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Abstract

We prove game-theoretic generalizations of some well known zero-one
laws. Our proofs make the martingales behind the laws explicit, and our
results illustrate how martingale arguments can have implications going
beyond measure-theoretic probability.

1 Introduction

Using simple martingale arguments, we generalize three zero-one laws:

Kolmogorov’s zero-one law: In an infinite sequence of independent trials,
an event whose happening or failing is not affected by a finite number of
the trials has either probability zero or probability one. This was first
proven by Kolmogorov in an appendix to his Grundbegriffe, published in
1933.

Ergodicity of Bernoulli shifts: In an infinite sequence of independent and
identically distributed trials, an event that is invariant under shifts has
either probability zero or probability one. This remains true for an in-
finite sequence of states of a homogeneous Markov chain, under certain
conditions. See, for example, Cornfeld et al. (1982), §8.1, Theorems 1 and
2.
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Hewitt and Savage’s zero-one law: In an infinite sequence of independent
and identically distributed trials, a permutable event has either probability
zero or probability one. This was first proven by Hewitt and Savage, in
1955 (Hewitt and Savage (1955), Theorem 11.3).

As one would expect from previous literature (cf. the bibliographical notes to
Chapter 8 of Cornfeld et al. (1982)), our argument for the ergodicity of Bernoulli
and Markov shifts is similar to but simpler than our argument for Kolmogorov’s
zero-one law. In the case of Hewitt and Savage’s zero-one law, our game-
theoretic generalization concerns only a special case; it is an open question
whether it holds for all permutable events.

We formulate our generalizations in the game-theoretic framework intro-
duced by Shafer and Vovk (2001). This means that we use martingale ideas only,
without resorting to measure-theoretic assumptions. Our arguments thus make
clear that the zero-one laws have a martingale meaning that extends beyond the
measure-theoretic setting. Instead of beginning with a probability measure that
determines prices (expected values) for all measurable and bounded payoffs, the
game-theoretic framework begins directly with prices. As soon as prices are
given, we have martingales: a martingale is the capital process resulting from
a strategy for gambling at the given prices. As soon as we have martingales,
we can prove theorems by constructing strategies. For example, we can prove
that an event has probability one by constructing a strategy that multiplies the
capital it risks by an infinite factor if the event fails.

If enough prices are given to determine a probability measure, then each
event will have a probability, and the capital process for a gambling strategy
will be a martingale in the measure-theoretic sense. But we do not assume that
the prices determine a probability measure, and so in general events have only
upper and lower probabilities. Thus our concept of a martingale is more general
than the measure-theoretic concept, and our results are more general than the
classical zero-one laws.

As we will see, even a limited number of prices will determine for each
subset E of the sample space a lower probability P(E) and an upper probability
P(E) satisfying 0 ≤ P(E) ≤ P(E) ≤ 1 and P(E) = 1 − P (Ec) , where Ec

is the complement of E. (The latter equality will be our definition of lower
probability.) We consider E certain if P(E) = 1 or, equivalently, P(Ec) = 0.
We consider E impossible if Ec is certain. In the special case where there are
enough prices to determine a probability measure on a σ-algebra containing E,
P(E) and P(E) will both equal the probability the measure gives to E.

In the usual theory, a zero-one law specifies a property of an event E that
guarantees that either P(E) = 0 or P(E) = 1. The corresponding game-theoretic
zero-one law might say that either P(E) = 0 or P(E) = 1. This does not assert
that anything is certain or impossible, but it reduces to the usual law in the
case where the prices determine a probability measure on a σ-algebra containing
E, for then upper and lower probabilities are probabilities. Sometimes we will
be able to prove a stronger statement, such as the disjunction of P(E) = 0,
P(E) = 1, and 0 = P(E) < P(E) = 1.
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We will first lay out protocols for our games (§2), define upper and lower
probabilities in these protocols (§3), and explain what a zero-one law looks like
in terms of upper and lower probabilities (§4). Then we give our martingale
proofs: first for Kolmogorov’s zero-one law for tail events in independently
priced trials (§5), for ergodicity in independently and identically priced trials
and Markov trials (§6), and finally for Hewitt and Savage’s zero-one law for
permutable events in independently and identically priced trials (§7).

