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Abstract
Late Ordovician glaciogenic deposits are exposed intermittently along an 800 km long outcrop belt in 

the Anti-Atlas mountains of southern Morocco. These deposits are of economic significance as 

potential oil-bearing sandstones in the Tindouf and Boudenib basins and thus are here re-examined as 

analogues to subsurface hydrocarbon reservoirs. Glaciogenic deposits of the Upper Second Bani 

Formation rest unconformably upon underlying shallow marine clastic deposits. The unconformity is 

characterised by a series of palaeovalleys, some 0.5-1.0 km wide, and up to 100 m deep, which may 

have been cut under elevated hydrostatic pressures as tunnel valleys beneath a Late Ordovician ice 

sheet. The valleys and intervalley areas are filled with glaciogene sediments categorized into five 

facies associations, namely 1) a tabular sandstone association (shallow marine/ shoreface deposits), 2) 

a massive sandstone and conglomerate (ice contact debrites), 3) meandriform sandstone deposits (ice 

proximal sandur), 4) stratified diamictites (ice-rafted debris) and 5) sigmoidally bedded sandstones 

(intertidal sandstones). Deformation in these sediments is ubiquitous and includes soft-sediment 

striated pavements, metre-scale duplex systems, thrust and fold belts of deformation affecting some 

tens of metres of sediment, and pervasive lineations. These features are interpreted to record the 

complex nature of deformation processes operating beneath a Late Ordovician ice sheet including 

sliding at the ice-bed interface, folding and deformation within the sediment column, and a series of 

complex ramps, detachments and shear zones within an unconsolidated pile of sediment beneath the 

ice sheet.
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1. Introduction 
This paper presents new sedimentological observations and interpretations of Late Ordovician 

glaciogenic deposits of the central Anti-Atlas, southern Morocco (Fig. 1). Across North Africa, 

investigation of correlative glaciogenic deposits is driven principally by their economic importance as 

oil and gas reservoirs in eastern Algeria and western Libya (e.g. Davidson et al., 2000; Le Heron and 

Thusu, 2006). In recent years, the sedimentology and stratigraphy of outcrop analogues to these 

“glaciogenic reservoirs” has been evaluated at the flanks of large Palaeozoic sag basins (Ghienne and 

Deynoux, 1998; Sutcliffe et al., 2001; Hirst et al., 2002; McDougall et al., 2003; Ghienne et al., 2003; 

Deynoux and Ghienne, 2004; Le Heron et al., 2004, 2005, 2006, 2007 Moreau et al., 2005; el Ghali, 

2005). In these basins, Late Ordovician glaciogenic rocks comprise the reservoirs for huge oil fields 

containing up to 0.5 billion barrels of oil (Elephant Field, Murzuq Basin, Libya) (Davidson et al., 

2000) and up to 1.3 trillion cubic feet of gas (Tiguentourine and Tin Fouye fields, Illizi Basin, Algeria 

(Hirst et al., 2002). However, they are notorious for significant and abrupt facies changes (Le Heron et 

al., 2006). 

In the Anti-Atlas region of southern Morocco, evidence for Late Ordovician glaciation was first 

described by Destombes (1968, 1971), reviewed in Destombes et al. (1985), and briefly discussed by 

Sutcliffe et al. (2001). In this paper, re-examination of Late Ordovician glaciogenic deposits is timely 

because 1) significant conceptual advances in glaciology and glacial sedimentology have been made in 

recent years (e.g. Dowdeswell et al., 2002; Knight, 2006), and 2) these deposits are receiving increased 

economic interest because of success in extracting oil from correlative rocks elsewhere in North 

Africa. It is hoped that up-to-date descriptions and interpretations offered here may be useful to the oil 

and gas industry, as well as to the academic community, as Lower Palaeozoic rocks are important 

components of a Palaeozoic petroleum system in the Tindouf Basin (western Algeria/ southern 

Morocco: Askri et al., 1995), and are potential hydrocarbon reservoirs in the Boudenib Basin between 

the High Atlas and Anti-Atlas ranges (Emerging Markets, 2002; Fig. 1).

2. Geological Overview and Stratigraphy 
In the central Anti-Atlas, the stratigraphy of the Lower Palaeozoic is robustly established (e.g 

Destombes et al., 1985; (Table 1) this region, in stark contrast to Lower Palaeozoic sedimentary rocks 

north of the southern Atlas thrust front, which crop out in disconnected inliers (e.g. Le Heron et al., 

2007), those of the Anti-Atlas are readily correlated because they can be traced laterally for at least 

800 km along strike along the Jbel Bani valley (Fig. 1). Geologically, the Anti-Atlas is on the fringe of 

the West African Craton, which was part of Gondwana during the Early Palaeozoic (Piqué, 2001). 

2



Accepted for publication in Sedimentary Geology 2007 

 Late Ordovician glaciogenic rocks in the Anti-Atlas are referred to the Upper Second Bani 

Formation (Destombes, 1968; Destombes et al., 1985; Sutcliffe et al., 2001) (Table 1). These rocks 

were deposited above an unconformity that cuts down into the Kataoua Formation (Caradoc to Early 

Ashgill; Bourahrouh et al., 2004) or overlying Lower Second Bani Formation (Late Ashgill; 

Destombes et al., 1985). The degree of erosion along this unconformity is variable, but incision 

generally penetrates deeper to truncate older stratigraphic levels in a westward direction (Destombes et 

al., 1985). In Zammour, at the western extremity of the Anti-Atlas range, incision at the base of the 

Upper Second Bani Formation penetrates Arenig strata (Destombes, 1971). 

