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Abstract

In this short preliminary note I apply the methodology of game-
theoretic probability to calculating non-asymptotic confidence intervals
for the coefficient of a simple first order scalar autoregressive model. The
most distinctive feature of the proposed procedure is that with high proba-
bility it produces confidence intervals that always cover the true parameter
value when applied sequentially.

1 Introduction

Game-theoretic probability (see, e.g., [6], with the basic idea going back to Ville
[7]) provides a means of testing probabilistic models. In this note the game-
theoretic methodology is extended to statistical models; it will be demonstrated
on the first-order scalar autoregressive model

Yt = QYt—1 +€t7 t:1727"'7 (1)

without the intercept term, with constant yg, and with independent N(0,1)
innovations €;.

We will be interested in procedures for computing, for each t = 1,2,..., a
confidence interval [l;,u;] for « given yo,...,y:. Let us fix a confidence level
1—4, and let « be the true parameter value. The usual procedures are “batch”,
in that they only guarantee that o € [l;, u;] with high probability for a fixed
t. It is usually true that, when they are applied sequentially, the intersection
N2, [lt, ut] is empty with probability one. Our goal is to guarantee that

(AS ﬂfil[lt,ut] (2)

with probability at least 1 — 4.

Analogously to the usual classification of the limit theorems of probability
theory into “strong” (involving the conjunction over all t) and “weak” (appli-
cable to individual t), let us call such confidence intervals strong. In particular,
confidence intervals satisfying (2)) with probability at least 1 — ¢ will be called
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strong (1 — 0)-confidence intervals. Accordingly, confidence intervals produced
by the standard procedures will be referred to as weak; weak (1 — §)-confidence
intervals satisfy « € [I;, u;] with probability at least 1 — § for each individual ¢.
(This probability is sometimes required to be precisely 1 — §, but we will only
consider the “conservative” definitions.)

To achieve the goal (@), for each possible value of the parameter o we con-
struct random variables S5, t = 0,1,..., that form a nonnegative martingale
under the probability measure P, corresponding to the probabilistic model ()
with the given «. It will also be true that S§ = 1; such sequences (nonnegative
martingales starting from 1) will be called martingale tests. We can then set

Ly ue] = {a: Sy < 1/8}

(assuming that the set on the right-hand side is an interval, which it will be in
our case). The special case

yeen

(due to Ville; see, e.g., [7], p. 100, or [6], (2.12)) of Doob’s inequality shows that
@) will indeed be true with probability at least 1 — 4.

2 Derivation of strong confidence intervals

If the true probability density of y; (conditional on the past) is

1 (ye — Oétmeyt—l)Q
exp | —
V2T 2

and we want to reject the hypothesis

1 exp (= o)’
V2T 2 ’

the best, in many respect, martingale test is the likelihood ratio sequence with
the relative increments

1 (yt_atrucyt—l)z

\/%_77 exp (_ (ytfagt—l)z)

<(a2 — (a")?)yf 4 + 2(at — oz)ytlyt>
= exp 5 .

LCf., e.g., the nonnegativity of the Kullback-Leibler divergence, Neyman—Pearson lemma,
and the optimality property of the probability ratio test in sequential analysis.



The product over t = 1,...,T is the martingale test itself:

true 2 _ (gtruey2 ) 2(atre — T
Soe _eXp<(04 (a'€)*)Co + 2(cv @) 1),

2

where
T
Lo = Z Yi1
t=1
and

T
U= vy
=1

To get rid of the parameter a™¥¢, let us integrate ([3) over the probability dis-
tribution N(«,a?) on the at™es:

00 2 true)2 true __
S0 = 1 / exp <(a (@) Ty + 2(« oz)Fl)
V2ma J_ s 2

_ true)2
X exp (—7@[ ;2 ) > datrue
a
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(where T made the substitution z = a'™"®

o] 2
Lm exp(—Az? + Br)dx = 1/%exp <4B—A)

— a). Now the formula

gives
1 a2 (1—‘1 — al—‘o)2
ST = —— —_—— . 4
T \/a2I‘0+1eXp(2 a?Ty + 1 (4)

To find the confidence intervals corresponding to (@), fix a confidence level
1—4. The (1 — ¢)-confidence interval corresponding to (@) is defined as the set
of as satisfying

