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Abstract

Sodium Cobaltate (NaxCoO2) has emerged as a material of exceptional scientific

and technological interest since it is among the best P-type thermoelectric materials.

The superstructures in pure NaxCoO2 templates the Coulomb landscape on the Co

layers and is found to control the physical properties. The combination of the high

electrical conductivity in the Co layers with the low thermal conductivity due to

the rattling of sodium ions in cages, are the precise conditions for thermoelectric

materials with high figures of merit. Replacing Na by divalent ions was reported to

lead to a dramatic improvement in thermoelectric performance. The superstructures

of NaxCayCoO2 and NaxSryCoO2 have been determined by Laue diffraction using

neutrons on SXD at ISIS and x-rays at Royal Holloway. Reverse Monte-Carlo meth-

ods were used to determine Na ion patterning including the locations of the divalent

ions. Co and O displacements were also determined that show buckling following the

Na structure. In the doped systems we find completely new multi-vacancy clusters.

Di-vacancies form in Ca doped systems where the divalent ion sits at the central

site. In the Sr doped systems two new superlattices are observed, explained by the

clustering of separated Sr ions with associated vacancies. Multiple valence states

have been detected by NMR, which is a local probe, but spatial charge ordering in

the cobalt layer has not previously been observed. We report new measurements

using Resonant X-ray Scattering on the Materials and Magnetism beamline I16

at Diamond. We find resonant x-ray scattering with the same periodicity as the

sodium superstructure, directly demonstrating that the electronic ordering in these

cobalt layers is controlled by the sodium ordering. We are able to reproduce the

energy, polarisation and azimuthal dependencies of the resonant x-ray scattering in

calculations using the FDMNES code.
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Chapter 1

Background

A corner stone of modern scientific investigation is the hunt for novel materials that

could be scientifically interesting and technologically important. The discovery of

the high temperature superconductor Y Ba2Cu3O7−x, also called ‘YBCO’, in 1986

[1] and its use in medical imaging applications is such an example of an important

scientific discovery in material properties that can have a profound effect on soci-

ety. As well as slowly increasing superconducting transition temperatures, these

new materials have exhibited a vast range of other interesting phenomena, such as

complex magnetic states and metal-insulator transitions. Some ‘wonder’ materials

gave remarkable enhancement of their various properties, which can be of outstand-

ing technological value, allowing for faster and more advanced computers, or more

efficient and environmentally friendly devices. Multiferroic materials combine mul-

tiple types of long range order such as antiferromagnetism and ferroelectricity in

BiFeO3 and can be used to produce environmentally friendly piezoelectric devices

or to increase the storage space in hard drives [2, 3]. The spintronic manganite

materials exhibit an effect called colossal magnetoresistance, where the resistivity of

the material can be radically altered in the presence of a magnetic field. These ma-

terials have found uses in controlling advanced electronic devices and have been an

15
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important ingredient for the rapidly developing technology of the past few decades

[4].

In order to further this trend of material and phenomena discovery, we must

understand how these materials work and why it is that they can show such re-

markable behaviour. Central to this understanding is the behaviour of electrons

within these materials, where, unlike simple metals, their interactions are strong

due to the complex atomic and electronic structures created.

Sodium Cobaltate, NaxCoO2, is such a material, exhibiting a range of different

phenomena as the concentration of sodium, x, is varied [5, 6, 7, 8]. This system was

initially studied due to its similarity to the cuprate high-temperature superconduc-

tors. It was initially found to exhibit superconductivity itself when hydrated [5],

although the transition temperature of 4K was never enhanced. As the concentra-

tion of sodium is varied, a number of different phenomena can be observed, includ-

ing superconductivity, a metal-insulator transition and a spin-density wave region

[6, 9, 10], as illustrated in figure 1.1. The most technologically important property

however, is the material’s large thermopower, which is amongst the highest observed

and much greater than in traditional semiconductor materials [11, 7]. This makes

it an ideal candidate for devices that can harvest energy from waste heat, or effi-

ciently cool microprocessors. This combination of features makes Sodium Cobaltate

an ideal material to study, in order to enhance our fundamental understanding of

complex materials and develop future technologies.

To further understand this material, neutron and x-ray scattering techniques will

be combined with physical properties measurements and computational modelling

to study its atomic, electronic and magnetic structures. By doping the material

with divalent ions, we will observe the effects of doping on these structures and on

the properties of the system, so that we might learn how to enhance the material

properties further.
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Figure 1.1: The phase diagram of NaxCoO2. From figure 2, ref. [6]

1.1 Thermopower

The thermoelectric effect allows the conversion between a temperature difference

and an electric voltage, allowing waste heat to be converted to useful electrical en-

ergy. Alternatively a voltage can be applied that will cause a temperature difference

allowing the creation of an efficient solid state cooling device. The conversion of

temperature differences directly into electricity is named the Seebeck effect and can

be characterised by the Seebeck coefficient, or thermopower, S:

S = −∆V

∆T
(1.1)

Conversely, generating heat or cooling by using an electrical potential is called the

Peltier effect. These effects can be understood in simple materials by the diffusion

of charge carriers across a temperature gradient, as illustrated in figure 1.2. As a

temperature difference is established across a material, the electrons (or holes) move

faster in the hot region and slower in the cold region. This leads to diffusion of the

charge carriers from the hot region to the cold region, whereby a build up of charge
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will occur, creating a potential difference. In most metals, this effect is countered

by thermal excitations, or phonons moving against the thermal gradient, reducing

the effect. A good thermoelectric material must have high electrical conductivity to

allow the charge carriers to diffuse, but low thermal conductivity so that phonons

cannot dissipate the temperature difference.

Figure 1.2: The Thermoelectric effect. Electrons move faster in the high temper-
ature region leading to diffusion of charge from the high temperature to the low
temperature region, building a potential difference in doing so.

1.1.1 Thermoelectric Performance

The efficiency of operation of a thermoelectric device is usually measured by its

‘figure of merit’ ZT = σTS2

κ
, a dimensionless number proportional to the square

of the Seebeck coefficient, S and to the ratio (σ/κ) of the electrical to thermal

conductivities.

For power generation, the maximum efficiency is:

η = ηc
[(ZTm + 1)

1
2 − 1]

[(ZTm + 1)
1
2 + TC/TH ]

(1.2)
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where TC and TH are the cold and hot source temperatures with mean value Tm,

and ηc = (1 − TC/TH) is the Carnot efficiency. The efficiency reaches its limiting

value ηc at large ZT [12].

For Peltier cooling, the maximum heat flux pumping power of a thermoelectric

material of thickness l is:

Qmax =
[
1

2
σS2T 2

C − κ(TH − TC)
]
/l (1.3)

which implies maximisation of the ‘Power factor’, PF = S2σ and minimisation of

κ. The maximum achievable temperature difference is:

∆T = (TH − TC) = (ZTC)(
TC
2

) (1.4)

therefore, both the power factor, PF , and the figure of merit, ZT , must be optimised.

The thermal conductivity is the sum of an electric and a lattice contribution

(κ = κel + κph). When κel is dominant, the ratio (σ/κ) is a constant, which is the

so-called Wiedemann-Franz law and holds for many simple materials.

For ordinary metals, S is only a few µV/K and ZT is of order 10−4 at room

temperature, making them useless for applications. Instead, semiconductors are

traditionally employed in thermoelectric devices due to their relatively large S ≈

100µV/K. The state-of-the-art for semiconductor thermoelectrics with heavy ele-

ments is a maximum ZT ≈ 1. However, if we avoid materials that are extremely

scarce or contain poisonous elements, the performance of oxides is already close to

that of the only abundant, harmless SixGe1−x doped semiconductor. A modest

enhancement of ZT for oxides would create huge potential for ecologically friendly

applications for cooling and energy harvesting.
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1.1.2 Strong Correlations

Let us consider the effect of strong correlations on the Seebeck coefficient, S. For

an interacting Fermi liquid, linear response theory and the Boltzmann equation give

[13]:

S =
π2

3

k2
BT

e

[
δ lnσ(ε)

δε

]
ε=εf

(1.5)

where the energy-dependent conductivity, σ(ε), means the electrical conductivity

which one would calculate if the Fermi energy εf , of the metal were ε. An approxi-

mate expression for σ(ε) is given by:

σ(ε) =
e2λA

12π3h̄
(1.6)

where λ is the electron mean free path and A is the Fermi surface area. We therefore

deduce the relation:
δ lnσ(ε)

δε
=
δ lnλ(ε)

δε
+
δ lnA(ε)

δε
(1.7)

In a 3D isotropic Fermi liquid, A is directly proportional to ε. Hence the contri-

bution to S from the second term in the equation above is:

SA =
π2

3

k2
BT

e
(

1

εf
) (1.8)

and since

εf =
h̄2

2m∗
(3π2n)

2
3 (1.9)

the contribution to the second term SA is directly proportional to the electron’s

effective mass m∗. Hence, for a strongly correlated thermoelectric, increasing the

correlations and therefore m∗ is a means to increase S. Since ZT depends on S2, in-

creasing the correlations is potentially a very sensitive way to improve thermoelectric

performance.
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1.2 Crystals & Crystallography

1.2.1 What is a crystal?

All materials on Earth can be classified by their chemical composition and basic

atomic structure. One particular class is of real importance to physics, where the

atoms making up the material are ordered in repeating patterns similar to a three

dimensional wall paper, these materials are known as crystals. Any crystal material

can be explained by a repeating pattern of identical units. A single unit, called the

crystal basis, involves a unit cell of atoms sitting in a particular arrangement, where

any arrangement can be chosen as long as it repeats itself symmetrically throughout

the crystal. The basis repeats in all directions, sitting on every point of a crystal

lattice, which is a series of points in space. The combination of the basis at every

point on the lattice makes a crystal when the number of lattice points essentially

becomes infinite (the basis containing only a few atoms compared to the vast number

in a typical crystal) [14, 15].

The composition and arrangement of atoms or ions within the basis controls all

of the important fundamental properties of the material, especially its electronic

and magnetic properties. This is because the location of atoms determines the

interactions of electrons within the material, defining the electron band structure

that controls electronic, optical and thermal properties. For this reason it is very

important to fully understand the arrangement of atoms within the crystal basis, as

without this information, an understanding of complex material phenomena such as

superconductivity or the thermoelectric effect would be futile.

Many materials, especially metals, have very simple crystal structures whereby

atoms simply attempt to sit as close to their neighbours as possible. Such structures

are defined by a simple stacking sequence for packing hard spheres, where the first

two dimensional layer of closely packed atoms A has a second layer B of atoms
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sitting in the gaps of the first layer. The third layer then has a choice, being able

to sit either above the atoms of layer A or in the second set of gaps not above other

atoms. This gives two different types of stacking for simple crystals, either ABA

or ABC, where in each case the stacking sequence is repeated indefinitely. A visual

explanation of this stacking is given in figure 1.3.

Figure 1.3: Atomic stacking of hard spheres. Co atoms sit at site A, O atoms at site
B, in the third stacking step, two sites are possible for stacking, A or C, however in
the case of NaxCoO2, it is more energetically favourable to sit at position C.

Sodium Cobaltate is not quite so simple however, due to the combination of

different types of atom. The basis of Sodium Cobaltate (and its compounds) is

made up of sheets of cobalt, where each sheet is covered above and below by layers of

oxygen, which sit at opposing locations so that an oxygen ion above the cobalt sheet

is not above an oxygen ion below. These cobalt-oxygen layers are separated by 3.4Å,

allowing a sheet of sodium with atomic radius 1.9Å to sit between successive layers.

The sodium ions cannot sit directly above oxygen and indeed it is energetically

unfavourable to sit above cobalt, therefore sodium occupies the C position which is

the same positions as the oxygen ions below the cobalt sheet. The unit cell contains

two instances of cobalt-oxygen layers and intercalated sodium sheets, where the

second instance is a reflection of the first. This gives Sodium Cobaltate the stacking
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sequence ABCBACBC, where the cobalt sheet is layer A, as described in figure 1.4.

1.2.2 Crystallographic Notation

Crystallography is the science of the arrangement of atoms in crystals and makes

use primarily of diffraction techniques. The International Tables of Crystallography

[16] is a compendium of much of the knowledge in this field and sets out a rigorous

methodology for the study of crystals and the determination of the atomic struc-

tures that make them. In crystallography, crystal structures are defined by their

fundamental symmetry, which identifies symmetry operations that leave the basis

unchanged, including translation (which is fundamental to all crystal systems and

defines the lattice), rotation, reflection, glide planes and screw axes. A glide plane

is the translation of a reflection in a plane and a screw axis defines an axis in which

atomic positions can be rotated about or translated along to remain identical. The

mathematical understanding of these basic symmetries lead to a number of con-

straints on the arrangements of atoms in crystals. For instance the unit cell that

defines the shape of the basis can only be one of 14 symmetrical shapes, called Bra-

vais lattices. The atoms must arrange themselves within these unit cells in particular

ways, leading to the 230 space groups that define all possible types of ordering in

crystal systems [17]. The structure of pure Sodium Cobaltate is given in the inter-

national tables notation in the table 1.1. The structure is defined by the space group

P63/mmc (No. 194 in the international tables of crystallography). This notation,

called the HermannMauguin notation, defines the main symmetries of the structure,

where P describes a primitive lattice, 63/m is a 6-fold screw axis and mirror plane

along the c-direction, m is a mirror plane in the a-direction and c is a glide plane

involving the c-direction and the a-b directions.
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Figure 1.4: NaxCoO2 Crystal Structure
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Atom Position Site
Co 0 0 0 2a
O 1/3 2/3 0.0908 4f
Na1 0 0 1/4 2b
Na2 2/3 1/3 1/4 2d

Table 1.1: Crystal structure of NaxCoO2. Position coordinates are given as frac-
tional values along the a, b and c directions. The site labels show the Wyckoff
positions for this space group, defining the symmetry and number of positions in
each site.

1.3 Basic Electronic Structure

Since the discovery of the electron and the subsequent understanding of the basic

structure of atoms, physicists have attempted to understand the behaviour of elec-

trons in materials in order to explain their differences in properties, such as why some

materials conduct but others are insulating and more recently to explain emergent

phenomena such as conventional or unconventional superconductivity [18].

Electrons surround a positive atomic nucleus in quantum mechanical wavestates

at different energies, or orbitals, which are defined by 4 quantum numbers: n (energy,

integer number from 1), l (angular momentum, from 1 to n and denoted as s,p,d,f),

m (angular momentum direction, from -l to l) and s (spin, ±1). Electrons occupy

these orbitals, from lowest energy first, according to the Pauli exclusion principle,

which states that no two electrons in the same atom can have the same 4 quantum

numbers. For instance, in neutral cobalt the configuration of orbitals is:

Co27 : 1s22s22p63s23p63d9

Different orbitals occupy different regions of space around the atom and in dif-

ferent shapes. This leads to different orbitals possessing different bonding and in-

teraction characteristics for the atom. The d orbitals that are unfilled in transition

metals such as cobalt have been found to play important roles in complex materials
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[19]. In NaxCoO2, cobalt exists as Co3+ or Co4+ depending on the concentration of

sodium ions, where electrons have been removed from the 3d orbital [7, 20]. Co3+

is insulating because all the electrons in this shell are paired, however Co4+ has an

unpaired electron and is magnetic. The locations and interactions of these magnetic

atoms within NaxCoO2 will determine the electronic properties of the material.
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Experimental Techniques

2.1 Diffraction

Observing the basis of a crystal and therefore its crystal structure is a problem that

would become very difficult if it were not for phenomenon of diffraction, caused

by the interference of scattered radiation from atomically separated atoms. X-ray

diffraction first showed that electromagnetic radiation would diffract through the

gaps between planes of atoms in simple materials, and that the diffraction pattern

attained could be used to study and determine the structure of crystals [21]. When

radiation travels through a crystal, the reflection from successive planes of atoms

causes the radiation to interfere, leading to diffraction patterns of scattered light,

where bright spots are produced by constructive interference and absences by de-

structive interference. This effect was explained by William Lawrence Bragg in 1913

using the famous Bragg equation [22]:

nλ = 2d sin(θ) (2.1)

Where d is the separation of the atomic planes, θ is the angle between the incident

27
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wavevector and the lattice planes, λ is the wavelength of the incident radiation and

n is the order of diffraction.

The spatial distribution of the pattern of spots created by diffraction is funda-

mentally linked to the symmetry of the atoms within the crystal, and can be used

to understand the shape of the basis and the separation of lattice points. To do

this we must first make a mathematical model of our crystal system, allowing us to

make a simple transformation into the observed diffraction pattern.

2.1.1 The Crystal Lattice

A crystal lattice is made up of lattice points and a basis [17]. The lattice points are

an infinitely repeating pattern of points described by a set of 3 non-parallel vectors

(a,b, c), where any addition of these vectors will give a lattice point. The lattice

points can be described by:

R = ua + vb + wc (2.2)

where (uvw) are any integer values. On each lattice point there is a basis of atoms,

where the arrangement of these atoms is defined by the point group. For pure

Sodium Cobaltate, the basis comprises 8 atoms. The location of each basis atom is

described in units of the basis vectors for each atom j by:

rj = uja + vjb + wjc (2.3)

where (uvw) are all less than 1. Convolving the basis of atoms with the lattice

points will create the crystal lattice.
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2.1.2 The Reciprocal Lattice

When studying diffraction images, the spots that can be seen are points that lie on

the reciprocal lattice, τ :

τ = ha∗ + kb∗ + lc∗ (2.4)

and the reciprocal lattice is related to the real lattice via the transformation of basis

vectors:

a∗ =
2πb× c

a · (b× c)
b∗ =

2πc× a

a · (b× c)
c∗ =

2πa× b

a · (b× c)
(2.5)

The integer values (hkl) define a position on the lattice in reciprocal space and

are called the Miller indices. These are useful to define positions, directions or planes

in reciprocal space and distinguish different families, {hkl}, of diffraction spots.

2.1.3 Conditions for Diffraction

While the Bragg equation determines the locations of specular reflections from a

regularly spaced lattice, a more general approach was determined by Max von Laue

[21]. In the case of elastic scattering, when the energy of incident (ki) and scattered

(kf ) waves are the same, |ki| = |kf |, the Laue equation states that the conditions

for constructive interference (a diffraction spot) will be met when the difference, Q,

between incident and scattered wavevectors is equal to a position on the reciprocal

lattice:

Q = kf − ki = τ (2.6)

To a first approximation therefore, diffraction spots will occur at the reciprocal

points of the crystal lattice as defined by an integer addition of reciprocal lattice

vectors. In most situations however, the diffraction data is slightly more complicated

than just spots at the reciprocal lattice points, as spots can be missing or have

varying intensities. These differences are a result of the basis of atoms at each real
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lattice point, as the difference in scattering power between different atoms can lead

to systematic extinctions of certain spots.

In elastic diffraction experiments, the intensity of a diffraction spot is measured

using the differential cross-section, defined as the number of hits on the detector per

unit flux and solid angle. In the kinematic approximation [23], it has the general

form:
dσ

dΩ
= N

(2π)3

V

∑
τ

|F (Q)|2δ(Q− τ) (2.7)

where N is the number of unit cells scattered from and V is the volume of each

cell. The delta function, δ(Q − τ) ensures diffracted intensity is only found at the

reciprocal lattice positions, following the Laue condition for diffraction. F (Q) is the

structure factor, which describes a Fourier transform of the crystal basis:

F (Q) =
∑
j

fje
−iQ

hkl
·rj (2.8)

where Q
hkl

is the wavevector transfer of a point (hkl) on the reciprocal lattice, rj

is the real space vector and fj defines the scattering power of each atom j in the

basis. The form of fj is dependent on the radiation used. A full derivation of the

differential cross section can be found for neutrons in [24] or for x-rays in [23].

2.1.4 Superlattices

In systems such as Nax<1CoO2, vacancies can order at long range within the crystal,

making a larger pattern than the basic or average structure. The resulting structure

can be dealt with in the same way as a normal crystal lattice, however, we call this

lattice a superlattice, and the basis of atoms is called a superstructure, which is

composed of an integer number of basic unit cells. We generate the superlattice by

an integer addition of supercell, or propagation vectors, where each supercell vector

is an integer addition of unit cell vectors:
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a′ = n1a +m1b + o1c

b′ = n2a +m2b + o2c (2.9)

c′ = n3a +m3b + o3c

These can be used to define the superlattice:

R′ = ua′ + vb′ + wc′ (2.10)

In real space the superlattice spacing is larger than the normal lattice, therefore

in reciprocal space the spots are closer together. In diffraction images we observe

satellites or ‘Gittergeister’ (lattice ghosts) around the principal diffraction spots,

which lie on the reciprocal superlattice [25].

The intensities of these superlattice peaks can be used to infer the ordering of

ions within the superstructure. This has been found to be a very useful technique in

the study of Sodium Cobaltate, where vacancies from sodium ions order into vacancy

clusters, and these clusters form long range patterns in the material as illustrated

in figure 2.1.

2.1.5 Symmetry Domains

For any crystal system there are a defined number of symmetry operations, depen-

dent on the system’s space group. In a crystal system with a superlattice, this

means that the superlattice will be formed in all symmetric orientations dependent

on the underlying structure. Sodium Cobaltate is a hexagonal system with space

group P63/mmc (see section 1.2.2), so there are 6 rotations and 4 reflections within

the plane perpendicular to (001), giving a maximum of 24 different orientations in
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Figure 2.1: Diffraction pattern with satellite peaks and associated sodium ordering
in Na0.8CoO2.

which the superlattice can form. In a real crystal, the superlattice will form domains

in all of these orientations, so any scattering from the crystal is an average over all

domains.

2.1.6 Correction Factors

The diffracted intensity for a given (hkl) reflection is directly proportional to the

square of the modulus of the structure factor, F , which is ultimately what we want

to calculate in order to solve the structure. There are various factors for single

crystal data that, when evaluated, allow us to correct the measured intensity to

determine |F |, according to the equation below:

Ihkl = cL(θ)P (θ)A(θ)E(θ)|Fhkl|2 (2.11)

These corrections are used both in neutron and x-ray diffraction analysis. The

Lorentz correction, L(θ), accounts for the shape of the Ewald sphere in real space, as
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some reflections are measured for marginally longer than others depending on their

angle. The absorption A(θ) and extinction E(θ) corrections are sample dependent

and account for the radiation being absorbed by the sample (absorption) or a loss of

intensity due to the radiation scattering multiple times from different lattice planes

(extinction). The polarisation correction, P (θ), accounts for any polarisation of

the beam by the monochromator or by the sample. In the former case, the extent

of polarisation depends specifically on the set up of the instrument, whereas in

the latter case, the polarisation is dependent on the value on 2θ and is given by

P = (1 + cos2 2θ)/2. The factor c is an arbitrary constant called the scaling factor

[26, 27].

2.2 Techniques with neutrons

Neutrons are an ideal type of radiation to study the atomic structure of crystals, as

the lack of any charge on the neutron means it can scatter directly from the nucleus of

an atom, meaning the atomic positions can be measured in a very clean manner. The

neutron does, however, have one way of interacting with the surrounding electrons

of an atom, which uses to the neutron’s magnetic moment. The interaction between

the neutron and electron spin states is a very powerful method of determining the

magnetic properties and structure of materials. [The key disadvantage with neutrons

is the difficulty in producing them, leading to neutron techniques being flux-limited,

meaning counting times must be very long in order to produce reliable statistics.

The structure factor for neutron scattering F neutron
Q is split into nuclear (NQ)

and magnetic (MQ) components:

F neutron
Q = NQ +MQ (2.12)
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2.2.1 Nuclear scattering

The neutron interacts with the nucleus via the strong force. This interaction is

difficult to model, however scattering from thermal neutrons (with an energy equiv-

alent to 300K) can be approximated by short-ranged pseudo-potentials, leading to a

scattering length bj dependent on isotope [24]. Scattering lengths are generally de-

termined experimentally and are well tabulated [28]. Because the scattering length

is dependent on isotope there are variations on the scattering length throughout a

crystal. If we assume that all these scattering lengths are the same, we can use

the coherent cross section that depends on the correlations between different nuclei

at different times causing interference effects such as diffraction. However in a real

system there is variation to the scattering lengths from different isotopes of the same

element, and this variation leads to the incoherent scattering cross section. Incoher-

ent scattering arises from the correlation between the positions of the same nucleus

at different times and does not cause interference, therefore providing a flat back-

ground. In this work we are primarily interested in crystal structures and therefore

the interference patterns generated, as such we will use only the coherent scattering

here.

The simplicity of this model allows for simple calculations of nuclear structure

factor:

NQ =
∑
j

bje
−iQ

hkl
·rj (2.13)

Because the neutron scattering lengths are dependent on nuclear properties,

such as the binding energies and other complex properties, there is no general trend

to the scattering lengths with the atomic number as there is in x-ray scattering.

This gives neutron scattering several advantages for certain materials, especially in

materials involving light elements such as hydrogen or lithium, where the scattering

interaction is comparatively much stronger compared to x-ray techniques. When
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determining crystal structures using diffraction techniques, it is the contrast between

the scattering power of different atoms within the basis that allows their exact

locations to be determined, due to the increased difference in scattered intensities

produced. Therefore, the combination of both neutron and x-ray techniques will

always lead to the best determination of a given structure, because the different

techniques will almost always have different scattering contrasts between the various

elements in the system under study.

2.2.2 Magnetic scattering

By interacting with the spin states of electrons around an atom, neutrons can scat-

ter from long range magnetic ordering and are sensitive to magnetic excitations.

The treatment of the magnetic scattering of neutrons is based on the interaction

potential, σn · B, between the neutron, of magnetic moment σn, and the magnetic

field B within the solid, arising from the atomic magnetic moments.

The magnetic component of the structure factor is dependent on the direction

of the incident neutron moment, σn:

MQ = pM⊥Q · σn (p = 0.2695× 10−12cm/µB) (2.14)

meaning the interaction is sensitive to the orientations of spins in the system. The

magnetic structure factor M⊥Q is given by:

M⊥Q =
∑
m

fm(Q)e−iQ·rm [Mm − (Q̂ ·Mm)Q̂] (2.15)

where fm(Q) is the magnetic form factor, rm is the position and Mm is the local

magnetic moment in µB of the magnetic atom m [29]. The magnetic cross section for

neutron scattering is often comparable in magnitude to the nuclear cross section,

meaning that diffracted magnetic intensities are usually large enough to observe
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easily, even when there is nuclear scattering in the system. This distribution of

electrons around an atom gives the magnetic scattering a form factor, which leads

to a fall off in intensity when moving further out in reciprocal space. The additional

term in the magnetic structure factor demonstrates that magnetic neutron scattering

is only sensitive to magnetic moments in a sample with a moment perpendicular to

the wavevector, Q [24].