2 Protocols

In the protocols considered in this article, two players, whom we call Skeptic
and Reality, play an infinite number of rounds, which we call trials. On each
trial, Skeptic chooses a gamble and then Reality determines its payoff. Each
player sees the other’s moves as they are made. Reality sees Skeptic’s move
before determining its payoff, and Skeptic sees Reality’s move before they go on
to the next trial.

Formally, Skeptic chooses a real-valued function F on a set Ω, Reality then
chooses an element ω of Ω, and Skeptic’s payoff for the trial is F (ω). We call ω
the outcome of the trial. We write Kn for Skeptic’s capital after the nth trial,
and we assume that his initial capital is one monetary unit (K0 = 1).

We assume that Skeptic chooses F from a non-empty set F of real-valued
functions on Ω with these three properties:

1. If F1 ∈ F and F2 ∈ F , then F1 + F2 ∈ F .

2. If c ≥ 0 and F ∈ F , then cF ∈ F .

3. There is no F ∈ F such that F (ω) > 0 for all ω ∈ Ω.

Property 2 guarantees that the function on Ω that is identically equal to 0 is in
F . Properties 1 and 2 are the defining properties of a cone; we call property 3
coherence.

We illustrate properties 1–3 in the simple case of Ω = {0, 1}. Skeptic chooses
a pair of real numbers (F (0), F (1)) ∈ F ⊆ R

2, where F is a convex cone in R
2

(properties 1 and 2). By the coherence property F cannot meet the strictly
positive quadrant (0,∞)2. Conversely, any convex cone F not meeting (0,∞)2

satisfies properties 1–3.
If P is a probability measure on a σ-algebra for Ω, then the set of all measur-

able real-valued functions on Ω that have expected value zero with respect to P
is a coherent cone. Let us call it the zero cone for P . The set of all measurable
real-valued functions on Ω that have nonpositive expected value with respect to
P is also a coherent cone; we may call it the nonpositive cone for P . But a coher-
ent cone need not be a zero cone or a nonpositive cone. Coherent cones that are
proper subsets of zero cones are studied in Shafer and Vovk (2001). A cone of
this type may include a function F such that −F is not in the cone; this means
that Skeptic can take only one side of the gamble represented by F . Because
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our results apply to any coherent cone, they generalize the measure-theoretic
zero-one laws.

We consider three different protocols, which differ only in how F may change
from one trial to the next. In the first protocol, F is always the same. If F
is the zero cone for a probability measure P , this is a protocol for betting on
successive outcomes at odds given by P . If F is the nonpositive cone for a
probability measure P , it is a protocol for betting on successive outcomes at
odds no better than those given by P .

Protocol 1. Identically priced trials

Parameters: set Ω; coherent cone F of real-valued functions on Ω
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Skeptic announces Fn ∈ F .
Reality announces ωn ∈ Ω.
Kn := Kn−1 + Fn(ωn).

END FOR

In the second protocol, the cone from which Skeptic selects his move may
change from trial to trial, but the cone Fn for the nth trial is fixed at the
beginning of the game; it does not depend on outcomes of previous trials. In
the special case where each Fn is the zero cone (resp., nonpositive cone) for a
probability measure, this is a protocol for betting on successive trials at odds
that are fair (resp., not favorable) according to probability measures assigned
to the trials at the outset of the game.

Protocol 2. Independently priced trials

Parameters: set Ω; coherent cones F1,F2, . . . of real-valued functions on Ω
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Skeptic announces Fn ∈ Fn.
Reality announces ωn ∈ Ω.
Kn := Kn−1 + Fn(ωn).

