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Abstract

In this short preliminary note I apply the methodology of game-

theoretic probability to calculating non-asymptotic confidence intervals

for the coefficient of a simple first order scalar autoregressive model. The

most distinctive feature of the proposed procedure is that with high proba-

bility it produces confidence intervals that always cover the true parameter

value when applied sequentially.

1 Introduction

Game-theoretic probability (see, e.g., [6], with the basic idea going back to Ville
[7]) provides a means of testing probabilistic models. In this note the game-
theoretic methodology is extended to statistical models; it will be demonstrated
on the first-order scalar autoregressive model

yt = αyt−1 + ǫt, t = 1, 2, . . . , (1)

without the intercept term, with constant y0, and with independent N(0, 1)
innovations ǫt.

We will be interested in procedures for computing, for each t = 1, 2, . . ., a
confidence interval [lt, ut] for α given y0, . . . , yt. Let us fix a confidence level
1− δ, and let α be the true parameter value. The usual procedures are “batch”,
in that they only guarantee that α ∈ [lt, ut] with high probability for a fixed
t. It is usually true that, when they are applied sequentially, the intersection
∩∞

t=1[lt, ut] is empty with probability one. Our goal is to guarantee that

α ∈ ∩∞
t=1[lt, ut] (2)

with probability at least 1 − δ.
Analogously to the usual classification of the limit theorems of probability

theory into “strong” (involving the conjunction over all t) and “weak” (appli-
cable to individual t), let us call such confidence intervals strong. In particular,
confidence intervals satisfying (2) with probability at least 1 − δ will be called
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strong (1 − δ)-confidence intervals. Accordingly, confidence intervals produced
by the standard procedures will be referred to as weak ; weak (1− δ)-confidence
intervals satisfy α ∈ [lt, ut] with probability at least 1 − δ for each individual t.
(This probability is sometimes required to be precisely 1 − δ, but we will only
consider the “conservative” definitions.)

To achieve the goal (2), for each possible value of the parameter α we con-
struct random variables Sα

t , t = 0, 1, . . ., that form a nonnegative martingale
under the probability measure Pα corresponding to the probabilistic model (1)
with the given α. It will also be true that Sα

0 = 1; such sequences (nonnegative
martingales starting from 1) will be called martingale tests. We can then set

[lt, ut] = {α : Sα
t < 1/δ}

(assuming that the set on the right-hand side is an interval, which it will be in
our case). The special case

Pα

{

sup
t=0,1,...

Sα
t ≥ 1/δ

}

≤ δ

(due to Ville; see, e.g., [7], p. 100, or [6], (2.12)) of Doob’s inequality shows that
(2) will indeed be true with probability at least 1 − δ.

2 Derivation of strong confidence intervals

If the true probability density of yt (conditional on the past) is

1√
2π

exp

(

− (yt − αtrueyt−1)
2

2

)

and we want to reject the hypothesis

1√
2π

exp

(

− (yt − αyt−1)
2

2

)

,

the best, in many respects1, martingale test is the likelihood ratio sequence with
the relative increments

1√
2π

exp

(

− (yt−αtrueyt−1)
2

2

)

1√
2π

exp
(

− (yt−αyt−1)
2

2

)

= exp

(

(α2 − (αtrue)2)y2
t−1 + 2(αtrue − α)yt−1yt

2

)

.

1Cf., e.g., the nonnegativity of the Kullback–Leibler divergence, Neyman–Pearson lemma,

and the optimality property of the probability ratio test in sequential analysis.

2



The product over t = 1, . . . , T is the martingale test itself:

Sα,αtrue

T = exp

(

(α2 − (αtrue)2)Γ0 + 2(αtrue − α)Γ1

2

)

, (3)

where

Γ0 =

T
∑

t=1

y2
t−1

and

Γ1 =

T
∑

t=1

yt−1yt.

To get rid of the parameter αtrue, let us integrate (3) over the probability dis-
tribution N(α, a2) on the αtrues:

Sα
T =

1√
2πa

∫ ∞

−∞

exp

(

(α2 − (αtrue)2)Γ0 + 2(αtrue − α)Γ1

2

)

× exp

(

− (α − αtrue)2

2a2

)

dαtrue

=
1√
2πa

∫ ∞

−∞

exp

(

−
(

1

2a2
+

Γ0

2

)

x2 + (Γ1 − αΓ0)x

)

dx

(where I made the substitution x = αtrue − α). Now the formula

∫ ∞

−∞

exp(−Ax2 + Bx) dx =

√

π

A
exp

(

B2

4A

)

gives

Sα
T =

1√
a2Γ0 + 1

exp

(

a2

2

(Γ1 − αΓ0)
2

a2Γ0 + 1

)

. (4)

To find the confidence intervals corresponding to (4), fix a confidence level
1− δ. The (1 − δ)-confidence interval corresponding to (4) is defined as the set
of αs satisfying

1√
a2Γ0 + 1

exp

(

a2

2

(Γ1 − αΓ0)
2

a2Γ0 + 1

)

≤ 1

δ
.

