑

i=1

K ((pn, qn, xn), (pi, qi, xi)) (yn − pn)(yi − pi)

+
1

2

N
∑

n=1

K ((pn, qn, xn), (pn, qn, xn)) (1 − 2pn)(yn − pn)

=
1

2

N
∑

n=1

N
∑

i=1

K ((pn, qn, xn), (pi, qi, xi)) (yn − pn)(yi − pi)

− 1

2

N
∑

n=1

K ((pn, qn, xn), (pn, qn, xn)) (yn − pn)2

+
1

2

N
∑

n=1

K ((pn, qn, xn), (pn, qn, xn)) (1 − 2pn)(yn − pn)

=
1

2

N
∑

n=1

N
∑

i=1

K ((pn, qn, xn), (pi, qi, xi)) (yn − pn)(yi − pi)

− 1

2

N
∑

n=1

K ((pn, qn, xn), (pn, qn, xn)) pn(1 − pn)

=
1

2

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, qn, xn)

∥

∥

∥

∥

∥

2

− 1

2

N
∑

n=1

pn(1 − pn) ‖Φ(pn, qn, xn)‖2
,

which immediately implies (18).

Resolution

This subsection makes the next step in our proof of Theorem 1. Its forecasting
protocol is:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Forecaster announces (pn, qn) ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

END FOR.

Our goal is to prove the following result (although in §6 we will need a slight
modification of this result rather than the result itself).
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Theorem 3 Let F be an RKHS on X. The forecasts (pn, qn) output by £ALN
always satisfy

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(xn)

∣

∣

∣

∣

∣

≤ cF

2
‖f‖F

√
N

for all N and all functions f ∈ F .

Proof Applying ALN to the feature mapping x ∈ X 7→ Kx ∈ F and using
(18), we obtain

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(xn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn) 〈Kxn
, f〉F

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

N
∑

n=1

(yn − pn)Kxn
, f

〉

F

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Kxn

∥

∥

∥

∥

∥

F

‖f‖F

≤ ‖f‖F

√

√

√

√

N
∑

n=1

pn(1 − pn)K(xn, xn) ≤ cF ‖f‖F

√

√

√

√

N
∑

n=1

pn(1 − pn) (20)

for any f ∈ F .

Remark 4 In the terminology introduced in the previous section, Theorem 3 is
about resolution. This is sufficient for the purpose of this paper, but it is easy to
see that similar statements hold for calibration-cum-resolution and calibration.
For example, let F be an RKHS on £ × X. The forecasts (pn, qn) output by
£ALN always satisfy

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(pn, qn, xn)

∣

∣

∣

∣

∣

≤ cF

2
‖f‖F

√
N

for all N and all functions f ∈ F .

6 Proof of Theorem 1

Before starting the proof proper, we need to discuss two topics: choosing a
suitable choice function and “mixing” different feature mappings.

The canonical choice function

Let us say that a straight line (1 − p)x + py = c in the (x, y)-plane, where
p ∈ [0, 1] and c ∈ R, is southwest of the superdecision set Σ (defined by (3)) if

∀(x, y) ∈ Σ : (1 − p)x + py ≥ c.

For each p ∈ [0, 1] let c(p) be the largest c (which obviously exists) such that
the line (1 − p)x + py = c is southwest of Σ. It is clear that, for p ∈ (0, 1), the
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line (1 − p)x + py = c(p) intersects Σ and the intersection, being compact and
convex, has the form [A(p), B(p)], where A(p) and B(p) are points (perhaps
A(p) = B(p)) on the line. For concreteness, let A(p) be northwest of B(p)
(i.e., if A(p) = (A0, A1) and B(p) = (B0, B1), we assume that A0 ≤ B0 and
A1 ≥ B1). Now we can define the canonical choice function G associated with
(Γ, λ) as follows:

• if 0 < p < 1 and q ∈ [0, 1], G(p, q) is defined to be any γ ∈ Γ satisfying

(λ(0, γ), λ(1, γ)) = (1 − q)A(p) + qB(p);

the existence of such a γ is obvious;

• if p = 0 and q ∈ [0, 1], G(p, q) is defined to be any fixed γ0 ∈ Γ satisfying

(λ(0, γ0), λ(1, γ0)) = (C0, f(C0))

(C0 and f are defined in (2) and (4)); if f(C0) = ∞, such a γ0 does not
exist and G(p, q) is undefined;

• if p = 1 and q ∈ [0, 1], G(p, q) is defined to be any fixed γ1 ∈ Γ such that

(λ(0, γ1), λ(1, γ1)) = (g(C1), C1)

(C1 and g are defined in (2) and (5)); if g(C1) = ∞, such a γ1 does not
exist and G(p, q) is undefined.

It is easy to see that the function (λ(0, G(p, q)), λ(1, G(p, q))) is continuous in
(p, q) ∈ domG and, therefore, Expλ,G(p, q) := Expλ(G(p, q)) is continuous in
(p, q) ∈ domG. We defined G in such a way that it is a “perfect” choice
function: λ(p, G(p, q)) = infγ∈Γ λ(p, γ) for virtually all (p, q) (in any case, for
all (p, q) ∈ domG).

Mixing

In the proof of Theorem 1 we will mix the feature mapping Φ0(p, q, x) :=
Expλ,G(p, q) (into H0 := R) and the feature mapping Φ1(p, q, x) := Kx used in
the proof of Theorem 3 (as discussed in §4, we will have to achieve two goals
simultaneously, only one of them connected with resolution). This can be done
using the following corollary of Theorem 2.

Corollary 4 Let Φj : £ × X → Hj, j = 0, 1, be forecast-continuous mappings
from £×X to Hilbert spaces Hj. The forecasts output by £ALN with a suitable
kernel parameter always satisfy

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φj(pn, qn, xn)

∥

∥

∥

∥

∥

2

Hj

≤
N
∑

n=1

pn(1 − pn)
(

‖Φ0(pn, qn, xn)‖2
H0

+ ‖Φ1(pn, qn, xn)‖2
H1

)

for all N and for both j = 0 and j = 1.
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Proof Define the direct sum H of H0 and H1 as the Cartesian product H0×H1

equipped with the inner product

〈g, g′〉H = 〈(g0, g1), (g
′
0, g

′
1)〉H :=

1
∑

j=0

〈gj , g
′
j〉Hj

.

Now we can define Φ : £ × X → H by

Φ(p, q, x) := (Φ0(p, q, x), Φ1(p, q, x)) ;

the corresponding kernel is

K((p, q, x), (p′, q′, x′)) := 〈Φ(p, q, x), Φ(p′, q′, x′)〉H

=

1
∑

j=0

〈Φj(p, q, x), Φj(p
′, q′, x′)〉

Hj
=

1
∑

j=0

Kj((p, q, x), (p′, q′, x′)),

where K0 and K1 are the kernels corresponding to Φ0 and Φ1, respectively.
It is clear that this kernel is forecast-continuous. Applying £ALN to it and
using (18), we obtain

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φj(pn, qn, xn)

∥

∥

∥

∥

∥

2

Hj

≤
∥

∥

∥

∥

∥

(

N
∑

n=1

(yn − pn)Φ0(pn, qn, xn),

N
∑

n=1

(yn − pn)Φ1(pn, qn, xn)

)∥

∥

∥

∥

∥

2

H

=

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, qn, xn)

∥

∥

∥

∥

∥

2

H

≤
N
∑

n=1

pn(1 − pn) ‖Φ(pn, qn, xn)‖2
H

=

N
∑

n=1

pn(1 − pn)

1
∑

j=0

‖Φj(pn, qn, xn)‖2
Hj

.

