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of Computability
Vladimir Vovk

Abstract. In 1952 Lucien Le Cam announced his celebrated result
that, for regular univariate statistical models, sets of points of super-
efficiency have Lebesgue measure zero. After reviewing the turbulent
history of early studies of superefficiency, I suggest using the notion
of computability as a tool for exploring the phenomenon of superef-
ficiency. It turns out that only computable parameter points can be
points of superefficiency for computable estimators. This algorithmic
version of Le Cam’s result implies, in particular, that sets of points
of superefficiency not only have Lebesgue measure zero but are even
countable.
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tors, superefficiency.

. . . if the true [parameter] value were known,
a system of estimation could be devised
which would give it with arbitrarily small
variance; and such a system of estimation
might happen to be adopted even if the
true value were unknown.

Harold Hotelling, from a letter to
Ronald A. Fisher, 1930

1. INTRODUCTION

At the beginning of his recent paper [45] Stephen
Stigler presents Hodges’s famous example of a
superefficient estimator as a nasty, ugly little fact
that killed Fisher’s beautiful theory of efficiency of
maximum likelihood. Extending and permuting Wol-
fowitz’s [52] classification, we call the three main
lines of defense against the little fact “exclusion of
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the evil” (eliminating the superefficient estimators
from competition), “deprecation of the evil” (show-
ing that superefficiency can only happen on a small
set of parameter points) and “collective responsi-
bility” (refusing to accept a parameter point as a
point of superefficiency, or even simply efficiency,
unless its neighbors are points of efficiency). They
will be reviewed in Section 2. Our review will be
rather selective and will end around 1970—by that
time the theory of superefficiency for regular para-
metric models had been essentially completed.

The rest of this paper concentrates on the second
line of defense, with a minimal, and very natural,
admixture of the first line: we will restrict our at-
tention to the computable estimators. On the other
hand, we will never assume asymptotic normality
of our estimators, although our definition of asymp-
totic efficiency is motivated by comparison with the
asymptotically normal case. The result that super-
efficiency can occur only at computable parameter
points is established in Section 3 as Theorem 1. Sur-
prisingly, the regularity conditions required for this
result are relatively simple and easy to check; this is
discussed in Section 4.

The notion of computability for real numbers and
functions of real numbers will be defined and dis-
cussed in Appendix A. The proof of Theorem 1 will
be very brief in the part concerning computability,
and the details will be provided in Appendix A.

1

http://arxiv.org/abs/0808.2266v2
http://www.imstat.org/sts/
http://dx.doi.org/10.1214/09-STS279
http://www.imstat.org
mailto:vovk@cs.rhul.ac.uk
http://www.imstat.org
http://www.imstat.org/sts/
http://dx.doi.org/10.1214/09-STS279


2 V. VOVK

Another appendix, Appendix B, contains a direct
proof of the countability of sets of superefficiency
not using the notion of computability.

The absence of superefficiency for computable con-
tinuous estimators at noncomputable points was first
established in [49] in the framework of Kolmogorov’s
algorithmic theory of randomness (see, e.g., [24]).
A serious disadvantage of the algorithmic theory of
randomness is its unfamiliarity to most statisticians.
Another disadvantage is that typical results proved
in the framework of the algorithmic theory of ran-
domness contain unspecified constants, which mask
important details. This paper allows noncontinuous
estimators and avoids using the algorithmic theory
of randomness.

There is more than one connection between su-
perefficiency and computing. This paper applies the
notion of computability to study superefficiency. In
the opposite direction, Barron and Hengartner [4]
use the notion of superefficiency to study the impor-
tant computational problem of data compression.

2. FISHER’S PROGRAM AND

SUPEREFFICIENCY

In papers [11] and [12] Fisher sketched his influ-
ential program of establishing the asymptotic effi-
ciency of maximum likelihood estimators. (See [1,

44, 45] for background.) Let θ̂n be the maximum
likelihood estimate for a scalar parameter θ found
from a sample of size n. Fisher implicitly assumed
regularity conditions that implied the existence of
maximum likelihood estimates and much more. In
the general discussion of this section we will not
mention explicitly the required regularity conditions.

Fisher’s idea was to prove that:

1. The scaled difference (θ̂n − θ)n1/2 is asymptoti-
cally normal with parameters (0,1/I(θ)), where
I(θ) is Fisher’s information. [In this paper the
normal distribution N(µ,σ2) is parameterized by
its expectation µ and its variance σ2.]

2. If another estimator Tn is such that (Tn − θ)n1/2

is asymptotically normal with parameters (0, v(θ)),
then v(θ)≥ 1/I(θ).

Fisher proposed several informal arguments for these
two statements. The first statement was established
rigorously by Cramér [8]. Later Cramér’s regularity
conditions were relaxed, and analogous statements
were established for methods of estimation different
from maximum likelihood (such as Bayes estimators

or Weiss and Wolfowitz’s [51] maximum probability
estimators). The second statement is wrong if under-
stood literally, as shown by Hotelling in his letter to
Fisher (see the epigraph; available on-line [17] and
quoted by Stigler in [45]).

The bluntest interpretation of Hotelling’s objec-
tion is that, for each parameter value θ, the estima-
tor that is identically equal to θ,

Tn := θ,(1)

is such that (Tn − θ)n1/2 is asymptotically normal
with parameters (0,0). Since 0< 1/I(θ), the param-
eter point θ will be a “point of superefficiency.” This
notion of superefficiency was perhaps not particu-
larly interesting to Fisher and Hotelling, since the
estimator (1) is not consistent at parameter points
different from θ. Hodges’s implementation of
Hotelling’s idea (probably discovered completely in-
dependently) is to set

Tn :=

{

θ̂n, if |θ̂n − θ| ≥ n−1/4,

θ, if |θ̂n − θ|< n−1/4
(2)

[Le Cam [26], Section 1, with a credit to Hodges
(1951); Le Cam says that Hodges produced a series
of examples and gives an example slightly different
from (2)]. The advantage of Hodges’s estimator is
that it is consistent and, moreover, its asymptotic
expected squared error is never worse than that of
the maximum likelihood estimator (at least in the
case of the Gaussian model with variance 1 consid-
ered by Le Cam). Hodges’s estimator may be said
to be superefficient at θ in the narrow sense: asymp-
totically, it beats the maximum likelihood estimator
at θ and is not worse than the maximum likelihood
estimator at the other parameter points. The esti-
mator (1) is then superefficient in the wide sense.