1 CL2 (Fl — O[F())Q 1
————exXp | 5 | < %
Vazlyg+1 2 a’Ty+1 )

Solving this in « gives the confidence interval

a’Tog+1. a?Tg+1
< \/ Ty In PR (5)

Notice that, in the stationary case |a| < 1, where I'g has the order of magni-
tude T, the size of the confidence interval (@) is O(1/InT/T) as T — oo. This is

worse that the usual iterated-logarithm behaviour (O(y/InlnT/T)) but agrees
with [4], Theorem 2.5 (although the latter result is just an upper bound). One



can speculate that, in the stationary case, the O(1/InlnT/T) behaviour will be
recovered if the N(a,a?) is replaced by a probability distribution that is more
concentrated around «, as in Ville’s [7] proof of the law of the iterated logarithm
(see also [6], Chapter 5).

Most of the terms in the confidence interval (B) are familiar from the litera-
ture (which, however, mainly covers the case of weak confidence intervals). The
centre 11:—[1) of the interval is just the least-squares estimate of o from the given
sample. The statistic

IS

_ I ~ _To o
TT—<r—O‘O‘)VF vy (6)

a?T'32
(for a fixed sample size T) has been studied extensively. In describing the
known results I will follow [2]. Mann and Wald [3] showed that 71 is N(0,1)
asymptotically when |a| < 1. Anderson [I] extended this to the case |a| >

1. White [8] and Rao [5] showed that, in the case |a| = 1, 7 converges in

distribution to
1 W2(1)-1 7
2 fol W2(s)ds
where W is a standard Brownian motion.
Suppose, for concreteness, that (@) is asymptotically N(0,1). The central

asymptotic weak confidence interval for o based on the statistic given after the
“~” in (6) will be different from (@) in that

2
\/m% _ \/2ln%+1n(a2Fo+1) (8)

will be replaced by the upper §/2-quantile of N (0, 1), essentially by

/ 2
21ng

for a small §. This is close to the first addend on the right-hand side of (&), and
so the second addend represents the price that we are paying for our confidence
intervals being strong.

3 Empirical results

To test the test martingales @) empirically, I generated yo, . .., Y1000 from the
model ([I) with yo = 0 and o = 0.8,1. The case o = 0.8 illustrates the sta-
tionary behaviour (Ja| < 1), and the “unit-root” case a = 1 is intermediate
between the stationary and “explosive” (Ja| > 1) behaviour. Tables [Il and
give the approximate weak central 99%-confidence intervals based on the above
approximations for 7r (normal for & = 0.8 and (@) for & = 1) and the strong
99%-confidence intervals computed from (&)).



Type of the interval | Confidence interval | Its width
Weak (approximate) [0.736,0.837] 0.101
Strong 0.716, 0.857] 0.141

Table 1: Weak and strong 99%-confidence intervals obtained for 7' = 1000 and
a = 0.8 (stationary case). The value of the constant a is 0.1.

Type of the interval | Confidence interval | Its width
Weak (approximate) [0.982,1.003] 0.022
Strong [0.977,1.010] 0.033

Table 2: The analogue of Table Il for &« = 1 (unit root case).

The intuition behind the value of @ in (&) is that it should be of the same
order of magnitude as the expected width of the confidence interval (since a
represents the order of magnitude of the distance to the bulk of a'™¢ that we
are competing with). It is taken as 0.1 in the tables, but the results will not be
drastically different if @ = 1, which is intuitively more “neutral”, is chosen: e.g.,
the width 0.141 in Table [l would go up to 0.162, and the width 0.033 in Table
2l would go up to 0.037.

Figures [Il and [2] give the final values S$ for the same data set and the same
value of a, a = 0.1.

4 Directions of further research

These are some possible areas in which the methods of martingale testing could
be applied:

Online testing of statistical models. When the strong confidence interval
[+, ut] becomes empty, the statistical model can be rejected. Of course,
efficient testing of statistical models will require different martingale tests:
it will not be sufficient to consider, as in this note, different values of
parameters as alternatives.

Prediction. In the simplest case, the prediction interval at step ¢ might be
computed as the union of the prediction intervals corresponding to all
o € [lt, Ut].

Alternative assumptions about innovations. For example, the assump-
tion that e have zero medians (conditional on the past) might lead to
feasible statistical procedures.
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Figure 1: The capital S{,,, achieved for various values of & when the true
coefficient « is 0.8.
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