Merging Φ0 and Φ1 by Corollary 4, we obtain

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn) Expλ,G(pn, qn)

∣

∣

∣

∣

∣

=

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ0(pn, qn, xn)

∥

∥

∥

∥

∥

R

≤

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

(21)
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and, using (20),

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(xn)

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Kxn

∥

∥

∥

∥

∥

F

‖f‖F

=

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ1(pn, qn, xn)

∥

∥

∥

∥

∥

F

‖f‖F

≤ ‖f‖F

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

, (22)

for each function f ∈ F .

Proof: Part I

In this subsection we will assume that domG = £. Subtracting (1) from
λ(y, γ) = yλ(1, γ) + (1 − y)λ(0, γ), we obtain

λ(y, γ) − λ(p, γ) = (y − p)
(

λ(1, γ) − λ(0, γ)
)

= (y − p) Expλ(γ) (23)

(we already did this in §4, but we promised that the rest of the paper would be
formally independent of §4). Using the last equality and (21)–(22), we obtain
for the decision strategy γn := G(pn, qn) based on the (pn, qn) output by £ALN
with the merged kernel as parameter:

N
∑

n=1

λ(yn, γn) =
N
∑

n=1

λ(yn, G(pn, qn))

=

N
∑

n=1

λ(pn, G(pn, qn)) +

N
∑

n=1

(

λ(yn, G(pn, qn)) − λ(pn, G(pn, qn))
)

=

N
∑

n=1

λ(pn, G(pn, qn)) +

N
∑

n=1

(yn − pn) Expλ,G(pn, qn)

≤
N
∑

n=1

λ(pn, G(pn, qn)) +

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

≤
N
∑

n=1

λ(pn, D(xn)) +

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

=

N
∑

n=1

λ(yn, D(xn)) −
N
∑

n=1

(

λ(yn, D(xn)) − λ(pn, D(xn))
)

+

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

19



=

N
∑

n=1

λ(yn, D(xn)) −
N
∑

n=1

(yn − pn) Expλ,D(xn)
)

+

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

≤
N
∑

n=1

λ(yn, D(xn)) +
∥

∥Expλ,D

∥

∥

F

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

+

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

=
N
∑

n=1

λ(yn, D(xn)) +
(

∥

∥Expλ,D

∥

∥

F
+ 1
)

√

√

√

√

N
∑

n=1

pn(1 − pn)
(

Exp2
λ,G(pn, qn) + K(xn, xn)

)

≤
N
∑

n=1

λ(yn, D(xn)) +
(

∥

∥Expλ,D

∥

∥

F
+ 1
)

cλ,F

√
N.

It remains to show that cλ,F < ∞ (assuming cF < ∞, here and in the rest
of this section). In this case, domG = £, this is easy: essentially, this is the case
of a bounded loss function (the reservation “essentially” is needed since Γ can
contain “litter”—decisions dominated by other decisions in Γ). Since Expλ,G is
continuous and £ is compact,

sup
(p,q)∈£

p(1 − p)
(

Exp2
λ,G(p, q) + c2

F

)

< ∞.

Proof: Part II

The stripped lexicographic square is the subset

†£† := (0, 1) × [0, 1]

of £. In this subsection we consider the case dom G = †£†.
The order and topology on †£† are inherited from £. The following analogue

of Lemma 2 still holds.

Lemma 3 If a continuous function f : †£† → R takes both positive and negative
values, it also takes the value 0.

Proof See the proof of Lemma 2; f(†£†) is still a connected set in R.

