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Abstract

This note continues investigation of randomness-type properties
emerging in idealized financial markets with continuous price processes.
It is shown, without making any probabilistic assumptions, that the
strong variation exponent of non-constant price processes has to be 2, as
in the case of continuous martingales.

1 Introduction

This note is part of the recent revival of interest in game-theoretic probability
(see, e.g., [, 18, 4, 2, B]). Tt concentrates on the study of the “v/dt effect”, the
fact that a typical change in the value of a non-degenerate diffusion process
over short time period dt has order of magnitude v/dt. Within the “standard”
(not using non-standard analysis) framework of game-theoretic probability, this
study was initiated in [9]. In our definitions, however, we will be following
[10], which also establishes some other randomness-type properties of continuous
price processes. The words such as “positive”, “negative”, “before”, and “after”
will be understood in the wide sense of > or <, respectively; when necessary,
we will add the qualifier “strictly”.

The latest version of this working paper can be downloaded from the web
site http://probabilityandfinance.com (Working Paper 25).

2 Null and almost sure events

We consider a perfect-information game between two players, Reality (a financial
market) and Sceptic (a speculator), acting over the time interval [0,T], where
T is a positive constant fixed throughout. First Sceptic chooses his trading
strategy and then Reality chooses a continuous function w : [0,7] — R (the
price process of a security).
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Let €2 be the set of all continuous functions w : [0,7] — R. For each t € [0,T],
F. is defined to be the smallest o-algebra that makes all functions w — w(s),
s € [0,t], measurable. A process S is a family of functions S; : Q@ — [—o0, 0],
t € [0,T], each S; being F;-measurable (we drop the adjective “adapted”). An
event is an element of the o-algebra Fr. Stopping times 7 : Q@ — [0, 7] U {oco}
w.r. to the filtration (F;) and the corresponding o-algebras F, are defined as
usual; w(7(w)) and S;(,)(w) will be simplified to w(7) and S-(w), respectively
(occasionally, the argument w will be omitted in other cases as well).

The class of allowed strategies for Sceptic is defined in two steps. An ele-
mentary trading strategy G consists of an increasing sequence of stopping times
71 <71 < --- and, for each n = 1,2,..., a bounded F -measurable function
hy. Tt is required that, for any w € 2, only finitely many of 7,(w) should be
finite. To such G and an initial capital ¢ € R corresponds the elementary capital
process

K e(w) = c+ Z b (W) (W(Tng1 At) —w(ma A L)), t€0,T]
n=1

(with the zero terms in the sum ignored); the value h,,(w) will be called the port-
folio chosen at time 7,, and K&¢(w) will sometimes be referred to as Sceptic’s
capital at time ¢.

A positive capital process is any process S that can be represented in the
form

Si(w) =Y K (W), (1)
n=1

where the elementary capital processes ICtG ™" (w) are required to be positive,
for all ¢ and w, and the positive series Y ° | ¢, is required to converge. The

sum () is always positive but allowed to take value co. Since IC(? (W) = ey
does not depend on w, Sp(w) also does not depend on w and will sometimes be
abbreviated to Sj.

The upper probability of a set E C () is defined as

P(E) := inf{S’o ’ Yw e Q: Sp(w) > ]IE(w)},

where S ranges over the positive capital processes and I g stands for the indicator
of E.
We say that E C Q is null if P(E) = 0. A property of w € Q will be said to
hold almost surely (a.s.), or for almost all w, if the set of w where it fails is null.
Upper probability is countably (and finitely) subadditive:

Lemma 1. For any sequence of subsets E1, Fa, ... of ),
P <U En> <> P(Ey).
n=1 n=1

In particular, a countable union of null sets is null.



3 Main result

For each p € (0,00), the strong p-variation of w € 2 is

n
vary(w) = sup Z lw(t:) —w(ti-1)|",
®oi=1

where n ranges over all positive integers and s over all subdivisions 0 = tg <
t; < -+ <ty =T of the interval [0, T]. It is obvious that there exists a unique
number vex(w) € [0,00], called the strong variation exponent of w, such that
varp(w) is finite when p > vex(w) and infinite when p < vex(w); notice that
vex(w) ¢ (0,1).

The following is a game-theoretic counterpart of the well-known property of
continuous semimartingales (Lepingle [5], Theorem 1 and Proposition 3; Lévy
[6] in the case of Brownian motion).

Theorem 1. For almost all w € £,
vex(w) = 2 or w is constant. (2)

(Alternatively, (@) can be expressed as vex(w) € {0,2}.)

4 Proof

The more difficult part of this proof (vex(w) < 2 a.s.) will be modelled on the
proof in [I], which is surprisingly game-theoretic in character. The proof of
the easier part is modelled on [I1]. (Notice, however, that our framework is
very different from those of [I] and [I1], which creates additional difficulties.)
Without loss of generality we impose the restriction w(0) = 0.

Proof that vex(w) > 2 for non-constant w a.s.

We need to show that the event vex(w) < 2 & nc(w) is null, where nc(w)
stands for “w is not constant”. By Lemma [ it suffices to show that vex(w) <
p & nc(w) is null for each p € (0,2). Fix such a p. It suffices to show that
varp(w) < oo & nc(w) is null and, therefore, it suffices to show that the event
varp(w) < C & nc(w) is null for each C € (0,00). Fix such a C. Finally, it
suffices to show that the event

Ep,C,A = {w €N
t€[0,T]

varp(w) < C & sup |w(t)] > A}

is null for each A > 0. Fix such an A.

