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Abstract

We study the problem of online regression. We do not make any assumptions
about input vectors or outcomes. We prove a theoretical bound on the square
loss of Ridge Regression. We also show that Bayesian Ridge Regression can be
thought of as an online algorithm competing with all the Gaussian linear experts.
We then consider the case of infinite-dimensional Hilbert spaces and prove relative
loss bounds for the popular non-parametric kernelized Bayesian Ridge Regression
and kernelized Ridge Regression. Our main theoretical guarantees have the form
of equalities.

1 Introduction

In the online prediction framework we are provided with someinput at each step
and try to predict an outcome using this input and information from previous steps
(Cesa-Bianchi and Lugosi, 2006). In a simple case in statistics, it is assumed that each
outcome is the value, corrupted by Gaussian noise, of a linear function of input.

In competitive prediction the learner compares his loss at each step with the loss
of any expert from a certain class of experts instead of making statistical assumptions
about the data generating process. Experts may follow certain strategies. The learner
wishes to predict almost as well as the best expert forall sequences.

Our main result is Theorem 1 in the next section, which compares the cumula-
tive weighted square loss of Ridge Regression applied in theon-line mode with the
regularized cumulative loss of the best linear predictor. The power of this result can
be best appreciated by looking at the range of its implications, both known and new.
For example, Corollary 1 answers the question asked by several researchers, see Vovk
(2001), whether Ridge Regression has a relative loss bound with the regret term of the
orderlnT under the square loss function, whereT is the number of steps and the out-
comes are assumed bounded; this corollary (as well as all other implications stated in
Section 2) is an explicit inequality rather than an asymptotic result. Theorem 1 itself
is much stronger, stating an equality rather than inequality and not assuming that the
outcomes are bounded. Since it is an equality, it unites upper and lower bounds on the
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loss. It appears that all natural bounds on the square loss ofRidge Regression can be
easily deduced from our theorem; we give some examples in thenext section.

Most of previous research in online prediction considers experts that disregard the
presence of noise in observations. We consider experts predicting a distribution on
the outcomes. We use Bayesian Ridge Regression and prove that it can predict as
well as the best regularized expert; this is our Theorem 2. The loss in this theoreti-
cal guarantee is the logarithmic loss. The algorithm that weapply was first used by
DeSantis et al. (1988) and similar bounds to ours were obtained by Kakade and Ng
(2004); Kakade et al. (2005). Theorem 2 is later used to deduce Theorem 1. Ridge Re-
gression predicts the mean of the Bayesian Ridge Regressionpredictive distribution,
and the logarithmic loss of Bayesian Ridge Regression is close to scaled square loss of
Ridge Regression.

We extend our main result to the case of infinite dimensional Hilbert spaces of func-
tions. The algorithm used becomes an analogue of non-parametric Bayesian methods.
From Theorem 2 and Theorem 1 we deduce relative loss bounds onthe logarithmic loss
of kernelized Bayesian Ridge Regression and on the square loss of kernelized Ridge
Regression in comparison with the loss of any function from areproducing kernel
Hilbert space. Both bounds have the form of equalities.

There is a lot of research done to prove upper and lower relative loss bounds un-
der different loss functions. If the outcomes are assumed tobe bounded, the strongest
known theoretical guarantees for square loss are given by Vovk (2001) and Azoury and Warmuth
(2001) for the algorithm which we call VAW (Vovk-Azoury-Warmuth) following Cesa-Bianchi and Lugosi
(2006). In the case when the inputs and outcomes are not restricted in any way, like
for our main guarantees, it is possible to prove certain lossbounds for the Gradient
Descent; see Cesa-Bianchi et al. (1996).

In Section 2 of this paper we present the online regression framework and the main
theoretical guarantee on the square loss of Ridge Regression. Section 3 describes what
we call the Bayesian Algorithm. In Section 4 we show that Bayesian Ridge Regres-
sion is competitive with the experts which take into accountthe presence of noise in
observations. In Section 5 we prove the main theorem. Section 6 describes the case of
infinite-dimensional Hilbert spaces.