A kernel K on †£†×X is forecast-continuous if the function K ((p, q, x), (p′, q′, x′))
is continuous in (p, q, p′, q′) ∈ (†£†)2. The function (16) is then continuous in
(p, q) ∈ †£†, and for our current kernel

K ((p, q, x), (p′, q′, x′)) = Expλ,G(p, q) Expλ,G(p′, q′) + 〈Kx,Kx′〉F (24)
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it equals

Sn(p, q) =

n−1
∑

i=1

(

Expλ,G(p, q) Expλ,G(pi, qi) + 〈Kxn
,Kxi

〉F
)

(yi − pi)

+
1

2

(

Exp2
λ,G(p, q) + ‖Kxn

‖2
F

)

(1 − 2p)

= AExpλ,G(p, q) + B +
1

2
Exp2

λ,G(p, q)(1 − 2p) + Cp, (25)

where A, B, and C do not depend on (p, q). Since domG = †£†,
∣

∣Expλ,G(p, q)
∣

∣→
∞ as p → 0 or p → 1, and so

lim
(p,q)→(1,0)

(p,q)∈†
£

†

Sn(p, q) = −∞ (26)

and
lim

(p,q)→(0,1)

(p,q)∈†
£

†

Sn(p, q) = ∞. (27)

The stripped lexicographic ALN (or, briefly, †£†ALN) is defined as the lexico-
graphic ALN except that:

• its parameter is a forecast-continuous kernel K on †£† × X;

• it outputs a root (p, q) (an element of †£† = domSn) of the equation
Sn(p, q) = 0 as (pn, qn) and crashes if this equation does not have roots
(this will never happen for the kernel (24)).

Because of (26) and (27), †£†ALN applied to the kernel (24) on †£† × X still
ensures that (18) holds for our feature mapping (Φ0, Φ1); this algorithm never
crashes and, of course, never outputs (pn, qn) with pn ∈ {0, 1}. We can see that
the proof of (9) given in the previous subsection still works.

Let us now prove that cλ,F < ∞ when domG = †£†. It suffices to check that

lim sup
(p,q)→(0,1)

(p,q)∈†
£

†

p Exp2
λ,G(p, q) < ∞ (28)

and
lim sup

(p,q)→(1,0)

(p,q)∈†
£

†

(1 − p) Exp2
λ,G(p, q) < ∞. (29)

For example, let us demonstrate (29). Without loss of generality, we replace (8)
with

f ′
−(t) = O(t−2), g′−(t) = O(t−2) (30)

(this can be done since f ′
−(t) ≤ f ′

+(t) ≤ f ′
−(t+1) and g′−(t) ≤ g′+(t) ≤ g′−(t+1)).

Consider the decision

(X, Y ) := (λ(0, G(p, q)), λ(1, G(p, q))) .
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Since − 1−p
p

is a subgradient (see, e.g., [15], Section 23) of f(x) at X , (30) implies

that 1 − p = O(X−2), i.e., (1 − p)X2 = O(1). Since |Expλ,G(p, q)| = X − Y ≤
X − C1 for (p, q) < (1, 0) sufficiently close to (1, 0), (29) indeed holds.

Proof: Part III

In this subsection we consider the remaining possibilities for domG. Let us
define the left-stripped lexicographic ALN (†£ALN for brief) as the lexicographic
ALN except that:

• its parameter is a forecast-continuous kernel K on †£×X, where the left-
stripped lexicographic square

†£ := (0, 1]× [0, 1]

is equipped with the order and topology inherited from £;

• it outputs a root (p, q) ∈ †£ of the equation Sn(p, q) = 0 as (pn, qn); if
this equation does not have roots in †£, we set pn := 1 and set qn ∈
[0, 1] arbitrarily (we will make sure that this happens only when Sn is
everywhere positive).

In a similar way we define the right-stripped lexicographic square £† and the
right-stripped lexicographic ALN (£†ALN), which always outputs (pn, qn) ∈ £†;
when Sn(p, q) = 0 does not have roots (p, q) ∈ £† we now set pn := 0.

We only consider the case domG = †£ (the case dom G = £† is treated
analogously); this corresponds to f(C0) = ∞ and f(C1) < ∞. Since Sn is con-
tinuous, the absence of roots of Sn = 0 in †£ in conjunction with (27) means that
Sn is positive everywhere on †£, and so setting pn := 1 in this case guarantees
that †£ALN still ensures (18). It remains to notice that (28) still holds.

