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Abstract
We study the problem of online regression. We do not make agsymaptions

about input vectors or outcomes. We prove a theoretical dhammthe square
loss of Ridge Regression. We also show that Bayesian RidgeeR&on can be
thought of as an online algorithm competing with all the Giaus linear experts.
We then consider the case of infinite-dimensional Hilbestceis and prove relative
loss bounds for the popular non-parametric kernelized 8iapeRidge Regression
and kernelized Ridge Regression. Our main theoreticalagees have the form
of equalities.

1 Introduction

In the online prediction framework we are provided with soimput at each step
and try to predict an outcome using this input and informmafimm previous steps
(Cesa-Bianchi and Lugosi, 2006). In a simple case in Stedjst is assumed that each
outcome is the value, corrupted by Gaussian noise, of arlfmeation of input.

In competitive prediction the learner compares his lossaahestep with the loss
of any expert from a certain class of experts instead of ngp&iatistical assumptions
about the data generating process. Experts may followinestategies. The learner
wishes to predict almost as well as the best experalicsequences.

Our main result is Theorefd 1 in the next section, which compane cumula-
tive weighted square loss of Ridge Regression applied irothéne mode with the
regularized cumulative loss of the best linear predictdre power of this result can
be best appreciated by looking at the range of its implicatidooth known and new.
For example, Corollarfy]1 answers the question asked by aeesearchers, see Vovk
(2001), whether Ridge Regression has a relative loss boithdive regret term of the
orderln T" under the square loss function, whérés the number of steps and the out-
comes are assumed bounded; this corollary (as well as @t otiplications stated in
Sectior2) is an explicit inequality rather than an asymptasult. Theorerhll itself
is much stronger, stating an equality rather than inequahd not assuming that the
outcomes are bounded. Since it is an equality, it unitesugpe lower bounds on the
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loss. It appears that all natural bounds on the square |oR#&lgk Regression can be
easily deduced from our theorem; we give some examples ingkiesection.

Most of previous research in online prediction considerseets that disregard the
presence of noise in observations. We consider expertsctirgfda distribution on
the outcomes. We use Bayesian Ridge Regression and pravit daa predict as
well as the best regularized expert; this is our Thedrem 2 [®hs in this theoreti-
cal guarantee is the logarithmic loss. The algorithm thataely was first used by
DeSantis et al. (1988) and similar bounds to ours were obdaby| Kakade and Ng
(2004); Kakade et al. (2005). Theor&in 2 is later used to ded@heorenl. Ridge Re-
gression predicts the mean of the Bayesian Ridge Regregsialictive distribution,
and the logarithmic loss of Bayesian Ridge Regression sedio scaled square loss of
Ridge Regression.

We extend our main result to the case of infinite dimensiorilaltt spaces of func-
tions. The algorithm used becomes an analogue of non-p#iiafBayesian methods.
From Theorerfl2 and Theorém 1 we deduce relative loss bourttie togarithmic loss
of kernelized Bayesian Ridge Regression and on the squsseofdkernelized Ridge
Regression in comparison with the loss of any function fromeroducing kernel
Hilbert space. Both bounds have the form of equalities.

There is a lot of research done to prove upper and lower vel&iss bounds un-
der different loss functions. If the outcomes are assuméx ioounded, the strongest
known theoretical guarantees for square loss are given b (@9021) and Azoury and Warmuth
(20021) for the algorithm which we call VAW (Vovk-Azoury-Waiuth) following Cesa-Bianchi and Lugosi
(2006). In the case when the inputs and outcomes are noictedtin any way, like
for our main guarantees, it is possible to prove certain bassds for the Gradient
Descent; see Cesa-Bianchi et al. (1996).

In Sectiori 2 of this paper we present the online regressamdwork and the main
theoretical guarantee on the square loss of Ridge Regnesséation B describes what
we call the Bayesian Algorithm. In Sectibh 4 we show that Bigme Ridge Regres-
sion is competitive with the experts which take into accahetpresence of noise in
observations. In Sectidd 5 we prove the main theorem. S€8titescribes the case of
infinite-dimensional Hilbert spaces.