 Careful measurement of the thickness of measured sections for Caradocian to Upper Ashgillian 

deposits enabled Destombes et al. (1985) to present isopach maps showing the shifting pattern of 

Ordovician depocentres over the Anti-Atlas. These maps showed that by Late Ashgill times, during 

deposition of the Lower Second Bani Formation, a pronounced NW-SE oriented depocentre centred 

on Tagounite developed (Fig. 1). This depocentre was later coined the Tagounite Trough (Sutcliffe et 

al., 2001). In the High Atlas of Marrakech, immediately to the northwest of this trough, Le Heron et al. 

(2007) described intense soft-sediment deformation, together with streamlined and polished glacial 

bedforms resembling roches moutonées, which led them to suggest that a fast-flowing ice stream 

within the ice sheet may have occupied the Tagounite Trough during the Late Ordovician glaciation. 

3. Sedimentology of pre-glacial deposits  
In this study, the contact between the Lower Second Bani Formation and the overlying Upper Second 

Bani Formation was examined between Foum Larjame and Foum Triyâ El Khira (Fig. 1). At Foum 

Larjame, a sedimentary log of a section at Foum Larjame illustrates the nature of the contact between 

these formations (Fig. 3 A). The Lower Second Bani Formation is characterised by stacked 

parasequences; each is 20-50 m thick and begins with stratified mudrocks, locally containing thin 

intervals of structureless diamictites, coarsening up into fine-grained sandstones. The sandstones are 

cross-bedded on a metre-scale, hummocky cross-bedded or parallel laminated. Concentrations of shell 

material, including Hirnantia brachiopods, occur within these sandstone beds in the upper part of the 

Lower Second Bani Formation, and were described by previous authors (Sutcliffe et al., 2001). 

Additionally, thin walled bivalves occur within the mudstones, which are locally incorporated as clasts 

within overlying conglomerates of the Upper Second Bani Formation. These shell beds increase in 

thickness from Foum Triyâ El Khira to Foum Larjame (from a few centimetres up to several metres) 

into the axis of the Tagounite Trough (see isopachs on Fig. 1). West of the axis of the Tagounite 

Trough, around Hassi El Abiod, these latter deposits are also affected by a progressive increase in 
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abundance of large, crushed brachiopod shell fragments toward the west/ southwest. Here, a 

fragmented, mixed shelly fauna is preserved that includes crinoid stems, bivalves  and mixed biogenic 

detritus. All taxa from this locality were documented extensively in Destombes et al. (1985). 

Upsection, the proportion of mudstone to sandstone increases, culminating with an aerially extensive, 

sharp surface that can be traced over several kilometres (Fig. 3).

 Hamoumi (1999) interpreted parasequences of the Lower Second Bani Formation as shallow 

marine sediments deposited under a predominantly tidal regime. This interpretation was refuted by 

Sutcliffe et al. (2001) who interpreted these rocks as storm dominated shoreface deposits. The 

association of metre-scale cross-bedding, hummocky cross bedding and parallel laminae strongly 

supports the interpretation of Sutcliffe et al. (2001), and thus these facies are interpreted as migrating 

cross-shelf bars, oscillatory flow deposits, and upper flow regime shoreface deposits respectively. The 

mudstones at the base of the parasequences are interpreted as offshore sediments untouched by storm 

waves and hence colonised by communities of delicate thin-walled bivalves. The gradual westward 

thickening of shell beds in the central Anti-Atlas, coupled with the relative increase in abundance of 

large, crushed brachiopod fragments in the same direction, is interpreted as a distal to proximal trend 

from east to west over this part of the range. The increasing proportion of mudstone to sandstone 

upsection indicates that parasequences backstep, in turn suggesting that the sharp surface shown on 

Fig. 3 is best interpreted as an important ravinement surface. A backstepping motif compares 

favourably with the description of similar backstepping parasequences immediately below Late 

Ordovician glaciogenic deposits in the Hodh and Adrar regions of Mauritania (Ghienne, 2003). 

Furthermore, in the wider North Africa area, transgressive deposits also characterise pre-glacial 

Ordovician deposits in western Libya (Ghienne et al., in press), suggesting that this can be regarded as 

a regionally widespread feature.  

4. Stratigraphy of Late Ordovician syn-glacial deposits 
Measured sections of the Upper Second Bani Formation were constructed at Foum Larjame and Tizi 

N’Tazzounghart (Fig. 2 A, B). These sections show that the typical thickness of this formation is in 

the range 60-80 m. The base of the formation is identified by a major increase in sand content within 

the succession, usually above an abrupt unconformity (Fig. 4).

 The facies associations described in the following sections show some limited evidence for 

lateral substitution. However, in the majority of cases, the most significant gradual sedimentological 

changes occur vertically, because three unconformities within the succession hinder our ability to 

recognise gradual lateral facies change (ES1, ES2, ES3: Fig. 4). For the most part, therefore, facies 

associations make only one stratigraphic appearance in any given section. 
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5. Sedimentology of Late Ordovician syn-glacial deposits 
Five facies associations are recognised within Late Ordovician glaciogenic deposits of the central 

Anti-Atlas, each of which are represented on the measured sections constructed at Foum Larjame and 

Tizi N’Tazzounghart (Fig. 2 A, B). The lateral and vertical organisation of facies associations at and 

between these localities is shown to scale on Fig. 4, which can be regarded as representative for the 

central Anti Atlas.   