Solving this in α gives the confidence interval

∣

∣

∣

∣

α − Γ1

Γ0

∣

∣

∣

∣

≤
√

a2Γ0 + 1

a2Γ2
0

ln
a2Γ0 + 1

δ2
. (5)

Notice that, in the stationary case |α| < 1, where Γ0 has the order of magni-
tude T , the size of the confidence interval (5) is O(

√

lnT/T ) as T → ∞. This is

worse that the usual iterated-logarithm behaviour (O(
√

ln lnT/T )) but agrees
with [4], Theorem 2.5 (although the latter result is just an upper bound). One
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can speculate that, in the stationary case, the O(
√

ln lnT/T ) behaviour will be
recovered if the N(α, a2) is replaced by a probability distribution that is more
concentrated around α, as in Ville’s [7] proof of the law of the iterated logarithm
(see also [6], Chapter 5).

Most of the terms in the confidence interval (5) are familiar from the litera-
ture (which, however, mainly covers the case of weak confidence intervals). The
centre Γ1

Γ0

of the interval is just the least-squares estimate of α from the given
sample. The statistic

τT =

(

Γ1

Γ0
− α

)

√

Γ0 ≈
Γ1

Γ0

− α
√

a2Γ0+1
a2Γ2

0

(6)

(for a fixed sample size T ) has been studied extensively. In describing the
known results I will follow [2]. Mann and Wald [3] showed that τT is N(0, 1)
asymptotically when |α| < 1. Anderson [1] extended this to the case |α| >
1. White [8] and Rao [5] showed that, in the case |α| = 1, τT converges in
distribution to

1

2

W 2(1) − 1
√

∫ 1

0
W 2(s) ds

(7)

where W is a standard Brownian motion.
Suppose, for concreteness, that (6) is asymptotically N(0, 1). The central

asymptotic weak confidence interval for α based on the statistic given after the
“≈” in (6) will be different from (5) in that

√

ln
a2Γ0 + 1

δ2
=

√

2 ln
1

δ
+ ln(a2Γ0 + 1) (8)

will be replaced by the upper δ/2-quantile of N(0, 1), essentially by

√

2 ln
2

δ

for a small δ. This is close to the first addend on the right-hand side of (8), and
so the second addend represents the price that we are paying for our confidence
intervals being strong.

3 Empirical results

To test the test martingales (4) empirically, I generated y0, . . . , y1000 from the
model (1) with y0 = 0 and α = 0.8, 1. The case α = 0.8 illustrates the sta-
tionary behaviour (|α| < 1), and the “unit-root” case α = 1 is intermediate
between the stationary and “explosive” (|α| > 1) behaviour. Tables 1 and 2
give the approximate weak central 99%-confidence intervals based on the above
approximations for τT (normal for α = 0.8 and (7) for α = 1) and the strong
99%-confidence intervals computed from (5).
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Type of the interval Confidence interval Its width
Weak (approximate) [0.736, 0.837] 0.101

Strong [0.716, 0.857] 0.141

Table 1: Weak and strong 99%-confidence intervals obtained for T = 1000 and
α = 0.8 (stationary case). The value of the constant a is 0.1.

Type of the interval Confidence interval Its width
Weak (approximate) [0.982, 1.003] 0.022

Strong [0.977, 1.010] 0.033

Table 2: The analogue of Table 1 for α = 1 (unit root case).

The intuition behind the value of a in (5) is that it should be of the same
order of magnitude as the expected width of the confidence interval (since a
represents the order of magnitude of the distance to the bulk of αtrue that we
are competing with). It is taken as 0.1 in the tables, but the results will not be
drastically different if a = 1, which is intuitively more “neutral”, is chosen: e.g.,
the width 0.141 in Table 1 would go up to 0.162, and the width 0.033 in Table
2 would go up to 0.037.

Figures 1 and 2 give the final values Sα
T for the same data set and the same

value of a, a = 0.1.

4 Directions of further research

These are some possible areas in which the methods of martingale testing could
be applied:

Online testing of statistical models. When the strong confidence interval
[lt, ut] becomes empty, the statistical model can be rejected. Of course,
efficient testing of statistical models will require different martingale tests:
it will not be sufficient to consider, as in this note, different values of
parameters as alternatives.

Prediction. In the simplest case, the prediction interval at step t might be
computed as the union of the prediction intervals corresponding to all
α ∈ [lt, ut].

Alternative assumptions about innovations. For example, the assump-
tion that ǫt have zero medians (conditional on the past) might lead to
feasible statistical procedures.
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Figure 1: The capital Sα
1000 achieved for various values of α when the true

coefficient α is 0.8.
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Figure 2: The analogue of Figure 1 for α = 1.
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