2 Theprediction protocol and perfor mance guar antees

In online regression the learner follows this predictioatpcol:

Protocol 1 Online regression protocol
fort=1,2,... do
Reality announces, € R"
Learner predicts; € R
Reality announceg; € R
end for

We use the Ridge Regression algorithm for the learner:



Algorithm 1 Online Ridge Regression
Require: a >0
Initialize by = 0 € R™, Ag = al € R™*"
fort=1,2,...do

Readr; € R"
Predicty, = b, ,A; Y
Ready;

UpdateAt = Atfl + ItCC;
Updatebt = btfl + YTt
end for

Following this algorithm the learner’s prediction at stEBgan be written as

T-1 ! T-1 -1
= (Z ytxt> (a[—i— Z $t$2> 7.
=1 t=1

The incremental update of the matri% ' can be done effectively by the Sherman-
Morrison formula. We prove the following theoretical guatee for the square loss of
the learner following Ridge Regression.

Theorem 1. The Ridge Regression algorithm for the learner with- 0 satisfies, at
any stegl’,

T T
Z = min (Z(yt —0'z,)* + al9ll2> : (1)

t=1 1+xt t 1It t=1

Note that the part; A, 1:10,5 in the denominator is usually close to zero for latge
An equivalent equality i |s also obtained (but well hidden)hia proof of Theorem 4.6
in|Azoury and Warmuth (2001). Our proof is more elegant. Wscdbe it from the
point of view of online prediction, but we note the connegtwith Bayesian learning
in derivations. We obtain an upper bound in the form which @renfamiliar from
online prediction literature.

Coroallary 1. Assumdy;| < Y for all ¢, clip the predictions of Ridge Regression to
[-Y,Y], and denote them by}. Then

T T T
1
E (ye—))? < min < E (ye — 0'w)* + a|9||2> +4Y? In det <I + - E $t$2> :
t=1 t=1 a t=1
2)

Proof. We first clip the predictions of Ridge Regressior{+d, Y] in Theorenil. In
this case the loss at each step can only become smaller, dhel squality transforms
to an inequality. Since all the outcomes also lig-#Y, Y], the maximum square loss
at each step igY2. We have the following relations:

1 AT g AT
=1-— <tt7_lt> andtti_lt < 111(1 + I;A;jlxt)

L+ A L+ aj A @ L+ A



The last inequality holds becausgA; ', z; is non-negative due to the positive definite-
ness of the matri¥;_,. Thus we can usg% < 1In(1 +b),b > 0 (it holds atb = 0,

then take the derivatives of both sides). For the equ@&1 In(1 + 24 A7 Y 2y) =
In det (I +1 Zthl xt:cg) seel(Ib). O

The bound[(R) is exactly the bound obtained in Theorem| 4 irk\{@®@01) for the
algorithm merging linear experts with predictions clipged—Y, Y], which does not
have a closed-form description and so is less interestaydhipped Ridge Regression.
The bound for the VAW algorithm obtained in Theorem 1_in Vo2001) hasy'? in
place of4Y? (the VAW algorithm is very similar to Ridge Regression; itegictions
areb, , A, 'z, rather tharb,_, A, " z;). The regret term in{2) has the logarithmic
order inT if |||/ < X for all ¢, because

T
1 TX?
Indet <I—|— ; g xﬁcé) <nln (1 + " ) 3)

t=1

(the determinant of a positive definite matrix is boundedh®sygroduct of its diagonal
elements; see Chapter 2, Theorem 7 _of Beckenbach and Be(k8&a). This bound
is also obtained in Theorem 4.6in Azoury and Warrnuth (2001).

From our Theorerl1 we can also deduce Theorem 11.7 of CesaiBiand Lugosi
(2006), which is somewhat similar to our corollary. Thatdtem implies[(R) when
Ridge Regression’s predictions happen to bé-iy, Y] without clipping (but this is
not what Corollary Il asserts).

The upper bound{2) does not hold if the coefficiérns replaced by any number
less thanm% ~ 2.164, as can be seen from an example given in Theorem 3 in| Vovk
(2001), where the left-hand side ¢f (2)48 + o(T'), the minimum in the right-hand
side is at mosf’, Y = 1, and the logarithm i€7'In 2 + O(1). It is also known that
there is no algorithm achievinfl(2) with the coefficient lésan1 instead of4 even in
the case whergz, ||, < X for all t; see Theorem 2 in Vovk (2001).