We will refer to the three approaches to dealing
with superefficiency, the lines of defense mentioned
in Section 1, as the first approach (exclude the evil
by changing the qualifying rules), the second ap-
proach (show that the evil, i.e., the set of points of
superefficiency, is not great), and the third approach
(declare a parameter point a point of inefficiency if
some of its neighbors are points of inefficiency). This
appears to be the chronological order of their ap-
pearance. Some work in broadly the same direction,
such as that on the Bahadur [2] and Rao ([38], Def-
initions 2.3–2.6) efficiency of estimators, is of a very
different character and cannot be easily assigned to
one of the three approaches.
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2.1 Exclusion of the Evil

It appears that the first approach was initiated by
Fisher himself in 1930, who, in response to Hotelling’s
doubts, gave his “third proof” of the efficiency of the
maximum likelihood estimator (in the terminology
of Stigler [45], who points out that of Fisher’s three
proofs this is the only real proof). Fisher consid-
ered only a finite observation space and restricted
competition by considering only consistent estima-
tors that are smooth functions (independent of the
sample size n) of the observed relative frequencies
xi. A modification of the “third proof” was pub-
lished in [13] (pages 45–46), which considered the
consistent estimators defined by an equation of the
form

∑

i ki(θ)xi = 0, the summation being over the
observation space.

A simple proof of Fisher’s bound for finite ob-
servation spaces and consistent estimators that are
smooth functions of the observed relative frequen-
cies was given by Rao in 1955 [37] (and reproduced
in [40]). This proof was extended by Kallianpur and
Rao [21] to the observation space R; they considered
estimators that are Fréchet differentiable functions
of the empirical distribution function. Fréchet dif-
ferentiability was weakened to Gâteaux differentia-
bility by Kallianpur [20].

Another restricted class of estimators (although
more general than Fisher’s) was considered by Ney-
man [33]. Neyman’s overview of known properties of
maximum likelihood estimators reflects beliefs pre-
vailing at the time. Wolfowitz starts his review of
[33] in Mathematical Reviews as follows:

It is well known that maximum likelihood
(ML) estimates have, under general condi-
tions, the following properties: (a) consis-
tency, (b) asymptotic normality, (c) min-
imal variance of the limiting distribution.

The corresponding statement in Neyman’s paper is
more hedged; Neyman refers to the earlier work by
Hotelling [18] and Doob [9], neither of whom, how-
ever, discussed (c).

An important byproduct of the work on the first
approach was the Cramér–Rao inequality for unbi-
ased estimators ([14, 36], [8], Section 32.3). It ap-
pears that this result per se is not directly connected
with Fisher’s program (as emphasized by Weiss and
Wolfowitz, [51], pages 10–11). As a consequence, re-
sults about superefficiency that are based on the
Cramér–Rao inequality (such as Theorem 1 in [50])

impose regularity conditions on the allowed estima-
tors that are difficult to interpret.

The first approach has often been criticized. For
example, Wolfowitz ([52], page 249) writes:

. . . to argue that the maximum likelihood
(m.l.) estimator is best by ruling out some
of its competitors, is a dangerous if tempt-
ing procedure. It can easily result in beg-
ging the entire question. After all, to give
an example from social life, anyone can
become the chess champion of his town if
the better players are arbitrarily declared
ineligible to compete. Yet what we are
seeking to establish is that the m.l. esti-
mator is asymptotically the champion!

In particular, he objects against the assumption of
asymptotical normality of the estimators admitted
to the competition. This is echoed by Weiss and
Wolfowitz [51]:

The problem is, however, to exclude only
artificial competitors. If we exclude sen-
sible and practical competitors then any
claims about the optimality of the m.l.
or any other estimator are hollow indeed,
and the theorems proved do not describe
the physical reality and are not of practi-
cal value or aesthetic interest.

In Wolfowitz’s [52] terminology, any regularity con-
ditions imposed on the estimators should be “statis-
tically operational.” He believed that the weak uni-
form convergence of (Tn − θ)n1/2 to a random vari-
able (not necessarily normal) depending on θ is such
a statistically operational condition. The require-
ment of weak uniform convergence was also pro-
posed by Rao [39] in 1963 (the same year that the re-
sults of [52] were presented at the Seventh All–Soviet
Union Conference on Probability and Mathemati-
cal Statistics). Lehmann [29] suggests the alterna-
tive condition that the variance v(θ) of the limiting
distribution of (Tn − θ)n1/2 should be a continuous
function of θ. Lehmann notices that his condition
is weaker than the condition of weak uniform con-
vergence (under mild regularity conditions on the
statistical model; cf. [52], Lemma 2) but also elimi-
nates superefficiency: this follows immediately from
Le Cam’s result, since superefficiency at one point
leads to superefficiency in a neighborhood of that
point when v is continuous.

Pfanzagl [34] develops further Wolfowitz’s objec-
tion against Fisher’s program:
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With the same justification with which
Wolfowitz questioned the asymptotic nor-
mality assumption for the sequence of es-
timates one could question his assumption
of weak uniform convergence: Why should
a statistician confine himself to estimates
for which the sequence of distributions of
n1/2(Tn − θ) converges at all?

In his Theorem 1 Pfanzagl proves the absence of
points of superefficiency for median unbiased esti-
mators ([34], Theorem 1); this result is extended by
Michel [32] to what he calls strongly asymptotically
median unbiased estimators.

2.2 Deprecation of the Evil

The second approach was started by Le Cam’s re-
sult that sets of points of superefficiency have Lebesgue
measure zero. The earliest version of this result was
given without proof in the abstract [25] of his dis-
sertation [26]. The dissertation itself [26] states and
contains a proof of a stronger version of the result
(cf. [25], Theorem 2, and [26], Theorem 9). However,
the proof given in [26] is wrong, as noticed by Wol-
fowitz [52]; it does not even prove the weaker version
of [25]. Corrected proofs were given by Le Cam him-
self [27] and Bahadur [3]. Paper [48] is devoted to
the history and several proofs of Le Cam’s result.

The main difference between the versions of Le
Cam’s result given in [25] and [26] is that [26] does
not assume that the estimator Tn is asymptotically
normal, whereas [25] makes this assumption. Le Cam
[27] and Bahadur [3] revert to asymptotically nor-
mal estimators. Pfanzagl ([34], Theorem 2) removes
the condition of asymptotic normality proving a re-
sult similar to the one claimed in Le Cam [26]. Both
Le Cam [26] and Pfanzagl [34] assume that some
function of Tn (n(Tn − θ)2 in [26] and (Tn − θ)n1/2

in [34]) converges weakly to some probability mea-
sure. Therefore, all these papers involve elements of
the first approach.

Whereas Le Cam [25, 26] considers superefficiency
in the narrow sense, the results given in [3, 27, 34]
concern superefficiency in an intermediate sense: the
assumptions made about the estimator Tn imply its
consistency (and more), but it is not required that
the asymptotic variance of (Tn−θ)n1/2 should never
exceed 1/I(θ).

In his paper [26] Le Cam claims that sets of points
of superefficiency can be uncountable. There is no
formal contradiction between Le Cam’s claim and

this paper’s result: in his example (Example 4 in
[26]) Le Cam uses a different, somewhat arbitrary,
notion of superefficiency. This example will be fur-
ther discussed in Section 3.3.