2 The prediction protocol and performance guarantees

In online regression the learner follows this prediction protocol:

Protocol 1 Online regression protocol
for t = 1, 2, . . . do

Reality announcesxt ∈ R
n

Learner predictsγt ∈ R

Reality announcesyt ∈ R

end for

We use the Ridge Regression algorithm for the learner:
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Algorithm 1 Online Ridge Regression
Require: a > 0

Initialize b0 = 0 ∈ R
n, A0 = aI ∈ R

n×n

for t = 1, 2, . . . do
Readxt ∈ R

n

Predictγt = b′t−1A
−1
t−1xt

Readyt
UpdateAt = At−1 + xtx

′
t

Updatebt = bt−1 + ytxt

end for

Following this algorithm the learner’s prediction at stepT can be written as

γT =

(

T−1
∑

t=1

ytxt

)′(

aI +

T−1
∑

t=1

xtx
′
t

)−1

xT .

The incremental update of the matrixA−1
t can be done effectively by the Sherman-

Morrison formula. We prove the following theoretical guarantee for the square loss of
the learner following Ridge Regression.

Theorem 1. The Ridge Regression algorithm for the learner witha > 0 satisfies, at
any stepT ,

T
∑

t=1

(yt − γt)
2

1 + x′
tA

−1
t−1xt

= min
θ∈Rn

(

T
∑

t=1

(yt − θ′xt)
2 + a‖θ‖2

)

. (1)

Note that the partx′
tA

−1
t−1xt in the denominator is usually close to zero for larget.

An equivalent equality is also obtained (but well hidden) inthe proof of Theorem 4.6
in Azoury and Warmuth (2001). Our proof is more elegant. We describe it from the
point of view of online prediction, but we note the connection with Bayesian learning
in derivations. We obtain an upper bound in the form which is more familiar from
online prediction literature.

Corollary 1. Assume|yt| ≤ Y for all t, clip the predictions of Ridge Regression to
[−Y, Y ], and denote them byγY

t . Then

T
∑

t=1

(yt−γY
t )2 ≤ min

θ

(

T
∑

t=1

(yt − θ′xt)
2 + a‖θ‖2

)

+4Y 2 ln det

(

I +
1

a

T
∑

t=1

xtx
′
t

)

.

(2)

Proof. We first clip the predictions of Ridge Regression to[−Y, Y ] in Theorem 1. In
this case the loss at each step can only become smaller, and sothe equality transforms
to an inequality. Since all the outcomes also lie in[−Y, Y ], the maximum square loss
at each step is4Y 2. We have the following relations:

1

1 + x′
tA

−1
t−1xt

= 1−
(

x′
tA

−1
t−1xt

1 + x′
tA

−1
t−1xt

)

and
x′
tA

−1
t−1xt

1 + x′
tA

−1
t−1xt

≤ ln(1 + x′
tA

−1
t−1xt).
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The last inequality holds becausex′
tA

−1
t−1xt is non-negative due to the positive definite-

ness of the matrixAt−1. Thus we can useb
1+b ≤ ln(1 + b), b ≥ 0 (it holds atb = 0,

then take the derivatives of both sides). For the equality
∑T

t=1 ln(1 + x′
tA

−1
t−1xt) =

ln det
(

I + 1
a

∑T
t=1 xtx

′
t

)

see (16).

The bound (2) is exactly the bound obtained in Theorem 4 in Vovk (2001) for the
algorithm merging linear experts with predictions clippedto [−Y, Y ], which does not
have a closed-form description and so is less interesting than clipped Ridge Regression.
The bound for the VAW algorithm obtained in Theorem 1 in Vovk (2001) hasY 2 in
place of4Y 2 (the VAW algorithm is very similar to Ridge Regression; its predictions
areb′t−1A

−1
t xt rather thanb′t−1A

−1
t−1xt). The regret term in (2) has the logarithmic

order inT if ‖xt‖∞ ≤ X for all t, because

ln det

(

I +
1

a

T
∑

t=1

xtx
′
t

)

≤ n ln

(

1 +
TX2

a

)

(3)

(the determinant of a positive definite matrix is bounded by the product of its diagonal
elements; see Chapter 2, Theorem 7 of Beckenbach and Bellman(1961). This bound
is also obtained in Theorem 4.6 in Azoury and Warmuth (2001).

From our Theorem 1 we can also deduce Theorem 11.7 of Cesa-Bianchi and Lugosi
(2006), which is somewhat similar to our corollary. That theorem implies (2) when
Ridge Regression’s predictions happen to be in[−Y, Y ] without clipping (but this is
not what Corollary 1 asserts).