Stacked sandstone facies association 

This facies association is widespread but best exposed at Tizi N’Tazzounghart, where it is preserved 

above a pronounced erosion surface that has a relief of ~50 m (ES1, Fig. 4). Attaining ~70 m 

thickness, it comprises medium-bedded, quartz arenite sandstones, organised into thinning upward 

cycles, each 10-50 m thick. The beds are tabular, sharp based, cross-bedded (sets 50 cm thick), contain 

massive to parallel laminated facies, and locally are intensely bioturbated. Scour features are well 

developed, exhibiting downcutting of ~1 m (Fig. 5 A). These rocks also contain complex deformation 

structures (see section 5). 

The pronounced erosion surface at the base of the facies association is interpreted to result from 

major downcutting by a mechanism such as the exposure of the shelf during sea level fall at the start of 

glaciation, or alternatively glacial incision. The sharp-based, tabular sandstones are interpreted as 

stacked shoreface sediments, deposited by high-energy tractional processes during swash and 

backwash (parallel laminated facies). The shoreface was scoured by rip currents to produce shallow 

channels (Fig. 5 A), and colonised by organisms in well-oxygenated, nutrient-rich waters 

(bioturbation). Cross-beds within this depositional system record the local occurrence of low relief 

dunes. The organisation of these sandstones into subtle thinning upward cycles is difficult to interpret 

in the absence of accompanying grain size changes. However, these cycles are most likely to record 

phases of high wave energy activity alternating with lower energy episodes of shoreface agitation.  

Massive sandstone and conglomerate facies association 

This facies association frequently occurs above an irregular surface that records development of a 

system of palaeovalleys south of Tagounite (Fig. 5 B). The width of the palaeovalleys, which are cut 

along a major unconformity (UC2, Fig. 4) varies in the range 0.5-1.2 km, and their depth 50-100 m. 

This facies association is characterised by various sand-dominated lithologies with grain-sizes ranging 

from matrix-supported boulder conglomerates to fine-grained sandstones. The sandstones support clay 

rip-up clasts, intraformational sandstone clasts, and fine-grained sandstone boulders bearing delicate 

thin-walled bivalve assemblages. Poorly developed cross-bedding is represented by inclined (45º) 
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trains of pebbles. Concentrations of boulders occur within poorly defined lenses up to several metres 

thick and several tens of metres in width. The facies association forms continuous bodies in excess of 

45 m thick (Fig. 2 A, 10-60 m; Fig. 4). Diffuse horizontal laminae are also preserved. At its basal 

contact, flute casts may be developed within this facies association. 

The palaeovalleys south of Tagounite are interpreted to have formed by erosion that created an 

uneven topography genetically related to the facies association above it. A similar channelised 

topography is well known from equivalent rocks in the Tassili N’Ajjers region, Algeria, and the 

Gargaf Arch, Libya, where extensive soft-sediment deformation includes fold and load structures 

immediately beneath palaeovalleys up to several kilometres wide (Le Heron et al., 2004), and 

striations within them (Le Heron et al., 2005). The styles of soft-sediment deformation in Libya and 

Algeria suggest that those examples were cut under a combination of ice sheet loading (to account for 

deformation of underlying sediments), and elevated subglacial hydrostatic pressures (possibly during a 

subglacial flood), to form tunnel valleys (Le Heron et al., 2004; Ghienne et al., in press). The presence 

of boulder conglomerates indicates en masse transport of sand and boulders with large dispersive 

pressures typical of non-cohesive debris flows. In this context, it is suggested that the parallel 

lamination within the sandstones is more likely to have originated by internal shearing within a debris 

flow rather than tractional processes. Nevertheless, organisation of some pebble-sized clasts to define 

poorly developed cross-beds testifies to at least local traction current development. The poorly defined 

lenses of boulder-sized material, occurring in diffuse patches rather than within well-defined channels, 

in conjunction with the large thicknesses (>80 m) of this facies association, support their interpretation 

as stacked debrites. 

Comparable debris flow deposits in the Late Ordovician glacial record of Libya and northern 

Morocco are interpreted to record efflux adjacent to an ice front (Le Heron et al., 2004; Le Heron et 

al., 2006, 2007). These deposits record either the development of a positive-relief terminal moraine on 

a flat surface, or alternatively infill palaeovalley accommodation created by subglacial erosion. 

Therefore, in the central Anti-Atlas, where large-scale palaeovalleys are commonplace (Fig. 5 B), the 

massive sandstone and conglomerate facies association is interpreted as an ice contact deposit, the 

extent and thickness of which is ultimately controlled by the width and depth of incision at the base of 

the palaeovalleys (Fig. 4).

Meander channel sandstone facies association 

This facies association is recognised on the basis of its cross-sectional and planform architecture. 

Lenticular bodies of coarse-grained sandstone to granular conglomerate attain 20-25 m across and 2-3 

m thick, cropping out prominently relative to adjacent, poorly exposed, finer-grained and more thinly 
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bedded sandstone and siltstone. The meandering bodies can be traced laterally for approximately 50 m 

whereupon they shift position to define a meandriform geometry in plan. Metre-scale cross-bedding is 

observed within the sandstone packages.