The standard textbook [7], page 305, asserts that
sets of points of superefficiency are countable. How-
ever, this is simply a slip of the pen, since this state-
ment is attributed to Le Cam [26], who never makes
it.

2.3 Collective Responsibility

In the third approach, when evaluating the perfor-
mance of an estimator Tn at a parameter point θ,
one takes into account the performance of Tn at pa-
rameter points different from θ. As discussed at the
beginning of this section, there is a whiff of this al-
ready in the standard notion of superefficiency ([26],
Definition 4), as used in the Berkeley group in the
early 1950s: θ does not qualify as a point of superef-
ficiency of (1) because Tn is so inefficient, not even
consistent, at all other points.

In the last section of his paper [26] Le Cam proves
several results that belong to the third approach.
His Theorem 14 says that the performance of a su-
perefficient estimator in a shrinking neighborhood
of a point of superefficiency is poor. His Theorem
13 states this result in terms of a formal measure of
performance of an estimator taking into account the
performance at the neighboring points.

Another early paper explicitly using the third ap-
proach is Chernoff’s [5]. Theorem 1 of that paper,
in Chernoff’s words, “states that for an arbitrary
estimate the reciprocal of the information is ‘essen-
tially’ asymptotically a lower bound for the asymp-
totic variance.” The word “essentially” refers to tak-
ing the supremum of the asymptotic variances (suit-
ably modified) over a shrinking neighborhood of the
given parameter point.

The culmination of this line of work was Hájek’s
[16] local asymptotic minimax theorem. (See Le Cam
[28], pages 24–25, for a discussion of connections of
this theorem with other results.) Hájek’s result has
been generalized in various directions, and at this
time the third approach is perhaps the dominant
one.

2.4 Informal Comparison

The difference between the first and third approaches
is not always clear-cut. If an estimator performs well
at a parameter point θ but much worse at θ’s neigh-
bors, we can react to this in two ways: either elimi-
nate the estimator from competition (first approach)
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or punish the estimator by declaring its performance
at θ to be its worst performance at θ and its neigh-
bors (third approach). The former option is imple-
mented as, for example, the requirement of weak
uniform convergence in [39, 52] (discussed in Section
2.1), the requirement of continuous convergence in
[42] and requirement (3.7) in [51]. Apart from this
borderline situation, the objections against the first
approach quoted in Section 2.1 appear to be valid.

The second and third approaches are convincing in
different circumstances. The third approach is con-
vincing when our a priori expectations for various
values of θ are diffuse. In the Bayesian case, where
these expectations are expressed via a full-blown
prior distribution, this distribution should not as-
sign a positive weight to any specific value of θ.
If the expectations are not diffuse (e.g., when the
value θ = 0 corresponds to no difference between two
treatments, the statistician might want to assign to
it a positive probability), or too uncertain for us to
judge how diffuse they are, the third approach be-
comes less convincing.

2.5 Contribution of this Paper

Our main result, Theorem 1 in the next section,
answers a natural question: can a given parameter
point θ be a point of superefficiency? Hotelling’s and
Hodges’s examples, (1) and (2), work for any θ, but
if θ is noncomputable, the resulting estimators are
also noncomputable, and their existence is of no use.
Our theorem says that no computable estimator can
be superefficient at a noncomputable point. In this
way the notion of computability further limits the
damage inflicted by Hotelling’s objection: yes, su-
perefficiency (in its most extreme form, Tn = θ for
all n) is possible at computable points θ, but there
can be no superefficiency at the other θ.

3. COMPUTABILITY OF POINTS OF

SUPEREFFICIENCY FOR

COMPUTABLE ESTIMATORS

Let Ω1,Ω2, . . . be a sequence of measurable spaces,
and for each n ∈ {1,2, . . .}, let {Pn,θ | θ ∈ Θ} be a
statistical model on Ωn. We will assume that Θ is
an open interval of the real line (Θ = R is allowed).
Each Pn,θ is a probability measure on Ωn, and θ ∈Θ
is the parameter to be estimated. Little will be lost
if the reader assumes that Ωn = Ωn and Pn,θ = (Pθ)

n

for all n, which corresponds to independent observa-
tions chosen from an observation space Ω according

to Pθ . An estimator T = {Tn}∞n=1 for {Pn,θ} is a
sequence of measurable functions Tn :Ωn →Θ.

We will need a condition of regularity, which will
be stated in terms of a natural measure of closeness
between probability measures. Formally, the affinity
between probability measures P and Q on the same
measurable space Ω is defined by

π(P,Q) := inf
E

max(P (E),Q(Ω \E)),(3)

E ranging over the measurable sets in Ω. Notice
that:

• it is always true that π(P,Q) ∈ [0,1] and π(P,P ) ∈
[1/2,1];

• probability measures P and Q are mutually sin-
gular if and only if π(P,Q) = 0;

• sequences of probability measures Pn and Qn on
measurable spaces Ωn are asymptotically entirely
separated if and only if lim infn→∞ π(Pn,Qn) = 0.

Another ingredient of our regularity condition will
be a continuous function I :Θ → (0,∞) (typically,
Fisher’s information).

Assumption 1. For any ε > 0 and any θ ∈ Θ,
there exist a positive integer N and a neighborhood
O ⊆Θ of θ such that, for all n≥N and θ1, θ2 ∈O,

π(Pn,θ1 , Pn,θ2) ≥Φ

(

−|θ2 − θ1|
√

nI(θ)

2

)

− ε,(4)

where Φ is the N(0,1) distribution function.

Assumption 1 is a weak form of the uniform con-
dition of local asymptotic normality. It will be dis-
cussed in the next section. In Section 4.2 we will
see that it is satisfied for statistical models satisfy-
ing standard regularity conditions (cf. the reference
to [19] there). As a simple sanity test, in Sections
4.1 and 4.3 we check it for the Gaussian model with
known variance.

Theorem 1. Suppose {Tn} is a computable es-
timator for {Pn,θ} satisfying Assumption 1. For any
c > 0 and any noncomputable θ ∈ Θ,

lim sup
n→∞

Pn,θ(|Tn − θ|> cn−1/2) ≥Φ(−c
√

I(θ)).(5)

As we said earlier, computability is discussed in
Appendix A. The reader who is only interested in
the countability of points of superefficiency (Corol-
lary 2 below) can ignore all statements about com-
putability; the proof of Theorem 1 will still show
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that there are only countably many points of super-
efficiency under Assumption 1. A streamlined inde-
pendent proof of the countability of points of super-
efficiency is given in Appendix B.

If (θ̂n − θ)n1/2 is asymptotically N(0,1/I(θ)) un-

der Pn,θ for some estimator θ̂n, such as the maxi-
mum likelihood estimator, we will have an “almost
opposite” inequality to (5),

lim sup
n→∞

Pn,θ(|θ̂n − θ|> cn−1/2)

(6)

≤ 2Φ(−c
√

I(θ)).