Choose a small number ¢ > 0 such that A/§ € N, and let I := {kd | k € Z}
be the corresponding grid. Define a sequence of stopping times 7,, inductively
by

Tos1 i=inf{t > 7, |w(t) e T\ {w(r)}}, n=0,1,...,



with 79 := 0 and inf ) understood to be co. Set T4 := inf{t | |w(t)| = A}, again
with inf @) := oo, and

o (1) 1= {Qw(Tn) if 7(w) < TATs(w) and n+1 < C/6P

0 otherwise.

The elementary capital process corresponding to the elementary gambling strat-
egy G := (T, hy,)2; and initial capital ¢ := §27PC will satisfy

w2(Tn+1) - W2(Tn) = 2W(Tn) (W(Tn-i-l) - W(Tn)) + (W(Tn-i-l) - ‘U(Tn))Q
=K&° (w) — K& (w) + 62

Tn+1

provided 7,11 (w) < T ATs(w) and n + 1 < C/P, and so satisfy
wi(rn) = KE(w) = K5 ¢+ No* = K& (w) — 62 PC +627PNP < K€ (w) (3)

provided 7n(w) < T'ATa(w) and N < C/6P. On the event E, c 4 we have
Ty(w) < T and N < C/éP for the N defined by v = T4. Therefore, on this
event

A% =Wi(Ty) < IC%C(w) = K5 (w).

We can see that K(w) increases from §2-PC, which can be made arbitrarily
small by making § small, to A% over [0, T7]; this shows that the event E, ¢ 4 is
null.

The only remaining gap in our argument is that ICtG ' may become strictly
negative strictly between some 7, < TAT4 and 7,41 with n4+1 < C/6P (it will
be positive at all 7y € [0,T AT4] with N < C'/éP, as can be seen from (). We
can, however, bound ICtG “ for 1, <t < Tp11 as follows:

K& (w) = KE¢(w) + 2w(n) (W(t) — w(m)) > 2w(m)| (—6) > —248,

and so we can make the elementary capital process positive by adding the neg-
ligible amount 240 to Sceptic’s initial capital.

Proof that vex(w) <2 a.s.

We need to show that the event vex(w) > 2 is null, i.e., that vex(w) > p is null
for each p > 2. Fix such a p. It suffices to show that var,(w) = oo is null, and
therefore, it suffices to show that event

EpﬁA =<Kwe
t€[0,T]

varp(w) = 0o & sup |w(t)| < A}

is null for each A > 0. Fix such an A.

The rest of the proof follows [I] closely. Let M;(f, (a,b)) be the number of
upcrossings of the open interval (a,b) by a continuous function f € Q during
the time interval [0,t], t € [0,T]. For each § > 0 we also set

My(f,6) =Y My(f. (kd, (k + 1)5).

kEZ



The strong p-variation var,(f,[0,t]) of f € Q over an interval [0,¢], t < T, is
defined as

vary(f,[0,4]) :=sup > [f(t:) — f(ti1)]”
®oi=1
where n ranges over all positive integers and x over all subdivisions 0 = ¢y <
t1 < --- < ty, =t of the interval [0,¢] (so that var,(f) = var,(f,[0,7])). The

following key lemma is proved in [I] (Lemma 1; in fact, this lemma only requires
p>1).

Lemma 2. Forall f € Q,t >0, and q € [1,p),

9p+q+1
vary(f, [0,1]) < 1907 (2cg,0,¢(f) + 1) A7,
where
A= sup |f(s) — f(0)]
s€[0,t]
and

Cant(f) = sup2 MM, (f,227").
keN
Another key ingredient of the proof is the following game-theoretic version
of Doob’s upcrossings inequality:

Lemma 3. Let ¢ < a < b be real numbers. For each elementary capital process
S > c there exists a positive elementary capital process S* that starts from
S¢ = a — ¢ and satisfies, for all t € [0,T] and w € §,

St (w) = (b= a)M(S(w), (a,b)),
where S(w) stands for the sample path t — Si(w).

Proof. The following standard argument is easy to formalize. Let G be an
elementary gambling strategy leading to S (when started with initial capital
So). An elementary gambling strategy G* leading to S* (with initial capital
a — ¢) can be defined as follows. When S first hits a, G* starts mimicking G
until S hits b, at which point G* chooses portfolio 0; after S hits a, G* mimics
G until S hits b, at which point G* chooses portfolio 0; etc. Since S > ¢, S*
will be positive. O

Now we are ready to finish the proof of the theorem. Let Ty := inf{t | w(¢t) =
A} be the hitting time for A (with T4 := T if A is not hit). By Lemma [3] for
each k € N and each i € {—2% 4+ 1,...,2%} there exists a positive elementary
capital process S*' that starts from A + (i — 1)A27% and satisfies

SET > A27F My, (w, ((i - 1)A27F,i427F)) .



Summing 27%45%1/A27k over i € {—2% +1,...,2*}, we obtain a positive ele-
mentary capital process S such that

2k .
_ A+ (i—1)A27F _
k __ k kqo2k+1
So =2 Z Ak = 22
i=—2k 41

and
Sk > 2R My, (w, A27F).
Next, assuming ¢ € (2,p) and summing over k € N, we obtain a positive capital
process S such that
23—4

So=D) 27 M = 0 and Sp, > cqam ().
k=1

On the event E, 4 we have T4 = T and so, by Lemma[2 cq 4,7, (w) = co. This
shows that St = oo on E, 4 and completes the proof.

5 Conclusion

Theorem [I] says that, almost surely,

() <oo ifp>2
var,(w
P = oo if p < 2 and w is not constant.

The situation for p = 2 remains unclear. It would be very interesting to find the
upper probability of the event {vara(w) < oo and w is not constant}. (Lévy’s
[6] result shows that this event is null when w is the sample path of Brownian
motion, while Lepingle [5] shows this for continuous, and some other, semi-
martingales.)
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