END FOR

In the third protocol, the cone for the nth trial may depend on the outcome
ωn−1 of the preceding trial. To indicate this possible dependence, we designate
the cone by F(ωn−1). In the special case where F(ω) is always a zero cone for a
probability measure on Ω, this is a protocol for betting on successive outcomes
at odds given by a homogeneous Markov chain on Ω. However, since there
are no probabilities for the initial state ω0, our result for this protocol (part of
Theorem 2) is not directly comparable to the standard zero-one law for Markov
chains mentioned in §1.

Protocol 3. Markov trials

Parameters: set Ω; for each ω ∈ Ω, a coherent cone F(ω) of real-valued
functions on Ω

4



Protocol:

Reality announces ω0 ∈ Ω.
K0 := 1.
FOR n = 1, 2, . . .:

Skeptic announces Fn ∈ F(ωn−1).
Reality announces ωn ∈ Ω.
Kn := Kn−1 + Fn(ωn).

END FOR

3 Events and upper and lower probabilities

Upper and lower probabilities can be defined for any of the protocols used in
game-theoretic probability (Shafer and Vovk (2001), Takeuchi (2004)). We now
review the definitions assuming, for simplicity, that we are using either Protocol
1 or Protocol 2, where the cone Fn from which Skeptic chooses on each trial is
fixed, independently of how Reality moves earlier in the game.

We call the set Ω∞ of all infinite sequences of outcomes the sample space.
We write ω1ω2 . . . for a generic element of Ω∞, and we write ω1 . . . ωn for a finite
sequence of outcomes.

As we will see in this section, upper and lower probabilities are defined for
any subset E of the sample space Ω∞. Accordingly, we call any subset of Ω∞

an event. This diverges from standard terminology, in which only elements
of a specified σ-algebra are called events. Our definitions of tail event (§5),
invariant event (§6), and permutable event (§7) will also make no reference to
any σ-algebra.

A strategy for Skeptic specifies his moves F1, F2, . . . as functions of the pre-
ceding moves by Reality: Fn is a function of ω1 . . . ωn−1. Once we fix such
a strategy, Skeptic’s capital process K0,K1,K2, . . . depends on Reality’s moves
alone: K0 remains the constant 1, and Kn is a function of ω1 . . . ωn.

We call a strategy for Skeptic prudent if its capital process is everywhere
nonnegative—i.e., if

Kn(ω1 . . . ωn) ≥ 0 for all ω1ω2 . . . ∈ Ω∞ and all n.

In this case, the strategy risks only the initial unit capital. A strategy for Skeptic
will satisfy

lim sup
n→∞

Kn(ω1 . . . ωn) ≥ 0 for all ω1ω2 . . . ∈ Ω∞ (1)

if and only if it is prudent. If the strategy is not prudent—i.e., if Kn(ω1 . . . ωn) <
0 for some ω1ω2 . . . and some n, then Reality can violate (1) by making Skeptic’s
subsequent payoffs nonpositive, which is possible because of the coherence of
the cones from which Skeptic selects his moves. The lim supn→∞

in (1) can be
replaced by lim infn→∞ or by infn.
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In our protocols, for any given event E and any c > 0, Skeptic has a prudent
strategy that satisfies

lim inf
n→∞

Kn(ω1 . . . ωn) ≥ c for all ω1ω2 . . . ∈ E

if and only if he has a prudent strategy that satisfies

sup
n=1,2,...

Kn(ω1 . . . ωn) ≥ c for all ω1ω2 . . . ∈ E.

This is because Skeptic can stop betting (choose Fn = 0) once his capital reaches
a given level.

For each event E, we set

P(E) := inf
{

ǫ > 0 | Skeptic has a prudent strategy for which

sup
n=1,2,...