The upper bound (2) does not hold if the coefficient4 is replaced by any number
less than 3

2 ln 2 ≈ 2.164, as can be seen from an example given in Theorem 3 in Vovk
(2001), where the left-hand side of (2) is4T + o(T ), the minimum in the right-hand
side is at mostT , Y = 1, and the logarithm is2T ln 2 + O(1). It is also known that
there is no algorithm achieving (2) with the coefficient lessthan1 instead of4 even in
the case where‖xt‖∞ ≤ X for all t; see Theorem 2 in Vovk (2001).

It is also possible to prove an upper bound without the logarithmic part on the
cumulative square loss of Ridge Regression without assuming that the outcomes are
bounded.

Corollary 2. If ‖xt‖2 ≤ Z for all t then the Ridge Regression algorithm for the learner
with a > 0 satisfies, at any stepT ,

T
∑

t=1

(yt − γt)
2 ≤

(

1 +
Z2

a

)

min
θ∈Rn

(

T
∑

t=1

(yt − θ′xt)
2 + a‖θ‖2

)

. (4)

Proof. Qazaz et al. (1997) showed that1 + x′
tA

−1
j xt ≤ 1 + x′

tA
−1
i xt for j ≥ i. We

takei = 0 and obtain1 + x′
tA

−1
t−1xt ≤ 1 + Z2/a for anyt.

This bound is better than the bound in Corollary 3.1 of Kakadeand Ng (2004),
which has an additional regret term of logarithmic order in time.

Asymptotic properties of the Ridge Regression algorithm can be further studied
using Corollary A.1 in Kumon et al. (2009). It states that when ‖xt‖2 ≤ 1 for all t,
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thenx′
tA

−1
t−1xt → 0 ast → ∞. It is clear that we can replace‖xt‖2 ≤ 1 for all t by

supt ‖xt‖2 < ∞. The following corollary states that if there exists a very good expert
(asymptotically), then Ridge Regression also predicts very well. If there is no such a
good expert, Ridge Regression performs asymptotically as well as the best regularized
expert.

Corollary 3. Let a > 0 and γt be the predictions output by the Ridge Regression
algorithm with parametera. Supposesupt ‖xt‖2 < ∞.

1. If

∃θ ∈ R
n :

∞
∑

t=1

(yt − θ′xt)
2 < ∞, (5)

then ∞
∑

t=1

(yt − γt)
2 < ∞.

2. If

∀θ ∈ R
n :

∞
∑

t=1

(yt − θ′xt)
2 = ∞, (6)

then

lim
T→∞

∑T
t=1(yt − γt)

2

minθ∈Rn

(

∑T
t=1(yt − θ′xt)2 + a‖θ‖2

) = 1. (7)

Proof. Part 1. Suppose that the condition (5) holds. Then the right-hand side of (1) is
bounded by a constant (independent ofT ). By Corollary A.1 in Kumon et al. (2009),
the denominators in the left-hand side converge to1 ast → ∞ and so are bounded.
Therefore, the sequence

∑T
t=1(yt − γt)

2 remains bounded asT → ∞.
Part 2. Suppose that the condition (6) holds and the right-hand sideof (1) is

bounded above by a constantC. Then for eachT there existsθT such that

T
∑

t=1

(yt − θ′Txt)
2 + a ‖θT ‖2 ≤ C.

It follows that eachθT belongs to the closed ball with centre0 and of radius
√

C/a.
This ball is a compact set, and thus the sequenceθT has a subsequence that converges
to someθ̃. For eachT0 we have

∑T0

t=1(yt − θ̃′xt)
2 ≤ C, because otherwise we would

have
∑T̂

t=1(yt − θ′
T̂
xt)

2 > C for a large enougĥT in the subsequence. Therefore, we

have arrived at a contradiction:
∑∞

t=1(yt − θ̃′xt)
2 ≤ C < ∞.

Once we know that the right-hand side of (1) tends to∞ asT → ∞ and the denom-
inators on the left-hand side tend to1 (this is true by Corollary A.1 in Kumon et al.,
2009), (7) becomes intuitively plausible since, as far as the conclusion (7) is concerned,
we can ignore the finite number ofts for which the denominator1 + x′

tA
−1
t−1xt is sig-

nificantly different from1. We will, however, give a formal argument.
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The inequality≥ 1 in (7) is clear from (1) and1 + x′
tA

−1
t−1xt ≥ 1. We shall prove

the inequality ≤ 1 now. Choose a smallǫ > 0. Then starting from somet = T0 we
have that the denominators1 + x′

tA
−1
t−1xt are less than1 + ǫ. Thus, forT > T0,

T
∑

t=1

(yt − γt)
2 =

T0
∑

t=1

(yt − γt)
2 +

T
∑

t=T0+1

(yt − γt)
2

≤
T0
∑

t=1

(yt − γt)
2 + (1 + ǫ)

T
∑

t=1

(yt − γt)
2

1 + x′
tA

−1
t−1xt

=

T0
∑

t=1

(yt − γt)
2 + (1 + ǫ) min

θ∈Rn

(

T
∑

t=1

(yt − θ′xt)
2 + a ‖θ‖2

)

.