The interaction between the neutron and electron is dependent on their relative

spin orientation. Polarisation analysis can be used to control the direction of spin

of the incident neutron and measure the spin direction of the scattered neutron, al-

lowing the spin directions of the material’s electrons to be determined. The rotation

of a neutron’s spin through a material will infer the magnetic structure within the

material. There are two important modes of polarised neutron scattering:

� Non-Spin-Flip (NSF) - the measured polarisation is in the same direction as

the incident neutron polarisation.

� Spin-Flip (SF) - the measured polarisation is in the opposite direction to the

incident neutron polarisation.

Structural scattering occurs only in the NSF channels. Magnetic scattering has

components in both the NSF and SF channels, however we are only sensitive to the

magnetic moments perpendicular to Q. The NSF scattering is sensitive to compo-

nents of the magnetic moment that are parallel to the polarisation direction and

SF scattering is sensitive to components perpendicular to the polarisation direction

[30].

By measuring and combining counting statistics from several different polarisa-

tion directions, it is possible to calculate the individual components of the system’s

magnetic moment [31, 30]. The diagonal components require only the three single

direction spin flip channels, given by σīi, where i is the polarisation direction. The
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standard notation for polarisation directions is to have x pointed along Q, y will

be at 90◦ to this, within the scattering plane (the plane with ki, kf and Q in) and

z will be orthogonal to x and y. The magnetic cross section perpendicular to Q is

given by the relation:

M∗
⊥ ·M⊥ = (σxx̄ + σx̄x)− 1

2
(σyȳ + σȳy + σzz̄ + σz̄z) (2.16)

with the component in the scattering plane:

My∗
⊥ ·M

y
⊥ =

1

2
(σxx̄ + σx̄x)− 1

2
(σyȳ + σȳy) (2.17)

and the component perpendicular to the scattering plane:

M z∗
⊥ ·M z

⊥ =
1

2
(σxx̄ + σx̄x)− 1

2
(σzz̄ + σz̄z) (2.18)

Off-diagonal components of the tensor can be calculated where the scattered

polarisation direction is different to the incident direction. A chiral term can be

obtained by using:

ix̂(M∗
⊥ ×M⊥) =

1

2
(σxy − σx̄ȳ + σxȳ − σx̄y) (2.19)

This is useful for twisting magnetic structures, such as spirals and cyclical structures.

The nuclear-magnetic cross terms can be obtained from the relations:

N∗ ·My
⊥ +N ·My∗

⊥ =
1

2
(σxy − σx̄ȳ − σxȳ + σx̄y) (2.20)

N∗ ·M z
⊥ +N ·M z∗

⊥ =
1

2
(σxz − σx̄z̄ − σxz̄ + σx̄z) (2.21)

These terms are likely to be significant in systems where the magnetic and structural
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periodicities are the same and, in come cases, they may give enhanced sensitivity to

the magnetism. Explanations of the above cross sections can be found in references

[31] and [30].

2.2.3 Generation of neutrons

Neutrons can be produced for scientific purposes in one of two ways, either in a

reactor where an enriched uranium core will undergo a fast fission process (uranium

atoms are split into smaller isotopes and neutrons are emitted in the process), or

by the spallation method, where protons are accelerated and shot at a heavy metal

target, causing a controlled fission reaction.

At ISIS, the spallation method is used, using an 800 MeV proton accelerator

to collide high energy protons with a tungsten target 50 times per second [32].

The spallation process occurs within the target and fast neutrons are produced,

which are slowed using a hydrogenous moderator (hydrogen has a similar mass to

a neutron and therefore will take much of a neutrons energy during a collision,

slowing them down to useful speeds). This process allows neutrons to be produced

in pulses, meaning sensitive timing equipment can be used to accurately determine

the energy of neutrons during an experiment in a process called ‘time-of-flight’. This

has advantages for designing particular types of instrument such as SXD, where the

energy of the neutron hitting the sample must be known.

The ILL uses a high-flux reactor to produce a continuous neutron flux [33]. The

ILL is currently the most intense neutron source in the world, and this makes the

instruments here ideal for measuring weak scattering from inelastic processes or

complex magnetic materials.
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2.2.4 SXD at ISIS

SXD stands for Single crystal Diffractometer, the instrument consists of a large

sample space (with the ability to add an assortment of sample environments such

as cryostats or the furnace) surrounded by 11 large area detectors. The instrument

works from the time-of-flight principle, as neutrons are created at a specific time

when protons hit the spallation source, and then separate according to their energy

(velocity). Assuming no energy is lost in scattering through the sample, the time at

which they hit the detector relative to their start time will give the neutron energy,

and with a full spectrum of neutron energies incident on the sample, much larger

portions of reciprocal space are observable [34].

Figure 2.2: SXD at ISIS

The coverage of reciprocal space on SXD is best described using the Ewald

sphere construction in figure 2.3. The diagram illustrates that for a range of incident

neutron wavelengths, between λmin = 2π/κmax and λmax = 2π/κmin, and with large

angular coverage of scattered reflections, a large area of the wavevector transfer, Q,

can be obtained, allowing a large number of reciprocal lattice points to be measured

simultaneously. During an experiment, large volumes of reciprocal space are covered,

which is ideal for locating superlattice reflections.
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Figure 2.3: Ewald sphere construction for SXD. A pulse of neutrons is incident
on the sample with wavelengths between λmin = 2π/κmax and λmax = 2π/κmin,
these neutrons are scattered from the sample into one of the 11 area detectors. Any
reciprocal lattice points within the wavevector transfer volume, Q = kf −ki will be
observed in the detectors. The observed lattice points are shown in yellow.

2.2.5 IN20 at ILL

The beamline IN20 is situated within the main reactor building of the ILL, very close

to the reactor core. This gives IN20 a very large neutron flux, which is ideal for

magnetic and inelastic scattering experiments. IN20 is a triple-axis spectrometer,

meaning that the instrument has 3 specific components, all of which can rotate

about their own axis. The monochromater crystal is the first component and this

selects a single wavelength of neutrons from the white beam emitted by the core,

in the same way that a prism refracts different wavelengths of light. The sample

sits at the second axis, allowing a single plane of diffraction. At the final axis

is an analyser crystal, which sits in the diffracted beam and selects the outgoing
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wavelength, allowing inelastic measurements, where the neutron can lose or gain

energy during scattering. After the analyser sits a detector, which uses helium-

3 to accurately count the number of neutrons diffracted from the crystal (at the

wavelength determined by the analyser crystal).

Figure 2.4: IN20 with CRYOPAD at ILL

Controlling the neutron polarisation through the sample is possible on IN20. This

is a difficult task, however, as the spin will precess in an external field. Guide fields

were initially fitted to experiments to guide the neutron spin orientation, though this

limits the components of polarisation that can be measured [35]. Zero-field polarime-

try is a relatively new technique used to achieve zero field at the sample position

and allow full control of the neutron polarisation [36]. This additional control is

useful for particularly complex magnetic structures, such as non-collinear magnetic

structures [37]. CRYOPAD on IN20 is a pioneering device for this technique [29].

CRYOPAD uses two cylindrical low-temperature niobium Meissner magnetic

shields to remove any stray magnetic fields around the sample, illustrated in fig-

ure 2.5. The shields are transparent to neutrons and their polarisation, and the

transition between the guide-field and zero-field regions is non-adiabatic. Incident

neutrons have their moments aligned using a guide-field, then a particular polari-

sation direction is chosen using nutator coils before the zero-field region. A second
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nutator selects what scattered polarisation direction to measure. The polarisation

direction at either stage can be oriented along the scattering vector (x), perpendic-

ular to this but within the scattering plane (y) or orthogonally out of the scattering

plane (z). Counting at all combinations of these directions, including negative direc-

tions, gives 36 different cross sections. Combinations of these cross sections can be

made to determine diagonal and off-diagonal components of the magnetic scattering,

see above.

Figure 2.5: Spherical neutron polarimetry in CRYOPAD, from figure 1, Ref. [29]
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2.3 Techniques with x-rays

X-ray radiation has been used to study the arrangement of atoms in crystals for

almost one hundred years and are now a very well established technique in crystal-

lography. X-rays are used to probe materials by utilising the interaction between

the incident photon and the electrons in a material. The greatest density of elec-

trons is always tightly bound around atoms, therefore in crystals where the atoms

are ordered, this gives rise to diffraction. The scattering power of a single atom is

dependent on the density of electrons, ρ(r) around that atom. The atomic form

factor describes the scattering power by integrating over the electron density about

a single atom:

f 0(Q) =
∫
ρ(r)e−iQ·rdr (2.22)

This result does not take into account the behaviour of tightly bound electrons

close to the atom centre, where absorption and emission processes can drastically

change the scattering power. The full atomic form factor therefore also includes the

dispersion corrections, f ′ and f ′′, dependent on the x-ray energy h̄ω:

f(Q, h̄ω) = f 0(Q) + f ′(h̄ω) + if ′′(h̄ω) (2.23)

The dispersion corrections assume their extremal values when the x-ray photon has

an energy close to the binding energy of an inner-shell electron, leading to an increase

in scattering called resonant scattering. The most tightly bound electrons are those

in the K shell, and thus the resonant scattering is strongest at the K absorption

edge [23].
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2.3.1 Structural scattering

In the case where x-ray energies are not close to an absorption edge, the structure

factor can be calculated using only the charge part of the atomic form factor:

F xray
Q =

∑
j

f 0
j (Q)e−iQhkl

·rj (2.24)

The charge part of the atomic form factor can be calculated using experimentally

determined parameters and the magnitude of the scattered wavevector (Q):

f 0(Q) =
4∑
i=1

aie
−biQ2/(16π2) + c (2.25)

The parameters ai, bi and c are given in the International Tables of Crystallography

[38]. The scattering power of an atom will increase with the number of electrons

surrounding the nucleus and therefore the atomic number Z (indeed when Q is equal

to zero, f 0(0) → Z). This means light atoms scatter very weakly whereas heavy

atoms such as cobalt dominate the diffracted intensities.

2.3.2 Resonant scattering

When an incident x-ray photon interacts with the electrons around an atom with

an energy close to the binding energy of the electrons, absorption or re-emission

can occur, see figure 2.6. In this case the dispersion corrections, f ′ and f ′′ take

their extremal values, where f ′′ is negative, leading to absorption, as illustrated in

2.7. The dispersion corrections are primarily dependent on the energy of the photon

so measurements at a synchrotron can observe the resonant enhancement of these

terms by varying the x-ray energy. The technique was originally developed to study

the anisotropy of unoccupied electronic states [39] but can also be used to measure

charge and orbital ordering [40], due to the sensitivity to the electronic structure.
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Resonant scattering is also sensitive to the magnetic ordering within a material and

has been observed in nickel and holmium [41, 42].

Scattering from anisotropic ordering such as magnetism or orbital ordering can

lead to changes in the polarisation of scattered photons. Polarisation analysis in res-

onant x-ray scattering experiments therefore allows an additional tool to distinguish

between types of scattering. Polarisation analysis notation for resonant scattering is

defined relative to the scattering plane, where σ is the parallel to the scattering plane

and π is perpendicular to it. The resonant x-ray scattering theory was reformulated

for this notation, assigning cross sections to the various electric and magnetic tran-

sitions [43]. An electric dipole transition (E1) will give the largest cross section

and therefore dominate the resonant scattering. Quadrupole transitions (E2) are

usually small but can become significant, producing pre-edge peaks in an energy

scan. The type of transition can be determined by calculating the cross sections and

comparing to experimental data, this can give information on the electronic states

in a material.

During an experiment, scans of the incident x-ray energy are performed around

the electron binding energies. The sharp increase in absorption at this energy is why

this energy is called an absorption edge. The principal absorption energy for cobalt

is called the Co-K absorption edge and is at 7.71keV. The absorbed x-ray photons

are re-emitted as a fluorescent background in all directions around the material,

and the energy dependence of this background can be used to study the electronic

structure of the system.

In special cases where there is ordering of the electronic structure, resonant

scattering can occur at a material’s absorption energy causing an increase in intensity

at the diffracted Bragg peak. This resonant scattering can be caused by a number

of phenomena:

� Charge Ordering - charged ions arrange themselves into ordered patterns
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Figure 2.6: An x-ray (red line) can be absorbed in an atom when an electron (red
ball) is promoted from a core energy level to a state in the continuum, becoming a
photoelectron. The core level can then be reoccupied by an electron from an outer
shell, emitting a photon in the process.

� Magnetic Ordering - magnetic ions arrange themselves into ordered patterns

� Orbital Ordering - the electronic orbitals around an atom arrange themselves

into ordered patterns

� Jahn-Teller Distortions - distortions in the cobalt-oxygen bond length arrange

themselves into ordered patterns

Using a variety of different techniques and procedures, the cause of resonant scat-

tering can usually be determined experimentally. By controlling the polarisation of

incident and reflected x-rays, it is possible to sort between isotropic electronic scat-

tering (from charge ordering) or anisotropic scattering (from the others). Keeping

the incident and scattered wavevectors constant but rotating the sample through

the azimuthal angle (the rotation about the vector Q) will determine the shape of

the electronic scattering and also help distinguish between the different types of

scattering. Magnetic ordering can be determined by looking at a number of dif-
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Figure 2.7: Changes in scattering at x-ray absorption edges. Transmission of x-rays
through cobalt reduces significantly at ≈ 7.71keV , but a fluorescent background
is emitted (intensities are scaled for visual aide). At this energy, the dispersion
corrections for cobalt show a sharp drop in f ′ and a rise in f ′′.

ferent Bragg reflections, where resonant magnetic scattering will occur at specific

positions depending on the magnetic structure. It is often required, however, to

use sophisticated modelling software to infer additional information about the elec-

tronic structure of a material by comparing experimental and calculated energy and

azimuthal dependences.

Resonant x-ray diffraction is a relatively new technique but the ability to measure

complex magnetic and electronic ordering with x-rays has many advantages, such

as requiring smaller samples and shorter counting times than neutrons. The tech-

nique has been successful in investigating many complex materials, for example the

observation of charge order at the metal-insulator transition in NdNiO3 films [44].

The technique has also been successful in combination with neutron measurements

to determine the magnetic ground state of CeFe2 [45].

2.3.3 Generation of x-rays

X-ray radiation can be produced in a number of ways. For typical lab based equip-

ment, x-rays are produced by colliding high energy electrons with heavy metal tar-
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gets, such as copper or molybdenum. The electrons are produced by a Cathode and

are accelerated towards their target. On collision, two processes occur that produce

x-rays. The first is the Bremsstrahlung (breaking) process in which a continuous

spectrum of radiation is produced by electrons slowing down in the material. The

second process is fluorescence which produces a sharp resonance in intensity at a

particular energy, caused by the collision of the incident electron with an atom. The

collision causes an atomic electron to be removed from an inner shell, creating a

vacancy. An atomic electron from a higher energy shell will then relax to fill the

vacancy, emitting a photon with an energy equal to the change in energy state.

The greatest intensity of x-rays is produced at the Kα energy of an element, which

involves a transition from the second to first electron shells. A monochromator,

such as a well diffracting crystal, can be used to select only the high intensity Kα

radiation from the source, which can then be collimated towards a crystal sample

for diffraction.

In a synchrotron, much greater intensities of x-rays can be produced by accelerat-

ing electrons with strong magnetic fields. If electrons are held at relativistic speeds,

they will emit radiation when they are accelerated in a strong magnetic field, such as

in a bending magnet or undulator (which causes electrons to oscillate on a straight

segment of the synchrotron ring). This produces a continuous spectrum of radia-

tion, and a series of optics can be used to select a single wavelength. Synchrotron

radiation can be used in an enormous number of different ways, and many instru-

ments are usually set around the ring of a synchrotron to perform different types of

experiment.

2.3.4 Xcalibur at Royal Holloway

The Xcalibur lab based diffractometer uses the principles of x-ray diffraction to

study single crystal samples with size of the order 0.1 – 0.5mm. It is a largely
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automated machine with powerful software called CrysAlisPro which is able to run

the instrument and analyse the data. A molybdenum source produces x-rays as

described above for lab sources, and a single wavelength of 0.709Å is selected by a

monochromator which is then collimated directly onto the sample. The sample sits

on a 4-axis goniometer capable of rotating the sample through almost any angle.

X-rays are diffracted in transmission through the sample and are captured by a CCD

camera via a beryllium window and scintillation screen that converts the x-rays to

visible light.

Experiments on the instrument take anything from 15 minutes to 12 hours and

can give full coverage of reciprocal space. The software is capable of determining the

unit cell of the system, suggesting the most efficient geometries for the experiment

and integrating the Bragg peaks (corrected for absorption in the sample, background

and other factors). Automated structural solution and refinement is also possible

for simple materials using additional refinement software.

Figure 2.8: Xcalibur single crystal x-ray diffractometer at Royal Holloway
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2.3.5 I16 at Diamond

I16 is a general purpose diffraction beamline at Diamond, which specialises in study-

ing materials and magnetism. The general purpose nature of the instrument means

that a large number of different options and sample environments are possible [46].

Figure 2.9: I16 Beamline at Diamond

X-rays are generated via an undulator on the synchrotron and are focused into a

plane polarised, monochromatic beam in the optics hutch. The sample is mounted

on the goniometer and placed in the beam. Scattered x-rays are measured using one

of the components on the detector arm, such as the PILATUS area detector or the

analyser crystal and point detector.

Resonant scattering experiments require control of the incident x-ray energy,

x-ray polarisation, azimuthal angle and temperature. X-ray energy is controlled

in the optics hutch and as described in figure 2.10, an analyser crystal and 6-axis

goniometer are used to control the polarisation and azimuthal orientations. Various

sample environments are available for control of temperature, such as the 6-800K

cryofurnace.
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Figure 2.10: Polarisation and azimuthal control for resonant x-ray scattering on
I16. Monochromatic, plane polarised x-rays are emitted from the beamline and
scattered from the sample, where their polarisation can be rotated by anisotropic
electronic environments within the sample. An analyser crystal is used to measure
the unrotated (σ) or rotated (π) polarisation channels. Azimuthal analysis can
be achieved by rotating the sample in the azimuthal plane, keeping incident and
scattered positions fixed.

2.4 Other techniques

2.4.1 Crystal growth

Materials used in modern science are rarely found as natural compounds, instead

they must be synthesized using special techniques and a chemical knowledge of the

constituent elements. It is ideal to study these materials as crystals, where the

atoms are arranged in ordered patterns throughout the entire material. However,

to synthesize a material as a crystal is a difficult task, and often cannot be achieved

in a simple way. Crystals can be grown from a compressed boule of powder using

an image furnace, where the boule is subject to very precise conditions of heat,
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atmosphere and movement in order to allow a single grain of crystal to grow within

the material. An image furnace uses high powered lamps to focus intense heat onto

one region of the material, creating a molten zone. In the liquid state, atoms within

the material are able to form bonds that will allow them to crystallize on cooling,

and by moving the entire boule through the molten zone, the material will set as a

large single crystal [47].

2.4.2 PPMS at Royal Holloway

A Physical Properties Measurement System (PPMS) is a work horse of condensed

matter research. A sample environment is housed within a helium dewar, surrounded

by a nitrogen jacket, allowing measurements of many physical properties to be taken

at temperatures between room temperature and 1.8K. Various sample mountings can

be used to measure resistivity, thermal conductivity, heat capacity or the Seebeck

coefficient, as well as magnetic properties such as susceptibility. Measurements

from the system are logged and analysed using a connected computer, allowing a

standardisation of results.

At Royal Holloway there is a Quantum Design PPMS that has specific options

to measure thermal transport properties in a material, including the Seebeck effect

and thermoelectric figure of merit.

2.4.3 MPMS at Diamond

A Magnetic Properties Measurement System (MPMS) is an instrument similar to a

PPMS, although it is designed specifically for highly sensitive measurements of mag-

netic properties. A MPMS uses a SQUID (Superconducting Quantum Interference

Device) magnetometer, which comprises two superconducting coils that can detect

incredibly small magnetic fields. The magnetic moment of a sample can be measured

at a range of temperatures and external magnetic fields using one of two methods.
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Either the sample is vibrated through the superconducting coils (thus inducing a

current in the coils via Lenz’s law) or an AC field is created inducing a varying

magnetic response in the sample which can be measured by the superconducting

coils.

The MPMS SQUID VSM (Vibrating Sample Magnetometer) at Diamond allows

very precise measurements of the DC susceptibility of a sample at a range of tem-

peratures. Temperature and field sweeps can be acquired and samples of less than

5mm can be mounted in different orientations.
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Computational Techniques

3.1 Reverse Monte Carlo

After a diffraction experiment has been performed, the standard crystallographic

procedure is to run the integrated diffraction peak intensities through commercial

programs that solve the crystal structure. However, Sodium Cobaltate exhibits

superlattice patterns where the size of the unit cells and the complexity of the

diffraction patterns mean that the commercial software does not produce reliable

results.

Instead we have developed our own program to solve the superstructures of our

systems, using a technique called Reverse Monte Carlo (RMC). This program allows

the parameters of the system to vary freely at the beginning as if the structure was

at high temperature, then instead of reducing the energy of the system, the fit

to the experimental data is reduced [48]. RMC methods have been successful in

determining the short range order within disordered materials [49] and also have

been used to determine superstructures in Sodium Cobaltate [50]. Monte Carlo

methods are used here to produce random movements throughout the lattice, and

the Metropolis algorithm makes this more efficient by accepting these random moves

54
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if they make the structure more consistent with the experimental data, or with a

probability that can be controlled.

Example code using this technique can be found in appendix A, however in this

section I will explain the main principles of the program. The basic flow chart in

figure 3.1 explains the overarching process of this technique.

Figure 3.1: Flowchart of RMC analysis.
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3.1.1 Background

The Monte-Carlo method was initially developed just after the second world war,

within the “Manhattan” secret military project to improve nuclear weapons. Its

aim was to use the numerical processing power of computers to simulate physical

phenomena which are essentially stochastic: the interaction of neutrons, gamma

rays etc... with matter. RMC modelling was developed further in the late 1980s for

determining the structures of liquids and glasses [51]. In such systems, diffraction

measurements provide information on the correlations between a pair of atoms at

some separation r. By fixing the origin of the system to centre on an average atomic

site (averaged over all atoms in the system, some atoms may be distorted away from

the equilibrium position), the structure can be described in terms of a radial density

function or radial distribution function. The values of these parameters (and thus

the expected nuclear scattering) can be tuned by the movement of atoms until good

agreement is found with the experimental data. This is the basic premise of the

RMC method [48].

Since their initial application to liquids and glasses, RMC techniques have been

applied to a wide range of systems including single crystals, powders, polymers [48]

and magnetic materials [52]. In each of these systems, the method relies upon the

movement of an atom (or in the case of magnetism, the rotation and location of

spin states) and the comparison of the expected scattering with the experimental

data. This is in itself no different from the procedure of a Rietveld refinement. The

difference is that the motion of the atoms is random, and thus the process and its

models are statistical rather than deterministic in nature.

The RMC method will produce a structural model that is not unique, however

this does not mean that the model is not useful as a way of understanding the

system [53]. It is not right to ask if the model is “correct” as this can never be

experimentally determined, all we know it that the model generated is one possible
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solution that matches the data points within experimental error. This point, whist in

principle true of all scientific models, has been a key complaint of the RMC method

[54]. Another complaint about RMC is that the statistical nature of the process

means that some level of errors will be unavoidable in the final model, which due to

their random nature, cannot be readily removed, however with adequate constraints

they can be suppressed [55]. The papers mentioned earlier [48, 51, 52] describe

situations where the use of RMC has led to useful models that have given a better

understanding of a system. It should be pointed out however that the number of

non-unique models for a system such as a glass or liquid is far greater than the

number of non-unique configurations in a highly symmetric crystalline system such

as the system we are modelling here, increasing the potential effectiveness of RMC

in this situation.

In the Canonical Ensemble (a small system exchanging energy, imposing a temper-

ature T ), the probability for the system to be in some configuration X is proportional

to the Boltzmann weight

e
−E(X)
kBT (3.1)

where E(X) is the energy corresponding to the configuration X (X represents all

degrees of freedom, e.g. coordinates of N interacting particles in 3D). Monte-Carlo

methods can sample an ensemble of configurations Xi, according to a probability

proportional to the Boltzmann factor, exp[−E(X)/kBT ]. Various physical quanti-

ties (mean energy, specific heat, magnetization etc...) can be obtained by simple

averages over those configurations Xi. In this domain, the first–and still widely

used–algorithm was published by Metropolis et al. (a participant of the Manhattan

project) in 1955 [56].



CHAPTER 3. COMPUTATIONAL TECHNIQUES 58

The Monte-Carlo method not only deals with physical problems which are stochas-

tic in essence. It can also be very useful in finding solutions to deterministic prob-

lems, like the calculation of a multidimensional integral, or the search for the absolute

minimum of a complicated function with many variables.

Finding the absolute minimum of a many-variable function E(x1, x2, · · · , xN) is a

challenging problem. Steepest descent methods work well in one or two dimensions,

but for N > 10, finding the absolute minimum of E is very difficult. One of the

most efficient methods, called “Simulated Annealing”, uses Monte-Carlo techniques.

Let us simply consider that the function E(x1, x2, · · · , xN) represents the energy

of a thermodynamic system with configurations X = {x1, x2, · · · , xN}. Start a

Monte-Carlo simulation in Canonical Ensemble at high temperature T , where all

configuration space is explored, then decrease the temperature. If the system is

ergodic (all possible configurations can be reached) and the temperature decrease

sufficiently slow, you will converge at T → 0 to the ground-state energy, i.e. the

absolute minimum of E(x1, x2, · · · , xN).

Now, in the particular case, where E(x1, x2, · · · , xN) represents the mean-square

deviation between an experimental Neutron or X-ray spectrum and the calculated

prediction from a configuration in real-space, the generally accepted term for the

minimisation of E(x1, · · · , xN) through Monte-Carlo simulated annealing is “Reverse

Monte-Carlo”.

3.1.2 Theory

It is important to have some understanding of the statistical methods that RMC

modelling is built upon. In many-dimensional configuration spaces, the most effi-

cient algorithms use Markov chains. A Markov Chain is an ordered infinite sequence

of random variables, where a single variable is dependent only on the variable pre-
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ceding it and not on the chain of variables leading to it. After a sufficiently long

time, the Markov Chain will converge to a non-unique distribution (dependent on

the starting conditions). If the Markov chain is ergodic (i.e. the probability of a

transition between any two configurations in a finite number of steps is non-zero),

we can force the converged distribution into a unique limiting law, f(x), using the

“microreversibility condition” (also known as the detailed balance law). We can im-

pose the limiting law to be a probability distribution corresponding to the Canonical

Ensemble by choosing

f(x) = e
−E(x)
kBT (3.2)

where E(x) is a value calculated from a configuration based on the variable x.

To satisfy the microreversibility condition, Metropolis proposed the following sim-

ple algorithm, which is still widely used.