The meandriform character of these sandstones represents laterally shifting channel belts 

separated by similarly sandy interchannel areas, for which there are two possible interpretations. 

Plausible depositional settings include a turbidite channel complex on the topset to an underflow-

dominated fan, or alternatively a system of laterally migrating fluvial channels. In the context of Late 

Ordovician high latitude glaciation, both alternatives are associated with moderate sediment delivery 

to a low gradient basin, compatible with the topsets of either a submerged (turbidite) or emergent 

(fluvial) ice contact delta. Research into Icelandic sandar (Knight, 2006) demonstrates that channels 

rapidly increase in width with distance from modern glaciers accompanied by a decrease in sediment 

calibre from boulder conglomerates to granular sands over as little as ~10 km. Therefore, the 

occurrence of coarse-grained sandstone to granular conglomerate within the channels tends to suggest 

that sediments of the meander channel facies association were deposited in relative proximity (less 

than several tens of kilometres) to the ice margin. 

Sandy diamictite facies association 

This facies association comprises olive green, buff yellow to orange coloured, sandy diamictite that 

attains a thickness of >10 m. It is best exposed at Jbel Hamsailikht, where astratified diamictite rests 

directly above a striated pavement (Fig. 5 C), but also crops out in poor exposure at Tizi 

N’Tazzounghart and Foum Larjame (Fig. 4). The matrix of the diamictite, which is stratified into 

laminae 0.5-3 cm thick, shows no vertical grain size changes upsection, and no mud-rich intercalations 

were observed. Clasts within the deposit are few, but rare sandstone boulders are observed (Fig. 5 D).

The boulders deform underlying laminae and are well rounded.

Following interpretation of similar, coeval, clast-poor diamictites elsewhere in North Africa 

(Ghienne, 2003; Le Heron et al., 2004, 2005, 2006, 2007; Ghienne et al., in press), this facies 

association is interpreted as a glaciogenic deposit. These rocks were deposited above a subglacially 

cut, striated pavement during glacial retreat. In northern Morocco, up to 400 m of similar sandy 

diamictite, punctuated by sandstone channels, occurs in the Jbilet region (Le Heron et al., 2007). 

There, it is massive and hence a debris flow origin is preferred. However, in the Anti-Atlas, 

diamictites are stratified (Fig. 5 D). Stratified diamictites can form during subglacial shearing (Alley, 

2000), but this process is discounted because the Anti-Atlas examples clearly lie above, rather than 

below, a striated pavement (see Fig. 4). The large boulders (Fig. 5 D) in the diamictite, unlike those in 

Quaternary deformation tills, do not show orbital (rotational) structures produced as the clast rotates 
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within a shearing pile of sediment (Van der Wateren et al., 2000). Furthermore, the absence of 

attenuated sheath folds, and interweaving fault systems that are common in subglacially deformed 

sediments (Alley, 2000), discounts a basal till origin. The rarity of clasts within the diamictite, coupled 

with the two dimensional nature of its exposure, precludes any attempt to apply an eigenvector 

analysis to the clast orientations (e.g. Dowdeswell and Sharp, 1986). However, it is suggested that the 

stratification and outsized boulders within the diamictite are simply interpreted as ice-rafted debris 

with dropstones probably introduced by icebergs.

Sigmoidally cross bedded sandstone facies association 

This facies association comprises undeformed (i.e. horizontal) fine-grained, ferruginous sandstones, 

within which cross-bedding is well developed. Typically, sets are 10-50 cm in thickness, and 

sigmoidal cross-bed geometries, with well-defined topsets, are typical. The foresets appear to be 

bimodal, dipping both to the NW and SE. (Figs. 2 A, 7 A, B). Interference ripples are common with 

ripple crests in multiple orientations. Surfaces bearing current ripples are stacked closely in vertical 

section (Fig. 7 C). Measurement of available rippled surfaces indicates both NW and ESE-directed 

sediment transport (Fig. 2 A). Vertical trends include beds thickening upsection, accompanied by the 

appearance of thin (one clast thick) granule lags and 2 m deep channels. 

The sigmoidal geometry of cross-beds suggests that the stoss slope of each bedform experienced 

a higher rate of sediment supply than erosion (i.e. rapid sediment accumulation), and was probably 

submerged during deposition.  signifies high accommodation space. Palaeocurrent data are limited, but 

both the sigmoidal cross-beds and current ripples show evidence for sediment transport to both the 

NW and SE. On the basis of earlier investigations of Cambrian and pre-glacial Ordovician deposits 

south of Ouarzazate, NW transport is consistent with regional (seaward) palaeoslope whereas SE 

sediment transport implies a reversal of palaeoslope (Destombes et al., 1985). Discounting local 

topographic effects (as the rocks are horizontal), a high sediment supply feeding multidirectional 

dunes is more consistent with a tidal than fluvial depositional environment. The development of 

interference ripples in multiple orientations is interpreted as the result of standing waves reflected off 

neighbouring bedformsThe organisation of beds into thickening upward successions suggests that the 

cross-beds are organised into discrete tidal bars, whilst the appearance of granule lags above these 

thickening upward successions is indicative of high-energy transport and effective winnowing of the 

sand fraction. Evidence for channels implies that energy levels were sufficient to cut a significant 

topography on to the upper surface of some tidal bars.
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6. Glaciotectonic deformation features 
The major types of glacially-related soft-sediment deformation structures in Late Ordovician 

glaciogenic sediments of West Gondwana were reviewed recently by Le Heron et al. (2005). In the 

Anti-Atlas of Morocco, a variety of deformation structures occur within the Upper Second Bani 

Formation, and locally also affect the Lower Second Bani Formation, but deformation is strictly 

confined to these intervals and is sealed by the Early Silurian Aïn Deliouine Formation (Fig. 3 A, B).