This implies that the left-hand side of (7) withlim replaced bylim sup does not exceed
1 + ǫ, and it remains to remember thatǫ can be taken arbitrarily small.

3 Bayesian algorithm

In this section we describe the main algorithm used to prove our theoretical bounds.
Let us denote the set of possible outcomes byΩ, the index set for the experts byΘ, and
the set of allowed predictions byΓ. The quality of predictions is measured by a loss
functionλ : Γ× Ω → R. We haveΩ = R, Θ = R

n, andΓ is the set of all measurable
functions on the real line integrable to one. The loss functionλ is the logarithmic loss
λ(γ, y) = − ln γ(y), whereγ ∈ Γ andy ∈ Ω. The learner follows the prediction with
expert advice protocol.

Protocol 2 Prediction with expert advice protocol

InitializeL0 := 0 andL0(θ) = 0, ∀θ ∈ Θ
for t = 1, 2, . . . do

Expertsθ ∈ Θ announce their predictionsξθt ∈ Γ
Learner predictsγt ∈ Γ
Reality announcesyt ∈ Ω
Losses are updated:LT = LT−1+λ(γt, yt), LT (θ) = LT−1(θ)+λ(ξθt , yt), ∀θ ∈
Θ

end for

Here byLT we denote the cumulative loss of the learner at stepT , and byLT (θ) we
denote the cumulative loss of the expertθ at this step.

We use a standard algorithm in prediction with expert advice(a special case of
the Aggregating Algorithm for the logarithmic loss function and learning rate 1, going
back to DeSantis et al. (1988) in the case of countableΘ andΩ) to derive the main
theoretical bound and give predictions. We call it the Bayesian Algorithm (BA) as it
is virtually identical to the Bayes rule used in Bayesian learning (the main difference
being that the experts are not required to follow any prediction strategies). Instead of
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looking for the best expert, the algorithm considers all theexperts and takes a weighted
average of their predictions as its own prediction. In detail, it works as follows.

Algorithm 2 Bayesian Algorithm

Require: A probability measureP0(dθ) = P ∗
0 (dθ) on Θ (the prior distribution, or

weights)
for t = 1, 2, . . . do

Read experts’ predictionsξθt ∈ Γ, ∀θ ∈ Θ
Predictgt =

∫

Θ
ξθt P

∗
t−1(dθ)

Readyt
Update the weightsPt(dθ) = ξθt (yt)Pt−1(dθ)
Normalize the weightsP ∗

t (dθ) = Pt(dθ)/
∫

Θ
Pt(dθ)

end for

The experts’ weights are updated according to their losses at each step:ξθt (yt) =
e−λ(ξθt ,yt); larger losses lead to smaller weights. Aftert steps the weights become

Pt(dθ) = e−Lt(θ)P0(dθ). (8)

The normalized weightsP ∗
T (dθ) correspond to the posterior distribution overθ after

the stepT . As we said, the prediction of the BA at stepT is given by the average

gT =

∫

Θ

ξθTP
∗
T−1(dθ) (9)

of the experts’ predictions.
The next lemma is a special case of Lemma 1 in Vovk (2001). It shows that the cu-

mulative loss of the BA is an average of the experts’ cumulative losses in a generalized
sense, as in, e.g., Chapter 3 of Hardy et al. (1952).