1. Start from some arbitrary configuration X of your multidimensional system

and calculate the corresponding energy E(X).

2. Define from X a new “trial” configuration Y and calculate E(Y ). It is often

most efficient to take Y not “too far away” from X, for example, you can only

change one or a few variables, taken at random, among the many degrees of

freedom defining X.

3. If E(Y ) ≤ E(X) accept Y as the new configuration at time t+ 1.

4. If E(Y ) > E(X) accept Y as the new configuration with probability

P = e
−(E(Y )−E(X))

kBT (3.3)

To do this, simply draw at random, a real number, η, uniformly distributed

between 0 and 1. Accept Y as the new configuration at time t + 1 if η < P ,
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otherwise reject Y and keep X as the new configuration at time t+ 1.

In Sodium Cobaltate systems, the number of different configurations of Sodium

ions within a supercell will become extremely large very quickly (there are over 4

million configurations for a supercell comprising of 5 sodium ions per layer in a

supercell of only 7 unit cells!). It is therefore important to use an efficient algorithm

that can cover a large proportion of all configuration. The Metropolis algorithm, as

described above, is a realistic possibility, driving the changes to the model towards

a probable solution.

3.1.3 Experimental Analysis

Single crystal diffraction data can be acquired using neutrons or x-rays as described

in the previous chapters, but to use this data the diffraction peaks must be inte-

grated. Software for each instrument is able to search through the raw diffraction

data and pick diffraction spots from the background. These spots will be saved in

a peak table containing their position in reciprocal space. Then, using a peak table

containing hundreds or thousands of positions, the instrument software will use a

fitting algorithm to determine the unit cell of the crystal sample, and transform the

peak positions into units of the unit cell, (hkl). In a system with a superlattice, the

superlattice vectors must be defined and the positions will be indexed in units of

the supercell.

Accurate estimations of the diffracted intensity can then be acquired by inte-

grating the experimental data at the reciprocal superlattice positions. Integration

can be performed in a number of ways, and for large peaks the standard method

is to fit a Gaussian or similar function to the peak and calculate the area under

the curve. For small peaks however, the number of pixels around a peak is small

and superlattice peaks do not fit well to a Gaussian function. It is easier and more
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reliable to perform a much simpler analysis, where at each superlattice position,

the pixels around the position are summed up after removing the background, as

illustrated in figure 3.2.

Figure 3.2: Integration of a superlattice peak. (a) A 2D cut through reciprocal space
shows a superlattice peak. (b) Remove the background and sum the remaining pixels
to acquire the integrated peak intensity.

Integrating every superlattice position over all of reciprocal space can give thou-

sands of peak intensities, however it is important to check the integrated data for

anomalous integrations, where impurities in the diffraction pattern have lead to

an incorrect calculation of the intensity at that position. Anomalous integrations

can effect the RMC calculations quite strongly and often lead the calculation to an

incorrect structure.

3.1.4 Symmetry Domains

Sodium Cobaltate is a hexagonal system, and therefore has the rotation and inver-

sion symmetries that apply to its space group. When a superlattice forms due to



CHAPTER 3. COMPUTATIONAL TECHNIQUES 62

vacancy ordering, this ordering may have a lower symmetry than that of the aver-

age unit cell, and this means that the supercell could form in one of a number of

different orientations with equal probability. These different orientations can occur

simultaneously within the system, each giving their own contribution to the scat-

tered intensity and what results is an intensity pattern that cannot be solved by

only considering a single symmetric domain. To solve a structure of this type, we

must calculate all of the component domain intensities that occur at each of the

experimentally observed reflections, for instance a principal reflection will have a

contribution from 12 different symmetrical domains but certain superlattice reflec-

tions will only have 6 contributions.

The different domains in Sodium Cobaltate systems can be modelled by apply-

ing the basic symmetries to the supercell, giving 12 different domain supercells.

Each reflection can be indexed independently by each domain supercell, however

not all positions will be indexed by all domain supercells. Reflections indexed with

a given domain supercell will have an intensity contribution from that domain. All

reflections from each domain are calculated, and for each observed reflection, all the

domain contributions are summed, so that the calculated intensities, Icalc have the

same contributions as the experimental data, Iexp.

3.1.5 Building a Trial Model

Using a supercell determined from the locations of diffracted satellite peaks, a basic

model of the system is generated by building a lattice of enough unit cells to fill

the supercell (this is always an integer number in our case). This will generate a

supercell with two layers of cobalt-oxygen tetrahedra, and two layers of sodium.

The sodium sites are filled at random up to the required concentrations of sodium

and the dopants, where each layer is filled with the same number of atoms, but the

arrangement within each layer will be different, as shown in figure 3.3.
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Figure 3.3: A supercell of Na0.8CoO2, filled with 15 Sodium Cobaltate unit cells,
with random placement of sodium ions. Green balls are cobalt, grey, oxygen and
blue are sodium.

This model is then used to calculate diffracted intensities at the same positions

as the integrated peaks. The calculated intensity is then normalised against the

experimental data by matching the total sum of the dataset:

Inorm = Icalc

√√√√∑
I2
exp∑
I2
calc

(3.4)

3.1.6 Atomic Movements

During each iteration of the calculation, the atoms within the unit cell can move at

random from their starting positions subject to several restraints. There are three

programmed methods of movement, and these are described below.

Sodium hopping Sodium or dopant ions within the sodium layer can hop between

different vacancy sites. They can hop to both Na1 and Na2 type positions. If a Na1
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site is right next to a filled Na2 site, their separation would be closer than the ionic

diameter of sodium and the short range repulsion would be large, so this move would

not be allowed. Ions can hop within a layer but cannot hop between layers, keeping

the concentration of each layer fixed.

Dopant switching When dopant ions are within the sodium layer, an additional

movement is required that allows the swapping of scattering lengths between a

sodium and dopant site. This helps prevent false minima solutions that can occur

if the dopant ion cannot attempt all possible movements.

Atomic displacement Each ion in the supercell is able to make small movements

away from their initial positions. Each movement is made as a small step in a random

direction, however to stop a net travel of the superstructure in one direction, the

movement of an ion in one layer is matched by the equal and opposite movement of

an equivalent ion in a different layer, therefore keeping the centre of mass constant.

The atomic displacements can be used to check for buckling in the cobalt-oxygen

layers.

3.1.7 Metropolis Algorithm

After each movement type is performed, changes to the calculated intensities are

determined and these are compared with the experimental values using the χ2 dis-

tribution:

χ2 =
∑
hkl

(Iexp − Icalc)2

∆I2
exp

(3.5)

To determine whether this move has produced a better or worse fit to the experi-

mental data, we use the Metropolis algorithm, described in general earlier and for

this implementation in figure 3.4.

The new χ2 value is compared with the previous value from the last iteration,
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if the new value is lower (a better fit) then the movement will be kept, and the

structure will have changed. If the new χ2 value is higher (less comparable to

the experiment), then the movement is only kept with a certain probability. For

this program we base our probability on a fictitious temperature, T , where the the

probability that a bad movement will be kept obeys a Boltzmann distribution:

Pkeepmove = e
χ2
old

−χ2new
kBT (3.6)

where kB is the Boltzmann constant. Using the Metropolis algorithm means that

good moves will preferentially and efficiently be taken but bad moves can still occur,

allowing the model to sample many possible solutions and stopping the model from

falling into a false minimum, which is an incorrect solution where no single atomic

movement can improve the fit.

3.1.8 Simulated Annealing

By controlling the fictitious temperature, T , the probability of accepting a poor

move can be controlled. At the start of the calculation, the temperature is high, so

all movements are possible, irrespective of their effect on the fit to experimental data.

After a large number of iterations (enough for a large coverage of possible solutions

to be attempted), the temperature is reduced by a small factor and the movement

iterations are run again. Over many temperature steps, the model anneals into the

best fitting solution, similar to a molten metal cooling and setting into a crystal. If

the changes in temperature are too great, then the model may anneal too quickly,

causing the system to condense into a false minima.

The final model is then used to calculate two-dimensional cuts through reciprocal

space that can be compared directly to experiment, as a final check of the solutions

validity. Comparing the results by eye will often give more reliable results than
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Figure 3.4: Diagram to show the Metropolis algorithm.

comparing χ2 values, as anomalous integrations can distort them. The ratio χ2/nd

can be used to measure the agreement between model and data, where nd is the

number of degrees of freedom (given as the data points minus the number of free

parameters), and a good fit would be a value close to 1 [57]. The number of free

parameters in the system can be given as 3N , where N is the number of atoms in the

system, although in practice this is not really accurate as the constraints imposed on

atomic movements reduces this number. A weighted R-factor can also be calculated,

which is a common alternative to the χ2 distribution used in crystallography:

Rw =

√√√√√∑
∣∣∣w |Iexp − Icalc|2∣∣∣∑ ∣∣∣wI2

exp

∣∣∣ (3.7)
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where the weighting factor, w, is usually 1/∆I2
exp. This parameter gives a percentage

fit to the experimental data, where <20% would be a good fit and >70% has no

correlation to the experiment.

3.1.9 Testing

The RMC code was tested by running the code on a simulated diffraction pattern.

This testing was performed with the aid of David Voneshen, who performed testing

as part of his undergraduate project.

A supercell of Na0.8CoO2 with tri-vacancy clusters in the square phase was

used to calculate a set of diffracted neutron intensities. The intensities were given

a Gaussian distribution to model experimental resolution and the error on each

value was calculated as
√
I. A second model was also used that included periodic

distortions in the cobalt layer. The simulated intensities were then used as the list

of experimental data, Iexp, in the RMC code.

Solutions from the code revealed that, given enough independent reflections from

the simulated model, the calculated model would reproduce both the sodium order-

ing and the cobalt distortions. However it was found that features such as annealing

rate and the symmetry domain calculations were very important in achieving finer

details such as the distortions. It was also found that running the program several

times using different pools of random numbers (for random atomic movement and

for the Metropolis algorithm) would allow us to asses the reliability of the solution,

if different solutions appear then the solution may not be unique, though this was

not usually found to be the case.
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3.2 FDMNES

X-ray spectroscopy is related to the real or virtual absorption of x-rays in materials

and is sensitive to the electronic and magnetic structures within the material. The

cross section of x-ray scattering at energies around an absorption edge are dependent

on both these degrees of freedom and on the polarisation and energy of the incident

and scattered photons. The FDMNES program has been developed alongside the

experimental techniques in this field and serves as an excellent tool in understanding

the nature of resonant scattering from complex materials. FDMNES was written by

Dr Yves Joly from Institut Néel, CNRS, Grenoble. The program is able to calculate

the resonant x-ray scattering from a given crystal structure, calculating experimental

observables such as the energy line shape and azimuthal dependence [58, 59].

3.2.1 Interactions of x-rays with matter

If we consider a material in a beam of x-rays, the process of anomalous scattering (a

change in phase of the scattered x-ray due to absorption from the scattering atom)

occurs when a photon has an energy close to the constituent chemical element’s

binding energy. This leads to a transition of a photoelectron from a core level to an

unoccupied state. The transition can be permanent, where the photon is absorbed

(measured in absorption spectroscopy) or temporary, when the excited electron will

return to the core level, emitting a photon of particular energy. See figure 2.6.

Electronic transitions are dependent primarily on the binding energy, and there-

fore atomic number of an element, but also on the selection rules and energy states of

the electronic structure of a material. The electronic states available to transitions

are determined by the crystal structure and symmetry about the absorbing atom,

though the polarisation of the incident photon will also vary the states available in

the case of anisotropic orbitals about an atom. By describing the different scattering
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processes under a common formalism (in this case using multipolar operators of the

photon-electron interaction), scattering amplitudes can be calculated that combine

all interactions.

3.2.2 Electronic structure calculations

The calculation of the electronic structure of atoms, molecules and materials has

been a rich topic of research for the past century. The difficulty in such calculations is

due to the many-body nature of the problem, namely the simultaneous interaction of

1023 charged particles. Density Functional Theory (DFT) is a quantum mechanical

modelling method used to investigate these systems, using functionals (functions of

another function) of the electronic density to solve the Schröedinger equation.

DFT takes its functional roots from the Thomas-Fermi model [60, 61] and Hohenberg-

Kohn theorems [62], however the modern framework is established with the Kohn-

Sham equations [63]. In the Kohn-Sham framework, the intractable many-body

problem of interacting electrons in a static external potential is reduced to a tractable

problem of non-interacting electrons moving in an effective potential. The effective

potential includes the external potential and the effects of Coulomb interactions

between the electrons (exchange and correlation). Modelling the electron interac-

tions is still difficult at this level and approximations are required to simplify their

calculation. The simplest approximation is the local density approximation (LDA),

which calculates the orbitals of a single electron and treats it as a uniform electron

gas [64, 65].

In practice, there are a number of methods to solve the Kohn-Sham equations,

with different methods being favoured for different systems. The methods used

by FDMNES are the Finite Difference Method (FDM) or the multiple scattering

method. In the FDM, the electronic potential for the one-electron orbital is free and

does not use approximations. This method becomes too demanding for complex
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systems such as ours, so instead multiple scattering is used. The multiple scattering

method uses the Green formalism on a muffin-tin potential, which can be less precise

but much faster. The muffin-tin potential approximation is valid for dense metals

with high symmetry, such as Sodium Cobaltate.

3.2.3 Calculation details

The program is split into two distinct parts:

1. The first concerns the calculation of the final state towards which the pho-

toelectron will transit. This calculation is performed by solving, ab initio,

the Schrödinger equation using the Finite Difference Method (FDM) or the

method of multiple scattering.

2. Once all possible final states have been calculated, the transition matrices are

determined between the initial and final states. These are summed to obtain

the structure factors and then the scattering cross sections, allowing direct

comparison with experimental data. The calculation takes into account the

polarisation of the incident and scattered photon.

3.2.4 Use of the program

FDMNES can be freely downloaded as a Windows executable from the Institut Néel

website [59]. The program has been developed to be simple to use, requiring only

an input data file containing the crystal structure and calculation instructions. An

example input file has been included in appendix B. The primary variables in the

calculation are the locations of atoms within the unit cell, and the radius at which

the final states are calculated, where a larger radius will provide more accurate

results but be more costly of time. The program will run on most computers, with

simple calculations usually taking anything from a few minutes to several days on
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a dual-core laptop. More complex calculations can be performed using a computer

cluster and the code can run in parallel for this.

3.2.5 Comparison to experiment

As described above, FDMNES can calculate the cross sections of scattered radiation

from resonant x-ray processes. This means that energy and azimuthal line spectra

can be produced to compare directly to experimental data. In reality, the certain

experimental calibration factors have to be employed to achieve agreement, such as

a scaling factor for the intensity and a small offset in energy. The parameters of

the calculation can also lead to varying results as the convergence of the final states

may vary depending on what radius has been chosen.

FDMNES has been used successfully in previous experiments in helping to inter-

pret the electronic properties of materials, most notably in oxide materials [66, 67].



Chapter 4

Crystal Structures

4.1 Abstract

Single crystal diffraction is performed on samples of NaxCoO2, NaxCayCoO2 and

NaxSryCoO2 using neutrons on SXD and x-rays at Royal Holloway. All three

systems demonstrate previously unobserved superlattice patterns. Refinements of

the principal Bragg peaks provide information on the occupancies of sodium and

dopant sites, and Reverse Monte Carlo (RMC) techniques are employed to solve

the sodium layer ordering and atomic displacements. RMC results for Na0.8CoO2

give ordered stripes of tri-vacancy clusters, consistent with previous modelling, and

also show buckling in the Co layer that follows the patterning of sodium ions. For

Na0.57Ca0.14CoO2 we find a di-vacancy structure where the calcium ion sits at the

central site. Two different superlattice phases were observed in NaxSryCoO2, both

requiring large supercells and exhibiting intense peaks away from the principal Bragg

reflections. Through a process of RMC and intensive manual modelling, these struc-

tures are shown to comprise of ordered Sr ions in large multi-vacancy clusters.

72
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4.2 Background

Previous diffraction studies have revealed a kaleidoscope of superlattice patterns

in reciprocal space as a function of sodium concentration, x and temperature [68,

50]. These superlattice patterns were originally thought to be incommensurate due

to their complex patterns [68], however it was shown by Morris et al. that the

peaks would lie on a commensurate hexagonal grid of a∗/N , where N is an integer,

and be caused by ordering of the sodium ions into long range superstructures [69].

Forward Monte Carlo calculations by Michel Roger from CEA, Saclay, revealed

vacancy ordering in the sodium layers [70], leading to the formation of vacancy

clusters, where a sodium ion would be promoted to a Na1 site (red sites in figure

1.3) and be surrounded by vacancies. Using the short range repulsion of ions and

a long-range Coulomb potential to model the sodium ions and vacancies within

the plane, an electrostatic theory was developed that established the formation

and long range ordering of vacancy clusters. Vacancies within the sodium plane

can be considered as negative charges that repel each other by Coulomb repulsion.

As the concentration of vacancies increases, they are forced closer together. By

promoting a sodium ion from a Na2 site (blue in diagrams) onto a less energetically

favourable Na1 site (red), vacancies can move together and by reducing the total

surface energy, stabilise multi-vacancy clusters as demonstrated in figure 4.1. These

vacancy clusters order into long range patterns and the scattering from this long

range ordering creates a superlattice of peaks in reciprocal space.

A number of these superstructures observed through diffraction techniques have

now been solved, including the structure of Na0.5CoO2 [71] which comprises alter-

nating stripes of Na1 and Na2 sites. In the region 0.7<x<0.85, particularly rich

superlattice patterns have been observed, including 6-fold or 12-fold rings of satel-

lite peaks as well as the hexagon-of-hexagons structure [50, 72, 73]. Phase coexis-

tence has also been reported between different compositions [74, 75]. Solving the
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Figure 4.1: Sodium ordering principles, taken from figure 1, ref. [70]. (a) Sodium
can sit on one of two possible sites, red sites have higher energy due to short range
repulsion from cobalt. (b) When vacancies are next to each other, surface energy can
be lowered by promoting a blue Na2 site onto a red Na1 site, stabilising the multi-
vacancy cluster. (c) Calculations of the energy of ordered arrays of mono-vacancies
(black), di-vacancies (red), tri-vacancies (blue) and quadri-vacancies (green). Co-
existence between phases can occur between certain fractional fillings due to the
interchanging hierarchy of energies.
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structures that lead to these complex diffraction patterns has proven a particularly

difficult task, with various methodologies, including theoretical works, appearing

in the literature [76, 77, 73, 78, 79, 80]. Perhaps the most successful method was

developed by Michel Roger, who was first to apply Reverse Monte Carlo methods

to single crystal x-ray diffraction data on the high-x compositions [12].

By indexing the superlattice peaks on a commensurate grid, the size of supercell

and superlattice vectors could be obtained. The intensities would then be used to

generate the sodium ordering using the RMC code. In this way it was found by

Morris et al. that the high-x structures could form in either a square or striped

arrangement of tri-vacancy clusters, where conversion between the two structures

requires two shear transforms, as shown in figure 4.2. The hexagon-of-hexagons

structure was found to be a coexistence of these two phases, producing two separate

but overlapping superlattices in reciprocal space.

However, the diffraction patterns could not be fully explained by the ordering of

sodium ions. The electrostatic potential created by the vacancy clusters was found

to create a distortion field that would lead to periodic buckling of the cobalt layers

[70]. To obtain the best agreement with the observed modulation of intensities,

especially in the high-L planes in reciprocal space, these distortions were required.

The buckling of cobalt ions could be applied to a model using a single force constant,

allowing a single parameter to fit the model with. This was an important factor in

reproducing the diffraction patterns for the square and stripe phases mentioned

above [76].
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Figure 4.2: Conversion between square and stripe phase of x = 0.80 tri-vacancy
system, from figure 2, ref. [50]. Each panel shows the ionic ordering in adjacent
sodium layers, and the Coulomb landscape this ordering generates in the interven-
ing cobalt layer. Panel (a) shows the square phase of tri-vacancies observed in
Na0.75CoO2 at low temperature and panel (c) shows the ordered stripe phase ob-
served in Na0.78CoO2. Two shear distortions along the supercell axis transform
between the two phases. The high temperature phase of randomly ordered stripes
is shown in panel (d).
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Figure 4.3 shows that the thermoelectric power factor increases as the number

of holes decreases and x increases. However in the high-x region, phase separation

occurs and this leads to a reduction in the power factor due to phase coexistence with

the insulating x = 1 phase [7]. In order to increase this limit on the thermoelectric

properties of this system it is important to decrease the number of holes, and this

can be performed by doping the sodium layer with divalent ions. Doping with Ca2+

and Sr2+ has shown improvements to the power factor due to a large enhancement of

the Seebeck coefficient, as illustrated in figures 4.4 and 4.5. In both cases the initial

improvement of the power factor decreases as the dopant concentration increases.

However, single crystal diffraction studies have not been performed on these systems

until now.

Figure 4.3: Increasing the sodium concentration, x, leads to greater power factors
until x ≈ 0.86, when phase coexistence with the insulating x = 1.0 phase reduces
this value. From figure 4, ref. [7]
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Figure 4.4: Doping with various concentrations of calcium leads to higher values of
the Seebeck coefficient (thermopower), however at increased calcium content, x, the
resistivity increases, reducing the power factor. From figure 3, ref. [81]

Figure 4.5: Power factor of (Na1−yMy)1.6Co2O4 for different dopants with dopant
fraction, y, showing the increase in power factor with small doping of divalent ions.
From figure 5, ref. [82]
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4.3 Experimental Procedure

4.3.1 Neutron Measurements on SXD

Boules of various compounds of Sodium Cobaltate were grown using the floating

zone technique either at Oxford University by Dr D. Prabhakaran or at Royal Hol-

loway by Dr S. Uthayakumar [47, 83]. We attempted to determine the composition

of each boule by measuring small fragments using Energy-dispersive X-ray spec-

troscopy (EDX). EDX is only sensitive to the surface of the sample and it was found

that scanning along the surface varied the compositions significantly around the

nominal growth compositions, presumably due to loss of sodium from the surface in

air. The boules were screened using neutrons on SXD at ISIS, allowing us to find

large single grains within the growths. Table 4.1 shows several large single crystals

that were found through this screening process and have been used in the following

experiments. The largest Na0.8CoO2 crystal had remarkably strong and sharp re-

flections with an average mosaic spread in all directions of 0.05Å−1. This was easily

the largest single crystal of Sodium Cobaltate grown to date. Once a single crys-

tal with large principal Bragg peaks was found, longer exposures of 3-6 hours were

taken at several different orientations, allowing a large portion of reciprocal space to

be mapped. Each sample was measured at several temperatures using the standard

SXD sample environment, which gives a temperature range between 40K and 300K.

Additional environments were often used with alternative temperature ranges, such

as the low temperature cryostat that can reach 5K or the furnace, which is able to

heat the sample to 600K. High temperature measurements were made on each of

the systems to observe the temperature at which the superlattice peaks disappeared,

indicating that the sodium ions had become disordered.

Data from the 11 area detectors on SXD were analysed using the instrument

software SXD2001, which is able to find peaks in the time-of-flight data and fit
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Composition Growth Location Mass (g) Size (mm) Volume (mm3)
1 Na0.8CoO2 RHUL 1.036 26.3× 5.9× 2.6 403
2 Na0.8CoO2 Oxford 0.100 13.0× 6.0× 0.5 39
3 Na0.7Ca0.1CoO2 Oxford 0.047 4.9× 2.6× 1.2 15
4 Na0.7Sr0.1CoO2 Oxford 0.024 4.8× 3.0× 0.6 9

Table 4.1: Single crystal properties for neutron measurements

these peaks to an orientation matrix. This software was also used to visualise the

data as two-dimensional cuts through reciprocal space and to integrate the observed

principal and superlattice reflections.

4.3.2 X-ray measurements on Xcalibur

The size of single crystal required for lab based x-ray measurements is usually

<0.5mm, which is much smaller than the crystals required for neutron scatter-

ing. It was possible therefore to find single crystals from multiple compositions of

the doped systems, the various samples measured are described in table 4.2. The

diffractometer uses a single area detector placed close to the sample. Large volumes

of reciprocal space were mapped out by measuring many orientations of the sample.

Each sample was measured for several hours with an exposure time of 10s per orien-

tation, and typically several hundred orientations were required to accumulate good

coverage of reciprocal space. The lab x-ray diffractometer does not currently have

any ability to control temperature, and therefore only room temperature results

could be obtained.

Each data set was analysed using CrysAlisPro, a commercial program built

specifically for this type of diffractometer. This program dealt with peak searching,

orientation matrices, data visualisation and integration, just as SXD2001 was used

for SXD.
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Composition Growth Location Size (mm) Volume (mm3)
5 Na0.8CoO2 RHUL 0.34× 0.14× 0.01 0.001
6 Na0.7Ca0.1CoO2 RHUL 0.55× 0.28× 0.02 0.003
7 Na0.57Ca0.14CoO2 RHUL 0.57× 0.18× 0.02 0.001
8 Na0.6Ca0.2CoO2 RHUL 0.40× 0.17× 0.04 0.003
9 Na0.7Sr0.1CoO2 RHUL 0.64× 0.18× 0.06 0.007
10 Na0.6Sr0.2CoO2 RHUL 0.29× 0.16× 0.08 0.004
11 Na0.48Sr0.32CoO2 RHUL 0.54× 0.17× 0.13 0.012

Table 4.2: Single crystal properties for x-ray measurements

4.3.3 Structure refinement

The main hexagonal reflections from the neutron and x-ray data were integrated

using SXD2001’s Shoebox method or using the standard integration in CrysAlisPro.

The various correction factors were determined (see section 2.1.6) and a refinement

was performed using JANA2006. The program automatically selected the space

group P63/mmc which is consistent with previous refinements of Sodium Cobaltate

[5, 84, 77]. Four atomic positions were used, including cobalt, oxygen and the

two sodium sites as described in table 4.3. A systematic process of refinement

was followed, slowly allowing a greater number of structural parameters to vary,

with the final refinement including the occupancy of sodium and harmonic thermal

parameters.

Atom Position Site Sym. Occupancy Uiso
Co 0.0000 0.0000 0.0000 2a -3m 1.00 0.010
O 0.3333 0.6667 0.0908 4f 3m 1.00 0.010
Na1 0.0000 0.0000 0.2500 2b -6m2 x 0.010
Na2 0.6667 0.3333 0.2500 2d -6m2 y 0.010

Table 4.3: Initial parameters for refinements in JANA2006.

A fundamental problem occurs when refining the sodium and dopant occupancies

of the calcium and strontium doped systems. Occupation of Na1 and Na2 sites by
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divalent ions is strongly correlated with concentrations x and y, and these are not

precisely known. In this case some physical constraints are considered. This situa-

tion arises because both elements can contribute to the scattering from a particular

site and the form factor is a result of the sum of their occupancies. It is possible

to assign any occupancy to sodium, provided the dopant occupancy on a single site

leads to the observed form factor. In principle, this ambiguity is removed by the

different Q dependencies of the form factors for the various ions in the case of x-rays.