Kn(ω1 . . . ωn) ≥ 1/ǫ for all ω1ω2 . . . ∈ E
}

, (2)

and we set
P(E) := 1 − P (Ec) . (3)

We call P(E) the upper probability of E, and we call P(E) the lower probability
of E. Upper and lower probability generalize the standard notion of probability.
Let us consider, for simplicity, Protocol 1. If F is a zero cone for a probability
measure P on a σ-algebra for Ω, then P(E) = P(E) = P∞(E) for all measurable
subsets of Ω (Shafer and Vovk (2001), §8.2), and our theorems below reduce to
the standard zero-one laws in measure-theoretic probability.

Lemma 1. 0 ≤ P(E) ≤ P(E) ≤ 1 for every event E.

Proof. The relation P(E) ≤ 1 follows from the fact that Skeptic can choose
Fn = 0 for all n, and 0 ≤ P(E) then follows by the definition (3).

Suppose P(E) > P(E), i.e., P(E) + P(Ec) < 1. Then there exist ǫ1 > 0,
ǫ2 > 0, and prudent strategies S1 and S2 for Skeptic such that ǫ1 + ǫ2 < 1, S1

guarantees supn Kn ≥ IE /ǫ1, and S2 guarantees supn Kn ≥ IEc /ǫ2, where IE is
the indicator function of E, i.e., IE : Ω∞ → R takes the value 1 on E and the
value 0 outside E. Then (ǫ1S1 + ǫ2S2)/(ǫ1 + ǫ2) guarantees

sup
n

Kn ≥
IE∪Ec

ǫ1 + ǫ2
=

1

ǫ1 + ǫ2
> 1.

But this is impossible since, by coherence, Reality can choose ω1ω2 . . . so that
1 = K0 ≥ K1 ≥ K2 ≥ · · · .

We can also consider capital processes determined by different strategies for
Skeptic when his initial capital K0 is not necessarily equal to 1. We call any such
capital process a martingale. The martingales form a cone. We can rephrase
our definition of upper probability, (2), by saying that P(E) is the infimum of
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all values of ǫ such that there exists a nonnegative martingale starting at ǫ and
reaching at least 1 on every sequence ω1ω2 . . . in E.

The preceding definitions are easily adapted to Protocol 3; we simply recog-
nize that Skeptic’s strategies and martingales will also depend on ω0 as well as
on ω1ω2 . . . . These definitions also apply, with similarly minor modifications,
to other protocols used in game-theoretic probability.

The following terminology spells out the intuitive meaning of extreme values
for upper and lower probabilities:

• When P(E) = 0, we say E is unsupported.

• When P(E) = 1, we say E is certain.

• When P(E) = 0, we say E is impossible.

• When P(E) = 1, we say E is fully plausible.

• When E is unsupported and fully plausible, we say it is fully uncertain.

When an event is certain, it is also fully plausible. When it is impossible, it is
also unsupported. An event being unsupported is equivalent to its complement
being fully plausible. An event being certain is equivalent to its complement
being impossible. An event is fully uncertain if and only if its complement is
fully uncertain.

As we remarked in §1, both P(E) and P(E) will coincide with E’s probability
when there are enough prices to determine a probability measure for a σ-algebra
containing E; see Shafer and Vovk (2001), §8.2. In this case, E cannot be fully
uncertain.

4 Two types of zero-one law

A measure-theoretic zero-one law says that an event E satisfying specified con-
ditions is either impossible or certain: either P(E) = 0 or P(E) = 1. In the
general game-theoretic case, where we have only upper and lower probabilities,
we get one of the following weaker statements:

1. E is either fully plausible or unsupported (or both—i.e., fully uncertain).

2. E is certain, impossible, or fully uncertain.

Condition 2 is stronger than Condition 1, because certain implies fully plausible,
and impossible implies unsupported.

When the prices determine a probability measure on a σ-algebra containing
E, we have P(E) = P(E) = P(E), and both conditions then imply that P(E) = 1
or P(E) = 0.