Lemma 1. For any priorP0 and anyT = 1, 2, . . ., the cumulative loss of the BA can
be expressed as

LT = − ln

∫

Θ

e−LT (θ)P0(dθ). (10)

Proof. We proceed by induction inT : for T = 0 the equality is obvious, and forT > 0
we have:

LT = LT−1 − ln gT (yT )

= − ln

∫

Θ

e−LT−1(θ)P0(dθ) − ln

∫

Θ

ξθT
e−LT−1(θ)

∫

Θ e−LT−1(θ)P0(dθ)
P0(dθ)

= − ln

∫

Θ

e−LT (θ)P0(dθ)

(the second equality follows from the inductive assumption, the definition ofgT , and
(8)).
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4 Bayesian Ridge Regression as a competitive algorithm

Let us consider experts whose predictions at stept are the densities of the normal
distributionsN(θ′xt, σ

2) on the set of outcomes for some fixed varianceσ2 > 0 (so
each expertθ follows a fixed strategy). From the statistical point of view, they predict
according to the modelyt = θ′xt + ǫt with Gaussian noiseǫt ∼ N(0, σ2). In other
words, the prediction of each expertθ ∈ Θ is

ξθt (y) =
1√
2πσ2

e−
(y−θ′xt)

2

2σ2 . (11)

Let us take the initial distributionN(0, σ2

a I) on the experts with somea > 0:

P0(dθ) =
( a

2σ2π

)n/2

exp
(

− a

2σ2
‖θ‖2

)

dθ.

We will prove that in this setting the prediction of the Bayesian Algorithm is equal
to the prediction of Bayesian Ridge Regression. But first we need to introduce some
notation. Fort ∈ {1, 2, . . .}, letXt be thet×n matrix of row vectorsx′

1, . . . , x
′
t andYt

be the column vector of outcomesy1, . . . , yt. LetAt = X ′
tXt+aI, as before. Bayesian

Ridge Regression is the algorithm predicting at each stepT the normal distribution
N(γT , σ

2
T ) with the mean and variance given by

γT = Y ′
T−1XT−1A

−1
T−1xT , σ2

T = σ2x′
TA

−1
T−1xT + σ2 (12)

for somea > 0 and the known noise varianceσ2.

Lemma 2. In our setting the prediction(9) of the Bayesian Algorithm is the prediction
density of Bayesian Ridge Regression in the notation of(12):

gT (y) =
1

√

2πσ2
T

e
− (y−γT )2

2σ2
T . (13)

Proof. The prediction

gT (y) =

∫

Θ

ξθT (y)P
∗
T−1(dθ) =

∫

Rn
1√

2πσ2
e−

(y−θ′xT )2

2σ2
∏T−1

t=1
1√
2πσ2

e−
(yt−θ′xt)

2

2σ2 P0(dθ)

∫

Rn

∏T−1
t=1

1√
2πσ2

e−
(yt−θ′xt)

2

2σ2 P0(dθ)

formally coincides with the density of the predictive distribution of the Bayesian Gaus-
sian linear model, and so equality (13) is true: see Section 3.3.2 of Bishop (2006).

Remark 1. From the probabilistic point of view Lemma 2 is usually explained in
the following way (Hoerl and Kennard, 2000). The posterior distributionP ∗

T−1(θ) is
N(A−1

T−1X
′
T−1YT−1, σ

2A−1
T−1). The conditional distribution ofθ′xT given the train-

ing examples is thenN(Y ′
T−1XT−1A

−1
T−1xT , σ

2x′
TA

−1
T−1xT ), and so the predictive

distribution isN(Y ′
T−1XT−1A

−1
T−1xT , σ

2x′
TA

−1
T−1xT + σ2).
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For the subsequent derivations, we will need the following well-known lemma,
whose proof can be found in Lemma 8 of Busuttil (2008) or extracted from Chapter 2,
Theorem 3 of Beckenbach and Bellman (1961).

Lemma 3. Let W (θ) = θ′Aθ + b′θ + c for θ, b ∈ R
n, c be a scalar, andA be a

symmetric positive definiten× n matrix. Then

∫

Rn

e−W (θ)dθ = e−W0
πn/2

√
detA

,

whereW0 = minθ W (θ).

The right-hand side of (10) can be transformed to the regularized cumulative loss
of the best expertθ and a regret term:

Theorem 2. For any sequencex1, y1, x2, y2, . . . , the cumulative logarithmic loss of
the Bayesian Ridge Regression algorithm(13)at any stepT can be expressed as

LT = min
θ

(

LT (θ) +
a

2σ2
‖θ‖2

)

+
1

2
ln det

(

I +
1

a

T
∑

t=1

xtx
′
t

)

. (14)

If ‖xt‖∞ ≤ X for anyt = 1, 2, . . . , then

LT ≤ min
θ

(

LT (θ) +
a

2σ2
‖θ‖2

)

+
n

2
ln

(

1 +
TX2

a

)

. (15)

Proof. We have to calculate the right-hand side of (10). The integral is expressed as
∫

Θ

1

(2πσ2)T/2

( a

2σ2π

)n/2

e−
1

2σ2 (
∑T

t=1(yt−θ′xt)
2+a‖θ‖2)dθ.