However, practically this did not resolve this issue. In these refinements I have made

the assumption that sodium ions sit on the Na2 sites and dopant ions sit on the

Na1 sites. This assumption was tested during the refinement process by placing the

dopant on the Na2 site and seeing how this affected the fit.

4.3.4 Reverse Monte Carlo

The RMC program described in section 3.1 was used to model structures consistent

with these diffraction patterns. Before the program could be run however, reliable

peak intensities were required but because of the weak scattering from superlattice

peaks in these systems, it was realised that the standard methods of integration

provided by SXD2001 and CrysAlisPro were unable to produce reliable estimates of

the superlattice peak intensities. An alternative manual method was used, therefore,

that was not reliant on finding the peak centre or fitting the peak shape. In this

simple method, the counts within pixels in an area around a predicted superlattice

position were summed up with the background removed (the background is defined

as the average of the pixel counts at the edge of the area). The errors on each

peak were defined by assuming standard Poisson counting statistics and given as the

square root of the total sum of the pixel counts, without the background subtracted.

This method has the advantage of being able to count extinctions as well as peaks,

which is important as the extinctions can provide a more definite constraint on a
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given model than a non-zero intensity. The integration was performed over the

entire coverage of reciprocal space, and any erroneous points that did not reproduce

the observed scattering were removed. The erroneous points were found by directly

comparing the integrated intensity with cuts through the data. The integration data

and calculation parameters for each system are given in table 4.4.

Composition Data type Reflections a′ b′ Nc nd
(1) Na0.8CoO2 Neutron 5780 3a 4a + 5b 15 5438
(2) Na0.8CoO2 Neutron 271 −a + 3b 4a + 3b 15 -72
(7) Na0.57Ca0.14CoO2 X-ray 2216 2a− b a + 3b 7 2060
(9) Na0.7Sr0.1CoO2 X-ray 2182 5a + 10b 10a + 5b 75 472
(10) Na0.6Sr0.2CoO2 X-ray 879 3a 8a + 10b 30 195

Table 4.4: Integration data for reverse Monte Carlo calculations, where Nc is the
number of unit cells in the supercell and nd is the number of degrees of freedom (the
data points minus the number of free parameters). The unit cell vectors are defined
as: a = (a, 0, 0), b = (−a/2, a

√
3/2, 0), c = (0, 0, c), where a and c are the lattice

parameters, nominally a = 2.85Å and c = 10.8Å.

For each system, 20,000 movement iterations were performed at each of the 200

temperature steps. The starting temperature was defined at a value at which thermal

equilibrium is reached, where any movement is allowed. This temperature was found

through trial calculations. As described in section 3.1, each movement step consists

of a sodium ion hopping to an unoccupied site, a dopant attempting to switch with a

sodium and an incremental movement for any atom type. Each movement is stored

if it makes the fit with experimental data better, or with a probability dependent on

the current temperature of the system, obeying a standard Boltzmann temperature

distribution. Each calculation is performed numerous times with different random

number seeds to check the consistency of the solution.
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4.4 Results

4.4.1 NaxCoO2

The Royal Holloway Na0.8CoO2 crystal was mounted on SXD and exposures of

several hours were taken at 300K, 250K and 5K. Figure 4.6 shows two dimensional

cuts through the (h, k, 4) plane that show the change of ordering in the system. At

300K there is a six-fold ring of satellite peaks around the main hexagonal reflections,

where the separation between hexagonal reflection and superlattice peak is 1/5th

of the distance between hexagonal positions. At 250K and 5K the six-fold ring of

satellite peaks was still there but additional peaks were found, creating a complex

arrangement of triangles around each hexagonal peak. These new peaks lie on a

commensurate hexagonal grid, where the length of each element is 1/15th of the

hexagonal lattice unit length. The complete pattern can be reproduced using a

supercell with the following unit vectors:

a′ = 3a

b′ = 4a + 5b

The lattice produced by these unit vectors generates just over one third of the su-

perlattice peaks, and the remainder are generated by symmetric domains, produced

with rotations of 60◦ and 120◦. This pattern has not previously been observed on

its own and is different to the superlattice observed in previous samples of a simi-

lar composition at low temperature. This superlattice has however been observed

as part of a co-existence of phases and is produced by the ordered stripe phase of

tri-vacancy clusters from Ref. [50], see figure 4.2(c). Figures 4.8 and 4.9 show the

full reciprocal space coverage of the high and low temperature phases, respectively.
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Figure 4.6: Na0.8CoO2 neutron diffraction data for different temperatures. Each
panel is a 2D cut through reciprocal space in the (h, k, 4) plane. The 300K data
shows 6-fold rings of satellite peaks and the 5K data has additional peaks around
those.
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Figure 4.7: Close up of 5K neutron diffraction (h, k, 4) plane. Circles show all
possible superlattice positions for the ordered striped phase supercell, where different
colours indicate different symmetric domains.
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Figure 4.8: Full L-dependence of the SXD data for Na0.8CoO2 at T=300K
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Figure 4.9: Full L-dependence of the SXD data for Na0.8CoO2 at T=5K
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A second study was performed on a different crystal of Na0.8CoO2, grown at

Oxford. This crystal exhibited the same superlattice pattern as the Royal Holloway

sample of the same nominal composition at room temperature, but at low temper-

ature the 6-fold rings were replaced by 12-fold rings of satellites, as shown in figure

4.10. This superlattice could be indexed using the following supercell:

a′ = −a + 3b

b′ = 4a + 3b

The reason for the difference in low temperature structure between the two

growths is not clear at present. EDX analysis of both growth gave similar dis-

tributions of compositions along the surfaces, so it is assumed that they have the

same composition. The low temperature superlattice reflections of the Oxford sam-

ple correspond to the square lattice of tri-vacancy clusters in Ref. [70], see figure

4.2(a).
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Figure 4.10: Cuts in the (h, k, 7) plane for a the Na0.8CoO2 sample grown at Oxford,
showing 12-fold rings at low temperature.
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Tiny fragments of the Royal Holloway grown Na0.8CoO2 boule were measured

using the in-house x-ray diffractometer at room temperature. Single crystals with a

size of less than 0.5mm were found and full coverage of reciprocal space was mapped,

using a typical exposure time of 10s, which was enough to produce good counting

statistics in the superlattice peaks. Rings of superlattice peaks were observed at the

same positions seen at room temperature on SXD, meaning the same high temper-

ature phase was being observed. As well as these superlattice peaks, other phases

could be seen that were not present in the neutron data, such as the strong peaks at

positions directly between principal Bragg peaks and the weak ring of peaks slightly

further out than the 1/5th peaks. Figure 4.11 illustrates how these additional phases

can be indexed. The peaks half way between the principal Bragg reflections are due

to contamination from the x-ray source with a wavelength of λ/2. The other peaks

are indexed on a commensurate grid with lattice size 1/13th of the reciprocal lattice

unit, with superlattice vectors:

a′ = 3a− b

b′ = 4a + 3b

Figure 4.12 shows the full reciprocal space coverage from this measurement for

comparison with the room temperature neutron data.
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Figure 4.11: (h, k, 0) layer of x-ray diffraction pattern for Na0.8CoO2. Different
coloured shapes show the various phases observed in the system. Blue circles indicate
the peaks at the 1/5th positions, green diamonds the 1/2 positions and the red
squares weak peaks at the 1/13th positions.
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Figure 4.12: Full L-dependence of the x-ray data for Na0.8CoO2 at T=300K
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The low temperature neutron data for the Royal Holloway Na0.8CoO2 crystal was

integrated and refined, producing the results shown in table 4.5.

Co O Na1 Na2
x/a 0.0000 0.3333 0.0000 0.6667
y/a 0.0000 0.6667 0.0000 0.3333
z/c 0.0000 0.0917(1) 0.2500 0.2500

Occupancy 1.000 1.000 0.15(3) 0.53(3)

Uiso 3 5 12 15
U11 2.2(7) 3.5(3) 15(7) 21(3)
U22 2.2(7) 3.5(3) 15(7) 21(3)
U33 4(1) 6.6(5) 4(8) 2(3)
U12 1.1(4) 1.7(1) 8(4) 11(1)
U13 0 0 0 0
U23 0 0 0 0

Table 4.5: Refinement of Na0.8CoO2 principal Bragg reflections from neutron data
at 5K. Refinement converged at Rw = 11.87%. Values with associated errors are the
free parameters. Thermal parameters have units of 1× 10−3Å.

The fitted concentration of sodium in the system is 68(4)%, which is significantly

lower than the expected 85%. The relative composition between Na1 sites and Na2

sites indicates that a small fraction of the sodium is sitting directly above the cobalt,

giving evidence for vacancy clusters in the system. It can be seen from the isotropic

thermal parameter, Uiso, that the thermal vibrations of sodium are much larger

than that of either cobalt or oxygen. The harmonic anisotropic thermal parameters

indicate that the vibrations of the sodium ions are pancake shaped, with larger

vibrations within the plane. These in-plane vibrations are likely to arise from the

presence of vacancies in the sodium plane, so that sodium ions have more room to

vibrate within the plane. Figure 4.13 shows the refined average atomic structure

with thermal ellipsoids showing the scale and shape of vibrations in the system.

Direct refinements of the supercells were considered, but we did not succeed in

analysing these complicated superstructures using the software available.
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Figure 4.13: Refined average structure of Na0.8CoO2 from principal hexagonal re-
flections in SXD data at 5K. Each ball shows the anisotropic thermal vibrations
refined for this model, where green balls are cobalt, grey balls are oxygen and blue
balls are sodium.

The superlattice found in the Royal Holloway sample at low temperature had

not been previously observed as a single phase, so RMC was used to solve the

superstructure. Superlattice peaks laying on the 1/15th commensurate grid were

integrated with the manual method. Peaks laying on the other commensurate lattice

were ignored so that different phases could be separated. The process annealed to a

single solution after many attempts with a χ2/nd value of 0.13 and an Rw of 42.56%,

these values are consistent with a good fit to the experimental data, though the low

value of χ2/nd may indicate that the errors have been overestimated. The solution

found agrees exactly with previous work, having tri-vacancy clusters of Na1 atoms

on both layers, the separation between the clusters is also the same as the previously

reported structure.

The RMC calculation also presents additional information on the distortions

of cobalt and oxygen ions. The RMC results show a sinusoidal distortion in the

cobalt ions that follows the ordering in the sodium layers, and is very similar to
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the distortion model predicted by the effect of the Coulomb landscape [70]. The

structure produced by RMC is illustrated in figure 4.14 and the full reciprocal space

calculation is presented in figure 4.15 for comparison with the experimental data in

figure 4.9.

The superlattice pattern produced by the Oxford sample at low temperature is

different from the Royal Holloway sample. The same process was carried out on this

data set. The solution found shows tri-vacancy clusters of sodium ions on Na1 sites,

patterned in a square type arrangement. This solution appeared consistently over

many calculations with a χ2/nd value of -43.1 and an Rw of 55.02%. The number of

degrees of freedom in this system are lower than the number of datapoints, which

is why the value of χ2/nd is negative. Ordinarily this would mean it is impossible

to fit a model to the data, however the results clearly show a stable model that

consistently appears. As described in section 3.1, the number of free parameters in

the system is difficult to estimate and constraints on the RMC process mean that

in reality the number of free parameters is much less than the value used in this

estimate, which is why a realistic model can be found with so few data points. The

calculated scattering is depicted in figure 4.16, for comparison with figure 6.1 in ref.

[69].

The room temperature phase observed with all Na0.8CoO2 crystals cannot be

easily modelled with RMC techniques due to the random nature of the striped

ordering, however a good example of this can be modelled by building a structure

of random stripes from the ordered stripe supercell. Adding together 13 supercells

where the b′ vector can vary randomly between the three possible positions on an

adjacent stripe produces a pseudo random stripe phase and the diffraction pattern

produced by this, compared with neutron data in figure 4.17, does not contain any

of the higher order peaks from the ordered stripe phase.

The other peaks in the x-ray data that did not fit the striped supercell were
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Figure 4.14: Results from the RMC calculation for the Royal Holloway Na0.8CoO2

neutron data. (a) The resultant structure, where blue balls are Na2 sodium ions,
red are Na1 sodium ions, the other balls are cobalt ions, where dark green is a large
negative distortion and light green is a large positive distortion. The arrows indicate
the positions and distortion directions of the oxygen ions. (b) Top-down view of
the sodium layer. (c) Annealing of χ2 during the calculation. (d) Final comparison
of calculated and experimental intensities on the right.
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Figure 4.15: Full L-dependence for the RMC calculation of 5K Royal Holloway
Na0.8CoO2 neutron data
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Figure 4.16: Full L-dependence for the RMC calculation of 150K Oxford Na0.8CoO2

neutron data
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Figure 4.17: Random stripe phase calculation and comparison to the 300K neutron
data set.
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explained with other choices of propagation vector, as described earlier. It was not

possible to use RMC on these data sets due to difficulties in integrating the peaks.

The superlattice reflections at the half positions seem to be due to leakage of x-

ray wavelengths at a higher order, such as λ/2. The set of superlattice reflections

that sit on a 1/13th commensurate grid can be indexed in-plane using the structure

first observed by Chou et al. [73]. However, it was found that these peaks are not

located on (h, k, integer) planes and are extended along the L direction. This makes

it difficult to obtain peak intensities for RMC and it is not possible to solve this

structure at this time due.
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4.4.2 NaxCayCoO2

A boule of Na0.7Ca0.1CoO2 was grown at Oxford and screened on SXD. We found

quickly that the calcium doping lead to very high quality single crystals forming

within the boule. A single grain with intense, sharp principal Bragg peaks was

cleaved from the boule and longer exposures of several hours were taken at 350K,

150K and 40K. Other compositions of NaxCayCoO2 were grown at Royal Holloway

and screened on SXD, but no large single crystals were found.

Due to the crystal producing such sharp reflections, satellite peaks were difficult

to separate in the data, as small misaligned crystallites created a noisy background

of sharp peaks. However, superlattice peaks could be found when indexed with

a set of propagation vectors, and misaligned crystallites were distinguishable due

to the peaks having the same magnitude of Q as principal reflections. These peaks

were at different positions to those seen previously, indicating that this system had a

new, previously unobserved superstructure. The superlattice pattern did not change

between the three temperatures indicating a single phase present to 40K. In contrast

to pure NaxCoO2 diffraction, this sample showed a large reduction in intensity with

Q, as superlattice peaks were not observable in the high L planes.

The peaks align exactly on a hexagonal grid where the length of each element is

1/7th of the reciprocal lattice unit length. Figure 4.18 shows that the superlattice

peaks can be indexed using a supercell with lattice vectors:

a′ = 2a− b

b′ = a + 3b

These propagation vectors index one of the two possible domains, where the second

domain can be generated by a reflection in any principal axis. The full coverage of

reciprocal space observed at 40K is shown in figure 4.19.
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Figure 4.18: A cut in the (h, k, 0) plane for Na0.7Ca0.1CoO2 SXD data at 40K. A
12-fold ring of satellite peaks is observed around the principal Bragg reflections and
these can be indexed on a hexagonal grid with spacing a/7. Blue and black circles
show the two symmetry domains for the superlattice, and the red diamonds mark
the {220} reflections of the epitaxial CaO impurity.
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Additional to the satellites, peaks were observed close to the {110} principal

hexagonal reflections. The d-spacing of these peaks was 3.70Å, which matches the

{220} reflection of Calcium Oxide (CaO). CaO is a Face Centered Cubic (FCC)

system with lattice constant a = 4.81Å. For this system to produce a hexagonal

pattern of points as found in these results, the (111) direction of the CaO crystal

would have to be parallel to the (001) of Na0.7Ca0.1CoO2, and the (110) direction

of CaO would be parallel to the (100) of Na0.7Ca0.1CoO2. In this direction the CaO

structure can be described as successive hexagonal layers of calcium and oxygen

ions with an ABC stacking sequence. Within a layer the calcium or oxygen ions are

separated by a/
√

2 = 3.40Å, which is quite close to 2.85Å, the lattice parameter of

Sodium Cobaltate compounds. This allows the CaO impurity to grow epitaxially

within the Na0.7Ca0.1CoO2 boule.
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Figure 4.19: Full L-dependence of the SXD data for Na0.7Ca0.1CoO2 at T=40K.
(The white marks in high L planes are due to lack of detector coverage.)
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The crystals required for x-ray diffraction are much smaller than for neutron

diffraction, which allowed us to measure three compositions of the calcium doped sys-

tem: Na0.7Ca0.1CoO2, Na0.57Ca0.14CoO2 and Na0.6Ca0.2CoO2. Figure 4.20 shows

that all three compositions exhibit a similar diffraction pattern, with superlattice

peaks occurring at the same 1/7th positions as described above for the neutron data.

The Na0.7Ca0.1CoO2 and Na0.57Ca0.14CoO2 samples have additional superlattice

reflections half way between the hexagonal Bragg points, due to contamination by

λ/2. The Na0.6Ca0.2CoO2 sample also possesses these peaks as well as extra reflec-

tions near the primary superlattice rings. Figure 4.21 depicts the full L-dependence

of the Na0.57Ca0.14CoO2 system, showing remarkably strong and clear superlattice

reflections.

To explain the additional peaks in the Na0.6Ca0.2CoO2 data, a number of differ-

ent supercells were attempted. The best agreement with the observed peak positions

was obtained by including the model first observed in Na0.5CoO2 [71]. Figure 4.22

demonstrates that this supercell indexes the additional peaks but not the rings,

implying a coexistence between this model and the one seen in other compositions.
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Figure 4.20: Three compositions of NaxCayCoO2 measured using x-ray diffraction,
the (h, k, 0) plane is shown at 300K.
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Figure 4.21: Full L-dependence of the x-ray data for Na4/7Ca1/4CoO2 at T=300K.
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Figure 4.22: X-ray diffraction data of Na0.6Ca0.2CoO2. Circles indicate the positions
of the 1/7th superlattice and squares, the peaks at the 1/4 positions.
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Integrations of the principal Bragg peaks were performed using SXD2001 for the

Na0.7Ca0.1CoO2 neutron data sets at different temperatures and by CrysAlisPro for

x-ray data for different compositions. The results of the refinements, as recorded

in table 4.6, show that the sodium occupancies are again consistently lower than

the nominal values. The calcium occupancies are much closer to the nominal values

however, which is consistent with loss of the more volatile sodium ions during growth.

For Na0.57Ca0.14CoO2 the filled occupancies agree with the nominal composition,

suggesting that this is a stable composition. This is consistent with the fact that

the strongest, single-phase superlattice peaks are observed in this case.

Occupancy Uiso
Composition Temperature Na Ca Na Ca Rw

Na0.7Ca0.1CoO2 40K 0.55(2) 0.11(1) 0.007 0.002 6.74%
Na0.7Ca0.1CoO2 350K 0.50(2) 0.09(1) 0.013 0.000 5.98%
Na0.7Ca0.1CoO2 300K 0.56(1) 0.12(1) 0.019 0.013 7.84%
Na0.57Ca0.14CoO2 300K 0.529(5) 0.138(5) 0.010 0.005 3.96%
Na0.6Ca0.2CoO2 300K 0.517(7) 0.172(9) 0.013 0.014 7.39%

Table 4.6: Refinement of NaxCayCoO2 principal Bragg reflections from neutron and
x-ray diffraction data.

The thermal parameters were initially refined as isotropic spheres and then al-

lowed to vary in different directions as an ellipsoid. While the thermal isotropic

sphere for the Na ions in the pure system had a large radius, the calcium sitting

on the Na1 sites in these systems has small isotropic radii. Sodium on the Na2

sites however, show similar values to the pure system, implying a similar amount of

movement. This could be due to the calcium ions being heavier, which may lead to

them vibrating less than their monovalent neighbours.

The R-factors for these refinements show that there is excellent agreement be-

tween the refined models and the experimental data. Other refinements were at-

tempted that changed the assumption of the locations of sodium and calcium in the

system. These resulted in unrealistic concentrations of calcium or negative thermal
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parameters, and these models were, therefore, rejected.

Intensities from the superlattice reflections from Na0.57Ca0.14CoO2 were obtained

from the neutron and x-ray data using a combination of automatic and manual inte-

grations. The number of reflections for the x-ray data were much larger, though for

both sets erroneous integration led to incorrect intensities for some peaks. The real

space supercell that describes the superlattice in reciprocal space creates a structure

of seven hexagonal Sodium Cobaltate unit cells, and the concentrations from the re-

finements meant that 4 sodium ions and 1 calcium were added to each layer. RMC

calculations led to a solution that was largely independent of the starting param-

eters (such as number of iterations and annealing temperature parameters). The

solution illustrated in figure 4.23 puts the calcium on an Na1 position surrounded

by sodium ions sitting at Na2 sites. The fit for this model was better than previous

results, giving a χ2/nd of 9.43 and an Rw value of 8.56%. Figure 4.24 shows the

calculated x-ray pattern for this solution, and it compares well in the low L planes

to the observed patterns in figure 4.21. The intensity falls off slower than observed

in the high L planes, which could be due to some disorder in the long range stacking

of the supercell along the c-direction.
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Figure 4.23: Results from the RMC calculation of Na0.57Ca0.14CoO2 x-ray data.
(a) The resultant structure, where blue balls are sodium ions, yellow are calcium
ions, the other balls are cobalt ions, where dark green is a large negative distortion
and light green is a large positive distortion. The arrows indicate the positions and
distortion directions of the oxygen ions. (b) Top-down view of the sodium layer.
(c) Annealing of χ2 during the calculation. (d) Final comparison of calculated and
experimental intensities on the right.



CHAPTER 4. CRYSTAL STRUCTURES 113

Figure 4.24: Full L-dependence for the RMC calculation of Na0.57Ca0.14CoO2 x-ray
data.
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For pure Sodium Cobaltate the corresponding superstructure has a sodium con-

centration x = 5/7. According to calculations of the ground state energies of multi-

vacancy structures, this is the only stable di-vacancy cluster in this composition

range, see figure 4.1(c). It is likely that the substitution of the divalent calcium at

the centre of the di-vacancy cluster has a stabilising effect since it lowers the charge

of the di-vacancy cluster. The fact that this superstructure does not change with

temperature, and it forms over a range of sample compositions, suggests that it is a

particularly stable superstructure.

The RMC calculations also exhibit ordering in the distortions of the cobalt plane,

with cobalt ions moving away from the closest calcium (which is sitting at an Na1

site). The distortions are smaller than for the pure system though the form of the

distortions is the same, this makes sense as the divalent nature of calcium will reduce

the electrostatic potential from the vacancy cluster. Figure 4.23-top shows the

calcium doped di-vacancy structure with cobalt distortions emphasized for clarity.

For Na0.6Ca0.2CoO2 this di-vacancy phase coexists with the phase observed for

Na0.5CoO2. In fact, the Na0.5CoO2 superstructure can also be viewed as stripes of

di-vacancy clusters.

In summary, both neutron and x-ray diffraction of calcium doped Sodium Cobal-

tate revealed a previously unobserved superlattice that could be explained by a su-

perstructure with 7 unit cells. The RMC program was then used to find the ordering

in the sodium layer, generating a di-vacancy structure where calcium ions form at

the centre.
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4.4.3 NaxSryCoO2

A single crystal of Na0.7Sr0.1CoO2 was cleaved from a boule and measured using

Neutron Laue diffraction on SXD. Measurements were made of large portions of

reciprocal space at temperatures of 350K, 150K and below 10K. To attain the largest

coverage of reciprocal space on the detectors, the sample was moved through several

different orientations, each of these orientations was given around 8 hours of beam

time. The experiments took place over a period of several months with several

different trips to ISIS, however, it was found that the sample remained robust during

this time.

As illustrated in figure 4.25, the results from the experiments show a superlattice

of peaks indicating patterning of the sodium layer. At 350K, six-fold rings are visible

around the principal Bragg reflections at the same positions as the high temperature

phase in pure Na0.8CoO2. At low temperature, superlattice peaks from the ordered

stripe phase are observed, again consistent with Na0.8CoO2. However additional

peaks are observed in certain planes that are much closer to the principal Bragg

reflections, such as those in the (hk9) plane illustrated at the bottom of figure 4.25.

Figure 4.26 shows the full L dependence from these data sets at 150K.

Other compositions were screened using SXD, but it was not possible to ob-

tain a single crystal large enough for neutron diffraction. The ability to perform

diffraction experiments with much smaller crystals is a considerable advantage for

x-rays, and the composition dependence was determined using x-ray diffraction.

Figure 4.27 illustrates typical superlattice reflections from samples of composition

Na0.7Sr0.1CoO2, Na0.6Sr0.2CoO2 and Na0.48Sr0.32CoO2. The superlattice wave vec-

tors are different to those observed for Na0.7Sr0.1CoO2 using neutron diffraction.

Furthermore, the superlattice reflections are strongest away from the hexagonal re-

ciprocal lattice vectors, in contrast to all previous Sodium Cobaltate samples.
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Figure 4.25: Cuts through reciprocal space for Na0.7Sr0.1CoO2 on SXD. Weak peaks
in the 1/5th positions are seen at 350K whereas the ordered stripe superlattice is
observed at 150K. Additional weak peaks are observed at 150K in the L=9 plane,
close to the (009) extinction and by the 104 peaks in the L=4 plane.
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Figure 4.26: Full L-dependence of the SXD data for Na0.7Sr0.1CoO2 at T=150K
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Figure 4.27: Three compositions of NaxSryCoO2 measured using x-ray diffraction,
the (h, k, 0) plane is shown at 300K.
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Figure 4.28 shows that the peaks in Na0.7Sr0.1CoO2 can be indexed with super-

lattice vectors:

a′ = 5a + 10b

b′ = 10a + 5b

This large cell, comprising 75 hexagonal Sodium Cobaltate unit cells has been named

the alpha phase for strontium doped systems. The peaks observed inNa0.6Sr0.2CoO2

and Na0.48Sr0.32CoO2 can be indexed with a second set of superlattice vectors,

named the beta phase:

a′ = 3a

b′ = 8a + 10b

The beta phase includes 30 unit cells and can be described as a doubling of the stripe

phase supercell between successive stripes. Other peaks were found in the data that

could be attributed to the 1/13th phase or λ/2 contamination, described previously

in section 4.4.1. The full L dependences for Na0.7Sr0.1CoO2 and Na0.6Sr0.2CoO2

are shown in figures 4.29 and 4.30 respectively.

While the majority of the superlattice peaks observed in the neutron data cannot

be indexed using either the alpha or beta supercells, the additional peaks observed

very close to the main hexagonal positions can be indexed with the alpha phase

propagation vectors. The large sample of Na0.7Sr0.1CoO2 used for the neutron

experiments was measured in reflection geometry using the Royal Holloway diffrac-

tometer, and as illustrated in figure 4.31, alpha phase peaks can be observed around

the principal Bragg reflections.