It is also possible to prove an upper bound without the ldlyaric part on the
cumulative square loss of Ridge Regression without assyithiait the outcomes are
bounded.

Corollary 2. If ||;||2 < Z for all t then the Ridge Regression algorithm for the learner
with a > 0 satisfies, at any step,

T 72 T
2 : / 2 2
Z(yt - 7)< (1 + ?) o (Z(yt — 0'x¢)” + a0 ) : (4)
=1 t=1

Proof. (Qazaz et al. (1997) showed thiat- a:;Aj*l:z:t <1+ xp A ey forj > i We
takei = 0 and obtainl + 2} A; ", 2, < 1+ Z%/a for anyt. O

This bound is better than the bound in Corollary 3.1 _of Kakadé Ng (2004),
which has an additional regret term of logarithmic ordeiirmet

Asymptotic properties of the Ridge Regression algorithm lba further studied
using Corollary A.1 in Kumon et al. (2009). It states that whe;||> < 1 for all ¢,



thenz, A; Y, z, — 0 ast — oco. Itis clear that we can replader;||» < 1 for all ¢ by
sup, ||z+]]2 < co. The following corollary states that if there exists a veopd expert
(asymptotically), then Ridge Regression also predictyg wesll. If there is no such a
good expert, Ridge Regression performs asymptoticallyedkas the best regularized
expert.

Corollary 3. Leta > 0 and~; be the predictions output by the Ridge Regression
algorithm with parametet. Supposeup, ||z||, < co.

1. If
30 e R™ : Z(yt —0'14)% < o0, (5)
t=1
then -
Z(yt -
t=1
2. If
Vo € R™ : Z(yt —0'14)% = o0, (6)
t=1
then .
a2
lim Zt:l(yt /Yt) -1 (7)

75 mingene (S (e — 000 + all0]2)

Proof. Part 1. Suppose that the conditidn (5) holds. Then the right-hamel of 1) is
bounded by a constant (independenfdf By Corollary A.1 inLKumon et &l. (2009),
the denominators in the left-hand side convergé &8¢ — oo and so are bounded.
Therefore, the sequen§e:tT:1 (y+ — 7¢)? remains bounded & — oo.

Part 2. Suppose that the condition] (6) holds and the right-hand sfdf]) is
bounded above by a constarit Then for eacl” there exist®r such that

T
> (e — 0pa)® +alor]® < C.
t=1

It follows that eachdr belongs to the closed ball with centdeand of radius,/C'/a.
This ball is a compact set, and thus the sequéceas a subsequence that converges
to somef). For eachl, we havezt 1y — 0 x;)? < C, because otherwise we would

haveztzl(yt - H’Txt) > ( for a large enougl’ in the subsequence. Therefore, we

have arrived at a contradictiop:;°, (y; — 0'z¢)? < C < oo.

Once we know that the right-hand side[df (1) tendst@sT — oo and the denom-
inators on the left-hand side tend tq(this is true by Corollary A.1 in Kumon et al.,
2009), [T) becomes intuitively plausible since, as far axctinclusion[{[7) is concerned,
we can ignore the finite number ¢ for which the denominatdr+ 2} A; *, z; is sig-
nificantly different from1. We will, however, give a formal argument.



The inequality > 1 in (@) is clear from[(1) and + x} A, !, z; > 1. We shall prove
the inequality < 1 now. Choose a sma&l > 0. Then starting from some= T, we
have that the denominatorst =, A, ', z, are less tham + e. Thus, forT > Ty,

T
Z(yt —7)? = Z(yt — )% + Z (ye — )

t=1 t=1 t=To+1

To T
< (1
_gyt % +e€ ;14‘% 1$t
To
=2 e

T
(1+¢) Helﬁ&n (Z(yt —0'z)? +a |9|2> .