By Lemma 3 it is equal to

1

(2πσ2)T/2

( a

2σ2π

)n/2

e−
1

2σ2 (
∑T

t=1(yt−θ′

0xt)
2+a‖θ0‖2) πn/2

√
detAT

,

whereAT is the coefficient matrix in the quadratic part:AT = 1
2σ2 (aI +

∑T
t=1 xtx

′
t)

andθ0 is the best predictor:θ0 = argminθ

(

∑T
t=1(yt − θ′xt)

2 + a‖θ‖2
)

. Taking the

minus logarithm of this expression we get

−
T
∑

t=1

ln

(

1√
2πσ2

e−
1

2σ2 (yt−θ′

0xt)
2

)

+
a

2σ2
‖θ0‖2 +

1

2
ln det

(

I +
1

a

T
∑

t=1

xtx
′
t

)

.

To obtain the upper bound (15) it suffices to apply (3).

This theorem shows that the Bayesian Ridge Regression algorithm can be thought
of as an online algorithm successfully competing with all the Gaussian linear models
under the logarithmic loss function. Similar bounds on the logarithmic loss of Bayesian
Ridge Regression are proven by Kakade and Ng (2004).
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5 Proof of Theorem 1

Let us rewriteLT andLT (θ) using (13), the expression forσ2
t given by (12), and (11):

LT = −
T
∑

t=1

ln

(

1
√

2πσ2
t

e
− (y−γt)

2

2σ2
t

)

=
1

2
ln

(

(2πσ2)T
T
∏

t=1

(1 + x′
tA

−1
t−1xt)

)

+
1

2σ2

T
∑

t=1

(yt − γt)
2

1 + x′
tA

−1
t−1xt

,

LT (θ) =

T
∑

t=1

λ(ξθt , yt) = − ln

(

1

(2πσ2)T/2
e−

1
2σ2

∑T
t=1(yt−θ′xt)

2

)

=
T

2
ln(2πσ2) +

1

2σ2

T
∑

t=1

(yt − θ′xt)
2.

Substituting these expression into (14) we have:

1

2
ln

T
∏

t=1

(1 + x′
tA

−1
t−1xt) +

1

2σ2

T
∑

t=1

(yt − γt)
2

1 + x′
tA

−1
t−1xt

=
1

2σ2
min
θ

(

T
∑

t=1

(yt − θ′xt)
2 + a‖θ‖2

)

+
1

2
ln det

(

I +
1

a

T
∑

t=1

xtx
′
t

)

.

Equation (1) follows from the fact that

det

(

I +
1

a

T
∑

t=1

xtx
′
t

)

=

T
∏

t=1

(1 + x′
tA

−1
t−1xt) (16)

for At = aI +
∑t

i=1 xix
′
i. This fact can be proven by induction inT : for T = 0 it is

obvious (1 = 1) and forT ≥ 1 we have

det

(

I +
1

a

T
∑

t=1

xtx
′
t

)

= a−n detAT = a−n det (AT−1 + xTx
′
T )

= a−n(1 + x′
TA

−1
T−1xT ) detAT−1 = det

(

I +
1

a

T−1
∑

t=1

xtx
′
t

)

(1 + x′
TA

−1
T−1xT )

=

T
∏

t=1

(1 + x′
tA

−1
t−1xt).

The third equality follows from the Matrix Determinant Lemma: see, e.g., Theo-
rem 18.1.1 of Harville (1997). The last equality follows from the inductive assumption.
Note thatσ2 canceled out; this is natural as Ridge Regression (unlike Bayesian Ridge
Regression) does not depend onσ.
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6 Kernelized Ridge Regression

In this section we prove bounds on the square loss of kernelized Ridge Regression.
We also prove bounds on the logarithmic loss for a commonly used non-parametric
Gaussian algorithm: kernelized Bayesian Ridge Regression. These bounds explicitly
handle infinite dimensional classes of experts.