Our game-theoretic versions of Kolmogorov’s zero-one law and ergodicity
will assert Condition 2, but our game-theoretic version of Hewitt and Savage’s
zero-one law (proven only in a special case) will assert only Condition 1.
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5 Kolmogorov’s zero-one law

Our game-theoretic version of Kolmogorov’s zero-one law is a theorem about
Protocol 2. The relevant events are tail events.

An event E is called a tail event if any sequence in Ω∞ that agrees from some
point onwards with a sequence in E is also in E—i.e., if ω1ω2 . . . and ω′

1ω
′

2 . . .
are either both in E or both not in E whenever ωn = ω′

n except for a finite
number of n. It follows immediately from this definition that E is a tail event
if and only if its complement Ec is a tail event.

Theorem 1. Suppose that E is a tail event in Protocol 2 (independently priced
trials). Then E is certain, impossible, or fully uncertain.

Skeptic chooses from Fn on trial n in Protocol 2. Our proof of Theorem 1
will use the fact that we get another instantiation of Protocol 2 if we start on
trial n + 1 for some n ≥ 1—i.e., if Skeptic chooses from Fn+1 on the first trial,
from Fn+2 on the second trial, and so on. We call this the shifted protocol, as
opposed to the original protocol. The two protocols, the original one and the
shifted one, have the same events; in both, any subset of Ω∞ is an event.

Let P
−n denote upper probability in the shifted protocol. (In particular,

P
−0 = P.) Given a strategy S for Skeptic in the shifted protocol, write S+n for

the strategy in the original protocol that sets Skeptic’s first n moves equal to 0
and then plays S.

We write θ for the shift operator, which deletes the first element from a
sequence in Ω∞:

θ : ω1ω2ω3 . . . 7→ ω2ω3 . . . .

We write E−n for θnE:

E−n := { ωn+1ωn+2 . . . | ω1ω2 . . . ∈ E}.

The next two lemmas relate upper probabilities in the original and shifted
protocols.

Lemma 2. Let E be any event in Protocol 2. Then P
−n(E−n) is non-decreasing

in n, i.e., P(E) ≤ P
−1(E−1) ≤ P

−2(E−2) ≤ · · · .

Proof. Suppose c > 0, and suppose S is a prudent strategy in the shifted pro-
tocol that achieves

sup
k=1,2,...

Kk(ω1 . . . ωk) ≥ c for all ω1ω2 . . . ∈ E−n.

Then S+n is evidently also prudent and achieves

sup
k=1,2,...

Kk(ω1 . . . ωk) ≥ c for all ω1ω2 . . . ∈ E

in the original protocol. Let S+n denote the set of strategies in the original
protocol of the form S+n. It follows that the infimum in (2) over S+n coincides
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with P
−n(E−n). Since the set S+n is non-increasing in n, we are taking the

infimum over a smaller set of strategies in (2) when n is larger. So P
−n(E−n)

is non-decreasing in n.

Lemma 3. Suppose that E is a tail event in Protocol 2. Then P(E) =
P
−n(E−n) for all n.

Proof. Suppose c > 0, and suppose S is a prudent strategy in the original
protocol that achieves

sup
k=1,2,...

Kk(ω1 . . . ωk) ≥ c for all ω1ω2 . . . ∈ E. (4)

Because E is a tail event, Reality can choose any sequence from Ωn as her first n
moves without affecting whether E happens. By coherence, she can choose these
n moves so that S makes no money for Skeptic on the n trials. Condition (4)
tells us that the moves specified by S on the (n+1)th and later trials guarantee
that Skeptic can make up this loss and still get at least c when ω1ω2 . . . ∈ E.
In the shifted protocol, Skeptic has capital 1 at the beginning rather than the
same or smaller capital resulting from the losses. So these moves still define a
prudent strategy and guarantee that

sup
k=1,2,...

Kk(ω1 . . . ωk) ≥ c for all ω1ω2 . . . ∈ E−n

in the shifted protocol. This implies P
−n(E−n) ≤ P(E) and together with the

previous lemma we obtain P
−n(E−n) = P(E).