CHAPTER 4. CRYSTAL STRUCTURES 120

Figure 4.28: Indexing of the two phases observed in NaxSryCoO2, as described in
the text.
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Figure 4.29: Full L-dependence of the x-ray data for Na0.7Sr0.1CoO2 at T=300K.
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Figure 4.30: Full L-dependence of the x-ray data for Na0.6Sr0.2CoO2 at T=300K.
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Figure 4.31: X-ray measurement of the of Na0.7Sr0.1CoO2 neutron sample in re-
flection geometry, the (hk7) plane is shown. Reflections from the alpha phase of Sr
doping are marked with circles.
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Refinements were performed using the hexagonal Bragg peaks of the neutron

and x-ray experimental data using Jana2006. The method used is the same as for

the calcium doped system, where the sodium ion is placed on the Na2 site and the

dopant is placed on the Na1 site. Table 4.7 shows typical refinement results. It was

not possible to obtain reliable integrations for some temperatures and compositions

due to high backgrounds and weak scattering. The refinements reveal very similar

occupancies for sodium and strontium across all three experiments. This is surpris-

ing, particularly given that the superlattices are found to be different in each case.

It is possible to obtain different superstructures for the same composition, as we

found for the square and striped phase of Na0.8CoO2.

Occupancy Uiso
Composition Radiation Na Sr Na Sr Rw

Na0.7Sr0.1CoO2 Neutron 0.56(1) 0.099(8) 0.018 0.015 6.45%
Na0.7Sr0.1CoO2 X-ray 0.542(8) 0.067(5) 0.016 0.033 6.31%
Na0.6Sr0.2CoO2 X-ray 0.54(1) 0.071(8) 0.029 0.037 8.60%

Table 4.7: Refinement of NaxSryCoO2 principal Bragg reflections from neutron and
x-ray diffraction data.

The refined thermal parameters show that strontium has a large isotropic thermal

displacement value, in contrast to calcium, which had a lower value than sodium.

This may arise from differences in the multi-vacancy clusters. Alternatively, it may

be due to the presence of static disorder, due to the lack of mobility of the strontium

ions, which have a larger radius than sodium. The shape of the thermal ellipsoids

is the same in all three refinements and is consistent with Na0.8CoO2, where cobalt

and oxygen are elongated along the c-axis and atoms in the sodium layer are spread

out within the plane.

RMC has been attempted on the x-ray data, however, the integration files used

tend to be unreliable and only have a small number of peaks. As a result, the
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calculations did not lead to a solution of the long-range order. X-rays are most

sensitive to the strontium ions, and some quite robust results on the strontium

ordering could be inferred. Simulations for the alpha phase tend to lead to the

formation of multi-vacancy clusters with four strontium ions, whereas stripes of

strontium ions are found for the beta phase. The location of the sodium ions is less

well defined, with a degree of randomness. The fits to the data from the generated

structures are not statistically good, but the results were used as a guide for manual

modelling.

By manually calculating a large number of possible structures, it has been possi-

ble to find two models that give rise to similar superlattice patterns to those observed

in the data. These are shown in figure 4.32 and 4.33. The beta phase comprises a

single stripe of strontium ions sitting a
√

3 apart on Na2 sites, with vacancies sur-

rounding the stripe. The alpha phase comprises two 12-vacancy clusters within the

supercell, where each cluster contains 4 strontium ions on Na1 sites, separated from

each other by a
√

3.

The agreement between the calculations and the x-ray data for the beta phase

is quite good. All of the beta phase peaks are reproduced, and the very different

patterns for L = odd or even are captured. The intensity falls off a bit faster with

L than predicted, but this could be due to a high Debye-Waller factor from static

disorder.

For the alpha phase the x-ray data set is complex and the agreement is encour-

aging. However, the tight ring of superlattice peaks calculated around reciprocal

lattice points for all L are only observed for L = 7 and in general, the L dependence

for this phase does not agree well.
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Figure 4.32: Model and calculation for the alpha phase of Na0.7Sr0.1CoO2. Blue
balls show sodium ions and purple balls are strontium.
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Figure 4.33: Model and calculation for the beta phase of Na0.6Sr0.2CoO2. Blue balls
show sodium ions and purple balls are strontium.
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4.4.4 Temperature Dependences

Temperature dependence measurements on the superstructures of the materials de-

scribed previously were performed on SXD using the furnace sample environment.

High temperature exposures were taken from 300K in 25K steps until the strongest

superlattice reflections had visibly disappeared. The system would then be re-cooled

to observe the re-emergence of the superstructure. The variation in superlattice in-

tensity for the three systems measured is shown in figure 4.34. Unfortunately it was

not also possible to perform temperature dependence measurements with x-rays,

because at the current time, the Royal Holloway diffractometer can only measure at

300K.

In the Oxford grownNa0.8CoO2 sample, the strongest superlattice reflections had

visibly disappeared at 425K. Above 425K the sodium layer had become disordered,

as indicated by the absence of satellites in figure 4.10. Cooling the system back to

300K resulted in the original superlattice returning with the same intensity. In the

calcium doped system, the superlattice peaks disappeared at 370K, ≈ 50K less than

the pure system, despite the very stable di-vacancy superstructure.

High temperature measurements of the strontium systems revealed that the su-

perlattice peaks disappeared by 400K, also lower than the pure sample. Unfor-

tunately, our first measurement on heating was at 373K, and by this point the

superlattice peaks had already reduced in intensity substantially, and the relative

intensities of different superlattice reflections had changed. Measurements on cool-

ing reveal strong hysteresis with the superlattice peaks reappearing at about 325K.

Although the full peak height had not been recovered by room temperature, the

intensity distribution resembled that at the start of the experiment.
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Figure 4.34: Temperature dependence of three different Sodium Cobaltate systems,
measured using the SXD furnace. Each point integrates over a number of superlat-
tice positions and averages the intensities (error bars are smaller than the symbol
size).
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4.5 Discussion

Standard tools in crystallography, such as charge flipping [85] and the refinement of

the supercell [86] were attempted, but the results obtained were found to be unreli-

able and difficult to interpret. Instead substantial progress was achieved using the

technique of RMC. In some cases RMC gave a detailed solution for new superstruc-

tures, in others it paved the way towards a solution by identifying key elements of

a superstructure.

In the case of pure Sodium Cobaltate, large neutron data sets were available for

several structural domains and, as a consequence, it was possible to determine a

large number of parameters by RMC. X-ray studies yielded fewer reflections due to

the fall off of intensity with form factor, and the data sets were less clean due to

the presence of additional phases. For the doped systems the fall-off in intensity of

the neutron data with Q meant that more x-ray reflections were available for RMC

calculations and in this case x-ray data were used.

For pure Sodium Cobaltate two fully ordered phases were solved, the square and

striped arrays of tri-vacancy clusters. The ordering of the sodium ions had been

solved previously using RMC by Morris et al. [50], though the results presented

here are the first time that the ordered stripe phase has been observed as a single

phase. By using much larger neutron data sets we have succeeded in determining

more details of the superstructure using RMC. In particular, displacements of the

cobalt and oxygen ions are obtained in a much more objective and robust manner.

For the square phase, the displacements of the cobalt ions obtained using RMC

are compared with those proposed previously in figure 4.35, where these use the

electrostatic potential gradient from the sodium ion pattern. The fact that the

results agree so well with this single model gives us confidence that the RMC results

are reliable.
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Figure 4.35: Comparison of distortions produced by RMC for the Oxford Na0.8CoO2

sample neutron data (a) with the distortion model predicted in Ref. [70] figure 3
(b).
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The solution obtained using RMC for the calcium doped samples did not depend

on the starting parameters of the RMC code and was therefore robust as well as

producing a good fit to the experimental data. This array of di-vacancy clusters

is known to be particularly stable [70]. The RMC calculations place the di-valent

Ca2+ ions at the centre of the di-vacancy cluster. Since this lowers the charge on

the cluster from −2e to −e, it is likely to reduce the ground state energy of the

cluster. The stability of this superstructure is evident from its presence over a

range of compositions and temperatures. The distortions of the cobalt and oxygen

ions seem to agree with the pure system, with neighbouring cobalt ions moving

away from the di-vacancy clusters, though the distortions are much smaller in this

case. The proposed superstructure will lower the hole concentration and charge

modulation in the cobalt-oxygen layers, and this must affect physical properties.

For the highest concentration, the presence of the insulating additional phase must

also be important in determining physical properties.

For the high temperature striped phase of pure Sodium Cobaltate it is not possi-

ble to solve the superstructure using RMC due to the presence of disorder within the

stripes. It has not proved possible to solve the superstructures of strontium doped

samples using RMC. One factor might be the presence of static disorder, suggested

by the rapid fall off of superlattice peak intensity with L. Strontium has a larger

ionic radius than sodium or calcium and, therefore, it is likely to be less mobile.

The stripes of strontium ions proposed for the beta phase correspond to an ener-

getically favourable configuration, and the calculated intensities agree well with the

data. The solution for the other data sets is less favourable. There are substantial

differences between the proposed solution for the alpha phase and the data. Perhaps

it is simply the case that the supercell is too large for the data available. In the

case of the neutron superlattice peaks indexed on the disordered stripe phase, it is

not clear whether this a separate phase or one that contains strontium at random
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positions. Either way, it is not susceptible to a solution using RMC.

Temperature dependences of the three compositions indicated that the long range

sodium superstructures become disordered at around 400K. It is surprising that the

calcium system has the lowest disorder temperature, as the lack of variation across

compositions indicates that the di-vacancy superstructure is robust. However it is

difficult to compare the energy scales of these structures due to the presence of

partial disorder in the pure and strontium doped systems

Hysteresis is observed in the strontium system but not in the pure or calcium

systems. This is due to the presence of large, immobile strontium ions, whereas

sodium and calcium are both small and can move more freely, reducing any hysteresis

effect on ordering.

These disorder transition temperatures can be very useful in assigning energy

scales to the associated superstructures, allowing forward Monte Carlo techniques

to be employed that can predict the sodium ordering on the basis of energy minimi-

sation. Such calculations however, are beyond the scope of this thesis.

4.6 Conclusions

Single crystals of pure and doped Sodium Cobaltate were studied using neutron and

x-ray diffraction techniques, and the satellite peaks observed were used to calculate

the long range sodium ordering in each system. Temperature dependencies were

determined for each system and the temperature at which the sodium layer of each

system disorders was established. Integrating the intensities of the principal and

satellite reflections allowed structural refinements to gain information on the sodi-

um/ dopant occupancy in the system, as well as the thermal motions of the atomic

sites. RMC techniques were employed to help solve the superstructures of the sys-

tem by modelling a standard NaxCoO2 lattice and allowing Sodium and dopant
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ions to change site at random.

The pure Na0.8CoO2 system was found to form ordered stripes of tri-vacancy

clusters at low temperatures and the stripes became disordered at room temperature.

The RMC code was able to accurately solve the structure for this phase, and even

included finer details of the model such as the distortions of the cobalt and oxygen

ions in the system, where these distortions agreed with buckling previously predicted

using an electrostatic potential gradient from the sodium ion patterning.

Doping with calcium leads to a new superstructure, where calcium ions order

long range at the centre of di-vacancy clusters. At high calcium concentration,

phase co-existence with the insulating 50% phase was found.

Three different diffraction patterns were observed when doping the system with

strontium, including the same pattern observed in Na0.8CoO2 and two new super-

lattice patterns. RMC calculations on this data were unable to produce reliable

results, but in combination with manual modelling, tentative models were discov-

ered. The alpha phase was found to include two 12-vacancy clusters within the

supercell, where each cluster contains 4 strontium ions on Na1 sites. The beta

phase comprises a single stripe of strontium ions sitting a
√

3 apart on Na2 sites,

with vacancies surrounding the stripe.

The superstructures established in this chapter can be used as a starting point

for further investigations into the electronic and magnetic properties of the system.



Chapter 5

Electronic Ordering

5.1 Abstract

Resonant x-ray scattering experiments were performed on I16 at Diamond on single

crystal samples of Na0.8CoO2 and Na0.7Ca0.1CoO2. Resonant behaviour is observed

at the superlattice positions demonstrating the link between the sodium ordering and

electronic patterning of the cobalt-oxide layer. The resonant behaviour is calculated

from the superstructures by Density Functional Theory using the FDMNES code

which is able to model the experimental data from first principles. The FDMNES

calculations imply an ordering of charges in the cobalt-oxide layer and it is found

that the strongest charge ordering is on the oxygen rather than cobalt ions.

5.2 Background

It was shown by Roger et al. that the sodium ordering and its associated distortion

field are governed by pure electrostatics, and the organizational principle is the

stabilisation of multi-vacancy clusters that become ordered over long range at some

simple fractional fillings. These results provide a good starting point to understand

135
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the electronic properties of the system in terms of a modified Hubbard Hamiltonian

that takes into account the electrostatic potential, or ‘Coulomb landscape’, in the

cobalt layers. The resulting depth of potential wells in the cobalt layer is greater than

the single-particle hopping kinetic energy and, as a consequence, holes preferentially

occupy the lowest potential regions [70].

This picture is consistent with the multiple valence states detected using NMR,

where valence states of Co3+, Co3.3+ and Co3.7+ are detected in the cobalt layer,

suggesting charge ordering within these layers [20]. X-ray absorption studies of

pure NaxCoO2 at the Co-L and O-K absorption edge show an increase of cobalt

and oxygen valence as x decreases, as shown in figure 5.1, indicating that charge

ordering could also be occurring in the oxygen layers [87]. Charge ordering has been

observed in Na0.5CoO2, where it was found using magnetic neutron diffraction that

Co4+ ions ordered within the plane with a supercell commensurate with the sodium

supercell [6, 71, 88]. However, prior to this work, this patterning has not been

detected in the high-x compositions by a diffraction technique that gives spatial

information.

Figure 5.1: Co 2p and O 1s x-ray absorption spectra for NaxCoO2, from Fig. 4 and
8 Ref. [87]. As x increases, there is an change in x-ray fluorescence in both systems,
where the alteration of peak heights and centroid mass are attributed to a change
in valence of each ion.
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The stoichiometric compound NaCoO2 (x = 1) is insulating with a cobalt t2g

sub-band, in the 3d shell, filled with 6 electrons [89]. In NaxCoO2, the removal of

δ = (1− x) sodium ions creates δ holes in the Co layers. These holes preferentially

occupy the lowest potential regions within the layer, leading to charge ordering if

the potential is patterned [90, 80]. The substitution of a divalent ion, such as Ca, for

Na decreases the number of holes in the Co layer, and this will dramatically affect

the electronic and magnetic properties.

Resonant x-ray scattering combines the spatial sensitivity of diffraction with the

sensitivity to the band structure of absorption spectroscopy techniques, allowing

direct measurements of electronic ordering in NaxCoO2 for the first time. The mea-

surements of NaxCayCoO2 show how this ordering changes as the superstructure

changes and the number of holes is decreased.

5.3 Experimental Procedure

Resonant x-ray scattering measurements were performed on single crystal samples

of Na0.8CoO2 and Na0.7Ca0.1CoO2 using the beamline I16 at the Diamond syn-

chrotron. Details of the instrument are described in section 2.3.5. The two samples

were measured during separate beam times, each lasting six days. In both cases

large single crystals were screened at Royal Holloway using x-rays.

The samples were mounted in a cryofurnace on I16 with a temperature range

12<T<600K. The crystals are flat plates with the hexagonal c-direction normal to

the surface. These were stuck on a copper block using silver paste in order to obtain

a good thermal contact.

The experiments were performed in reflection geometry. Samples were aligned

at room temperature and scans of beam position along the surface were performed

to identify the best single-crystal grain. The Na0.8CoO2 sample was measured in
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the vertical scattering geometry. In this case some of the structural superlattice

reflections measured in the σ-σ channel were weak, and it was possible to detect res-

onant scattering in the σ-π channel. Attempts to measure resonant scattering from

Na0.7Ca0.1CoO2 were unsuccessful in this scattering geometry, since the structural

superlattice reflections were large, and the leakage in the rotated channel swamped

the signal. Therefore, the Na0.7Ca0.1CoO2 sample was measured in the horizontal

scattering geometry, where we can measure the π-π and π-σ channels. The reflec-

tions were chosen to have a scattering angle close to 90◦ so that the π-π cross section

is small and, therefore, the leakage in the π-σ is also considerably reduced.

In order to characterize the nature of the resonant scattering a series of measure-

ments are performed. First, by scanning x-ray energy with Q fixed it is possible to

vary the cross section for a particular reflection. A resonance is peaked in the vicinity

of an absorption edge. Secondly, a scan of Q is performed with energy fixed at the

maximum to distinguish between resonant x-ray scattering and fluorescence. The

scan would be peaked for resonant scattering, whereas it would be flat for fluores-

cence, which does not depend upon Q. Thirdly, polarisation dependence can be used

to discriminate between different types of scattering. Charge scattering is always

in the unrotated channel, σ-σ or π-π. In general, scattering from the magnetic or

orbital order is present in both the unrotated and rotated channels. However, in our

case the electronic ordering has the same periodicity as the superstructure and the

scattering in the unrotated channel is dominated by the structural charge scattering.

Our studies of resonant scattering are, therefore, limited to the rotated channels (σ-

π and π-σ) where leakage of charge scattering from the unrotated channel can still

be a problem. Fourthly, the azimuthal dependence of the scattering gives important

additional information on the nature of resonant scattering. Charge scattering is

isotropic and, therefore, it is independent of azimuthal angle. In contrast, magnetic

and orbital ordering are anisotropic, and this leads to a characteristic azimuthal
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dependence. When rotating the azimuthal angle the beam often moves along the

surface of the sample and it is necessary to realign. In order to obtain reliable data

it is necessary to normalise to the charge scattering. In our case this is achieved by

normalising the σ-π (π-σ) scattering by the structural scattering in the σ-σ (π-π)

channel. Finally, the temperature dependence is used to relate the order parameter

to any known phase transitions. Again realignment of the sample is necessary due

to changes in lattice parameters, and small movements and rotations of the sample.

5.4 Computational Modelling

To explain the resonant behaviour we used the FDMNES code by Yves Joly [58] to

calculate the experimental data from first principles. FDMNES is able to predict

resonant scattering for a system using only its atomic positions. It does this by

generating the electronic structure from Density Functional Theory using a muffin-

tin potential and other approximations, see chapter 3. It then calculates the energy,

polarisation and azimuthal dependence of the resonant x-ray scattering.

We used the atomic coordinates generated by Reverse Monte Carlo in Chapter

4, including 114 atoms for Na0.8CoO2 and 52 atoms for Na0.7Ca0.1CoO2, both of

which are large numbers for such calculations (for reference, the strontium systems

have 568 atoms for the alpha phase and 220 for the beta phase, which would make

calculations of these systems very difficult). The variables used in the calculation

are listed in appendix B. The radius of the cluster used is the most important

parameter and the approximations used. Calculations with a small radius and the

additional memory-save approximation (which limits the number of atoms used to

calculate the electronic potential and reduces the amount of memory required in

the processing computer) where possible on my own duel-core laptop and would

generally take about two days. We found that due to the large size of the cell
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and the high number of atoms, certain calculations could only be performed on a

cluster of computers optimized for large scale parallel computing. Calculations with

a larger radius and no memory-save approximation had to be performed on a cluster

of computers with the aid of Michel Roger in Paris. The cluster had one hundred

CPUs and was able to complete calculations in around 4 days. An example input

data file for these calculations is given in appendix B. Resonant behaviour can also

be caused by distortions of the cobalt-oxygen bond lengths, from the Jahn-Teller

effect [91], therefore, the atomic coordinates we use do not include any distortions

in the cobalt-oxygen layers.

The initial step of the FDMNES code is to solve the electronic structure of

the system using only the basis of atoms in the input file. The calculation is self-

consistent meaning that the electronic states about each atom are calculated and

re-calculated in a loop until the calculation converges and there is no change between

successive steps. The charge of each atom in the supercell is then defined by the

density of filled electronic states within a certain radius of each atom, and this radius

is defined using standard values for different atoms. Plotting the charge on each atom

at its location in the superstructure allows us to visualise the ordering of charge in

the system. The charge ordering calculated by FDMNES leads to scattering in

the unrotated channel and since this signal is obtained by the scattering from the

superstructure, we can not directly measure the charge ordering in this experiment.

However other aspects of the electronic structure, such as orbital ordering, can

lead to resonances in the rotated channel at the superlattice peaks which can be

calculated by FDMNES and compared with the resonant scattering observed in

the I16 experiment. The FDMNES code is able to calculate lineshapes for energy

spectra and azimuthal dependence, which can be compared to the experimental data

by applying a scaling factor and an offset in energy to correct for calibration errors.

The azimuthal dependence is calculated at the maximum of the resonance, where
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the azimuthal angle, Ψ, defines the rotation angle perpendicular to Q, where Ψ = 0

is defined as the direction parallel to a∗, along the beamline direction. Note that the

calculations have the same definition of the azimuthal angle as I16 and are directly

comparable.

5.5 Results

5.5.1 Na0.8CoO2

After aligning the beam on a single crystal grain within the Na0.8CoO2 sample,

we were able to observe two different superlattice phases at room temperature, the

1/13th phase previously seen in deintercalated systems [73] and the random stripe

phase that is normal for this system.

At low temperature (10-20K) the 1/13th phase peaks were still there, but ad-

ditional off-axis peaks had appeared indicating that the stripe phase had become

ordered, which can be seen in figure 5.2. As less is known about the 1/13th phase,

we decided to only study the ordered stripe phase. The lattice parameters for these

phases are different. For large L the resolution in Q is sufficient to allow the scat-

tering from these phases to be separated.

We looked for charge ordering in the stripe phase using the PILATUS area

detector, i.e. with no polarisation analysis, by scanning in energy across the cobalt-K

absorption edge (≈ 7.78keV ) at different points in reciprocal space. Typical data is

shown in figure 5.3. We found that there were no conclusive peaks at the absorption

edge at any of the superlattice positions in the (h, k, 9) or (h, k, 10) plane. Instead

the lineshape is typical of the absorption expected for purely structural scattering.

Next we decided to use the analyser crystal to measure polarisation dependence

of the superlattice peaks, performing energy scans in the σ-σ (No polarisation rota-

tion) and σ-π (rotated polarisation) channels. As shown in figure 5.4, we observed
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Figure 5.2: The structural scattering in the (h, k, 10) plane for Na0.8CoO2 at T
≈ 20K. The peaks can be indexed using the ordered stripe phase superstructure
described in Chapter 4. The polarisation dependence, energy line shape, tempera-
ture dependence and azimuthal dependence were determined for the circled peaks
at Q = (0.2, 0, 10) and (0.333, 0.133, 10).

peaks at the absorption edge in scans of x-ray energy with Q fixed at (0.2, 0, 10)

and (0.333, 0.133, 10). Scans of energy were performed in the σ-π channel and the

fluorescent background was measured away from the superlattice reflection where Q

scans were flat. By measuring the scattering at a Bragg reflection, the leakage from

the σ-σ channel in σ-π was estimated to be a factor of 350. Thus, by measuring the

superlattice intensity in σ-σ it was possible to estimate the leakage in σ-π. Several

resonant peaks were observed in the (h, k, 10) plane, but none were detected in the

(h, k, 9) plane.
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Figure 5.3: Energy scan at Q = (0.2, 0, 10) shows no resonant scattering due to
charge ordering.

We performed further measurements on the strongest peaks. Figure 5.5 shows

a mesh of θ scans with energy fixed at successive values in the vicinity of the ab-

sorption edge for the (0.2, 0, 10) reflection. The fact that it is peaked in both θ

and energy confirms that it is resonant scattering. We then measured the temper-

ature dependence of the σ-σ and σ-π channels of the (0.333, 0.133, 10) superlattice

peak. Figure 5.6 indicates that the peak disappeared in both channels at about

280K, which corresponds to the phase change from ordered to random stripe phase

superlattice [50].

Theta scans were performed on the (0.333, 0.133, 10) peak in σ-π and σ-σ as

a function of azimuthal angle. Normalizing the intensity of the σ-π resonance by
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Figure 5.4: Energy scans of Q = (0.2, 0, 10) and Q = (0.333, 0.133, 10) using polar-
isation analysis. Resonant scattering is observed in the σ-π channel once structural
leakage from the σ-σ channel and the fluorescent background are removed, shown in
both plots as the red line. In these cases the structural leakage is negligible and the
resonant scattering is clearly visible above the florescent background. The dotted
lines show the calculated resonant scattering using FDMNES, as described in the
text, showing qualitative agreement in both cases.
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dividing by the structural intensity in σ-σ, which does not depend on azimuthal

angle and accounts for small movements of the beam on the sample surface, shows

an oscillating dependence on the azimuthal angle with a period of 100◦, as shown in

figure 5.7.

Figure 5.5: Energy-Q scan of (0.2, 0, 10). At each point in energy, a θ scan is
performed, showing that the resonance is peaked in both energy and reciprocal
space.

FDMNES calculations were performed for cluster radii of 3, 3.5, 5 and 7Å. The

calculation with the largest radius of 7Å gives best agreement with the experimental

data in figures 5.4 and 5.7. In the case of figure 5.4, the same arbitrary offset in en-

ergy is applied to the calculated scans, whereas the azimuthal angles in figure 5.7 are
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Figure 5.6: Temperature dependence of Q = (0.333, 0.133, 10). The top and mid-
dle plots show theta scans at each temperature through the σ-σ and σ-π channels
respectively. The bottom image shows the normalised, integrated intensity of these
peaks, clearly showing the resonant and structural peaks disappearing at 278K.
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Figure 5.7: Comparison of azimuthal dependence with FDMNES calculations for
Q = (0.333, 0.133, 10) with incident energy E = 7.728keV . The calculated depen-
dence is scaled to the experimental data by matching the sum under each data
set.

absolute. Although the calculation has not converged by this radius, the agreement

with the data is encouraging. Unfortunately calculations with a larger radius would

be prohibitively long. A better approach would be to perform a calculation for the

supercell with periodic boundary conditions. Another potential source of discrep-

ancy between calculation and experiment could be variations in the cobalt-oxygen

bond length not picked up in the RMC calculations. However the qualitative agree-

ment without distortions suggests that electronic ordering is the dominant factor in

the resonant scattering.
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FDMNES also calculates the X-ray Absorption Near Edge Structure (XANES)

which is observed experimentally as a Q-independent fluorescent background. XANES

measures the total joint density of states of the initial core level with all final states,

consistent with conservation rules. It therefore gives useful additional information

on the electronic state of the system. Figure 5.4 shows the comparison between

the experimental fluorescent background and the XANES calculated with a cluster

radius of 7Å. Major features are reproduced, such as the pre-edge peaks and the

shoulder on the absorption edge, although there are discrepancies in intensity.