Let X be an arbitrary set of inputs. We define areproducing kernel Hilbert space
(RKHS)F of functionsX → R as a functional Hilbert space with continuous evalua-
tion functionalf ∈ F 7→ f(x) for eachx ∈ X. By the Riesz-Fischer theorem for any
x ∈ X there is a uniquekx ∈ F such that〈kx, f〉F = f(x) for anyf ∈ F . Thekernel
K : X2 → R of the RKHSF is defined asK(x1, x2) = 〈kx1 , kx2〉 for anyx1, x2 ∈ X.
For more information about kernels please refer to Schölkopf and Smola (2002).

Let us introduce some notation. LetKt be the kernel matrixK(xi, xj) at stept,
wherei, j = 1, . . . , t. Letkt be the column vectorK(xi, xt) for i = 1, . . . , t − 1. As
before,Yt is the column vector of outcomesy1, . . . , yt. The kernelized Ridge Regres-
sion is defined as the learner’s strategy in Protocol 1 that predictsγT = Y ′

T−1(aI +
KT−1)

−1
kT at each stepT ; see, e.g., Saunders et al. (1998). The following theorem

is an analogue of Theorem 1 for kernelized Ridge Regression;in its proof we will see
how kernelized Ridge Regression is connected with Ridge Regression.

Theorem 3. The kernelized Ridge Regression algorithm for the learner with a > 0
satisfies, at any stepT ,

T
∑

t=1

(yt − γt)
2

1 + (K(xt, xt)− k′
t(aI +Kt−1)−1kt)/a

= min
f∈F

(

T
∑

t=1

(yt − f(xt))
2 + a‖f‖2F

)

.

(17)

Proof. It suffices to prove that for eachT ∈ {1, 2, . . .} and every sequence of input
vectors and outcomes(x1, y1, . . . , xT , yT ) ∈ (X × R)T the equality (17) is satisfied.
Fix suchT and(x1, y1, . . . , xT , yT ); our goal is to prove (17). Fix an isomorphism
between the linear span ofkx1 , . . . , kxT

andRT̃ , whereT̃ ≤ T is the dimension of
the linear span ofkx1 , . . . , kxT

. Let x̃1, . . . , x̃T ∈ R
T̃ be the images ofkx1 , . . . , kxT

,
respectively, under this isomorphism. Notice that, for allt, Kt is the matrix〈x̃i, x̃j〉,
i, j = 1, . . . , t, andkt is the column vector〈x̃i, x̃t〉 for i = 1, . . . , t − 1. We know
that (1) with x̃t in place ofxt and γ̃t in place ofγt holds for Ridge Regression,
whose predictions are now denotedγ̃t (in order not to confuse them with kernelized
Ridge Regression’s predictionsγt). The predictions output by Ridge Regression on
x̃1, y1, . . . , x̃T , yT and by kernelized Ridge Regression onx1, y1, . . . , xT , yT are the
same:

γt = Y ′
t−1(aI +Kt−1)

−1
kt = Y ′

t−1(aI + X̃t−1X̃
′
t−1)

−1X̃t−1x̃t

= Y ′
t−1X̃t−1(aI + X̃ ′

t−1X̃t−1)
−1x̃t = γ̃t

(for the notation see (12), with tildes added). The denominators in (17) and (1) are also

11



the same:

1 + (K(xt, xt)− k
′
t(aI +Kt−1)

−1
kt)/a

= 1 + x̃′
t(I − X̃ ′

t−1(aI + X̃t−1X̃
′
t−1)

−1X̃t−1)x̃t/a

= 1 + x̃′
t(aI + X̃ ′

t−1X̃t−1)
−1((aI + X̃ ′

t−1X̃t−1)− X̃ ′
t−1X̃t−1)x̃t/a

= 1+ x̃′
t(aI + X̃ ′

t−1X̃t−1)
−1x̃t.

The right-hand sides are the same by the representer theorem(see, e.g., Theorem 4.2
in Schölkopf and Smola, 2002). Indeed, by this theorem we have

min
f∈F

(

T
∑

t=1

(yt − f(xt))
2 + a‖f‖2F

)

= min
c1,...,cT∈R





T
∑

t=1

(

yt −
T
∑

i=1

ciK(xi, xt)

)2

+ a

∥

∥

∥

∥

∥

T
∑

i=1

cikxi

∥

∥

∥

∥

∥

2

F





= min
c1,...,cT∈R





T
∑

t=1

(

yt −
T
∑

i=1

ci〈x̃i, x̃t〉
)2

+ a

∥

∥

∥

∥

∥

T
∑

i=1

cix̃i

∥

∥

∥

∥

∥

2

2





(the last equality holds due to the isomorphism). Denotingθ =
∑T

i=1 cix̃i ∈ R
T̃

we obtain the expression for the minimum in (1):θ ranges over the whole ofRT̃ (as
c1, . . . , cT range overR) sincex̃1, . . . , x̃T spanRT̃ .