The use of probabilities Pn,θ(|Tn − θ|> cn−1/2) for
measuring the concentration of estimators is very
standard in the literature discussed in Section 2: cf.,
for example, Le Cam’s discussion of concentration
in [26] (starting from page 288), Wolfowitz’s Theo-
rem [52] (pages 258–259), Schmetterer’s [42] Theo-
rem 2.2, Pfanzagl’s [34] Theorems 1 and 2.

There is a gap between the right-hand sides of (5)
and (6). To eliminate it, we can consider only large
values of c. Let us define the asymptotic efficiency of
an estimator T = {Tn} at a parameter point θ ∈ Θ
as

aeθ(T )
(7)

:= lim inf
c→∞

lim inf
n→∞

− lnPn,θ(|Tn − θ|> cn−1/2)

c2I(θ)/2

(with convention − ln0 := ∞). Since − lnΦ(−x) ∼
x2/2 as x→ ∞ (see, e.g., [10], Lemma VII.2), (6)

implies that aeθ(θ̂) ≥ 1. In this sense the maximum
likelihood estimators are efficient under the usual
regularity conditions. We can say that T is super-
efficient at θ if aeθ(T ) > 1. Inequality (5) implies
aeθ(T )≤ 1.

In the classical case of (Tn − θ)n1/2 asymptot-
ically normal with parameters (0, v(θ)), aeθ(T ) =
1/(I(θ)v(θ)), and so, under the usual regularity con-
ditions, aeθ(T ) is the ratio of the asymptotic vari-
ance of the rescaled maximum likelihood estimator
to the asymptotic variance of rescaled Tn. Therefore,
in this case aeθ(T ) is the classical asymptotic effi-
ciency of T at θ, as defined by Fisher [11] (page 316)
and Cramér [8] (Section 32.5).

Before proving Theorem 1, we state three simple
corollaries of it, all assuming Assumption 1.

Corollary 1. If the parameter point θ is non-
computable and a computable estimator {Tn} is such
that (Tn − θ)n1/2 weakly converges to N(0, v(θ)),
then v(θ)≥ 1/I(θ).

Proof. It suffices to notice that 1/(I(θ)v(θ)) =
aeθ(T )≤ 1. �

Corollary 2. If c > 0 and {Tn} is an estimator
for {Pn,θ}, the inequality

lim sup
n→∞

Pn,θ(|Tn − θ|> cn−1/2)<Φ(−c
√

I(θ))(8)

holds for at most countably many θ ∈ Θ. In par-
ticular, aeθ(T ) > 1 for at most countably many θ.
In particular, if (Tn − θ)n1/2 weakly converges to
N(0, v(θ)) for all θ ∈ Θ, then v(θ) < 1/I(θ) holds
for at most countably many θ.

The last part of Corollary 2 was also proved (un-
der different regularity conditions) in [49], the Ap-
pendix.

Proof of Corollary 2. Every estimator is
computable with respect to some oracle (see Sec-
tion A.4 of Appendix A for information about ora-
cles). Fix such an oracle for {Tn}. Theorem 1 will
continue to hold if computability is replaced by com-
putability with respect to this oracle. Finally, there
are only countably many parameter points that are
computable with respect to this oracle. �

As mentioned earlier, a proof of Corollary 2 not
using the notions of computability and oracle can
be extracted from the proof of Theorem 1. See Ap-
pendix B for details.

We can define the asymptotic estimability aeθ of
a parameter point θ as

aeθ := sup
T

aeθ(T ),

with T ranging over the computable estimators. The
following corollary is a formalization of a new all-
or-nothing phenomenon arising in our algorithmic
framework.

Corollary 3. Suppose there is a computable
estimator θ̂n satisfying (6). Then, for each θ ∈ Θ,
either aeθ = 1 or aeθ = ∞.

Proof. By (6) we have aeθ ≥ 1. In combination
with (5), this gives aeθ = 1 for noncomputable θ. If
θ is computable, setting (1) gives aeθ = ∞. �

The formalization given by Corollary 3 is imper-
fect, because we have much more than aeθ = ∞ for
computable θ: there is a computable estimator that
estimates θ with zero error, Tn = θ.
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3.1 The Role of Computability

In Theorem 1 and its corollaries the notion of
computability is applied to two kinds of objects: es-
timators and parameter points. There is, however,
an important philosophical difference between com-
putable estimators and computable parameter points.

The purpose of estimators is to be used for com-
puting estimates, and so their computability is es-
sential. Accordingly, in our discussion we restrict
ourselves to computable estimators.

A parameter point is not meant to be computed
by anybody. Depending on which school of statistics
we listen to, it is either a constant chosen by Na-
ture or a mathematical fiction. In any case, there is
no reason for us to require or expect that it should
be computable. In fact, noncomputable parameter
points are often more important than computable
ones: for example, if the parameter point is chosen
from a smooth prior on the real line, it will be non-
computable with probability one.

Theorem 1 implies that, for the standard regu-
lar statistical models, the maximum likelihood es-
timator is efficient (cannot be beaten by any other
computable estimator) at noncomputable parame-
ter points. This statement remains important de-
spite the complementary statement that the max-
imum likelihood estimator is greatly outperformed
by Hotelling’s and Hodges’s estimators at computable
parameter points.

3.2 Proof of Theorem 1

The proof will use the following implication of As-
sumption 1.

Lemma 1. Let c > 0, a ∈ (0,1), θ ∈ Θ, and I ≥
I(θ). There exist ε > 0, positive integer N , and a
neighborhood O ⊆ Θ of θ such that, for any n≥N ,
θ1, θ2 ∈O, and A1,A2 ⊆ Ωn satisfying

max(Pn,θ1(A1), Pn,θ2(A2)) ≤ aΦ(−c
√
I)(9)

and

|θ2 − θ1| ≤ 2(1 + ε)3cn−1/2,(10)

it is true that A1 ∪A2 6= Ωn.

Proof. Let ε > 0 be so small that

Φ(−(1 + ε)3c
√
I)− ε > aΦ(−c

√
I).

Take any N and O satisfying the condition in As-
sumption 1. Using I(θ)≤ I and (10), we now obtain,

for n≥N ,

π(Pn,θ1 , Pn,θ2) ≥ Φ

(

−|θ2 − θ1|
√

nI(θ)

2

)

− ε

≥ Φ(−(1 + ε)3c
√
I)− ε

> aΦ(−c
√
I).