This implies that the left-hand side i (7) witim replaced byim sup does not exceed
1+ ¢, and it remains to remember thatan be taken arbitrarily small. O

3 Bayesian algorithm

In this section we describe the main algorithm used to praweteeoretical bounds.
Let us denote the set of possible outcome$§bthe index set for the experts I8, and
the set of allowed predictions Hy. The quality of predictions is measured by a loss
function\ : T' x Q — R. We have = R, © = R", andl is the set of all measurable
functions on the real line integrable to one. The loss fumcki is the logarithmic loss
Av,y) = —Iny(y), wherey € T andy € Q. The learner follows the prediction with
expert advice protocol.

Protocol 2 Prediction with expert advice protocol

Initialize Lo := 0andLy(9) =0,V € ©

fort=1,2,...do
Expertsd € © announce their predictiog§ € T
Learner predicts;, € T’
Reality announceg, € Q2
Losses are updated = L1+ A(7t,yt), L7(0) = Lr—1(0)+A(&], y1), V0 €
O

end for

Here by L, we denote the cumulative loss of the learner at §tepnd byL(0) we
denote the cumulative loss of the expedt this step.

We use a standard algorithm in prediction with expert adyicspecial case of
the Aggregating Algorithm for the logarithmic loss fungtiand learning rate 1, going
back tol DeSantis et al. (1988) in the case of counté&blend(?) to derive the main
theoretical bound and give predictions. We call it the Bare#lgorithm (BA) as it
is virtually identical to the Bayes rule used in Bayesianmézg (the main difference
being that the experts are not required to follow any prémticstrategies). Instead of



looking for the best expert, the algorithm considers allekgerts and takes a weighted
average of their predictions as its own prediction. In degitavorks as follows.

Algorithm 2 Bayesian Algorithm
Require: A probability measureP (df) = Pg(df) on © (the prior distribution, or
weights)
fort=1,2,...do
Read experts’ prediction§ € ',V € ©
Predictg, = [, &/ P (df)
Ready;
Update the weight®; (df) = 7 (y;) P;_1(d6)
Normalize the weight®;* (df) = P;(d6)/ [ P;(df)
end for

The experts’ weights are updated according to their losseach stepg? (y;) =
e~ MELye): larger losses lead to smaller weights. Aftesteps the weights become

P,(df) = e L) py(d9). (8)

The normalized weight®;.(df) correspond to the posterior distribution oveafter
the stepl’. As we said, the prediction of the BA at stéjs given by the average

gr = /O €017, (d6) ©)

of the experts’ predictions.

The next lemma is a special case of Lemmall in Vovk (2001).divsithat the cu-
mulative loss of the BA is an average of the experts’ cumgdtisses in a generalized
sense, as in, e.g., Chapter 3 of Hardy et al. (1952).

Lemma 1. For any prior Py and anyl’ = 1,2, ..., the cumulative loss of the BA can
be expressed as

Lr=—1In / e LT py(de). (10)
(S

Proof. We proceed by induction ii: for 7" = 0 the equality is obvious, and far > 0
we have:

Ly =Lr—y —Ingr(yr)
efLT,l(H)

=1 —Lr—1(0) p(do) — 1 / g Py(do
HLQ 0( ) n (_)ng@e*LT*l((’)Po(dH) 0( )

= —ln/ efLT(a)Po(dt?)
e

(the second equality follows from the inductive assumpttbe definition ofgr, and

@)). O



4 Bayesian Ridge Regression asacompetitivealgorithm

Let us consider experts whose predictions at steype the densities of the normal
distributionsN (6’z;, 02) on the set of outcomes for some fixed varianée> 0 (so
each experf follows a fixed strategy). From the statistical point of vighey predict
according to the mode); = 6'z; + ¢; with Gaussian noise, ~ N(0,0?). In other
words, the prediction of each expére O is

0 . 1 _ (y*29';t)2 11
t (y) - We 7 . ( )

Let us take the initial distributiofV (0, o I) on the experts with some > 0:

a

a \"/? a
Po(df) = (20%) exp (—FIWIIQ) d.
We will prove that in this setting the prediction of the BaesAlgorithm is equal
to the prediction of Bayesian Ridge Regression. But first eednto introduce some
notation. Fort € {1,2,...}, let X; be thet x n matrix of row vectors, . .., 2} andY;
be the column vector of outcomgs . . ., y:. Let A; = X/ X;+al, as before. Bayesian
Ridge Regression is the algorithm predicting at each $tepe normal distribution
N (yr,0%) with the mean and variance given by

Yr = Y’_Z/“—lXT—lA;ilea O’% = 02.%'/TA;1_1$T + 02 (12)
for somea > 0 and the known noise varianeé.