Proof of Theorem 1. We will show that if a tail event is not fully plausible, then
it is impossible. This suffices to prove the theorem, because if E is a tail event,
then Ec is also a tail event. If E is not fully uncertain, then either E or Ec is
not fully plausible, and if one of them is impossible, then E is either impossible
or certain.

Suppose, then, that E is not fully plausible: P(E) < 1. Assume that Reality
chooses a path in E. Choose ǫ such that P(E) < ǫ < 1. Then there is a prudent
strategy S for Skeptic that guarantees he will multiply his initial capital of 1
by 1/ǫ in a finite number of trials. Skeptic plays this strategy until his capital
reaches at least 1/ǫ. Then he starts over, playing (1/ǫ)S in the shifted game
starting at that point. This eventually again multiplies his capital by another
factor of 1/ǫ or more. Continuing in this way, he can make his capital arbitrarily
large while playing prudently. This demonstrates that P(E) = 0—i.e., that E
is impossible.

We have just shown that when E is a tail event with P(E) < 1,

Skeptic has a prudent strategy guaranteeing lim
n→∞

Kn = ∞ on E. (5)

This implies P(E) = 0, but in general it may be stronger. So we have proven a
bit more than the theorem asserts. We have proven that a tail event is either
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strongly certain, strongly impossible, or fully uncertain, where an event is said
to be strongly impossible if (5) holds and strongly certain if its complement is
strongly impossible.

Here is an example of a fully uncertain tail event. Consider Protocol 2
where Ω is a linear space, Ω 6= {0}, and Fn ≡ F is the set of linear functions
on Ω. If Reality chooses the origin 0 ∈ Ω, then F (0) = 0 for all F ∈ F . On
the other hand if Skeptic chooses F 6= 0, then there exists ω ∈ Ω such that
F (ω) < 0. Therefore the protocol is coherent. Let E be the event that Reality
chooses ωn = 0 except for a finite number of n. Clearly E is a tail event. Since
000 . . . ∈ E, P(E) = 1. Now consider Ec, which is the event that ωn 6= 0
infinitely often. For each choice F ∈ F , Reality can choose ω 6= 0 such that
F (ω) ≤ 0. So P(Ec) = 1.

Suppose Reality is determined to prevent Skeptic’s capital from becoming
arbitrarily large. If E is a fully uncertain tail event, Skeptic has no control at all
over Reality choosing an element from the event E. On the other hand, there
are many examples of tail events in Shafer and Vovk (2001) which are certain
(i.e., Skeptic can force these events), such as the strong law of large numbers or
the law of the iterated logarithm.

It is interesting to compare our martingale proof with Kolmogorov’s measure-
theoretic proof, given in an appendix to Grundbegriffe and reproduced in many
textbooks. Kolmogorov shows that a tail event E is independent of itself, so
that P(E) = P(E)2 and therefore P(E) = 0 or P(E) = 1. Our martingale
proof paints a little larger picture. Having Skeptic start over just once after
multiplying his capital by 1/ǫ suffices to show that P(E)2 ≥ P(E), and this
implies P(E) = 0 or P(E) = 1. But by having Skeptic start over again and
again, we find that he can become infinitely rich if an event E with P(E) < 1
happens—i.e., that such E is strongly impossible.

A proof based on the measure-theoretic martingale convergence theorem is
also known (§2.2 of Chow et al. (1971), §14.3 of Williams (1991)), but it is
much less constructive and restricted to measurable events. A corresponding
constructive game-theoretic proof is desirable. A referee pointed out a result for
tail events by Bártfai and Révész (Bártfai and Révész (1967), Theorems 1 and
2) which can be interpreted as an approximate zero-one law that holds under
weak long-range dependence. It would be interesting to establish a similar result
in the game-theoretic framework by appropriately modifying our protocols.