Were it true that A1∪A2 = Ωn, (9) would imply the
opposite inequality

π(Pn,θ1, Pn,θ2) ≤ max(Pn,θ1(A1), Pn,θ2(Ω \A1))

≤ max(Pn,θ1(A1), Pn,θ2(A2))

≤ aΦ(−c
√
I). �

Proof of Theorem 1. Fix some c > 0 and
θ ∈Θ such that (5) fails. We will exhibit an algo-
rithm for computing θ, which will prove the theo-
rem. There exist a ∈ (0,1), I > I(θ), and N such
that, for all n≥N ,

Pn,θ(|Tn − θ|> cn−1/2)≤ aΦ(−c
√
I).(11)

Let ε > 0, N , and O ∋ θ satisfy the condition in
Lemma 1 [so that N is assumed to be large enough
both for (11) to hold and for the condition in Lemma
1 to be satisfied].

Choose an open interval (L,R)⊆O with rational
end-points such that θ ∈ (L,R) and I(q)< I for all
q ∈ (L,R). In what follows we will also impose some
other conditions on the interval (L,R) (it has to be
sufficiently short).

Let (θ1, θ2) ⊆ (L,R) be an open interval contain-
ing θ. We will construct, in a computable manner,
an open interval (θ′1, θ

′

2)⊆ (L,R) whose length is at
most (1 + ε)−1|θ2 − θ1| and which still contains θ.
Repeating this operation, we can compute θ to any
accuracy starting from (L,R): the length of the in-
terval known to contain θ will tend to zero exponen-
tially fast.

First notice that we can compute a positive integer
n such that

2(1 + ε)2cn−1/2 ≤ |θ2 − θ1|
(12)

≤ 2(1 + ε)3cn−1/2,

and that we can assume that the resulting n sat-
isfies n ≥ N . Indeed, the double inequality (12) is
equivalent to

4(1 + ε)4c2

(θ2 − θ1)2
≤ n≤ 4(1 + ε)6c2

(θ2 − θ1)2
,(13)
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so making (L,R)⊇ (θ1, θ2) sufficiently short will en-
sure the existence of n satisfying (12) and the in-
equality n≥N for all such n.

Let us say that a point q ∈ Θ is suitable if

Pn,q(|Tn − q|> cn−1/2)≤ aΦ(−c
√
I).(14)

Let S = Sn,θ1,θ2 be the set of all suitable points in
(θ1, θ2). We know that θ ∈S; see (11).

Let us show that |q2 − q1| ≤ (1 + ε)−2|θ2 − θ1| for
all q1, q2 ∈ S. This follows from Lemma 1: setting
Ai := {ω | |Tn(ω)− qi|> cn−1/2}, i= 1,2, and using
(12) and (14), we can see that there exists ω ∈Ωn \
(A1 ∪A2). Since

|Tn(ω)− q1| ≤ cn−1/2

and

|Tn(ω)− q2| ≤ cn−1/2,

the triangle inequality and (12) imply

|q2 − q1| ≤ 2cn−1/2 ≤ (1 + ε)−2|θ2 − θ1|.
The estimator {Tn} is computable, and so we can
compute an open interval (θ′1, θ

′

2)⊇ S of length |θ′2−
θ′1| ≤ (1+ε)−1|θ2−θ1|. (See Section A.2 of Appendix
A for details.) This completes the proof of the the-
orem. �

3.3 Le Cam’s Example

In one of the examples in [26] (Example 4), Le
Cam constructs an uncountable set S and an estima-
tor {Tn} for the Gaussian model {Pn,θ}={(N(θ,1))n}
with unknown mean θ and known variance 1 such
that: (a) for all θ ∈ S and for all n of the form
n= 72j , j = 2,3, . . . ,

Pn,θ(|Tn − θ|> n−1/2)

≤ Pn,θ(|θ̂n − θ|> n−1/2)− 0.18,

and (b) for all θ /∈ S and for all sufficiently large n
of the form n= 72j ,

Pn,θ(|Tn − θ|> n−1/2) = Pn,θ(|θ̂n − θ|> n−1/2),

θ̂n being the maximum likelihood estimator. This
does not contradict our Corollary 2 for two reasons:
first, our definition of aeθ(T ) involves the probabil-
ities Pn,θ(|Tn − θ|> cn−1/2) for large c, whereas Le
Cam arbitrarily fixes c := 1, and second, the restric-
tion to n= 72j invalidates our proof, which crucially
depends on the set of allowed n being sufficiently
dense [see (13)].

At the end of his construction of {Tn}, Le Cam
says that a different, “necessarily more complicated,”
construction will give another estimator and another
uncountable set that enjoy similar properties to {Tn}
and S without the restriction to n= 72j . This would
eliminate the second reason, but an independent ver-
ification of Le Cam’s claim is desirable: there is no
proof in [26], and even the proofs in that paper are
“quelquefois incorrectes” ([27], page 17).

4. REGULARITY CONDITIONS

The present section and Appendix A are devoted
to the regularity conditions imposed on the sequence
of statistical models {Pn,θ} and the estimator {Tn},
respectively. The status of these two sets of regular-
ity conditions is very different: whereas the condi-
tions imposed on the estimator should be minimal
(cf. Section 2.1), we can be much more flexible in
choosing the conditions imposed on the sequence of
statistical models: even if these conditions are rela-
tively strong, they are still likely to be satisfied by
many important models (cf. the discussion in [52],
Section 3).

In this section we will see that Assumption 1, es-
sentially saying that

lim inf
θ1,θ2→θ
n→∞

(

π(Pn,θ1 , Pn,θ2)−Φ

(

−|θ2 − θ1|
√

nI(θ)

2

))

≥ 0

for all θ ∈ Θ, follows from easier to check or more
standard assumptions.

4.1 In Terms of the Likelihood Ratio

We make the standard assumption that for each
n all Pn,θ are absolutely continuous with respect to
a σ-finite measure µn. Let fn,θ be a density of Pn,θ

with respect to µn.

Assumption 2. For any ε > 0 and any θ ∈ Θ,
there exist a positive integer N and a neighborhood
O ⊆ Θ of θ such that, for all n≥N and for all dis-
tinct θ1, θ2 ∈O,

Pn,θ1

(

fn,θ2

fn,θ1

> 1

)

(15)

≥Φ

(

−|θ2 − θ1|
√

nI(θ)

2

)

− ε.

Lemma 2. Assumption 2 implies Assumption 1.
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Proof. By symmetry, we can complement (15)
by

Pn,θ2

(

fn,θ1

fn,θ2

> 1

)

≥ Φ

(

−|θ1 − θ2|
√

nI(θ)

2

)

− ε.

Therefore, it suffices to prove

π(Pn,θ1 , Pn,θ2) ≥ min

(

Pn,θ1

(

fn,θ2

fn,θ1

> 1

)

,

(16)

Pn,θ2

(

fn,θ1

fn,θ2

> 1

))

.

Suppose this inequality is false, and so we can find
t such that

π(Pn,θ1 , Pn,θ2)

< t

<min

(

Pn,θ1

(

fn,θ2

fn,θ1

> 1

)

, Pn,θ2

(

fn,θ1

fn,θ2

> 1

))

.