Lemma 2. In our setting the predictioff) of the Bayesian Algorithm is the prediction
density of Bayesian Ridge Regression in the notatiofid}:

1 7(y7w2T)2
gr(y) = e T . (13)

\/ 2770%

Proof. The prediction

_ (y=0'zp)? T—1 1 _ (we—0'zy)?
fR" . 7€ 207 t=1 € 202 Py(db)
arv) = [ 4P (ao) = T Ul e
[S) f]R" HtZI We 202 Po(de)

formally coincides with the density of the predictive distition of the Bayesian Gaus-
sian linear model, and so equalify [13) is true: see Sectidr2 ®f Bishopl(2006). (I

Remark 1. From the probabilistic point of view Lemnid 2 is usually expé in
the following way [(Hoerl and Kennard, 2000). The posteriistribution Py, (6) is

N(AZY X5 Yr_q,0%A% ). The conditional distribution of’zr given the train-
ing examples is theV (Y., X7_1 AL o, 0?2l AL (or), and so the predictive
distribution isN (Yy._, Xr_1 A7Y jor, 0?2l ALY [ ap + 0?).



For the subsequent derivations, we will need the followirglaknown lemma,
whose proof can be found in Lemma 8 of Busultil (2008) or ected from Chapter 2,
Theorem 3 of Beckenbach and Bellman (1961).

Lemma 3. Let W () = ¢’A0 + /0 + c for 6,b € R™, ¢ be a scalar, and4 be a
symmetric positive definite x n matrix. Then

n/2

e WO gg — eWo T )
/n Vdet A

whereWy = ming W (0).

The right-hand side of (10) can be transformed to the regeldrcumulative loss
of the best exped and a regret term:

Theorem 2. For any sequences, y1, x2, ¥2, - - -, the cumulative logarithmic loss of
the Bayesian Ridge Regression algorit{fi) at any stepl’ can be expressed as

T
. a 9 1 1 ,
Ly = min (LT(H) + ﬁH@H ) t3 In det <I +- E :vtxt> : (14)

t=1

If |z¢]]o < X foranyt =1,2,...,then

~ PEA X
Ly < min (Lr(0) + ozl )+ Sln <1+ = ) . (15)
Proof. We have to calculate the right-hand side[ofl (10). The inldgexpressed as

/(2 12)T/2 (2(12 )n/Q672%2(ZL(yt""”””z*"”"”z)d@.
o (270 o3

By Lemmd3 it is equal to

n/2

1 (o )"/2 o 527 (ST e z)*+allfo?) _T
(2m02)T/2 \ 2027 Vdet Ar’
whereAr is the coefficient matrix in the quadratic party = 515 (al + ZL x4 2})
andd, is the best predictofly = arg ming (ZtT:l(yt —0'x)? + a||9|\2). Taking the
minus logarithm of this expression we get

T 1 . . a 1 1 T
_ 7T(yt79’zt) 2 - - ’
tg_l In ( 27TU28 252 0 ) + 292 HooH + 5 In det <I + a E a:t:ct> .

t=1

To obtain the upper bound ({15) it suffices to apply (3). O

This theorem shows that the Bayesian Ridge Regressionithigiocan be thought
of as an online algorithm successfully competing with adl @aussian linear models
under the logarithmic loss function. Similar bounds on tigakithmic loss of Bayesian
Ridge Regression are proveniby Kakade and Ng (2004).