This stratigraphic confinement of large-scale deformation structures in the Anti-Atlas, which include 

large folds and associated thrusts, combined with their preservation within rocks deposited during the 

waxing and waning of large North African ice sheets (Ghienne, 2003; Le Heron et al., 2007), strongly 

suggests that such features are glacially related. It is the purpose of this section to describe the styles of 

deformation affecting the Lower and Upper Second Bani Formations before offering interpretations 

based on understanding of contemporary ice sheet behaviour. 

Observations 

At Foum Triyâ El Khina (Fig. 1), a large palaeovalley incision is preserved (Fig. 5B), beneath which a 

suite of deformation structures occurs (Fig. 8A). The palaeovalley is cut into the stacked sandstone 

facies association, and it is filled with the massive sandstone and conglomerate facies association. In 

this part of the Anti-Atlas, regional dips are generally subhorizontal, but beneath the incision, 

southward dipping beds are strongly attenuated at the contact with the incision surface. Additionally, 

within the lowermost part of the palaeovalley fill, sandstones contain a conspicuous, metre scale fabric 

that defines a small duplex system: these indicate a top to the NW transport direction (Fig. 8 A).

Large-scale deformation structures affect both the stacked sandstone facies association and an 

overlying occurrence of the massive sandstone and conglomerate facies association south of Tagounite 

at Tizi N’ Tazzounghart (Figs 2 B, 4). The deformation is preserved toward the top of a 100 m high 

cliff which appears unperturbed from afar (Fig. 8 B). However, within the tabular sandstone facies 

association, cuspate fold structures comprising broad-bottomed synclines separated by steep 

culminations/ antiforms are preserved; these are truncated by thrusts dipping at a low angle (5º) toward 

the west (Fig. 8 C, D). The steep culminations/ antiforms show variable northeastward and 

southwestward vergence. Duplex geometries are noted within the tabular sandstone facies association 

that indicate transport along thrusts toward the NE. However, deformation within massive sandstones 

and conglomerates immediately above is more complex with a high amplitude (30 m), short 

wavelength (15 m) westward verging antiform observed within the glaciogenic sediments (Fig. 8 E, 

F). The deformation is sealed by a flat lying surface which can be traced laterally and contains 

striations oriented 350˚ (Fig. 8 E, F).
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To the west of the Rich Mel’ Alg massif, tight folds are observed within the stacked sandstone 

facies association, and pervasive lineations are observed on the overturned limb of N-verging sheath 

folds that plunge 5˚/ 340˚. These structures have a rod-like morphology and resemble stretching 

lineations within metamorphic shear zones (Hatcher, 1995). At this locality, polished and streamlined 

surfaces are also present. There is a close relationship between these deformation features and 

lithofacies variations: the deformation structures are either capped or laterally replaced by the massive 

sandstone and conglomerate facies association.

East of Foum Zguid (Fig. 1), a series of five tight synclines, with wavelengths of 1-1.5 m, occurs 

within the stacked sandstone facies association. The axial surfaces of these structures are oriented 

060˚/ vertical. At the same locality, faults are also noted, planes of which dip steeply southward. 

Footwall folds beneath the fault surfaces are southward verging. In the immediate vicinity, at Jbel 

Hamsailikht, the striated surface shown on Fig. 5 C occurs. The striations on this surface trend 340º.

Interpretation 

The deformation structures observed at both Tizi N’ Tazzounghart and at Foum Triya El Khina are 

interpreted to have been generated by an overriding ice sheet. The duplex geometry of these metre- to 

tens of metre-scale thrust systems indicates ramping of sediment between a floor thrust and a roof 

thrust. The preservation of a roof thrust at both localities suggests that deformation occurred well 

within the sediment column, rather than the base of an ice sheet forming the roof thrust. Broad 

bottomed synclines separated by steep antiformal culminations have also been described from the 

Gargaf Arch, Libya and in the Western Cape Province, South Africa where they are considered to 

reflect the shearing of subglacial sediment partially coupled to an ice sheet, with a component of 

gravitational instability (Le Heron et al., 2005). Given regional evidence for northward, rather than 

southward, advancing ice sheets over the Sahara (Beuf et al., 1971), southwestward verging folds at 

Tizi N’Tazzounghart appear to be anomalous, and can potentially be explained by the presence of 

ramps within subglacial fault systems.

 The pervasive lineations in the Rich Mel’ Alg massif are identical to those described in Le Heron 

et al. (2005) from the Gargaf Arch and Ghat in the Libyan Sahara. These features indicate that strain 

was not uniformly distributed, but rather was concentrated at intervals to produce structures reflecting 

a high accumulation of finite strain within the sediment column. Their strike (at 340˚) is interpreted to 

record the primary vector of elongation and attenuation within the subglacial substrate. The pervasive 

lineations  are therefore interpreted to record ice sheet movement toward the NNW. 