The charge ordering in the cobalt and oxygen planes calculated with a cluster

radius of 7Å is illustrated in figure 5.8. Charge stripes are obtained, directly between

stripes of tri-vacancy clusters in successive sodium layers. In fact, the qualitative

features of this figure are reproduced in calculations for all cluster radii. What is

surprising, however, is that the largest variations in charge is not in the cobalt layer,

as expected, but on the oxygen. The charge on the cobalt ions only varies between

+3.08e and +3.15e. In contrast, the charge on the oxygen ions varies by a much

larger amount, between −2.10e and −0.74e.
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Figure 5.8: 2D map of charges produced by the FDMNES code for the ordered stripe
structure. Images (a) and (c) show the charge variation in the oxygen layers above
and below the cobalt layer, where large variations in charge can been seen. Image
(b) shows the smaller variation in charge within the cobalt layer.
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5.5.2 Na0.7Ca0.1CoO2

The single crystal of Na0.7Ca0.1CoO2 was aligned on strong hexagonal Bragg reflec-

tions. Figure 5.9 shows structural scattering in the (h, k, 8) plane measured with

the PILATUS area detector at T ≈ 10K. All of the superstructure peaks can be

indexed using the di-vacancy superstructure illustrated in figure 4.23. It is clear

from the figure that we have a high quality single crystal in a single phase.

We studied the resonant scattering at two superlattice positions, (0.286, 0.571, 8)

and (0.143, 0.286, 8), and at a hexagonal Bragg reflection (009), which for structural

scattering is a systematic absence.

Figure 5.9: Structural scattering in the (h, k, 8) plane at T ≈ 10K for
Na0.7Ca0.1CoO2. Superlattice positions (0.286, 0.571, 8) and (0.143, 0.286, 8) from
the di-vacancy superstructure in figure 4.23 are circled green and blue respectively.

Figure 5.10 shows the energy lineshapes. In this case the leakage from the struc-

tural scattering in the π-π channel is significant, even in the horizontal scattering
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geometry. Nevertheless, clear resonances are observed after subtraction of the back-

ground.

The meshes in energy and Q presented in figure 5.11 show that the main res-

onances at the absorption edge, and the pre-edge features are resonant scattering.

The azimuthal dependence of the scattering was measured at the maximum of the

energy scan, and the results are plotted in figure 5.12. Both superlattice reflections

oscillate slowly as a function of azimuthal angle, whereas the resonant scattering at

(009) exhibits a sinusoidal azimuthal dependence with a period of ≈ 50◦

The temperature dependence of the superlattice reflection at (0.286, 0.571, 8) is

presented in figure 5.13. Theta scans were performed at each temperature. Both

the π-σ and π-π scattering disappears at T ≈ 350K, indicating that the resonant

scattering is caused by the formation of the di-vacancy superstructure. However,

unlike for the pure compound (see figure 5.6) the two order parameters do not

overlay. However, it must be noted that temperature stability was an issue in this

experiment. The resonance in the π-σ at (009) also disappears at this temperature.

Note that there is also a peak in π-π at (009), which does not disappear at high

temperature, and this was attributed to multiple scattering.
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Figure 5.10: Resonant behaviour at various positions for Na0.7Ca0.1CoO2 at T ≈
10K in the horizontal scattering geometry. For each of the three positions, the π-π
leakage and background are removed from the resonant π-σ channel. The leakage
factor (LF) is determined by matching the scattering at low energy. Calculations
from FDMNES are shown as dotted lines for comparison.
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Figure 5.11: Energy-Q meshes for various resonant peaks in Na0.7Ca0.1CoO2 at T
≈ 10K. At each energy, a θ scan of is performed, showing that the main resonance
and pre-edge features are peaked in both Q and energy.
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Figure 5.12: Azimuthal dependence of various reflections for Na0.7Ca0.1CoO2 at T
≈ 10K. For the superlattice reflections, the resonant π-σ channel is normalized for
structural leakage by dividing by the π-π channel. Calculations from FDMNES are
shown as red lines for comparison.
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Figure 5.13: Temperature dependence of the structural (π-π) and resonant (π-σ)
channels for Q = (0.286, 0.571, 8). The peak disappears in both channels at the
same temperature, which is when the sodium layer disorders.
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FDMNES calculations were performed using atoms fixed in the positions shown

in figure 4.23, with calcium ions occupying the central site in the di-vacancy cluster

and with no distortions of the cobalt and oxygen ions. The qualitative agreement

between the experimental data in figure 5.10 and 5.12 and the calculations are

encouraging, but there are some discrepancies.

In figure 5.10 the offset in energy is determined by the XANES. The main res-

onance is at the correct energy for the (0.143, 0.286, 8) superlattice reflection, but

it is offset in energy for (0.286, 0.571, 8) by 5eV and (009) by 10eV. The azimuthal

dependence was calculated at the peak maxima and this lead to good agreement

with experiment, see figure 5.12. Note that the quadrupolar correction was required

to get agreement with experimental data at (009), indicating that this resonance

is related to a quadrupolar transition. The XANES calculation is compared with

the experimental data in figure 5.14. The main peak and the pre-edge feature are

reproduced, however there is a shoulder on the experimental absorption edge that

is not reproduced in the calculation.

FDMNES calculations for the superstructure in figure 4.23, but with sodium on

the central sites of the di-vacancy cluster were not able to reproduce the experimental

data, even qualitatively. This reinforces the conclusion in chapter 4 that calcium

ions occupy this central site.

The charge ordering in the cobalt and oxygen layer determined in the FDMNES

calculations is illustrated in figure 5.15. As expected, doping with di-valent ions

results in much smaller modulations of charge within the CoO2 layers, with charges

on the cobalt sites varying between +3.25e and +3.28e, and the oxygen charges

varying between −2.05e and −1.90e. Again the modulation in charge is larger on

the oxygen sites, and the charge ordering pattern follows very closely the di-vacancy

superstructure. In this case a two-dimensional charge order pattern is obtained,

rather than the one-dimensional stripes found for the pure compound, however there
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Figure 5.14: Comparison of experimental fluorescent background with XANES line-
shape calculated with FDMNES.

are still constricted conduction pathways.
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Figure 5.15: 2D map of charges produced by the FDMNES code for the Ca-doped
divacancy structure. Overall variation in charges is much smaller than in the pure
system, however, the charges of oxygen (top and bottom) and cobalt (center) still
follow similar ordering to the sodium ions.
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5.6 Discussion

The presence of resonant scattering at superlattice positions clearly demonstrates

the correlation between the sodium patterning and the electronic ordering. The fact

that the main features of the scattering are reproduced in FDMNES calculations

with no distortions of the cobalt and oxygen ions shows that the ordering is pri-

marily electronic rather than due to Jahn-Teller distortions. In these studies we

are not directly sensitive to charge ordering, since strong structural scattering ob-

scures the signal in the unrotated channel. Signal in the rotated channel could come

from magnetic or orbital ordering. However, the magnitude of the signal rules out

magnetic scattering at the cobalt K-edge. Thus the resonant signal originates from

ordering of orbitals that arises as a consequence of the superstructure formation.

Since charge ordering would be expected to lead to orbital ordering, this is also an

indirect measurement of the charge order.

The order of charges predicted in the cobalt and oxygen layers is validated by

the general agreement between the FDMNES calculations and the observed resonant

scattering. Figure 5.16 compares the charge ordering calculated in the cobalt layer

by FDMNES with the electrostatic potential calculated using an Ewald summation

of the lattice Coulombic potential. The agreement with this simple model lends

further credence to the FDMNES calculations. These calculations all suggest a

channel of electrons along stripes. This would be a natural explanation for the strong

correlations in the cobaltates, where effective masses are intermediate between those

of high-temperature superconductors and heavy fermion materials.

Our FDMNES calculations indicate that the charges order significantly on the

oxygen sites. In these calculations the charge on an ion is defined by the electron

density within a certain radius. We have performed calculations with different defi-

nitions of this radius from the literature, and this leads to a redistribution of charge

between oxygen and cobalt. Nevertheless, the presence of substantial charge mod-
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Figure 5.16: Comparison of charges generated by FDMNES in the cobalt layer with
the Coulomb landscape from figure 2, Ref. [50]

ulation on the oxygen sites seems to be a robust conclusion from the calculations.

This is important for the physics of cobaltates, since it implies that there is at least

some screening of the potential on the cobalt ions.

On the basis of NMR measurements from a pure Sodium Cobaltate sample of

similar composition to ours, Mukhamedshin et al. find substantial variation of cobalt

ion valence states [20]. This does not agree with our prediction of a narrow range

of valence states for cobalt. However, we speculate that if account was taken of

the charge distribution from the oxygen ions, it might be possible to interpret the

NMR data with a smaller range of charges on the cobalt site. Our conclusion is very

strongly supported by the x-ray absorption results from Valkeapää et al. who report

a larger change in valence of oxygen than cobalt ions [87]. The qualitative changes to

the XANES at the oxygen K-edge as the sodium concentration is varied is reproduced

in figure 5.1, and this implies that there must be at least some variation in charge on

the oxygen sites. Such charge variation on the oxygen ions has also been observed
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in other transition metal-oxides, such as LixCoO2 [92] and La1−xSrxFeO3 [93].

However, holes in the oxygen ions in these systems are created due to compensation

from a change in composition (such as changing x in LixCoO2) and as such do not

produce a change in valence as large as the change predicted by FDMNES here.

Our resonant x-ray scattering results have provided important information on

the electronic ordering in cobaltates. However, we cannot claim perfect agreement

between the FDMNES calculations and the experimental data. The calculations as

a function of cluster radius have not reached convergence by 7Å and, unfortunately,

the large supercells make the CPU time for calculations with a sufficiently large

radius prohibitive. Calculations with periodic boundary conditions are in progress,

but even these are likely to be imperfect due to the limitations in modelling strongly

correlated systems by Density Functional Theory. It is also possible that Jahn-Teller

distortions beyond our detection limit using RMC could improve the fit to the

data. The agreement for the calcium doped sample is worse. This seems reasonable

since perfect occupation of the central di-vacancy site by calcium is not possible for

this composition. This must lead to some disorder, and we know that altering the

occupancy of these sites dramatically changes the resonant scattering.

5.7 Conclusions

In summary, we measured single crystals of Na0.8CoO2 and Na0.7Ca0.1CoO2 in

reflection geometry using I16. We were able to study the resonant x-ray scattering at

the cobalt K-edge for the ordered stripe phase and calcium doped di-vacancy phase.

Unpolarised energy scans did not detect charge ordering peaks at the Co absorption

edge, however, energy scans in the rotated polarisation channels did show resonant

peaks at the absorption edge in both systems, which could be evidence for orbital

or other electronic ordering. We can rule out this resonance being magnetic because
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we are at an even plane in reciprocal space, where the expected antiferromagnetic

structure should only allow magnetic effects in the odd planes, and also the magnetic

resonant scattering is expected to be small at the cobalt K-edge. Temperature

dependence of these peaks found that the electronic transition occurs at the same

temperature as the structural transition from ordered to disordered stripes, meaning

that these resonances are clearly related to the sodium ordering.

In order to understand this complex resonant behaviour, the FDMNES code was

used. These calculations are able to reproduce qualitative features of the experimen-

tal datasets, although finer calculations are required to reproduce the observed data

accurately. This sort of agreement is not uncommon in the resonant scattering field

and better comparisons are unlikely to be found without advances in instrumenta-

tion and modelling techniques. The electronic ordering proposed by the FDMNES

calculations shows an ordering of charges within the cobalt-oxygen layers that is

clearly correlated with the patterning of sodium ions. However, it was found that

the largest charge variation was around the oxygen ions, rather than cobalt, where

previous work has predicted charge ordering. The clear similarities between the

experimental and calculated resonant spectra imply that the electronic patterning

proposed by FDMNES may have some truth to it, and this clearly reinforces the

theory that the ordering of the sodium layer is controlling the electronic proper-

ties of the system. If these calculations are accurate it has profound implications

on the understanding of the properties of Sodium Cobaltate as this would imply

that the conduction of electrons though the system is travelling through the oxygen

layers. Also, the striped nature of the ordering in Na0.8CoO2 would confine these

conduction pathways to one dimension, which is likely to lead to increased interac-

tion between the electrons and therefore strong correlations, which may assist in the

explanation of the large Seebeck coefficient observed in this system.



Chapter 6

Physical Properties

6.1 Abstract

The thermoelectric properties of Na0.8CoO2, Na0.57Ca0.14CoO2 and Na0.7Sr0.1CoO2

were measured using the PPMS at Royal Holloway. A particularly high thermopower

was obtained for the pure compound, possibly due to the channelling of electrons

along stripes. The calcium doped sample has an ideal composition for its superstruc-

ture and, as a consequence, it is found to have a very high thermal conductivity.

Magnetic susceptibility measurements reveal antiferromagnetic order at low temper-

atures for each system. There appear to be additional transitions at lower tem-

peratures for the doped systems. The magnetic ordering is studied using polarised

neutron diffraction for the pure compound. An A-type antiferromagnet structure is

observed but no modulation within the plane is detected.

6.2 Background

The discovery of low electrical resistivity and remarkably large thermopower for

single crystals of Na0.5CoO2 by Terasaki et al. has generated intense interest in

163
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this family of transition-metal oxides as candidates for thermoelectric applications

[11]. The Seebeck coefficient of about 100µV/K at room temperature is an order

of magnitude larger than that of typical metals. It was subsequently found that

significantly enhanced thermoelectric performance could be achieved for NaxCoO2

at high x [7]. Figure 6.1 shows the current state-of-the-art for thermoelectric prop-

erties for pure Sodium Cobaltate. The power factor, S2/ρ, for NaxCoO2 increases

as x increases and the concentration of holes in the cobalt-oxide layers decreases,

until x ≈ 0.85, where phase separation into the insulating x = 1 phase occurs, as

described in figure 4.3.

The substitution of a divalent ion for sodium decreases by one the number of

holes in the cobalt-oxide layer. This offers the possibility to lower the concentration

of holes beyond what is possible for the pure compound, and to further enhance

thermoelectric performance. There are already promising results on polycrystalline

samples doped with calcium and strontium, with an increase of the power factor by

50% over the comparable pure compound, as previously described in figure 4.5.

The aim here is to measure the thermoelectric properties of pure and doped

compounds with well characterised superstructures.

The strong interplay between the magnetic and superconducting properties of

hydrated Sodium Cobaltate has led to close comparison with the physics of the

superconducting copper oxides [5]. The character of the cuprates can be altered by

subtle changes in composition. For example, superconductivity in La2−xBaxCuO4

reaches a maximum transition temperature, Tc, of 30K at x = 0.10 and 0.15, but

it is almost completely suppressed at x = 0.125. This effect is due to a static

superstructure of spin and charge stripes which forms on the copper-oxide layers

commensurate with the crystal lattice [94].



CHAPTER 6. PHYSICAL PROPERTIES 165

Figure 6.1: State-of-the-art thermoelectric properties for Sodium Cobaltate, from
figures 1, 2 and S2, ref. [7]. (a) In-plane resistivity versus temperature in log-
linear scale. (b) Curves of the in-plane thermal conductivity. (c) The in-plane
thermopower. Each line represents a different concentration, numbered in order of
increasing x: 1 (x ≈ 0.71), 2* (x ≈ 0.75), 3 (x ≈ 0.80), 4 (x ≈ 0.85), 5 (x ≈ 0.88), 6
(x ≈ 0.89), 7 (x ≈ 0.96), 8 (x ≈ 0.97), 9* (x ≈ 0.99), 10* (x ≈ 1.0). The asterisks
indicate the three-layer crystals.
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The magnetic ordering in pure Sodium Cobaltate has been studied using neutron

diffraction, but the experiments are challenging since the magnetic intensity occurs

on top of structural scattering. Figure 6.2 shows the magnetic scattering obtained

for a single crystal of Na0.5CoO2 using unpolarised neutron diffraction [95]. The

proposed magnetic structure comprises antiferromagnetic stripes of large in-plane

moments interleaved with stripes of much weaker moments parallel to the c-axis.

This magnetic ordering is superimposed on the Coulomb landscape calculated from

the sodium superstructure in figure 6.3. Although some details of the magnetic

structure could not be resolved in this experiment, it is clear that the sodium su-

perstructure plays a decisive role.

Bulk magnetic susceptibility measurements indicate that NaxCoO2 orders anti-

ferromagnetically over a wide composition range at high-x, with a Néel temperature

TN ≈ 22K [96, 97, 98]. Determining the magnetic structure at high-x using neutron

diffraction proved difficult to the extent that details of the magnetic excitations

emerged before it was possible to say anything about the magnetic order [99]. In

fact, the magnon dispersion is very surprising, since it indicates that the interlayer

exchange interaction is comparable to the in-plane exchange constant [100, 8]. The

solution of the magnetic structure required the use of polarised neutrons, and an

A-type antiferromagnetic order was proposed, with ferromagnetic sheets of moments

pointing along the c-direction [8], as described in figure 6.4.

Thus, in this chapter, in addition to the bulk thermoelectric properties, I shall

describe bulk magnetic susceptibility studies of pure and doped Sodium Cobaltate.

The pure compound is in a well-defined superstructure, the ordered stripe phase.

In this case the magnetic ordering was investigated further using polarised neutron

diffraction.
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Figure 6.2: Unpolarised neutron scattering measurements of Na0.5CoO2 at the su-
perlattice (1

2
1
2
1) position from figure 11, ref. [95]. (a) Profiles of ω (θ) scans.

(b) Temperature dependence of integrated intensity. Temperature dependence and
comparison of intensities to a magnetic model infer that this superlattice peak is
magnetic.
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Figure 6.3: Coulomb potential in the cobalt plane calculated using ordered super-
structure of Na0.5CoO2, from figure 4(a), ref. [70]. Green dots show the positions
of cobalt ions and the proposed magnetic order is shown as blue arrows.

Figure 6.4: Polarised neutron measurements of Na0.82CoO2 from figure 1, ref. [8].
Normalised SF intensity at (101) and (100) as a function of temperature, showing a
clear transition at T ≈ 20K. Inset is the proposed A-type antiferromagnetic model.
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6.3 Experiment Procedure

6.3.1 Thermoelectric properties

Transport measurements were performed using a Quantum Design PPMS at Royal

Holloway. Long and thin samples ofNa0.8CoO2 andNa0.57Ca0.14CoO2 were mounted

on a purpose built puck using copper contacts and silver epoxy glue, as shown in

figure 6.5. The puck allowed simultaneous measurements of resistivity, thermal

conductivity and the Seebeck coefficient from 300K to 2K, and from these three

measurements, the thermoelectric figure of merit could be calculated. The puck

was calibrated using a nickel sample and the results obtained were consistent with

standard nickel measurements.

Figure 6.5: Thermal transport puck with Na0.8CoO2 sample mounted. Four sam-
ple leads are connected using silver glue, allowing simultaneous measurement of
resistivity, thermal conductivity and the Seebeck coefficient.

The smaller Na0.7Sr0.1CoO2 sample, studied on SXD, was measured with similar

apparatus by Dr Florence Albenque-Ruillier in CEA Sacleay.
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6.3.2 Magnetic properties

Using a Quantum Design SQuID VSM (Superconducting Quantum Interference De-

vice, Vibrating Sample Magnetometer) magnetic properties measurement system at

Diamond, we were able to measure the magnetic properties of three single crys-

tal samples of Sodium Cobaltate. These were a standard sample of Na0.8CoO2

(unscreened but from a high quality boule) and the two doped samples previously

measured with neutrons on SXD, Na0.7Sr0.1CoO2 and Na0.7Ca0.1CoO2. Each sam-

ple was measured with the field parallel and perpendicular to the c-axis, and in each

orientation the sample was cooled with (FC) and without (ZFC) an external field

of 200Oe. A magnetic field hysteresis loop of each sample was also performed below

the magnetic transition.

6.3.3 Magnetic structure

Large ≈ 1g single crystals of Na0.8CoO2 were studied by elastic magnetic scat-

tering using polarised neutron diffraction on IN20. All of the magnetic peaks are

expected to coincide with structural reflections and, therefore, polarisation analysis

was required to separate the magnetic signal. The full three-dimensional polarisa-

tion analysis of CRYOPAD (Cryogenic Polarisation Analysis Device) was employed,

see section 2.2.5 for a description of CRYOPAD. By measuring a combination of di-

agonal spin-flip intensities it is possible to isolate the magnetic signal. Because the

magnetic order and the structure are expected to have the same periodicity it may be

possible to obtain enhanced sensitivity to the magnetism via magnetic-nuclear cross

terms that appear in off-diagonal terms. Measurement of the full polarisation ma-

trix potentially gives additional information on the magnetic order, for non-collinear

structures.

It is not possible to tilt the sample when it is mounted on CRYOPAD. The sample
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was, therefore, pre-aligned with an (h0l) horizontal scattering plane on IN3, before

transfer to CRYOPAD. The sample was cooled to T ≈ 2K, where the polarisation

matrix was measured. Selected reflections were studied as a function of temperature

to see how the intensity varies through the ordering temperature TN .

Previous studies have focused on the magnetic scattering at hexagonal reflections

[8] and, therefore, they were not sensitive to the possibility of magnetic modulations

in the plane. Thus, in addition to studying the magnetic scattering at hexagonal

reflections for a sample with a known superstructure, we also measure the signal at

superlattice peaks in an attempt to study the in-plane magnetic ordering.
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6.4 Results & Discussion

6.4.1 Thermoelectric properties

The results of the electrical and thermal transport measurements at Royal Holloway

were found to vary substantially for different samples of the same nominal compo-

sition, taken from the same boule. Measurements of the Seebeck coefficient were

found to be more reproducible. In some cases there were problems in mounting

small samples, due to the poor quality of the crystal surface and weak bonding

of the silver glue. The main source of variation is believed to be crystal quality,

as several mounting techniques were attempted and all exhibited the same varia-

tion in results. It is difficult to obtain pristine crystals of Sodium Cobaltate and,

therefore, scattering at grain boundaries is likely to be a problem. We decided to

focus on the best electrical and thermal conductivity measurements that showed

consistent behaviour on cooling and heating and no anomalous readings or jumps

in the data, since these are most likely to reflect intrinsic physical properties. The

independent measurements of the strontium doped sample are broadly comparable,

and this suggests that the results reported here are at least qualitatively reliable.

Figure 6.6 compares the electrical resistivity, thermal conductivity and Seebeck

coefficient for Na0.8CoO2, Na0.57Ca0.14CoO2 and Na0.7Sr0.1CoO2 over the temper-

ature range T = 2− 300K.

The electrical resistivity is an order of magnitude worse than the values reported

by Lee et al. for pure Sodium Cobaltate [7] and Li et al. for calcium and strontium

doped systems [82]. The pure crystals of Lee et al. were less than 1mm in size

and, therefore they may have been higher quality than our much larger crystals of

size a few mm. Our residual resistance ratio is considerably less than the value

of RRR ≈ 20, reported by Lee et al. This explanation would not appear to be

appropriate for the doped systems, since the samples investigated by Li et al. were
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Figure 6.6: Thermal transport measurement results for different systems.
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sintered powders rather than single crystals!

The thermal conductivity of Na0.8CoO2 and Na0.7Sr0.1CoO2 are comparable to

those reported for the pure system at high-x by Foo et al. and Lee et al, see figure

6.1 [6, 7]. However, the thermal conductivity of Na0.57Ca0.14CoO2, ≈ 100W/mK,

is exceptionally large. This is the ideal composition for the particular di-vacancy

superstructure observed in this system. Furthermore, the structural determination

described in chapter 4 indicates that this sample is of very high crystal quality. Since

it is single phase, the lack of disorder from the ideal superstructure may lead to long

phonon mean free paths and, therefore, a high thermal conductivity. This is detri-

mental for the thermoelectric performance. Thermal conductivity measurements of

a sample with increased calcium content indicated that moving away from the ideal

composition lowers the thermal conductivity.

The Seebeck coefficients in figure 6.6 are comparable to the best achieved previ-

ously for both pure and doped system. The trend, with the pure system best, then

calcium doped followed by the strontium doped is the opposite to that reported by

Li et al. However, the precise compositions used by Li et al. were different, and the

superstructures are also very likely to be different. One remarkable feature of our

data is that the Seebeck coefficient dips to zero at low temperature for Na0.8CoO2

and Na0.7Sr0.1CoO2, shown clearly in figure 6.7. We do not currently have an expla-

nation for this behaviour. However, we note that both samples have similar striped

superstructures.

The overall figure-of-merit, ZT = TS2/ρκ, is summarised for the three systems

in figure 6.8. The highest value obtained is ≈ 2 × 10−3, which is much lower than

expected in these systems, given their large Seebeck coefficients and lower than the

value of ZT = 1 that was hoped for. However, the worse electrical conductivity

of our samples entirely accounts for the difference between these results and the
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Figure 6.7: Low temperature behaviour of the Seebeck coefficient in the pure and
strontium doped systems, demonstrating a remarkable dip at approximately 20K

Figure 6.8: Calculated thermoelectric figure of merit, ZT = TS2/ρκ, for the three
systems.
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previously reported best thermoelectric performance.

The difficulties found in measuring these properties could be reduced in the future

by using additional techniques. The lack of reliability in the resistivity measurements

could be due to an insulating surface layer, where de-intercalation by exposure to the

atmosphere has changed the surface composition to the insulating x = 0.5 phase. By

depositing gold contacts onto a freshly cleaved surface and attaching the resistivity

leads to these, better measurements could be made. The use of smaller, pre-screened

samples would also ensure the best quality crystals, although smaller samples will

make thermal conductivity measurements less reliable. This would constitute a

substantial research program outside the scope of this thesis.

6.4.2 Magnetic properties

Figure 6.9 presents the magnetisation measurements for single crystal samples of

Na0.8CoO2, Na0.7Ca0.1CoO2 and Na0.7Sr0.1CoO2 for field directions parallel and

perpendicular to the c-direction. Antiferromagnetic ordering occurs below a temper-

ature TN ≈ 22K forNa0.8CoO2 andNa0.7Sr0.1CoO2 and TN ≈ 26K forNa0.7Ca0.1CoO2.

In each case there is an indication of paramagnetic impurities that leads to a sharp

increase in magnetisation below T ≈ 10K. For the pure compound there are no

further transitions at lower temperature, and the data resemble those reported pre-

viously for Na0.82CoO2 [97]. For the calcium doped sample the out-of-plane data

suggest a further transition at T ≈ 20K, and the in-plane data for the strontium

doped sample indicates another transition below T ≈ 16K.