5 Proof of Theorem[1

Let us rewriteL and L7 (6) using [13), the expression fef given by [12), and(11):

Z _w=)?
In 25?
27TUt
kA T
. 1 A2
:51“(<2””2>TII<1+w;A;_axt>)+_ (v~ %)

2 1 A1 ’
P 20° = 1+ i Ay

Lr(0) =

[M]=

1 __1_ T _ /mt 2
/\(gtevyt) =—In (We 202 Sim (e —0"xy) )

~
Il

1

1z
In 27r0 2—2% 95515

Nl’ﬂ

Substituting these expression infal(14) we have:

lnHl—i—xt tlxt 22214—:0’/1
t

t=1

T T
1 , ) 1 1
= ﬁmln <E (yr — 0'z¢)” + a0 ) + ilndet (I—i— - E xt:ﬂ,’5> :

t=1 t=1

1517t

Equation[(1) follows from the fact that
1 T T
det <I + - th$2> = H(l + 2 A7 o) (16)
a
t=1 t=1

for A; = al + Z‘;Zl x;x;. This fact can be proven by inductionit for 7' = 0 it is
obvious ( = 1) and forT > 1 we have

t=1

T
1
det <I + = E xﬂé) =a "det Ar = a " det (Ap_1 + x72%)
a

T—1
1
= a—n(l + x/TA;il.CCT) det Ap_1 = det <I + a J?gcé) (1 =+ ITA 1xT)

The third equality follows from the Matrix Determinant Leramsee, e.g., Theo-
rem 18.1.1 of Harville (1997). The last equality followsrinahe inductive assumption.
Note thato? canceled out; this is natural as Ridge Regression (unlike&an Ridge
Regression) does not dependan

10



6 Kernelized Ridge Regression

In this section we prove bounds on the square loss of kesteliRidge Regression.
We also prove bounds on the logarithmic loss for a commongdusn-parametric
Gaussian algorithm: kernelized Bayesian Ridge Regresdibase bounds explicitly
handle infinite dimensional classes of experts.

Let X be an arbitrary set of inputs. We defineeproducing kernel Hilbert space
(RKHS).F of functionsX — R as a functional Hilbert space with continuous evalua-
tion functionalf € F — f(x) for eachx € X. By the Riesz-Fischer theorem for any
x € X there is auniqué, € F such thatk,, f)» = f(x) forany f € F. Thekernel
K : X2 — R ofthe RKHSF is defined asC(z1, 22) = (ks , ks, ) foranyz,, zo € X.

For more information about kernels please refer to Schiflkad Smolal (2002).

Let us introduce some notation. LKt be the kernel matriXC(z;, ;) at stept,
wherei,j =1,...,t. Letk, be the column vectolC(z;, ;) fori =1,...,t — 1. As
before,Y; is the column vector of outcomes, .. ., y;. The kernelized Ridge Regres-
sion is defined as the learner’s strategy in Protbtol 1 thediptsyr = Y/ _,(al +
Kr_1) 'kr at each stefl’; see, e.g., Saunders et al. (1998). The following theorem
is an analogue of Theordmh 1 for kernelized Ridge RegresBidts proof we will see
how kernelized Ridge Regression is connected with Ridgeds@n.

Theorem 3. The kernelized Ridge Regression algorithm for the learnér w > 0
satisfies, at any step,

(Yt —’Yt)2 R a
; 1+ (K(ze,7) — Ky (al + K1) 'ke)/a rfnel}_l <;(yt — fz))? + af:r))
17

Proof. It suffices to prove that for each € {1,2,...} and every sequence of input
vectors and outcomes:;, vy, - .., z7,yr) € (X x R)T the equality[(IF) is satisfied.
Fix suchT and(z1,¥1,. .., 27, yr); our goal is to provel(17). Fix an isomorphism
between the linear span &f,,,. .., k., andR”, whereT < T is the dimension of
the linear span of,,, ..., ks,. Leti,...,#r € RT be the images of,.,, ..., ks,
respectively, under this isomorphism. Notice that, fortakK, is the matrix(z;, z;),
i,j = 1,...,t, andk, is the column vectotz;, &;) fori = 1,...,t — 1. We know
that (1) with Z; in place ofz; and¥; in place of~; holds for Ridge Regression,
whose predictions are now denotgd(in order not to confuse them with kernelized
Ridge Regression’s predictions). The predictions output by Ridge Regression on
1,41, ---,27,yr and by kernelized Ridge Regression:on y1, . .., xr, yr are the
same:

e =Y/ (ol + Ki1) ke = Y (al + X X[ )T X E
=Y/ Xia(al + X[ Xi0) "8 =

(for the notation se€(12), with tildes added). The denotoirsan [17) and[{1) are also