In this case, there exists an event E such that

Pn,θ1(E)< t, Pn,θ1

(

fn,θ2

fn,θ1

> 1

)

> t,

Pn,θ2(E)> 1− t, Pn,θ2

(

fn,θ2

fn,θ1

≥ 1

)

< 1− t.

This contradicts the Neyman–Pearson lemma. �

An easy calculation shows that Assumption 2 is
satisfied for sampling from the Gaussian family
N(θ,σ2) with known variance σ2 > 0 and with I(θ) :=
σ−2 [in other words, with I(θ) Fisher’s information].
In fact, for this statistical model we have

Pn,θ1

(

fn,θ2

fn,θ1

> 1

)

= Φ

(

−|θ2 − θ1|
√
n

2σ

)

,

with an equality and without the need to subtract
ε. Therefore, Assumption 2 and, a fortiori, Assump-
tion 1 are not vacuous.

4.2 Local Asymptotic Normality

Another assumption that implies Assumption 1
is the following uniform version of the condition of
local asymptotic normality.

Assumption 3. For any θ ∈ Θ, any λ ≥ 0, any
sequence θi → θ of elements of Θ, any sequence
ni →∞ of positive integers, and any sequence
λi → λ of positive real numbers such that θi +
λi/

√

niI(θi) ∈ Θ for all i = 1,2, . . . , there exist se-
quences ∆i and ψi of random variables such that,

for all i,

ln
f

ni,θi+λi/
√

niI(θi)

fni,θi

= λ∆i − λ2/2 +ψi(17)

and:

• the distribution of ∆i with respect to Pni,θi
weakly

converges to N(0,1);
• ψi converges to 0 in Pni,θi

-probability.

The derivation of a slightly stronger version of As-
sumption 3 under standard regularity conditions can
be found in [19] (Definition II.2.2, Theorem II.1.2
and Remark II.1.4).

Lemma 3. Assumption 3 implies Assumption 1.

Proof. Suppose that Assumption 3 holds whereas
Assumption 1 does not hold. The latter implies that
there exist ε > 0 and θ ∈ Θ such that for each posi-
tive integer N and each neighborhood O of θ there
exist n≥N and θ1, θ2 ∈O for which (4) is violated.
Fix such ε and θ. There exist sequences ni →∞ of
positive integers and θi → θ, θ̃i → θ of elements of Θ
such that, for all i, θi < θ̃i and

π(Pni,θi
, Pni,θ̃i

)<Φ

(

−(θ̃i − θi)
√

nI(θ)

2

)

− ε.(18)

It is clear that θ in (18) can be replaced by θi (slightly
decrease ε and disregard the initial i’s if necessary).
Setting λi := (θ̃i − θi)

√

nI(θi), we can rewrite (18)
as

π(Pni,θi
, Pni,θ̃i

)<Φ

(

−λi

2

)

− ε.(19)

The last inequality shows that the sequence λi is
bounded. Therefore, we can assume, without loss
of generality, that λi → λ for some λ≥ 0 (consider
a subsequence of i if necessary). Fix sequences ∆i

and ψi satisfying the conditions in Assumption 3.
Notice that λ > 0: indeed, if λ were zero, (17)

would converge to zero in probability, which would
contradict (19). Therefore,

Pni,θi

(fni,θ̃i

fni,θi

> 1

)

= Pni,θi

(

∆i >
λ

2
− ψi

λ

)

(20)

→ Φ

(

−λ
2

)

.

In a similar way we can obtain

Pni,θ̃i

(

fni,θi

fni,θ̃i

> 1

)

→ Φ

(

−λ
2

)

.(21)

Inequalities (20) and (21) contradict (19) and (16).
�
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4.3 In Terms of the Variation Distance

The variation distance ‖P−Q‖ between two prob-
ability measures on the same measurable space Ω is
defined to be

‖P −Q‖ := sup
E

|P (E)−Q(E)|,

E ranging over the measurable sets in Ω. A slightly
stronger form of Assumption 1 can be stated in
terms of variation distance rather than affinity.

Assumption 4. For any ε > 0 and any θ ∈ Θ,
there exist a positive integer N and a neighborhood
O ⊆Θ of θ such that, for all n≥N and θ1, θ2 ∈O,

‖Pn,θ1 −Pn,θ2‖ ≤ 1− 2Φ

(

−|θ2 − θ1|
√

nI(θ)

2

)

+ ε.

Theorem 1 remains true if Assumption 1 is re-
placed by Assumption 4. This follows from the fol-
lowing lemma.

Lemma 4. It is always true that

π(P,Q) ≥ 1− ‖P −Q‖
2

.

Proof. The required inequality

inf
E

max(P (E),Q(Ω \E))

≥ 1− supE |P (E)−Q(E)|
2

follows from

max(P (E),Q(Ω \E)) ≥ 1− |P (E)−Q(E)|
2

∀E,

and the last inequality is true even when the max is
replaced by the arithmetic mean. �

It is easy to check that Assumption 4 is satisfied
for sampling from the Gaussian family N(θ,σ2) with
known variance σ2 and with I(θ) := σ−2. For this
model,

‖Pn,θ1 − Pn,θ2‖ = 1− 2Φ

(

−|θ2 − θ1|
√
n

2σ

)

,

again with an equality and without the need to sub-
tract ε.

5. CONCLUSION

It is widely accepted that advances in computing
have brought about deep changes in the theory and
practice of statistics. However, the use of the theory
of computing, and, in particular, of its core notion

of computability, has been very limited in the classi-
cal areas of statistics, such as parameter estimation
and hypothesis testing. The notion of computabil-
ity appears to be especially useful in questions of
efficiency and superefficiency, where it allows us to
delineate the class of statistical procedures that we
would like to compete with. In particular, restrict-
ing ourselves to computable estimators, we can ask
whether a given parameter point θ can be a point
of superefficiency. Hotelling’s and Hodges’s exam-
ples show that, without this restriction, the answer
is vacuous: any θ can be a point of superefficiency.
With the restriction, the answer we gave in Section
3 is that superefficiency is impossible at noncom-
putable θ, whereas “hyperefficiency” (Tn = θ for all
n) is possible at computable θ.

This paper only deals with the most classical as-
pects of superefficiency. It does not even touch mul-
tivariate regular statistical models, let alone models
in which rates of convergence of the maximum like-
lihood estimates are different from n−1/2 and non-
parametric models. Can the notion of computability
be usefully applied in these and other more complex
cases? I hope the answer is positive.

APPENDIX A: COMPUTABILITY

The first paper to propose a general notion of
computability, and to claim that its notion of com-
putability is general, was Church’s [6] (1936). Church
considered functions F :Nm → N, where N is the set
of all positive integer numbers; for now, we will be
only interested in the case m= 1. On the one hand,
he formally defined his class of computable (“effec-
tively calculable,” as he said) functions, and on the
other hand, he put forward the informal thesis (of-
ten referred to as the Church thesis) that his for-
mal notion is the formalization of our intuitive no-
tion of computability. One of Church’s arguments
in favor of the Church thesis was that two natural
but very different definitions of effectively calculable
functions, Church and Kleene’s λ-definability and
Herbrand and Gödel’s recursiveness, are equivalent.