6 Ergodicity

Now consider Protocol 1, where Skeptic always chooses from the same cone,
and Protocol 3, where the cone may depend on Reality’s previous move. The
relevant events are invariant events.

We call an event E weakly invariant if θE = E−1 ⊆ E.
If E is weakly invariant, then by induction E−n is non-increasing in n. In

accordance with standard terminology (e.g., Shiryaev (1996), §V.2), we call an
event E invariant if E = θ−1E.
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Lemma 4. E is invariant if and only if both E and Ec are weakly invariant.

Proof. If E is invariant, then Ec is also invariant, because the inverse map
commutes with complementation. Hence in this case both E and Ec are weakly
invariant.

Conversely suppose that θE ⊆ E and θEc ⊆ Ec. The first inclusion is
equivalent to E ⊆ θ−1E and the second is equivalent to Ec ⊆ θ−1Ec. Since the
right-hand sides of the last two inclusions are disjoint, these inclusions are in
fact equalities.

Theorem 2. Suppose that E is a weakly invariant event in Protocol 1 (iden-
tically priced trials) or Protocol 3 (Markov trials). Then E is either impossible
or fully plausible.

Proof. It suffices, as in the proof of Theorem 1, to show that P(E) < 1 implies
P(E) = 0. The current proof is, however, significantly simpler than that of
Theorem 1: no analogue of Lemma 3 is needed.

Let E be a weakly invariant event in Protocol 1 such that P(E) < ǫ < 1.
Assume that Reality chooses a path in E. Skeptic plays a prudent strategy
until his capital increases by a factor of 1/ǫ or more at some round n1. By the
assumption of weak invariance, E−n1 ⊆ E. This implies that when he starts
over, there will be another time n2 > n1 such that he multiplies his capital again
by 1/ǫ or more. Continuing in this way, he can make his capital arbitrarily large
while playing prudently.

In the case of Protocol 3, Skeptic’s strategies and martingales depend on ω0

as well as on ω1ω2 . . ., and the definition of P(E), (2), becomes

P(E) := inf
{

ǫ > 0 | Skeptic has a prudent strategy for which

sup
n=1,2,...

Kn(ω0ω1 . . . ωn) ≥ 1/ǫ for all ω0ω1ω2 . . . ∈ E
}

.

Similarly, for each ω ∈ Ω we define

Pω(E) := inf
{

ǫ > 0 | Skeptic has a prudent strategy for which

sup
n=1,2,...

Kn(ωω1 . . . ωn) ≥ 1/ǫ for all ω1ω2 . . . ∈ E
}

.

We have P(E) = supω∈Ω Pω(E). Suppose P(E) < ǫ < 1. For each ω ∈ Ω,
consider the modified protocol in which Reality’s first move is ω, and choose a
prudent strategy Sω for Skeptic in this protocol that eventually multiplies the
initial unit capital by 1/ǫ or more.

Now we can proceed as before: Skeptic first plays Sω0
until the first n for

which Kn ≥ 1/ǫ, then plays a scaled up version of Sωn
until his capital is again

multiplied by 1/ǫ or more, etc.

In view of Lemma 4 we obtain the following corollary to Theorem 2.
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Corollary 1. Suppose that E is an invariant event in Protocol 1 (identically
priced trials) or Protocol 3 (Markov trials). Then E is certain, impossible, or
fully uncertain.

7 Hewitt and Savage’s zero-one law

Let us again consider Protocol 1, where Skeptic always chooses from the same
cone.

Let us call an event E permutable if for any sequence in E and any n > 1,
any sequence obtained by permuting the first n terms of the sequence is also in
E. Let us call E singly generated if it is equal to the set of sequences obtained by
taking a single sequence and permuting finite initial subsequences in all possible
ways.

We may conjecture that any permutable event in Protocol 1 is either fully
plausible or unsupported. But we can prove this result only in the case where
the permutable event is singly generated.

Proposition 1. Suppose that E is a singly generated permutable event in Proto-
col 1 (identically priced trials). Then E is either fully plausible or unsupported.