11



the same:
1+ (IC(ZCt, ZCt) — k;(a[ + Kt_l)flkt)/a
=1+&0 - X (el + X, 1 X]_ )X 1) /a
=14+ F (el + X{_ X, ) ((al + X[ X 1) — X[ Xy 1)Fi/a
=1+ (al + X! | Xi_1) 'y

The right-hand sides are the same by the representer thg¢seeme.g., Theorem 4.2
in|Scholkopf and Smala, 2002). Indeed, by this theorem we ha

2

F

T
E CiT;
i—1

2

T T 2

= min — ci(Z;, T +a
(the last equality holds due to the isomorphism). Denoting ZLI T € RT
we obtain the expression for the minimum in (2)ranges over the whole @7 (as

c1,...,cr range oveR) sincei, ..., spanR”. O

Similarly to the proof of Theorefl 3 we can prove an analogu&h&foreni 2 for
kernelized Bayesian Ridge Regression. At siéfxernelized Bayesian Ridge Re-
gression predicts the normal density on outcomes with thanme and variance
o? + o?(K(zr,2r) — Kp(al + Kr_1)"'ky)/a. We denote byL, the cumulative
logarithmic loss, over the firdf steps, of the algorithm and by (f) the cumulative
logarithmic loss of the experf predicting normal density with the medgfifx;) and
variances?.

Theorem 4. For any sequences,y1, x2, y2, - - -, the cumulative logarithmic loss of
the kernelized Bayesian Ridge Regression algorithm at@my/5can be expressed as

i NTANE 1
Ly = min (LT(f) + 202||f||f) +3 In det (I—i— aK;p) .

This theorem is proven by Kakade et al. (2005)doct 1.
We can see from Theorem 13.3.8 of Harville (1997) that

1 _ I+Kr_1/a kr/a
det (I—i— EKT) = det ( K, /a 1+ K(or, o7)/a

= det (I—|— %KT—I) (1 + (K:(SCT,SCT) — k’T(aI—i— KT_l)_lkT)/G)a

12



and so by induction we have

T

det <1 " éKT) = 110+ (Kl 2) - Kj(al + Ki—1) ko) fa),
t=1

with k (aI +Ko) ki understood to be. Using this equality and following the argu-
ments of the proof of Corollafyl 1 we obtain the following clisoy from Theoren) B.

Corollary 4. Assumdy;| < Y for all ¢, clip the predictions of kernelized Ridge Re-
gression tgd—Y, Y], and denote them by}". Then

T T
1
A2 < . 2 2 2 <
;(yt v )P < gcneljg_ <;(yt fze)® + a|f|;> +4Y~ Indet (I—i— aKT) )
(18)
It is possible to prove this corollary directly from Coraldll using the same argument
as in the proof of Theorefd 3.
The order of the regret term il(1L8) is not clear on the face.dfMe show that it

has the orde©(/T) in many cases. We will use the notatioh = sup, cx K(z, z).
We bounding the logarithm of the determinant and obtain thadtt (I + %KT) <

T1n (1 + %) (cf. (3)). If we know the numbeT of steps in advance, then we can

choose a specific value far, let a = cx+/T. Thus we get an upper bound with the
regret term of the orded(v/T) for any f € F:

T

T
D W =)< = @) + x| flF + 4T

t=1

If we do not know the number of steps in advance, it is posdiblechieve a similar
bound using the Bayesian Algorithm with a suitable priorrdbhe parametes:

T
- <

t=1 t

T
(Yt — f(xt))z + 8Y max (c]:||f||]_-’ Y5T—1/2+5) T19
=1

+6Y2InT + c&||f|| =+ O(Y?) (19)

for any arbitrarily smalb > 0, where the constant implicit i®(Y2?) depends only on
0. (Proof omitted.)

In particular, [I®) shows that X is a universal kernel (Steinwart, 2001) on a
topological spac&X, Ridge Regression is competitive with all continuous fior on
X: for any continuouy : X — R,

T T
n;nsup% (Z(.yt =D e - f(xt»Q) <0 (20)
oo t=1 t=1

(assumingy;| < Y for all t). For example,[{20) holds faX a compact set iiR", K
an RBF kernel, ang : X — R any continuous function, see Example 1_of Steinwart
(2001).
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