The Church thesis was further boosted by Alan
Turing’s observation [46] that Church’s effective cal-
culability is equivalent to computability using a for-
mal model of a computing device, nowadays known
as the Turing machine. A similar computing device
was introduced at the same time by Emil Post [35],
and another, rather different one, was introduced
later by Andrei Markov, Jr. [30]; both devices led to
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the same class of computable functions as the Turing
machine.

In 1953 Andrei Kolmogorov [22], later joined by
his student Vladimir Uspensky [23], carefully an-
alyzed the notion of an algorithm and introduced
its very general formalization. Kolmogorov and Us-
pensky’s goal was to show that “the most general,
for the current state of science, notion of an algo-
rithm” (my translation) leads to the same class of
computable functions. As they had expected, their
formalization (along with several other definitions
they considered but did not include in the paper)
indeed turned out to be equivalent to the previous
ones.

At this time, there is a consensus that the intu-
itive notion of computability for functions F :N → N

is indeed captured by the numerous available equiv-
alent definitions. This notion will be assumed to be
known in the rest of this paper; precise definitions
can be found in, for example, Rogers’s classical book
[41].

A set A⊆ N is called decidable if the function

χ(x) :=

{

1, if x ∈A,
2, otherwise,

is computable. A function F :A→B, where A and
B are decidable subsets of N, is said to be com-
putable if its extension F ′ :N → N defined as

F ′(x) :=

{

F (x), if x ∈A,
1, otherwise,

is computable.
Many familiar countable sets X , such as N2, the

set Q of all rational numbers, the set of all open in-
tervals (a, b)⊆ R with rational end-points, etc., can
be represented as “spaces of finite objects” (in the
terminology of Shoenfield [43]) by fixing a canoni-
cal injection φX :X → N mapping X onto a decid-
able subset of N. For example, a popular bijection
φN2 :N2 → N is the Cantor pairing function; it turns
N2 into a space of finite objects. The reader will be
assumed to be familiar with such canonical injec-
tions φX for the standard spaces of finite objects X .
Intuitively, φX(x) encodes x ∈X as a positive inte-
ger, and instead of working with finite objects x ∈X
directly, we can work with their codes.

The computability of F :X → Y , where X and Y
are spaces of finite objects, is defined as the com-
putability of φY ◦ F ◦ φ−1

X :φX(X) → φY (Y ). A set
A⊆X , where X is a space of finite objects, is said
to be recursively enumerable if A= F (N) for some
computable function F :N →X .

A.1 Computable Real Numbers

The main goal of Turing’s paper [46] was, in fact,
not the definition of computable functions but the
definition of computable real numbers. Turing’s def-
inition was that a real number is computable if its
decimal expansion is computable. There are many
equivalent definitions. For example, a real number
t is computable if and only if there exists a com-
putable function F :N → N such that ||t|−F (n)/n| ≤
1/n for all n ∈ N. This notion of a computable real
number is as uncontroversial as the notion of a com-
putable function F :N → N.

Theorem 1 talks about computability of two ob-
jects: the estimator {Tn} and the parameter point
θ. We have just defined what the computability of
θ means. The situation with {Tn} is more compli-
cated. Typically, Tn :Rn → R, and the notion of com-
putability of real-valued functions of real numbers is
notoriously ill-defined. There is the “core” notion of
a computably continuous function, to be discussed
in Section A.3, but there is no consensus about the
“right” definition for more general classes of func-
tions. In the next subsection we define computable
estimators in an ad hoc manner, in order to obtain
a strong statement of Theorem 1.

A.2 Computable Estimators

The theory of computability over the real num-
bers often uses “effective” (i.e., computable in some
sense) versions of various topological notions, such
as openness, closeness, continuity, etc. A set A⊆ R is
said to be effectively open if it is the union of a recur-
sively enumerable set of open intervals with rational
end-points. In other words, A is effectively open if it
can be represented in the form A=

⋃

i(ai, bi), where
(ai, bi), i ∈ N, is a computable sequence of open in-
tervals with rational end-points. Complements R\A
of effectively open sets A ⊆ R are called effectively
closed. More generally, sets Ax ⊆ R indexed by x ∈
X , where X is a space of finite objects, are said
to be effectively open uniformly in x if they can be
represented in the form Ax =

⋃

i(ai(x), bi(x)), where
(i, x) 7→ (ai(x), bi(x)) is a computable function map-
ping N ×X to the set of open intervals with ratio-
nal end-points. In this case the complementary sets
R \Ax are said to be effectively closed uniformly in
x.

Now we can define our notion of a computable
estimator. As in Sections 3 and 4, we consider a
sequence of statistical models {Pn,θ}, where θ ranges
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over an open interval Θ ⊆ R; the end-points of Θ are
assumed computable (by definition, −∞ and ∞ are
computable). Let {Tn} be an estimator for {Pn,θ}.
We say that {Tn} is computable if, for each δ ∈ Q ∩
[0,1), the closures

{q ∈ Θ | Pn,q(|Tn − q|> u)≤ δ}(22)

are effectively closed uniformly in n ∈ N and u ∈ Q∩
[0,∞). Intuitively, the inequality “≤” in (22) means
that Tn is a good estimator when the true parameter
point is q, with δ and u determining how demanding
our notion of “good” is. The closure of the set of such
q is required to be uniformly effectively closed. It
seems obvious that this condition will be satisfied for
estimators {Tn} specified by an explicit procedure.

Notice that our definition of computability of an
estimator {Tn} is in fact a joint requirement on the
estimator and {Pn,θ}. Interestingly, it does not im-
pose any computability restrictions on the sample
spaces Ωn, which do not enter the definition explic-
itly.

It is easy to check that our definition of com-
putability of {Tn} agrees with the definition of com-
putability of a parameter point θ ∈ Θ, in the sense
that the two notions coincide when Tn := θ is a con-
stant estimator. Indeed, in this case,

{q | Pn,q(|Tn − q|>u) ≤ δ} = [θ− u, θ+ u]∩Θ,

and the last family of closed sets are effectively closed
uniformly in u ∈ Q ∩ [0,∞) if and only if θ is com-
putable.