7 The algorithm

In this short section we extract the decision strategy achieving (9) from our
proof of Theorem 1. As we have already noticed (see (25)),

Sn(p, q) =

n−1
∑

i=1

(

Expλ,G(p, q) Expλ,G(pi, qi) + K(xn, xi)
)

(yi − pi)

+
1

2

(

Exp2
λ,G(p, q) + K(xn, xn)

)

(1 − 2p); (31)

this immediately leads to the following explicit description.

An algorithm achieving (9)

Parameters: game with loss function λ and canonical choice function G;
kernel K on X
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FOR n = 1, 2, . . . :
Read xn ∈ X.
Define Sn(p, q) by (31) for all (p, q) ∈ £ for which G(p, q) is defined.
Define (pn, qn) as any root (p, q) of Sn(p, q) = 0;

if there are no roots,
set pn := (1 + signSn)/2 and set qn to any number in [0, 1].

Set γn := G(pn, qn).
Read yn ∈ {0, 1}.

END FOR.

(We saw in the previous section that signSn is well defined and is −1 or 1 in
this context.)

The canonical choice functions for the three examples of games given in §3
are as follows: G(p, q) = p for the square loss and log loss games, and

G(p, q) =











0 if p < 1/2

1 if p > 1/2

q if p = 1/2

(32)

for the absolute loss game.

8 Directions of further research

In this section we discuss informally what we consider to be interesting directions
of further research.

Non-convex games

Theorem 1 assumes that the superdecision set is convex. The assumption of
convexity is convenient but not indispensable. We will only discuss the simplest
non-convex game.

The loss function for the simple loss game is the same as for the absolute
loss game, λ(y, γ) = |y − γ|, but Γ = {0, 1}. Now the approach we have used
in this paper does not work: since Γ consists of two elements, there is no non-
trivial continuous choice function G : £ → Γ (every continuous image of £ is
connected: [5], Theorem 6.1.4).

A natural idea ([4]) is to allow Decision Maker to use randomization. The
expected loss of a strategy making decision 1 with probability γ and 0 with
probability 1− γ is |y − γ|, where y is the actual observation; therefore, for the
simple loss game a randomized decision strategy can guarantee the following
analogue of (13):

N
∑

n=1

E|yn − γn| ≤
N
∑

n=1

|yn − D(xn)| +
√

6

4
(‖2D − 1‖S + 1)

√
N, (33)
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where E refers to the strategy’s internal randomization (the decision rules D
can be allowed to take values in [0, 1]).

The disadvantage of (33) is that typically we are interested in the strat-
egy’s actual rather than expected loss. Our derivation of (33) shows the role
of randomization: with our choice function (32) no randomization is required
unless p = 1/2. Typically, we rarely find ourselves in a situation of complete
uncertainty, pn = 1/2; therefore, only a little bit of randomization is needed,
essentially for tie breaking. The actual loss will be very close to the expected
loss. It would be interesting to derive formal statements along these lines.

Non-binary observations

It would also be interesting to extend this paper’s results to more general ob-
servation spaces (first of all, to carry them over to least-squares regression and
multi-class classification). The two apparent obstacles to such extensions are
that the fundamental equality (23) looks tailored to the binary case y ∈ {0, 1}
and that Lemma 1 ceases to be obvious outside the binary case. However,
(23) only states, in the terminology of [17], that λ(p, γ) is the game-theoretic
expected value of λ(y, γ) (and that reproducing λ(y, γ) given λ(p, γ) can be
accomplished by buying λ(1, γ) − λ(0, γ) tickets paying y and costing p each).
Similar equalities hold for many other forecasting protocols. And an analogue
of Lemma 1 for a wide class of forecasting protocols is proved in [26].

Optimality

An important problem is to investigate the optimality of our algorithm, de-
scribed in §7: is the bound (9) tight? (The tightness of the bounds in Theorem
2 and Equation (20) is established in [25].)
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