 A proglacial deformation mechanism is suggested for the tight synclines east of Foum Zguid. 

Their metre-scale amplitude is comparable with seasonal (annual) push moraines that have formed 
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over recent decades in the forefield of Breidermurkurjökull, southern Iceland (Boulton, 1986). The 

upright/ vertical aspect of their axial surfaces is better explained by proglacial, rather than subglacial, 

deformation because under the latter mechanism, attenuation and rotation of the fold axial surfaces 

would be expected to have occurred closest to the base of the ice sheet. During ice sheet advance, 

“bulldozing” of proglacial sediments produces folds the axial surfaces of which are perpendicular to 

the direction of ice flow. Given the evidence for NW to NNW ice advance indicated by fold vergence, 

striae and pervasive lineations discussed above, the 060º striking fold axial surfaces also support ice 

advance in this direction, implying shortening of the sediment column and hence compression along a 

330º-150º axis. 

Previous work in the Anti-Atlas (Destombes, 1968; Destombes et al., 1985; Sutcliffe et al., 2001) 

established that ice sheets advanced broadly to the NW on the grounds that striations in glaciogenic 

Upper Ordovician rocks trend SE-NW. Data on the soft-sediment deformation structures in the present 

paper lend support to these earlier interpretations.. 

7. ”Event stratigraphy” and glacial depositional model for the Anti-Atlas 
The following sequence of events is proposed to explain the stratigraphic and sedimentological 

organisation of Late Ordovician glaciogenic deposits in the central Anti-Atlas summarised on Fig. 4.

These events are 1) deposition of shallow marine, storm-dominated preglacial deposits, 2) 

glacioeustatic sea level fall resulting in significant downcutting and erosion to form a pronounced 

discontinuity surface (Erosion Surface 1, ES1), 3) deposition of sharp-based sandstones (stacked 

sandstone facies association), 4) major glacially-related incision (ES2, tunnel valleys) followed by 5) 

deposition of subaerial, glaciogenic debris flow deposits (i.e. massive sandstone and conglomerate 

facies association), 6) the deposition of finer grained deposits (the meander channel sandstone facies 

association) on a sandur at a distance of up to tens of kilometres from the ice front, 7) ice sheet re-

advance, intense proglacial and subglacial deformation culminating in the formation of a soft-sediment 

striated surface (ES3), 8) ice sheet retreat and deposition diamictites passing vertically into 

transgressive tidal deposits (sigmoidally cross bedded sandstone facies association), 9) offshore mud 

deposition during the earliest Silurian (Aïn Deliouine Formation). 

Abrupt facies variations occur both laterally and vertically within sedimentary rocks deposited 

by ancient ice sheets. These variations record the complex interplay between ice sheet dynamics 

(whether an ice sheet was advancing or retreating), the location of sedimentary input points, 

glacioisostasy, the depth of water (if any) in which an ice sheet was grounded, and the composition 

and distribution of sediment within an ice mass (Brookfield and Martini, 1997). In the context of oil 
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exploration in particular, it is important to consider how facies associations within glaciogenic 

sedimentary systems relate to one another, in order to predict the thickness, continuity, and geometry 

of oil-bearing sandstones. It is hoped that the event stratigraphy suggested in this paper and the 

associated depositional model described below will be of some use to the hydrocarbon exploration 

community operating in the Tindouf Basin, western Algeria, and the Boudenib Basin of southern 

Morocco .

Prior to the growth of Late Ordovician ice sheets across the Anti-Atlas, shallow marine 

conditions prevailed, during which storm-derived sands formed the upper part of coarsening upward 

successions (parasequences) that were deposited during the course of normal shelf progradation. The 

ubiquitous occurrence of shell beds suggests that these waters were well colonised by benthic 

organisms and hence oxygenated. At the beginning of glaciation, deep incision occurred, resulting in 

the creation of palaeovalleys 50-100 m deep and up to one km in width. These incisions probably 

originated as tunnel valleys cut beneath an ice sheet under enhanced hydrostatic pressure by analogy 

with comparable features in Algeria (Hirst et al., 2002), Mauritania (Ghienne and Deynoux, 1998) and 

Libya (Le Heron et al., 2004). Glaciotectonic deformation within some of the palaeovalley fills, such 

as those at Tizi N’Tazzounghart and Foum Triya El Khina, indicates the re-advance of ice sheets down 

the axes of the palaeovalleys which pushed, deformed, and then overrode their fill (Fig. 8).

Despite the relatively complex “event stratigraphy” give above, the lateral relationship between 

facies associations must also be carefully considered. As illustrated on Fig. 4, vertical facies 

transitions appear to predominate, as a consequence of crosscutting palaeovalleys and three 

unconformities dividing the succession. This would suggest that lateral facies transitions are more 

difficult to predict. The overall depositional environment for the Upper Second Bani Formation is 

illustrated on Fig. 9, which can also be used to predict the lateral distribution of facies in regions 

where truncation by unconformities is less evident. The model depicts an ice contact setting during a 

phase of ice sheet advance, characterised by deformation of sediment at and in front of the ice sheet. 

At the ice front, large subglacial meltwater conduits (tunnel valleys) drain the ice mass. Coarse-

grained sandstones and conglomerates accumulate in this region, passing distally into more texturally 

mature meandering channel sandstones. Tidal deposits may be expected at the coastal fringe, passing 

offshore into diamictites. 