Let us now check that the proof of Theorem 1
goes through for our definition of computability of
{Tn}. Without loss of generality, we assume that c
and ε in the proof of Theorem 1 are rational num-
bers and that a and I are chosen in such a way
that δ := aΦ(−c

√
I) [cf. (11)] is a rational number;

we have already said that (L,R) is an interval with
rational end-points. The requirement (13) leaves us
enough freedom to make n a square (i.e., to make
n1/2 integer), assuming that the interval (L,R) is
sufficiently short. Therefore, the closure of the set of
q ∈ Θ satisfying (14) is effectively closed uniformly
in the squares n≥N . Assuming that (θ1, θ2) is an in-
terval with rational end-points [this is true initially,
for (θ1, θ2) = (L,R)], we can compute a new inter-
val (θ′1, θ

′

2) ⊇ S with rational end-points of length
|θ′2 − θ′1| ≤ (1 + ε)−1|θ2 − θ1|. (Just use the defini-
tion of effective closeness and the compactness of
bounded closed intervals in R.)

A.3 Computable Continuity

This subsection discusses the traditional notion
of computability over the reals going back to the
work of Brouwer on the intuitionistic foundations of
mathematics; see [31] for an excellent description.
Grzegorczyk [15] showed that this traditional notion
of computability is equivalent to several other defi-
nitions considered in literature. An advantage of his
exposition is that it is firmly based on the standard
foundations of mathematics. The term “computable
continuity” (in the form “computable continuous”)
is Grzegorczyk’s ([15], footnote on page 71), who be-
lieved that it is possible to introduce some kinds of
computable real functions which are not continuous.

Intuitively, a function F defined over the reals is
computably continuous if we can compute F (x) to
an arbitrary accuracy when given x to an arbitrary
accuracy. This condition indeed implies the conti-
nuity of F : for example, the simplest discontinuous
function

F (x) :=

{

1, if x≥ 0,
0, otherwise,

can never be computed to accuracy 1/3 at the point
x = 0, no matter how accurately we know x. On
the other hand, any explicitly given continuous func-
tion the reader is likely to come across will be com-
putable.

We start from defining what it means for a se-
quence of statistical models {Pn,θ} to be computably
continuous (in the topology of weak convergence).
As before, we assume that θ ranges over an open
interval Θ of the real line R with computable end-
points, and, for concreteness, we also assume that
Pn,θ is a probability measure on Ωn = Rn.

A basic set in Rm is the product
∏m

i=1(ai, bi) of
bounded open intervals with rational end-points. An
elementary set in Rm is a finite union of basic sets.
The family of basic sets and the family of elemen-
tary sets can be regarded as spaces of finite objects.
A subset of Rm is effectively open if it is the union
of a recursively enumerable family of basic sets. A
function F :Θ → R is computably lower semicontin-
uous if the set {(θ, t) | F (θ)> t} is effectively open.
The uniform versions of effective openness and com-
putable lower semicontinuity are defined as before.
A sequence of statistical models {Pn,θ} is said to
be computably continuous if the function Pn,θ(E) is
computably lower semicontinuous in θ uniformly in
n ∈ N and elementary sets E ⊆ Ωn. This is a weak
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condition; the statistical models usually found in
statistics textbooks are computably continuous.

Fix a computably continuous sequence of statis-
tical models {Pn,θ}. Let {Tn} be an estimator for
{Pn,θ}. It is computably continuous if both sets {(x, t) ∈
Ωn ×R | Tn(x)> t} and {(x, t) ∈Ωn ×R | Tn(x)< t}
are effectively open uniformly in n ∈ N.

It is not difficult to check that all computably con-
tinuous estimators are computable in our sense [see
(22)]. In fact, for computably continuous estimators
the operation of closure in (22) is superfluous: al-
ready the sets {q | Pn,q(|Tn − q|> u) ≤ δ} are effec-
tively closed uniformly in n and u.

A.4 Computability with an Oracle

The important idea of computability with an or-
acle was introduced by Turing [47]. An oracle Tur-
ing machine is allowed to read a tape containing an
infinite sequence S of symbols, not necessarily com-
putable. Replacing in all our definitions computable
functions F :N → N with S-computable functions
F :N → N (i.e., functions computable by oracle Tur-
ing machines allowed to read S) leads to the notions
of S-computable real numbers, S-computable esti-
mators, S-computably continuous estimators, etc.
Theorem 1 remains true if the two entries of “com-
putable” are replaced by “S-computable.” Since ev-
ery estimator is S-computable for some S (see
Lemma 5 below), this “relativized” version of The-
orem 1 contains Corollary 2 as a special case.

Lemma 5. Every estimator is S-computable for
some S.

Proof. Let (ai, bi), i= 1,2, . . . , be a computable
enumeration of all open intervals with rational end-
points. It suffices to take as S an infinite binary
sequence encoding the function F :N × N × (Q ∩
[0,∞))× (Q∩ [0,1)) →{0,1} defined by the require-
ment that F (i, n,u, δ) = 1 if and only if (ai, bi) and (22)
are disjoint. �

APPENDIX B: DIRECT PROOF OF

COROLLARY 2

This appendix gives a proof of Corollary 2 that
does not use the notion of computability. It parallels
the proof of Theorem 1.

Inequality (8) implies that there exist a ∈ (0,1),
I > I(θ), and N such that inequality (11) holds for
all n≥N . Since a and I can be taken rational, it
suffices to prove for fixed a, I and N that (11) holds
for all n≥N only for countably many θ.

Suppose θ satisfies (11) for all n≥N . It suffices to
prove that there exists an open interval (L,R) ∋ θ
such that θ is the only point in (L,R) satisfying (11)
for all n≥N . Let ε > 0,N and O ∋ θ satisfy the con-
dition in Lemma 1. Take any (L,R)⊆O satisfying

4(1 + ε)4c2

(R−L)2
≥N,

(23)
4(1 + ε)6c2

(R−L)2
− 4(1 + ε)4c2

(R−L)2
> 1,

and I(q)< I for all q ∈ (L,R).
Suppose (L,R) contains two distinct points θ1 and

θ2 satisfying (11) for all n≥N . Choose positive in-
teger n satisfying (12) and n≥N . Such an n exists
since (12) is equivalent to (13) and we have assumed
(23). By Lemma 1, (12) and (14) (applied to q = θ1
and q = θ2), there exists ω ∈Ωn such that

|Tn(ω)− θ1| ≤ cn−1/2,

|Tn(ω)− θ2| ≤ cn−1/2;

therefore, the triangle inequality and (12) imply

|θ2 − θ1| ≤ 2cn−1/2 ≤ (1 + ε)−2|θ2 − θ1|,
which is impossible.

ACKNOWLEDGMENTS

I am grateful to John Aldrich and Stephen Stigler
for helpful comments. The paper very much ben-
efitted from close reading by two referees and an
Associate Editor. This work was supported in part
by EPSRC (Grant EP/F002998/1).

REFERENCES

[1] Aldrich, J. (1997). R. A. Fisher and the making of max-
imum likelihood 1912–1922. Statist. Sci. 12 162–
176. MR1617519

[2] Bahadur, R. R. (1960). On the asymptotic effi-
ciency of tests and estimates. Sankhyā 22 229–252.
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