The hysteresis loops for each of these samples obtained at T ≈ 2K confirm the

antiferromagnetic nature of the magnetic interaction, see figure 6.10. No further

magnetic phase transitions are found at this temperature up to a maximum field

B ≈ 7T .
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Figure 6.9: Magnetic moments of three samples, each measured with c-axis parallel
and perpendicular to the field H. Each sample is measured after cooling without
applied field (ZFC) and with applied field (FC).
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Figure 6.10: Magnetic moments of three samples with varying external magnetic
field, each measured with c-axis perpendicular to the field.

The inverse susceptibility data for each sample is plotted as a function of temper-

ature in figure 6.11. The high temperature data are clearly non-linear in each case

and, therefore, it is not possible to estimate magnetic moments or the Curie-Weiss

temperature using the Curie-Weiss law. Non-linear behaviour was also reported by

Carretta et al. for Na0.75CoO2, who proposed that metallic regions exhibiting non-

Fermi liquid behaviour lead to a linear relationship between inverse susceptibility

and Tα, where α = 0.7 over a range of compositions at high x [75]. Attempts to

obtain straight line fits did not reproduce the data for a range of values of α.

In summary, doping with divalent ions clearly changes the magnetic properties

of this system. Magnetic properties measurements are an indirect measurement of

the electronic structure of this system and the link between the magnetic and elec-

tronic structure will likely explain the observed changes in thermoelectric properties.

Indeed, the Seebeck coefficient in the pure and strontium doped samples shows a

dip at the magnetic transition temperature, clearly demonstrating the importance
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Figure 6.11: Inverse-susceptibility data for the three samples. Dotted lines represent
the linear fits to the data, which can be used to determine the Néel temperature, θN ,
and the average magnetic moment, µav. using the methods described in ref. [101].
At this scale the fit looks reasonable however close inspection of each lines shows
deviations from linearity, which explains why the Néel temperatures determined for
these fits fall so far from the observed magnetic ordering temperatures (around 22K).

of this link. There are also additional complexities arising as a result of doping,

as additional transitions are observed that could be a result of additional magnetic

ordering. Strongly correlated behaviour will often change the linear dependence of

the high temperature inverse susceptibility, and this has been observed here in all

three systems.

6.4.3 Magnetic Structure

In the first attempt to study Na0.8CoO2 we aligned the sample in CRYOPAD at

room temperature and measured superlattice reflections in the horizontal scattering

plane. While cooling the sample slowly (at the normal rate for CRYOPAD on IN20)

we found that the (0.8, 0, 0) reflection from the stripe phase almost disappeared



CHAPTER 6. PHYSICAL PROPERTIES 180

by T ≈ 220K. It was not possible to recover a large fraction of the intensity by

heating to room temperature. Furthermore, with access to only the (h0l) scattering

plane it was not possible to measure superlattice reflections from some of the other

possible superstructures of pure Sodium Cobaltate. We therefore aligned another

large single crystal of Na0.8CoO2 on IN3, noting the ratio of superlattice peak to

Bragg reflection. We found that by quenching the sample directly to T ≈ 200K

in CRYOPAD it was possible to preserve a large fraction of the intensity in the

superlattice reflections.

The polarisation matrices were measured for several reflections in the (h0l) plane

at T ≈ 2K, and typical data is listed in tables 6.1 for the (100), (001), (101) and

(0.8, 0, 1) reflections. The magnetic cross sections are given in section 2.2.2.

T = 2K T = 30K
Channel (100) (001) (0.8, 0, 1) (101) (101)
M∗
⊥.M⊥ 0.4(3) 0.0(2) 0.00(8) 2.9(1) 1.7(1)

My∗
⊥ .M

y
⊥ 0.00(6) 0.00(3) 0.00(1) 1.84(6) 0.68(6)

M z∗
⊥ .M

z
⊥ 0.47(6) 0.04(3) 0.002(7) 1.06(7) 0.99(6)

ix̂(M∗
⊥ ×M⊥) - - - -2.91(9) -3.03(8)

N∗ ·My
⊥ +N ·My∗

⊥ - - - 0.9(1) 0.8(1)
N∗ ·M z

⊥ +N ·M z∗
⊥ - - - -0.2(1) -0.1(1)

Table 6.1: Diagonal cross sections from CRYOPAD measurements. Cross sections
are normalised by the counting time at each reflection.

Magnetic scattering is detected for moments perpendicular to Q for the (101)

reflection. However, no signal is detected at the (100) or (001) reciprocal lattice

points of the hexagonal lattice, or the superlattice reflection (0.8, 0, 1). Some signal

is apparent in the off-diagonal channels, however this does not change above the

magnetic transition temperature.

Figure 6.12 shows a scan of Q through the (101) reflection at T ≈ 2K. All

of these plots are peaked in Q, as expected for magnetic Bragg peaks. However,

the scattering intensities are very weak and there is possibly leakage of the strong
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structural scattering in other channels. It is instructive to examine the temperature

dependence of these cross sections. Figure 6.13 shows the temperature dependence

of magnetic cross sections for the (101) reflection. Over the temperature range 2-30K

the cross section perpendicular to the scattering plane is independent of temperature.

In contrast, the in-plane cross section has a similar order parameter to that of

Na0.82CoO2 in figure 6.4. The fact that all of the magnetic scattering corresponds

to components in the horizontal scattering plane, and the lack of magnetic signal

at (001) or (100) is consistent with A-type antiferromagnetism with ferromagnetic

sheets in the cobalt-oxide layers and moments pointing along the c-direction with

opposite senses in successive layers. The magnitude of the moment in the c-direction

is estimated to be about 0.16µB at base temperature, this is consistent with the

value of 0.13µB obtained by Bayrakci et al. [8] but much smaller than the average

magnetic moment determined from straight line fits to the inverse susceptibility,

further emphasising the poor agreement of those fits due to a lack of linearity.

Figure 6.14 compares spin-flip with non spin-flip intensity for a polarisation

direction parallel to Q for a scan of Q through the superlattice reflection (0.8, 0, 1) at

T = 2K. The non spin-flip scattering is peaked in Q and this arises from structural

scattering from the superstructure. The fact that the spin-flip scattering is flat,

as well as the magnetic cross section above, suggests that there is no magnetic

scattering within experimental error.

On the basis of the ordered stripe phase superstructure, it is possible to postulate

models of the spin density in the cobalt layers. The models illustrated in figure

6.15 locate the magnetic spin-half Co4+ ions at either the minima of the Coulomb

landscape proposed for this model [50], or at the position of greatest charge from

FDMNES calculations in chapter 5. Table 6.2 shows that the magnetic superlattice

peak intensity for these models are similar to the hexagonal Bragg peaks, indicating

that our measurements should have been sensitive to these magnetic modulations.
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Figure 6.12: Scans though (h01) of the magnetic components, showing a clear mag-
netic signal above the background. |M⊥y| gives the magnetic component in the
(h0l) plane and |M⊥z| gives the component perpendicular to this plane. |M⊥| is a
combination of these components.

Figure 6.13: Temperature dependence of the magnetic (101) peak. The magnetic
component in the (h0l) plane disappears at T ≈ 22K.
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Figure 6.14: Q scans of the (0.8, 0, 1) superlattice reflection. The non-spin-flip (xx)
channel shows a structural peak at this position but the spin-flip (xx̄) channel shows
no evidence of magnetic scattering.

I(101) I(0.8,0,1) I(0.8,0,1)/I(101)
Model (a) 15.85 15.90 1.00
Model (b) 15.85 10.41 0.66

Table 6.2: Calculated magnetic intensities for postulated magnetic structures in
figure 6.15.

We can therefore rule out the magnetic modulations of there models, where Co4+

ions are localised in specific positions. The results found in chapter 5 indicate that

the modulation of valence in the cobalt plane does not lead to such a stark contrast

of Co3+/Co4+ ordering as modelled above, indeed the change in valence is much

smaller and varies in a smoother fashion. This type of modulation will lead to a

smearing of intensity, lowering the superlattice peak intensity with respect to the

hexagonal peak. Such modulations, given the weak nature of the magnetic scattering

and requirement of polarisation analysis, are likely to be difficult to observe with this

technique due to the long counting times required. However, if model (b) is correct,



CHAPTER 6. PHYSICAL PROPERTIES 184

Figure 6.15: Postulated modulation of spin density in the cobalt planes with a
magnetic intensity calculation of the (hk1) plane. Black balls show the position
of magnetic spin-half Co4+ ions, all other positions are non-magnetic Co3+ ions.
(a) Spins are localised at the minima of the Coulomb landscape from ref. [50]. (b)
Spins are located at the positions of highest charge in the predicted charge layer from
FDMNES, see chapter 5. Both models predict magnetic intensity at the (0.8, 0, 1)
position with a similar intensity to the (101) position.
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it would be more promising to search for magnetic scattering at (1
3
, 1

3
, 1) since this

is a stronger magnetic reflections and the structural background is smaller.

Doping with calcium or strontium leads to changes in the magnetic properties

of these systems, and these will be caused by changes in the magnetic structure.

Using the superstructures proposed in chapter 4, it will be possible to perform

further polarised neutron measurements on these doped samples and measure their

magnetic structures.
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6.5 Conclusions

The electrical and thermal transport measurements forNa0.8CoO2, Na0.57Ca0.14CoO2

and Na0.7Sr0.1CoO2 demonstrate their potential as useful thermoelectric materials,

with high Seebeck coefficients of around or greater than 100µV/K. The trend in

thermoelectric performance is different to that previously published, possibly due to

the dependence on the precise superstructure. The results in this chapter establish

links between the details of the superstructure and the thermoelectric properties.

For example, Na0.8CoO2 has a very high Seebeck coefficient. The stripe phase was

shown to lead to the channelling of holes along one-dimensional path ways in the

CoO2 layers in chapter 5. Such a confinement of holes is expected to lead to strong

correlations and, according to the arguments outlined in chapter 1, this gives a nat-

ural explanation for the high value of S. It is striking that for both samples with

stripe phases, Na0.8CoO2 and Na0.7Sr0.1CoO2, S drops dramatically to zero at the

Néel temperature. The thermal conductivity of Na0.57Ca0.14CoO2 is exceptionally

high. Since this sample has the ideal composition for its superstructure, it highlights

the role of defects in reducing the thermal conductivity.

The magnetic ordering in the Na0.8CoO2 sample was found to be an A-type

antiferromagnet with moments pointing along the c-direction in opposite senses

in successive planes. We were unable to detect any magnetic modulation within

the plane, within experimental uncertainty. Magnetic susceptibility measurements

showed that none of the samples obeyed the Curie-Weiss law, as expected for these

strongly correlated systems. Additional magnetic phase transitions were identified

for the doped compounds.



Chapter 7

Summary & Conclusions

Sodium Cobaltate is a material of enormous interest both scientifically and techno-

logically, as understanding the fundamental physics behind this material could lead

to significant advances in environmentally friendly technology. Increasing the num-

ber of electronic holes in the material leads to improvements in the thermoelectric

properties and these holes can be increased by decreasing the sodium concentration.

Above a certain concentration, however, the thermoelectricity decreases due to the

coexistence of insulating phases. The number of holes can be increased by doping

with di-valent ions such as calcium or strontium, and these have been reported to

increase the system’s thermoelectric properties further.

As the concentration of sodium varies, a kaleidoscope of diffraction patterns

emerges as the superstructure of sodium ions changes. The ordering of sodium

patterns the Coulomb landscape in the cobalt-oxygen layers, where the depth of

potential wells is greater than the electron hopping energy. NMR studies have

revealed a number of distinct valences for cobalt, although no spacial technique has

previously been used to asses the ordering of these valences.

Neutron and x-ray diffraction has been combined with resonant x-ray and mag-

netic measurement techniques to study single crystals of NaxCoO2, NaxCayCoO2

187
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and NaxSryCoO2, allowing us to study the atomic, electronic and magnetic struc-

tures in these systems.

7.1 Crystal Structures

Single crystal diffraction was performed using neutrons on SXD at ISIS and with x-

rays at Royal Holloway. Samples of Na0.8CoO2, NaxCayCoO2 and NaxSryCoO2 all

exhibited new diffraction patterns, owing to superstructures in the sodium-dopant

layers. Refinement techniques, Reverse Monte Carlo (RMC) and some manual sim-

ulations were used to determine the long range ordering of sodium and dopant ions

within these materials. The combination of RMC and simulated annealing was found

to perform well on these systems, providing structural models that could accurately

generate the observed diffraction pattern and be reliably reproduced irrespective of

the initial sodium configuration. Providing the experimental data was adequate,

the code was able to provide the ordering of not just the sodium and dopant ions,

but also the cobalt and oxygen distortions. Experimental and calculated diffraction

data are illustrated with the ordering patterns in figure 7.1.

The superlattice formed in Na0.8CoO2 at low temperature was explained by

an ordering of tri-vacancy clusters, arranged in 1D stripes, where the relationship

between successive stripes is fixed. At high temperature, the relationship between

successive stripes becomes random, and this leads to a smearing effect on off-axis

superlattice peaks. RMC showed that the cobalt-oxygen layer contains distortions

that follow to sodium pattern, and are equivalent to the buckling predicted from the

Coulomb landscape.

Doping Sodium Cobaltate with calcium leads to a single dominant phase through-

out the temperature and composition range. The RMC code was able to determine

the superstructure, which consisted of di-vacancy clusters in the sodium-calcium



CHAPTER 7. SUMMARY & CONCLUSIONS 189

Figure 7.1: Diffraction patterns observed and structural solutions.



CHAPTER 7. SUMMARY & CONCLUSIONS 190

layer, where calcium ions sit at the central di-vacancy site. Distortions in the cobalt-

oxygen layer were also observed, though these were much smaller than in the pure

system. Increasing the concentration of calcium lead to a coexistence with the

insulating Na0.5CoO2 phase, explaining the reduction in thermoelectric properties

observed at higher concentrations.

X-ray diffraction ofNaxSryCoO2 revealed two separate diffraction patterns, both

significantly more complex than previous systems due to their satellite peak inten-

sities appearing away from the principle hexagonal reflections. A combination of

RMC and manual modelling was used to determine the superstructures for both

systems. The alpha phase, observed in Na0.7Sr0.1CoO2, consisted of a large su-

percell, where each sodium-strontium layer comprised of two multi-vacancy clus-

ters with four strontium ions sitting on Na1 sites. The beta phase, observed in

Na0.6Sr0.2CoO2, was explained by stripes of separated strontium ions sitting on

Na2 sites, surrounded by vacancies, where each strontium stripe is separated by

regions of closely packed sodium ions.

7.2 Electronic Ordering

Resonant x-ray scattering was performed on I16 at Diamond using samples of

Na0.8CoO2 and Na0.7Ca0.1CoO2. Resonant behaviour was observed in both sys-

tems in the rotated polarisation channel. Energy, azimuthal and spatial scans were

combined with temperature and polarisation dependences to measure the attributes

of the resonances. The first-principles calculation FDMNES was used to model the

resonant behaviour of these systems and was able to produce qualitative agreement

with the experimental data.

The electronic ordering proposed by FDMNES consisted of an ordering of va-

lences in the cobalt-oxygen layers that clearly follows the ordering of ions in the
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sodium layer. The largest distortions in valence however were not found in the

cobalt ions, as expected, but in the surrounding oxygen ions.

7.3 Physical Properties

Thermal transport measurements were performed on Na0.8CoO2, Na0.57Ca0.14CoO2

and Na0.7Sr0.1CoO2. All three samples exhibited excellent thermoelectric behaviour

with higher Seebeck coefficients compared to competing bulk thermoelectric mate-

rials that do not contain toxic or sparse ingredients. The link between their ther-

moelectric properties and superstructure has also been established for the first time.

The change in thermoelectric properties between the different systems was differ-

ent to that previously observed, however structural differences are likely to be the

cause of this. The excellent thermoelectric performance of Na0.8CoO2 can be at-

tributed to its ideal structure, due to confinement of electrons in the 1D conduction

pathways caused by stripe ordering of sodium ions and the phonon suppression

from rattling cage ions in tri-vacancy clusters. The high thermal conductivity in

Na0.57Ca0.14CoO2 demonstrated the importance of thermal conductivity in thermo-

electric materials, as this had a detrimental effect on the thermoelectric figure of

merit.

Magnetic properties measurements were performed using a SQUID VSM at Dia-

mond on single crystal samples of Na0.8CoO2, Na0.7Ca0.1CoO2 and Na0.7Sr0.1CoO2.

The antiferromagnetic transition temperature was determined for all three com-

pounds, and additional unexplained transitions were observed in the calcium and

strontium doped systems. These measurements demonstrate the change in magnetic

and electronic structure in this system when doped with divalent ions.

Magnetic scattering experiments were performed on crystals of Na0.8CoO2 using

neutrons on IN20 at ILL. The antiferromagnetic transition was observed at the
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principal hexagonal reflections with polarised neutrons, however we were not able

to observe any satellite peaks from magnetic modulations in the cobalt layer.

7.4 Final Conclusion

The superstructures ofNa0.8CoO2, NaxCayCoO2 andNaxSryCoO2 have been solved

and the relationship with their thermoelectric properties has been determined. The

effect of ordering in the sodium-dopant layer has been clearly observed in the dis-

tortions found in the cobalt-oxygen layer using RMC.

The electronic and magnetic structure measurements lead us to an important

discovery about the nature of charge ordering within Sodium Cobaltate, as resonant

x-ray experiments and modelling have determined that the largest distortions in

charge are found in ordered stripes within the oxygen layers. This result has been

backed up by magnetic scattering measurements that were not able to observe any

long range magnetic ordering from Co4+ ions.

Further investigation into these materials is absolutely essential. The charge

ordering in the system can be further measured with more in-depth resonant x-ray

studies, allowing greater constraints on the FDMNES model. It would also be worth

calculating the electronic structure with other codes that include periodic boundary

conditions, as this may lead to a better understanding of the locations of charges in

the system. Doping with other ions such as trivalent lanthanum may lead to new

superlattice patterns and may provide further enhancement to the thermopower.

The materials studied here can also be developed further by growing thin films rather

than single crystals, which can lead to a significant increase in the thermoelectric

properties.
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[86] M. Dusek, V. Petŕıcek, M. Wunschel, R. E. Dinnebier, and S. van Smaalen,

Journal of Applied Crystallography 34, 398 (2001).
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Appendix A

Reverse Monte Carlo Program

1 function thesisRMC
2 % Reverse Monte Carlo Program with simulated annealing
3 % For neutron diffraction experiments on Sodium Cobaltate
4 % Written in MATLAB/Octave code, uses only inbuilt functions.
5 % Calculation variables are altered at the start of the file.
6 %
7 % V4.1
8 % By Daniel Porter MPhys
9 % Royal Holloway

10 % 2012
11

12 %−−−−−−−−−−−−−−−−−−−−−−−−−−Define Program Parameters−−−−−−−−−−−−−−−−−−−−−−−
13 % Experimental data file name + directory
14 % Data must be in the form: h k l I error
15 filename = 'filename.dat';
16

17 % Basis vectors for superstructure
18 % THIS MUST BE THE SAME FOR EXPERIMENTAL DATA
19 % Ordered Stripe Supercell
20 UV = [ 8.55 0 0;
21 4.275 12.341 0;
22 0 0 10.8];
23

24 % Concentration of Sodium
25 concNa = 0.7;
26

27 % Concentration of Dopant
28 concDp = 0.1;
29

30 % Dopant Neutron Scattering length (fm)
31 % scatDp = 4.70; % Ca
32 scatDp = 7.02; % Sr
33

34 % Thermal Paramater (0 for off, 1 for on)
35 UISO = 1;
36

37 % Displacement parameters
38 pmove = 1; % single displacemet, % of inter−Co distance
39 pthres = 5; % maximum displacement, % of inter−Co distance

201
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40

41 % Number of Monte−Carlo repetitions
42 MCrep = 20000;
43

44 % Initial Temperature
45 Binit = 0.00001;
46

47 % Number of Temperature loops
48 Temploop = 200;
49

50 % Temperature increase factor, BETA = Tinc*BETA
51 % Temperature = 0.01*Tincˆn
52 Tinc = 1.1;
53

54

55 %−−−−−−−−−−−−−−−−−−−−−−−−−Initialise variables−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 % Coordinate systems − Reciprical basis vectors
57 UVstar = 2*pi*eye(3)/UV';
58

59 % Average hexagonal unit cell
60 HEX = 2.85*[1 0 0; −0.5 sqrt(3)/2 0; 0 0 10.8/2.85];
61

62 % Various paramaters
63 latpar a = 2.85;
64 latpar c = 10.8;
65 nalay1 = round(100*0.25*latpar c)/100;
66 nalay2 = round(100*0.75*latpar c)/100;
67

68 % Scattering lengths
69 scatNa = 3.63;
70 scatCo = 2.49;
71 scatOx = 5.803;
72

73 % Difference in Na/Dopant scattering lengths (for Na/dopant switching)
74 scatdif=scatNa−scatDp;
75

76 % Thermal Uiso parameters (Aˆ2)
77 uCo = 0.003; % Co Isotropic thermal paramater
78 uOx = 0.005; % O Isotropic thermal paramater
79 uNa = 0.015; % Na Isotropic thermal paramater
80

81 % Nearest Neighbour Distance
82 NNdist = 1.66ˆ2; % approx (a/sqrt(3))ˆ2
83

84 % Displacement options
85 move = latpar a*pmove/100; %A, single displacemet, % of inter−Co distance
86 thres = latpar a*pthres/100; %A, maximum displacement, % of inter−Co
87

88 % Initail temperature
89 BETA = Binit;
90

91 % Seed − set default
92 if ˜exist('seed','var'), seed = randi(100); end
93

94 % Random number generation, sets the starting seed so data can be
95 % reproduced
96 if ˜nargin, seed=0; end % set default for seed
97 stream = RandStream('mt19937ar','Seed',seed);
98 RandStream.setDefaultStream(stream);
99

100

101
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102 %−−−−−−−−−−−−−−−−−−−−−−−Load Experimental Data−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103 % Load data file
104 DATA = load(filename);
105

106 HKL = DATA(:,1:3);
107 Iexp = DATA(:,4);
108 error = DATA(:,5);
109

110 % Find Q vectors of these peaks using basis vectors
111 Q = HKL*UVstar;
112

113 % Number of experimental reflections
114 Npeaks = length(Iexp);
115

116 % Normalise the Intensities
117 normF = sqrt( sum(Iexp.ˆ2)/Npeaks ); % Normalising factor
118

119 % Calculate the weights
120 wi = 1./(error.ˆ2);
121

122 %−−−−−−−−−−−−−−−−−−−−−Generate Symmetrial Domains−−−−−−−−−−−−−−−−−−−−−−−−−−
123 % Experimental intensities are formed from a single super cell that can
124 % form upto 12 different domains following the hexagonal symmetry of the
125 % system. The correct intensity pattern can be calculated by finding the
126 % equivalent (hkl) indexes for every position in Q and summing over all
127 % these equivalent positions.
128

129 % Symmetry operations
130 R=[0.5 −0.8660254 0; 0.8660254 0.5 0; 0 0 1]; % Rotation of pi/3
131 R2=[−0.5 −0.8660254 0; 0.8660254 −0.5 0; 0 0 1]; % Rotation of 2*pi/3
132

133 % Generate symetrical versions of unit cell
134 domUV{1}=UVstar;
135 domUV{2}=(R*UVstar')';
136 domUV{3}=(R2*UVstar')';
137 domUV{4}=[UVstar(:,1) −UVstar(:,2) UVstar(:,3)];
138 domUV{5}=[UVstar(:,1) −UVstar(:,2) UVstar(:,3)]; domUV{5}=(R*domUV{5}')';
139 domUV{6}=[UVstar(:,1) −UVstar(:,2) UVstar(:,3)]; domUV{6}=(R2*domUV{6}')';
140 domUV{7}=[−UVstar(:,1) UVstar(:,2) UVstar(:,3)];
141 domUV{8}=[−UVstar(:,1) UVstar(:,2) UVstar(:,3)]; domUV{8}=(R*domUV{8}')';
142 domUV{9}=[−UVstar(:,1) UVstar(:,2) UVstar(:,3)]; domUV{9}=(R2*domUV{9}')';
143 domUV{10}=[−UVstar(:,1) −UVstar(:,2) UVstar(:,3)];
144 domUV{11}=[−UVstar(:,1) −UVstar(:,2) UVstar(:,3)]; domUV{11}=(R*domUV{11}')';
145 domUV{12}=[−UVstar(:,1) −UVstar(:,2) UVstar(:,3)]; domUV{12}=(R2*domUV{12}')';
146

147 % Index Q coordinates with the 12 different unit cells
148 allref=zeros(Npeaks*12,3); isindx=zeros(Npeaks,12);
149 for n=1:12
150 domIDX=(domUV{n}'\Q')'; % index the reflections with current UV
151 domHKL=round(domIDX); % round coordinates
152 isindx(:,n)=sum(abs(domIDX−domHKL),2)<0.1; % find non−integer indexation
153 domHKL(˜isindx(:,n),:)=0; % Replace non−integer indexations by 0 position
154 allref(((1:Npeaks) + (n−1)*Npeaks),:) = domHKL;
155 end
156

157 % Find the unique reflections
158 [uniref,NaN,refno] = unique(allref,'rows');
159 Qcal = uniref*UVstar;
160

161 % change shape of refno so that the intensities can be summed along the
162 % rows later
163 refno = reshape(refno,size(Q,1),12);
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164

165 % Qcal, refno and isindx
166 % Intensities will be calculated at the positions Qcal and the experimental
167 % intensity at each Q will be compared to the sum over calculated
168 % intensities defined by refno. isindx will be used to define 0
169 % intensities.
170

171 %−−−−−−−−−−−−−−−−−−−−−−−Generate Initial Model−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
172 % Fill the cell defined by the basis vectors with an integer number of pure
173 % nacoo2 unit cells
174

175 % Create a lattice of unit cells (15 should be enough for most lattices)
176 [U,V]=meshgrid(1:15);
177 UVW = [U(:) V(:) zeros(length(U(:)),1)];
178 purecells = UVW*HEX;
179

180 % index this lattice with the supercell
181 UVWlat = (UV'\purecells')';
182

183 % Determine which lattice points are within the supercell
184 purecells = UVWlat(UVWlat(:,1) < 1 & UVWlat(:,1) >= 0 & ...
185 UVWlat(:,2) < 1 & UVWlat(:,2) >= 0,:)*UV;
186

187 % Define atomic positions in a single unit cell
188 Co = [0 0 0; 0 0 0.5]*HEX;
189 Ox = [1/3 2/3 0.0908; 1/3 2/3 0.4092; 2/3 1/3 0.5908; 2/3 1/3 0.9092]*HEX;
190 Na1= [0 0 0.25; 0 0 0.75]*HEX;
191 Na2= [2/3 1/3 0.25; 1/3 2/3 0.75]*HEX;
192