Late Ordovician glaciogenic deposits can be readily correlated across the Anti-Atlas and High 

Atlas ranges, (Fig. 2) thereby allowing sedimentary and glacial processes to be compared for each 

region. Both Anti-Atlas (Foum Larjame; Fig. 2 A) and High Atlas (Tizi N’Tichka; Fig 2 C) sections 

show major downcutting/ channelling at the base of the glaciogenic succession, with abrupt upward 

fining of basal sandstones. Above these sediments, a high relief unconformity, which is draped with 
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extensively deformed sandstones and boulder conglomerates, is recognised in both the Anti-Atlas and 

High Atlas regions (Fig 2 A, 25 m; Log B, 33 m; Log C, 58 m), with NNW-SSE oriented striae (Fig. 2 

A). In both regions, deformed sandstones are capped by a striated surface, and in turn sharply overlain 

by thinly stratified to massive sandstones and/ or clast-poor sandy diamictites in sharp discontinuity. 

These data strengthen earlier assertions that the two areas were connected palaeogeographically during 

the Late Ordovician glaciation (Le Heron et al., 2007), by providing the evidence of a linked glacial 

sedimentary system across this region. 

The existence of a NW-SE oriented trough in the Anti-Atlas postulated for pre-glacial strata (the 

Katoua and Lower Second Bani formations) by Destombes et al. (1985) may be supported by 

thickening of both Hirnantia-bearing shell beds and beds bearing thin-walled bivalves westward into 

this depocentre. Given that Destombes et al. (1985) defined a depocentre on the basis of isopachs, 

these simple observations indicate that whilst palaeotopography would certainly have been cut by Late 

Ordovician ice sheets, it must have been in existence prior to their growth over northwest Africa. 

8. Conclusions
This paper has provided interpretations for the sedimentary facies architecture and soft-sediment 

deformation structures within the Late Ordovician succession of the Anti Atlas of Morocco, and can 

be summarised as follows. The Lower Second Bani Formation, which largely formed the subglacial 

substrate for Late Ordovician ice sheets, was deposited in a wave-dominated shoreface to offshore 

environment in which shelly faunas were deposited in an overall transgressive setting. The thickness 

variations of shell beds within these preglacial deposits appears to mimic thickness variations recorded 

for the formation at a regional level (Destombes et al., 1985), suggesting that a topography may have 

existed prior to the advance of ice sheets in the Hirnantian. During the Late Ordovician glaciation, the  

Upper Second Bani Formation was deposited. This formation contains five facies associations Debris 

flows were discharged from the ice margin to produce debrites, whilst at a distance of up to tens of 

kilometres from it, meandriform channel complexes were deposited upon the sandur. Stacked 

sandstones were deposited upon a well oxygenated shallow marine/ shoreface, whilst diamictites with 

iceberg rafted dropstones were produced in a glaciomarine setting. The widespread deformation 

structures affecting the Upper Second Bani Formation occur specifically within debrites and the 

stacked tabular sandstone deposits. These deformation structures are sealed by shales of the overlying 

Aïn Deliouine Formation and include striated pavements, metre-scale duplex systems, larger (tens of 

metre scale) thrust and fold systems, and pervasive lineations. They are interpreted to record a 

spectrum of glaciotectonic processes, ranging from abrasion at the ice sheet-sediment interface to 
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deformation deep within the subglacial substrate (locally within discrete shear zones).Stratigraphic 

comparison between the glaciogene Upper Second Bani Formation in the present paper with 

previously measured sections in the High Atlas of Marrakech (Le Heron et al., 2007) allows us to 

propose a contiguous glacial sedimentary system across NW Africa during the Late Ordovician. 

 Evidence for Late Ordovician glaciation in the Anti Atlas of Morocco has long been known 

(Destombes, 1971). However it is hoped that the new data and interpretations provided in this 

contribution allow a better understanding of the deposits of this ancient glaciation in this particular 

region, especially as they are now being actively explored for their hydrocarbon potential. The author 

hopes that this study may also be another step on the road to a regional ice sheet reconstruction. 
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Figure captions 
Figure 1. Location map of Morocco, highlighting Lower Palaeozoic outcrops (dark grey) in the Anti-

Atlas region (shaded light grey). Numbers indicate outcrops examined during the course of this study. 

The NW-SE oriented contours are isopachs drawn for the Lower Second Formation, a deposit of pre-

glacial Ashgill age directly underlying glaciogenic sandstones of the Upper Second Bani Formation 

(from Destombes et al., 1985). The contours are interpreted to indicate palaeotopography on the pre-

glacial substrate, with a depositional trough centred on two key localities described in this paper, 

namely Foum Larjame and Tizi N’Tazzounghart (the Tagounite Trough). A (Zagora) and B (Erfoud) 

denote localities described in Sutcliffe et al. (2001), but not revisited in the present study. 

Figure 2. Graphic logs for Late Ordovician glacially-related sediments of the Anti-Atlas (logs A and 

B), correlated with a measured section in the High Atlas of Marrakech (log C).  For location of 

measured sections, refer to Fig. 1. Ubiquitous soft-sediment deformation occurs in both these areas 

and is represented on each log. Stratigraphic duplication of sandstones is particularly acute at Tizi 

N’Tazzounghart in the Anti-Atlas, and is considered strong evidence of extensive subglacial shearing 

within the sediment column. The NNW orientation of striae at Foum Larjame is interpreted as the true 

direction of ice advance across the shelf, whereas the eastward vergence of folds within a thrust duplex 

at Tizi N’Tazzounghart may reflect the development of lateral ramps within the subglacial substrate. 