Similarly to the proof of Theorem 3 we can prove an analogue ofTheorem 2 for
kernelized Bayesian Ridge Regression. At stepT kernelized Bayesian Ridge Re-
gression predicts the normal density on outcomes with the mean γT and variance
σ2 + σ2(K(xT , xT ) − k

′
T (aI + KT−1)

−1
kT )/a. We denote byLT the cumulative

logarithmic loss, over the firstT steps, of the algorithm and byLT (f) the cumulative
logarithmic loss of the expertf predicting normal density with the meanf(xt) and
varianceσ2.

Theorem 4. For any sequencex1, y1, x2, y2, . . . , the cumulative logarithmic loss of
the kernelized Bayesian Ridge Regression algorithm at any stepT can be expressed as

LT = min
f∈F

(

LT (f) +
a

2σ2
‖f‖2F

)

+
1

2
ln det

(

I +
1

a
KT

)

.

This theorem is proven by Kakade et al. (2005) fora = 1.
We can see from Theorem 13.3.8 of Harville (1997) that

det

(

I +
1

a
KT

)

= det

(

I +KT−1/a kT /a
k
′
T /a 1 +K(xT , xT )/a

)

= det

(

I +
1

a
KT−1

)

(1 + (K(xT , xT )− k
′
T (aI +KT−1)

−1
kT )/a),

12



and so by induction we have

det

(

I +
1

a
KT

)

=

T
∏

t=1

(1 + (K(xt, xt)− k
′
t(aI +Kt−1)

−1
kt)/a),

with k
′
1(aI+K0)

−1
k1 understood to be0. Using this equality and following the argu-

ments of the proof of Corollary 1 we obtain the following corollary from Theorem 3.

Corollary 4. Assume|yt| ≤ Y for all t, clip the predictions of kernelized Ridge Re-
gression to[−Y, Y ], and denote them byγY

t . Then

T
∑

t=1

(yt − γY
t )2 ≤ min

f∈F

(

T
∑

t=1

(yt − f(xt))
2 + a‖f‖2F

)

+ 4Y 2 ln det

(

I +
1

a
KT

)

.

(18)

It is possible to prove this corollary directly from Corollary 1 using the same argument
as in the proof of Theorem 3.

The order of the regret term in (18) is not clear on the face of it. We show that it
has the orderO(

√
T ) in many cases. We will use the notationc2F = supx∈X

K(x, x).
We bounding the logarithm of the determinant and obtain thatln det

(

I + 1
aKT

)

≤
T ln

(

1 +
c2
F

a

)

(cf. (3)). If we know the numberT of steps in advance, then we can

choose a specific value fora; let a = cF
√
T . Thus we get an upper bound with the

regret term of the orderO(
√
T ) for anyf ∈ F :

T
∑

t=1

(yt − γY
t )2 ≤

T
∑

t=1

(yt − f(xt))
2 + cF (‖f‖2F + 4Y 2)

√
T .

If we do not know the number of steps in advance, it is possibleto achieve a similar
bound using the Bayesian Algorithm with a suitable prior over the parametera:

T
∑

t=1

(yt − γY
t )2 ≤

T
∑

t=1

(yt − f(xt))
2 + 8Y max

(

cF‖f‖F , Y δT−1/2+δ
)√

T + 2

+ 6Y 2 lnT + c2F‖f‖2F +O(Y 2) (19)

for any arbitrarily smallδ > 0, where the constant implicit inO(Y 2) depends only on
δ. (Proof omitted.)

In particular, (19) shows that ifX is a universal kernel (Steinwart, 2001) on a
topological spaceX, Ridge Regression is competitive with all continuous functions on
X: for any continuousf : X → R,

lim sup
T→∞

1

T

(

T
∑

t=1

(yt − γY
t )2 −

T
∑

t=1

(yt − f(xt))
2

)

≤ 0 (20)

(assuming|yt| ≤ Y for all t). For example, (20) holds forX a compact set inRn, K
an RBF kernel, andf : X → R any continuous function, see Example 1 of Steinwart
(2001).
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