193 % Fill the supercell with atomic positions
194 Copos=[]; Oxpos=[]; Na1pos=[]; Na2pos=[];
195 for P = 1:size(purecells,1)
196 Copos(end+1:end+size(Co,1),:) = Co + repmat(purecells(P,:),size(Co,1),1);
197 Oxpos(end+1:end+size(Ox,1),:) = Ox + repmat(purecells(P,:),size(Ox,1),1);
198 Na1pos(end+1:end+size(Na1,1),:) = Na1 + repmat(purecells(P,:),size(Na1,1),1);
199 Na2pos(end+1:end+size(Na2,1),:) = Na2 + repmat(purecells(P,:),size(Na2,1),1);
200 end
201

202 % Number of pure NaCoO2 cells in the supercell
203 Ncell = size(purecells,1);
204

205 % Combine Na2 and Na1 positions
206 Napos = [Na2pos; Na1pos];
207

208 % Define Displacements arrays
209 CoDpos = zeros(size(Copos));
210 OxDpos = zeros(size(Oxpos));
211 NaDpos = zeros(size(Napos));
212

213 %−−−−Fill Na/Dopant layers−−−−
214 type = zeros(size(Napos(:,1)));
215 % define number of atoms in each layer
216 Nafill = round(concNa*Ncell);
217 Dpfill = round(concDp*Ncell);
218 if Nafill + Dpfill > Ncell, disp('Occupancy too high'); return; end
219

220 % layer 1 fill
221 lay1 = find(abs(Napos(:,3)−nalay1)<0.001); % indexes of positions in layer 1 (Ncell positions)
222 RR = randperm(Ncell); % only place on Na2 positions
223 type(lay1(RR(1:Nafill))) = scatNa;
224 type(lay1(RR(Nafill+1:Nafill+Dpfill))) = scatDp;
225 % Layer 2 fill
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226 lay2 = find(abs(Napos(:,3)−nalay2)<0.001); % indexes of positions in layer 2 (Ncell positions)
227 RR = randperm(Ncell); % only place on Na2 positions
228 type(lay2(RR(1:Nafill))) = scatNa;
229 type(lay2(RR(Nafill+1:Nafill+Dpfill))) = scatDp;
230

231 % Basis Model:
232 % Currently defined in several parts for each atom, the positions, the
233 % scattering lengths and the displacements.
234 % Co Ox Na
235 % Copos = [nx3] Oxpos = [2nx3] Napos = [2nx3]
236 % Coscat = [1] Oxscat = [1] type = [2nx3]
237 % CoDpos = [nx3] CoDpos = [2nx3] NaDpos = [2nx3]
238

239

240 %−−−−−−−−−−−−−−−−−−−−Calculate Initial Intensities−−−−−−−−−−−−−−−−−−−−−−−−−
241 % Calculate the atomic isotropic gaussian debye waller factors
242 Q2 = sum(Qcal.*Qcal,2); % Magnitude of the scattering vector squared
243 % Debye Waller factor for different elements (assume Na and dopeant are
244 % same). UISO is either 1 or 0.
245 DWFCo = exp(−(UISO*uCo*Q2)/2); % Co
246 DWFOx = exp(−(UISO*uOx*Q2)/2); % O
247 DWFNa = exp(−(UISO*uNa*Q2)/2); % Na/ Dopant
248

249 % Calculate the structure factor from the atomic positions, their
250 % displacements and their scattering factors.
251 typesf = repmat(type',size(Qcal,1),1); % prepare array of scattering factors.
252 DWFCosf = repmat(DWFCo,1,size(Copos,1)); % Prepare array of DWF
253 DWFOxsf = repmat(DWFOx,1,size(Oxpos,1)); % Prepare array of DWF
254 DWFNasf = repmat(DWFNa,1,size(Napos,1)); % Prepare array of DWF
255 % Structure Factor
256 SF = sum(scatCo*DWFCosf.*exp(1i*Qcal*(Copos+CoDpos)'),2) + ... Cobalts
257 sum(scatOx*DWFOxsf.*exp(1i*Qcal*(Oxpos+OxDpos)'),2) + ... Oxygens
258 sum(typesf.*DWFNasf.*exp(1i*Qcal*(Napos+NaDpos)'),2); % Sodium + Dopants
259

260 % Calculate Intensity
261 Ical = SF.*conj(SF);
262

263 % Apply domain summation
264 domI = Ical(refno); % define 12 intensities per position in Q
265 domI(˜isindx)=0; % Remove non−indexed intensities
266 Ical = sum(domI,2); % Sum all intensities at each point
267

268 % Normalise Intensity
269 Ical = normF.*Ical./sqrt(sum(Ical.ˆ2)/Npeaks);
270

271 %−−−−−−−−−−−−−−−−−−−−−−−−−Calculate initial Fit−−−−−−−−−−−−−−−−−−−−−−−−−−−−
272 % Calculate and display maximum number of configurations for this system
273 conf = (nchoosek(Ncell−Dpfill,Nafill)*nchoosek(Ncell,Dpfill))ˆ2;
274 disp(['Maximum configurations = ' num2str(conf)]);
275

276 % Calculate Chiˆ2 value (without experimental weighting for now...)
277 CHI = sum( wi.*(Iexp−Ical).ˆ2 );
278

279 %−−−−−−−−−−−−−−−−−−−−−−−−Create Output Files−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
280 % Create output file
281 fid = fopen('output.txt','wt');
282

283 % Write introductory data
284 fprintf(fid,['Reverse Monte Carlo Run, ' datestr(now,0) '\n']);
285 fprintf(fid,'Experimental data set: %s \n',filename);
286 fprintf(fid,'Initial Chiˆ2 = %8.5f \n\n',CHI);
287
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288 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
289 %−−−−−−−−−−−−−−−−−−−−−−−−−−Start Reverse Monte Carlo−−−−−−−−−−−−−−−−−−−−−−−
290 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
291 anneal=0;
292 for Tn = 1:Temploop
293 changes = [0 0];
294 BETA = Tinc*BETA; % Reduce the temperature
295 for MCn = 1:MCrep
296 %−−−−−−−−−−−−−−−−−−−−−−−−−−Sodium/Dopant Hopping−−−−−−−−−−−−−−−−−−−−−−−
297 % Select a filled and empty site on the same layer
298 full = find(type>0); % find filled sites
299 fsite = full(randi(length(full))); % select random filled site
300 empt = find(Napos(:,3)==Napos(fsite,3) & type == 0); % find empty sites
301 esite = empt(randi(length(empt))); % select random empty site
302 % fsite is the index of a filled site
303 % esite is the index of an empty site
304

305 % check if the selected position is further than the nearest neighbour
306 % distance of any other positions. Because the nearest position may be
307 % outside the supercell, we generate all positions around the cell.
308 fpos = find(Napos(:,3)==Napos(fsite,3) & type>0); % select filled positions
309 fpos(fpos==fsite)=[]; % remove current site (allowing move to NN)
310 fpos=Napos(fpos,:); % return position coordinates
311 a=repmat(UV(1,:),size(fpos,1),1); % repeated versions of basis vectors
312 b=repmat(UV(2,:),size(fpos,1),1);
313 pos = [fpos; fpos+a; fpos−a; fpos+b; fpos−b; fpos+a+b; fpos+a−b; fpos−a+b; fpos−a−b];
314

315 % Calculate the distance from the empty site to the filled positions
316 site = Napos(esite,:);
317 mg = (site(1)−pos(:,1)).ˆ2 + (site(2)−pos(:,2)).ˆ2;
318

319 % Only fill the site if the selected site is not within the nearest
320 % neighbour distance from another filled position.
321 if ˜any(mg<=NNdist)
322 % Calculate new structure factors
323 NSF = SF + type(fsite)*DWFNa.*exp(1i*Qcal*(Napos(esite,:)+NaDpos(fsite,:))') ...
324 − type(fsite)*DWFNa.*exp(1i*Qcal*(Napos(fsite,:)+NaDpos(fsite,:))');
325 % Calculate Intensity
326 Ical = NSF.*conj(NSF);
327

328 % Apply domain summation
329 domI = Ical(refno); % define 12 intensities per position in Q
330 domI(˜isindx)=0; % Remove non−indexed intensities
331 Ical = sum(domI,2); % Sum all intensities at each point
332

333 % Normalise Intensity
334 Ical = normF.*Ical./sqrt(sum(Ical.ˆ2)/Npeaks);
335

336 % Calculate Chiˆ2 value
337 NCHI = sum( wi.*(Iexp−Ical).ˆ2 );
338

339 % Calculate the difference between old and new chi
340 DIF = NCHI − CHI;
341

342 %−−−Metropolis Algorithm−−−
343 accept = 1;
344 if DIF>0
345 % if new move has a higher chi (worse) than previously, then
346 % accept the move with probability P(T)=exp(−DIF/kT). So reject
347 % the move if P(T) is less than a random number.
348 if exp(−BETA*DIF) < rand, accept=0; end
349 end
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350 if accept
351 % Swap scattering lengths
352 type(esite) = type(fsite);
353 type(fsite) = 0;
354 % Swap displacements (not sure about this)
355 NaDpos(esite,:) = NaDpos(fsite,:);
356 NaDpos(fsite,:) = [0 0 0];
357 % Save the new structure factor and CHI
358 SF = NSF;
359 CHI = NCHI;
360 changes(1) = changes(1) + 1;
361 end
362 end
363 %−−−−−−−−−−−−−−−−−−−−−−−−−−Sodium/Dopant Switching−−−−−−−−−−−−−−−−−−−−−
364 % Select a filled and empty site on the same layer
365 sod = find(type==scatNa); % find Na sites
366 nsite = sod(randi(length(sod))); % select random Na site
367 dop = find(Napos(:,3)==Napos(nsite,3) & type == scatDp); % find dopant sites on same layer
368 dsite = dop(randi(length(dop))); % select random dopant site
369 % nsite is the index of a Na site
370 % dsite is the index of an dopant site on the same layer
371

372 % Try switching the scattering positions
373 % Calculate new structure factors
374 NSF = SF + scatdif*DWFNa.*exp(1i*Qcal*(Napos(dsite,:)+NaDpos(dsite,:))') ...
375 − scatdif*DWFNa.*exp(1i*Qcal*(Napos(nsite,:)+NaDpos(nsite,:))');
376 % Calculate Intensity
377 Ical = NSF.*conj(NSF);
378

379 % Apply domain summation
380 domI = Ical(refno); % define 12 intensities per position in Q
381 domI(˜isindx)=0; % Remove non−indexed intensities
382 Ical = sum(domI,2); % Sum all intensities at each point
383

384 % Normalise Intensity
385 Ical = normF.*Ical./sqrt(sum(Ical.ˆ2)/Npeaks);
386

387 % Calculate Chiˆ2 value
388 NCHI = sum( wi.*(Iexp−Ical).ˆ2 );
389

390 % Calculate the difference between old and new chi
391 DIF = NCHI − CHI;
392

393 %−−−Metropolis Algorithm−−−
394 accept = 1;
395 if DIF>0
396 % if new move has a higher chi (worse) than previously, then
397 % accept the move with probability P(T)=exp(−DIF/kT). So reject
398 % the move if P(T) is less than a random number.
399 if exp(−BETA*DIF) < rand, accept=0; end
400 end
401 if accept
402 % Swap scattering lengths
403 type(nsite) = scatDp;
404 type(dsite) = scatNa;
405 % Save the new structure factor and CHI
406 SF = NSF;
407 CHI = NCHI;
408 changes(1) = changes(1) + 1;
409 end
410

411
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412 %−−−−−−−−−−−−−−−−−−−−−−−−−−Na Displacements−−−−−−−−−−−−−−−−−−−−−−−−−−−−
413 % Select two different filled sites on the same layer
414 atm = find(type>0); % find filled sites
415 site1 = atm(randi(length(atm))); % select random filled site
416 % find other filled sites on same layer
417 atm = find(˜(Napos(:,1)==Napos(site1,1) & Napos(:,2)==Napos(site1,2)) ...
418 & Napos(:,3)==Napos(site1,3) & type >0);
419 site2 = atm(randi(length(atm))); % select different random filled site
420 % site1 is the index of a filled site
421 % site2 is the index of a different filled site on the same layer
422

423 % Generate the displacements
424 Dx = move*(2*rand−1);
425 Dy = move*(2*rand−1);
426 Dz=0; % Displacement only in the plane
427

428 % Move the sites by this amount
429 Dpos1 = [NaDpos(site1,1)+Dx NaDpos(site1,2)+Dy NaDpos(site1,3)+Dz];
430 Dpos2 = [NaDpos(site2,1)−Dx NaDpos(site2,2)−Dy NaDpos(site2,3)−Dz];
431

432 % Only try the moves if the movement is less than the threshold
433 if norm(Dpos1)<thres && norm(Dpos2)<thres
434 % Calculate new structure factors
435 NSF = SF − type(site1)*DWFNa.*exp(1i*Qcal*(Napos(site1,:)+NaDpos(site1,:))') ...
436 − type(site2)*DWFNa.*exp(1i*Qcal*(Napos(site2,:)+NaDpos(site2,:))') ...
437 + type(site1)*DWFNa.*exp(1i*Qcal*(Napos(site1,:)+Dpos1)') ...
438 + type(site2)*DWFNa.*exp(1i*Qcal*(Napos(site2,:)+Dpos2)');
439 % Calculate Intensity
440 Ical = NSF.*conj(NSF);
441

442 % Apply domain summation
443 domI = Ical(refno); % define 12 intensities per position in Q
444 domI(˜isindx)=0; % Remove non−indexed intensities
445 Ical = sum(domI,2); % Sum all intensities at each point
446

447 % Normalise Intensity
448 Ical = normF.*Ical./sqrt(sum(Ical.ˆ2)/Npeaks);
449

450 % Calculate Chiˆ2 value
451 NCHI = sum( wi.*(Iexp−Ical).ˆ2 );
452

453 % Calculate the difference between old and new chi
454 DIF = NCHI − CHI;
455

456 %−−−Metropolis Algorithm−−−
457 accept = 1;
458 if DIF>0
459 % if new move has a higher chi (worse) than previously, then
460 % accept the move with probability P(T)=exp(−DIF/kT). So reject
461 % the move if P(T) is less than a random number.
462 if exp(−BETA*DIF) < rand, accept=0; end
463 end
464 if accept
465 % Change displacements
466 NaDpos(site1,:) = Dpos1;
467 NaDpos(site2,:) = Dpos2;
468 % Save the new structure factor and CHI
469 SF = NSF;
470 CHI = NCHI;
471 changes(2) = changes(2) + 1;
472 end
473 end
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474 %−−−−−−−−−−−−−−−−−−−−−−−−−−Co Displacements−−−−−−−−−−−−−−−−−−−−−−−−−−−−
475 % Select two different sites on the same layer
476 site1 = randi(length(Copos)); % select random site
477 % find other sites on same layer
478 atm = find(˜(Copos(:,1)==Copos(site1,1) & Copos(:,2)==Copos(site1,2)) ...
479 & Copos(:,3)==Copos(site1,3));
480 site2 = atm(randi(length(atm))); % select different random site
481 % site1 is the index of a Co site
482 % site2 is the index of a different Co site on the same layer
483

484 % Generate the displacements
485 Dx = move*(2*rand−1);
486 Dy = move*(2*rand−1);
487 Dz = move*(2*rand−1);
488

489 % Move the sites by this amount
490 Dpos1 = [CoDpos(site1,1)+Dx CoDpos(site1,2)+Dy CoDpos(site1,3)+Dz];
491 Dpos2 = [CoDpos(site2,1)−Dx CoDpos(site2,2)−Dy CoDpos(site2,3)−Dz];
492

493 % Only try the moves if the movement is less than the threshold
494 if norm(Dpos1)<thres && norm(Dpos2)<thres
495 % Calculate new structure factors
496 NSF = SF − scatCo*DWFCo.*exp(1i*Qcal*(Copos(site1,:)+CoDpos(site1,:))') ...
497 − scatCo*DWFCo.*exp(1i*Qcal*(Copos(site2,:)+CoDpos(site2,:))') ...
498 + scatCo*DWFCo.*exp(1i*Qcal*(Copos(site1,:)+Dpos1)') ...
499 + scatCo*DWFCo.*exp(1i*Qcal*(Copos(site2,:)+Dpos2)');
500 % Calculate Intensity
501 Ical = NSF.*conj(NSF);
502

503 % Apply domain summation
504 domI = Ical(refno); % define 12 intensities per position in Q
505 domI(˜isindx)=0; % Remove non−indexed intensities
506 Ical = sum(domI,2); % Sum all intensities at each point
507

508 % Normalise Intensity
509 Ical = normF.*Ical./sqrt(sum(Ical.ˆ2)/Npeaks);
510

511 % Calculate Chiˆ2 value
512 NCHI = sum( wi.*(Iexp−Ical).ˆ2 );
513

514 % Calculate the difference between old and new chi
515 DIF = NCHI − CHI;
516

517 %−−−Metropolis Algorithm−−−
518 accept = 1;
519 if DIF>0
520 % if new move has a higher chi (worse) than previously, then
521 % accept the move with probability P(T)=exp(−DIF/kT). So reject
522 % the move if P(T) is less than a random number.
523 if exp(−BETA*DIF) < rand, accept=0; end
524 end
525 if accept
526 % Change displacements
527 CoDpos(site1,:) = Dpos1;
528 CoDpos(site2,:) = Dpos2;
529 % Save the new structure factor and CHI
530 SF = NSF;
531 CHI = NCHI;
532 changes(2) = changes(2) + 1;
533 end
534 end
535
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536 %−−−−−−−−−−−−−−−−−−−−−−−−−−Ox Displacements−−−−−−−−−−−−−−−−−−−−−−−−−−−−
537 % Select two different sites on the same layer
538 site1 = randi(length(Oxpos)); % select random site
539 % find other sites on same layer
540 atm = find(˜(Oxpos(:,1)==Oxpos(site1,1) & Oxpos(:,2)==Oxpos(site1,2)) ...
541 & Oxpos(:,3)==Oxpos(site1,3));
542 site2 = atm(randi(length(atm))); % select different random site
543 % site1 is the index of a Ox site
544 % site2 is the index of a different Ox site on the same layer
545

546 % Generate the displacements
547 Dx = move*(2*rand−1);
548 Dy = move*(2*rand−1);
549 Dz = move*(2*rand−1);
550

551 % Move the sites by this amount
552 Dpos1 = [OxDpos(site1,1)+Dx OxDpos(site1,2)+Dy OxDpos(site1,3)+Dz];
553 Dpos2 = [OxDpos(site2,1)−Dx OxDpos(site2,2)−Dy OxDpos(site2,3)−Dz];
554

555 % Only try the moves if the movement is less than the threshold
556 if norm(Dpos1)<thres && norm(Dpos2)<thres
557 % Calculate new structure factors
558 NSF = SF − scatOx*DWFOx.*exp(1i*Qcal*(Oxpos(site1,:)+OxDpos(site1,:))') ...
559 − scatOx*DWFOx.*exp(1i*Qcal*(Oxpos(site2,:)+OxDpos(site2,:))') ...
560 + scatOx*DWFOx.*exp(1i*Qcal*(Oxpos(site1,:)+Dpos1)') ...
561 + scatOx*DWFOx.*exp(1i*Qcal*(Oxpos(site2,:)+Dpos2)');
562 % Calculate Intensity
563 Ical = NSF.*conj(NSF);
564

565 % Apply domain summation
566 domI = Ical(refno); % define 12 intensities per position in Q
567 domI(˜isindx)=0; % Remove non−indexed intensities
568 Ical = sum(domI,2); % Sum all intensities at each point
569

570 % Normalise Intensity
571 Ical = normF.*Ical./sqrt(sum(Ical.ˆ2)/Npeaks);
572

573 % Calculate Chiˆ2 value
574 NCHI = sum( wi.*(Iexp−Ical).ˆ2 );
575

576 % Calculate the difference between old and new chi
577 DIF = NCHI − CHI;
578

579 %−−−Metropolis Algorithm−−−
580 accept = 1;
581 if DIF>0
582 % if new move has a higher chi (worse) than previously, then
583 % accept the move with probability P(T)=exp(−DIF/kT). So reject
584 % the move if P(T) is less than a random number.
585 if exp(−BETA*DIF) < rand, accept=0; end
586 end
587 if accept
588 % Change displacements
589 OxDpos(site1,:) = Dpos1;
590 OxDpos(site2,:) = Dpos2;
591 % Save the new structure factor and CHI
592 SF = NSF;
593 CHI = NCHI;
594 changes(2) = changes(2) + 1;
595 end
596 end
597 end % End of Monte−Carlo iterations
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598 % Recalculate the Structure
599 typesf = repmat(type',size(Qcal,1),1); % prepare array of scatterin factors.
600 SF = sum(scatCo*DWFCosf.*exp(1i*Qcal*(Copos+CoDpos)'),2) + ... Cobalts
601 sum(scatOx*DWFOxsf.*exp(1i*Qcal*(Oxpos+OxDpos)'),2) + ... Oxygens
602 sum(typesf.*DWFNasf.*exp(1i*Qcal*(Napos+NaDpos)'),2); % Sodium + Dopants
603 Ical = SF.*conj(SF);
604 domI = Ical(refno); % define 12 intensities per position in Q
605 domI(˜isindx)=0; % Remove non−indexed intensities
606 Ical = sum(domI,2); % Sum all intensities at each point
607 Ical = normF.*Ical./sqrt(sum(Ical.ˆ2)/Npeaks);% Normalise Intensity
608 % Calculate Chiˆ2 value
609 NCHI = sum( wi.*(Iexp−Ical).ˆ2 );
610

611

612 % Save the data at the end of the current temperature
613 fprintf(fid,'Beta: %4.2E\tCHIˆ2: %6.3f \tNCHIˆ2: %6.3f \tChanges: %6.0f %6.0f\n',...
614 BETA,CHI,NCHI,changes);
615

616 % Check for annealed solution (no changes)
617 if changes(1)==0 && changes(2)<10, anneal = anneal + 1; end
618 % If solution is annealed, end the run
619 if anneal >= 10, break; end
620 end % End of temperature loop
621 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
622 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−End Reverse Monte Carlo−−−−−−−−−−−−−−−−−−−−−−−
623 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
624

625 % Calculate R factor
626 CHI = sum( wi.*(Iexp−Ical).ˆ2 );
627 R = sum( abs(Iexp−Ical) ) / sum( Iexp );
628 Rw = sqrt( sum( abs(abs(Iexp−Ical).ˆ2 ./error) ) / sum( abs((Iexp.ˆ2)./error) ) );
629

630 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−Write Report−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
631 fprintf(fid,'\n−−−−−−−−−−−Program Finished−−−−−−−−−−−\n');
632 fprintf(fid,'Best CHIˆ2 = %6.6f\n',CHI);
633 fprintf(fid,'R = %4.2f%% \t Rw = %4.2f%% \n',100*R,100*Rw);
634 fclose(fid);



Appendix B

FDMNES Input File

! Fdmnes indata file

! Calculation for the Na0.57Ca0.14CoO2 Divacancy phase

Filout

NaCa

Range ! Energy range of calculation (eV).

-19. 0.5 31. ! 109 steps, same as Diamond

Radius ! Radius of the cluster where final state

7.0 ! calculation is performed

SCF ! Self Consistant solution

Green ! Muffin tin potential - faster

R_self ! Self-consitent radius for SCF

7.35

N_self ! Iterations to get self-consistency

200

Delta_E_conv ! change in energy to get self-consistency

1

Rpotmax ! radius of the cluster for superposition

7.35

Quadrupole ! Quadrupolar transitions modelled

Density ! Calculate the density of states about each atom

212
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! Resonant x-ray scattering at various peaks: h k l sigma pi azimuth.

rxs

0 1 8 2 2 ! (0.143 0.286 8) pi-pi

0 1 8 2 1 ! (0.143 0.286 8) pi-sigma

0 2 8 2 2 ! (0.286 0.571 8) pi-pi

0 2 8 2 1 ! (0.286 0.571 8) pi-sigma

0 0 9 2 2 ! (0 0 9) pi-pi

0 0 9 2 1 ! (0 0 9) pi-sigma

Zero_azim ! Define basis vector for zero psi angle

0.36836 0.29469 0. ! (1 0 0) hexagonal position

Crystal ! Periodic material description (unit cell)

7.5404 7.5404 10.8 90 90 120 ! a, b, c, alpha, beta, gamma

27 0.0000 0.0000 0.0000

27 0.0000 0.0000 0.5000

27 0.1430 0.7140 0.0000

27 0.1430 0.7140 0.5000

27 0.2860 0.4290 0.0000

27 0.2860 0.4290 0.5000

27 0.4290 0.1430 0.0000

27 0.4290 0.1430 0.5000

27 0.5710 0.8570 0.0000

27 0.5710 0.8570 0.5000

27 0.7140 0.5710 0.0000

27 0.7140 0.5710 0.5000

27 0.8570 0.2860 0.0000

27 0.8570 0.2860 0.5000

8 0.0476 0.2381 0.0908

8 0.0476 0.2381 0.4092

8 0.2381 0.1905 0.5908

8 0.2381 0.1905 0.9092

8 0.1906 0.9521 0.0908

8 0.1906 0.9521 0.4092

8 0.3811 0.9045 0.5908

8 0.3811 0.9045 0.9092

8 0.3336 0.6671 0.0908

8 0.3336 0.6671 0.4092

8 0.5241 0.6195 0.5908

8 0.5241 0.6195 0.9092

8 0.4766 0.3811 0.0908

8 0.4766 0.3811 0.4092

8 0.6671 0.3335 0.5908
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8 0.6671 0.3335 0.9092

8 0.6186 0.0951 0.0908

8 0.6186 0.0951 0.4092

8 0.8091 0.0475 0.5908

8 0.8091 0.0475 0.9092

8 0.7616 0.8091 0.0908

8 0.7616 0.8091 0.4092

8 0.9521 0.7615 0.5908

8 0.9521 0.7615 0.9092

8 0.9046 0.5241 0.0908

8 0.9046 0.5241 0.4092

8 0.0951 0.4765 0.5908

8 0.0951 0.4765 0.9092

11 0.0476 0.2381 0.7500

11 0.2381 0.1905 0.2500

11 0.3811 0.9045 0.2500

11 0.5241 0.6195 0.2500

11 0.4766 0.3811 0.7500

11 0.6186 0.0951 0.7500

11 0.7616 0.8091 0.7500

11 0.9521 0.7615 0.2500

20 0.8571 0.2857 0.2500

20 0.1429 0.7143 0.7500

Convolution ! Convolution step

Scan ! Azimuthal scans for each Co

NaCa_scan_1.txt

NaCa_scan_2.txt

NaCa_scan_3.txt

NaCa_scan_4.txt

NaCa_scan_5.txt

NaCa_scan_6.txt

NaCa_scan_7.txt

Scan_conv ! Convolve azimuthal scans

NaCa_scan_conv.txt

End