Proof of Proposition 1. Suppose E is neither fully plausible nor unsupported.
Then we may choose ǫ < 1 such that P(E) < ǫ and P(Ec) < ǫ. Choose prudent
strategies S and S′ for Skeptic that multiply his capital by at least 1/ǫ on E
and Ec, respectively.

As usual, we derive a contradiction by showing the existence of a prudent
strategy for Skeptic that makes his capital tend to infinity if E happens (i.e.,
showing that E is strongly impossible and so unsupported). Let ω1ω2 . . . be the
sequence of outcomes actually chosen by Reality. The strategy begins by playing
S until the capital exceeds 1/ǫ. This happens on some trial n1 if ω1ω2 . . . ∈ E.
At this point, we ask whether the remaining sequence ωn1+1ωn1+2 . . . is in E or
Ec. In the first case, the strategy plays a scaled up version of S; in the second it
plays a scaled up version of S′. Again, the capital will eventually be multiplied
by 1/ǫ on some trial n2. Etc.

In conclusion, let us check that the initial sequence ω1 . . . ωn (where n ∈
{n1, n2, . . .}) indeed determines whether the remaining sequence ωn+1ωn+2 . . .
is in E or Ec. Suppose there are two possible continuations

ω′

n+1ω
′

n+2 . . . ∈ E and ω′′

n+1ω
′′

n+2 . . . /∈ E (6)

such that both ω1 . . . ωnω′

n+1ω
′

n+2 . . . and ω1 . . . ωnω′′

n+1ω
′′

n+2 . . . belong to E.
Since E is singly generated, for some N > n it is true that: (a) the sequences
ω1 . . . ωnω′

n+1 . . . ω′

N and ω1 . . . ωnω′′

n+1 . . . ω′′

N are permutations of each other;
(b) ω′

i = ω′′

i for i > N . Condition (a) means that the corresponding multisets,
*ω1, . . . , ωn, ω′

n+1, . . . , ω
′

N+ and *ω1, . . . , ωn, ω′′

n+1, . . . , ω
′′

N+, coincide. (We write
* . . . + rather than {. . .} to emphasize that repetitions are allowed.) Therefore,
the multisets *ω′

n+1, . . . , ω
′

N+ and *ω′′

n+1, . . . , ω
′′

N+ also coincide. In other words,
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the sequences ω′

n+1 . . . ω′

N and ω′′

n+1 . . . ω′′

N are permutations of each other. In
combination with condition (b), this contradicts our assumption (6).

Here is an example showing that the conclusion of Proposition 1 cannot be
strengthened to say that E is impossible or fully plausible; in particular, to say
that E is certain, impossible, or fully uncertain. Let Ω := {−1, 0, 1}, let F
consist of functions F taking values −t, 0, t at −1, 0, 1, respectively, for some
t ≥ 0, and let E be the set of all sequences in Ω∞ that do not contain −1
and contain precisely one 1. Then E is permutable and singly generated; it is
generated by the sequence 100 . . . . Reality can keep Skeptic from making any
money by choosing the sequence 000 . . ., and since this sequence is in Ec, this
implies that P(Ec) = 1 and P(E) = 0. This is consistent with the conclusion
of the proposition: E is unsupported. But the prudent strategy that does best
for Skeptic on E is one that chooses t = 1 at the first trial and continues with
this choice so long as Reality plays 0; this doubles Skeptic’s money on E but no
more, and so P(E) = 1/2. Thus E is neither impossible nor fully plausible.

It would be interesting to extend Proposition 1 to all permutable events or
construct a permutable event E for which 0 < P(E) ≤ P(E) < 1. Note that
Proposition 1 can be trivially extended to the case of permutable events gener-
ated by two or more sequences that are distinguishable by any initial segment,
e.g., generated by a sequence consisting of rational numbers and a sequence
consisting of irrational numbers.
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