Log C reproduced from Le Heron et al. (2007).

Figure 3. Spectacular ravinement surface (arrowed) representing abandonment of a parasequence in 

the upper levels of the Lower Second Bani Formation at Foum Larjame (20 m on Log A, Fig. 2- 

transition into thinly bedded sandstones). This ravinement surface is interpreted to record a regionally 
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significant transgressive event comparable to that described for pre-glacial Late Ordovician deposits in 

Mauritania (Ghienne, 2003) and Libya (Ghienne et al., in press). 

Figure 4: Scale drawing of relationships between facies associations in the Upper Second Bani 

Formation. The sketch highlights the poor lateral continuity of the stacked sandstone facies association 

in the Tizi N’Tazzounghart area (c.f. Fig. 2 B), and the importance of major downcutting and incision, 

particularly at the base of the massive sandstone and conglomerate facies association. The meander 

channel formation, which is well developed in the Foum Larjame area, is not recognised at the 

equivalent stratigraphic horizon in Tizi N’Tazzounghart 30 km to the north. It is therefore interpreted 

to pinch out downdip. 

Figure 5. A: Scour-and-fill sandstones within the stacked sandstone facies association, showing 

evidence for scour at the base of the more thinly laminated sandstones above the geological hammer 

(arrowed); these sandstones are interpreted to have been deposited within a high energy shoreface 

setting. B: Large palaeovalley incision, approximately 50 m deep, defining the base of the Upper 

Second Bani Formation and cutting down into poorly exposed, well bedded sandstones of the Lower 

Second Bani Formation. Incision is up to 500 m wide and is filled by the massive sandstone and 

conglomerate facies association. The incision may have formed by exposure of the shelf, which would 

then have been cut by fluvial incised valleys, or alternatively under enhanced hydrostatic pressure as a 

“tunnel valley” beneath a Late Ordovician ice sheet. View is to the northeast. C: Soft-sediment striated 

surface, produced by ice advancing toward the NNW (Jbel Hamsailikht, SW of Foum Zguid: 

29°49.053’N  07°04.667’W). D: Large sandstone clast in a sandy, clast-poor diamictite lying directly 

above the striated surface shown in A. The lamination beneath the clast is deformed suggesting it was 

emplaced as a dropstone rather than entrained within a debris flow. 

Figure 6: Field sketch showing the relationship between the meander channel sandstone, diamictite 

and the sigmoidally cross-bedded sandstone faciesd associations at Foum Larjame (see Fig. 3 for 

stratigraphic context). The three lenses of coarse-grained sandstone and granular conglomerate (A-C) 

can be mapped out to reveal their organisation in a meandering channel geometry. 

Figure 7: A: Stacked tabular cross-bedded sandstones immediately above the ripples figured in B, at 

the top of the Upper Second Bani Formation. A bi-directional palaeocurrent pattern appears to be 

represented, indicating the migration of straight-crested bars to the NE and SW. These rocks are 
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interpreted as transgressive tidal deposits at the onset of post-glacial transgression. B: Line drawing 

showing features in photograph A. Thinly bedded sandstones with current ripples of different 

orientations on two closely spaced bedding planes. The trend of ripple crests is variable, although they 

are generally asymmetric indicating westward palaeoflow. See Fig. 3, log A for stratigraphic position 

of both photos.

Figure 8: A: Metre-scale S-C fabric in deformed sandstones immediately below a palaeovalley 

incision at Foum Triya El Khina (incision is figured in Fig. 5 B). An S-C fabric is a term in structural 

geology that describes compartmentalisation of rigid blocks of rock (e.g. sandstone), on a scale of 

millimetres to metres, by interconnected fault networks that geometrically define an arrangement of S 

and C shapes in cross section. Arrows indicate transport direction along faults in the duplex system. B: 

General view of the pronounced cliff (or “bani”) at Tizi N’ Tazzounghart, which does not reveal 

evidence of intense deformation from a distance. The talus covered, more gently sloping lower portion 

of the cliff is very poorly exposed but comprises mudrocks (Fig. 3, log B, 0-10 m). The overlying 

sandstones, in contrast, are intensely deformed. C: Deformation in the lower sandstones of the cliff top 

(see arrow in photo B; Fig. 3, log B, 10-33 m). D: Spectacular, large-scale soft-sediment deformation 

structures (Fig. 3, log B, 34-62 m), directly below the level of a striated surface. Apparent vergence of 

these structures implies a top-to-the-W transport direction. 

Figure 9: Summary of depositional environments interpreted from the Upper Second Bani Formation. 

6.

Table 1. Stratigraphic correlation of pre-glacial (mid to late Ordovician), syn-glacial (latest 

Ordovician, Hirnantian), and post-glacial (early Silurian) deposits across Morocco. This present paper 

specifically deals with descriptions and interpretations of sedimentary facies associations in the syn-

glacial Upper Second Bani Formation of the central Anti-Atlas of southern Morocco and deformation 

structures contained within them. For a detailed analysis of Late Ordovician glaciogenic deposits in 

northern Morocco, see Le Heron et al. (2007). 

19






















