
Error oracle attacks and
CBC encryption

Chris Mitchell

ISG, RHUL

http://www.isg.rhul.ac.uk/~cjm

2

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

3

Block ciphers

� One of the fundamental cryptographic primitives is the
block cipher.

� When used for encryption, a block cipher takes as input a

block of n bits of plaintext P and outputs a block of n bits
of ciphertext C. [We call this an n-bit block cipher].

� Operation is controlled by a secret key K; we write
C=eK(P) and P=dK(C) where d is the decryption function.

� For each key, the encryption function implements a
permutation on the set of all n-bit blocks.

4

Examples of block ciphers

� Some well-known examples of block ciphers:

– DES: the Data Encryption Standard was first published in the
US in the late 1970s, and rapidly became a de facto
international standard;

– DES suffers from a relatively short secret key (56 bits), and
advances in technology have meant it is unacceptably weak.
Triple DES (three iterations of DES using two or three DES
keys) is a widely deployed fix to this problem.

– AES: the Advanced Encryption Standard, is a much more
recent design with a 128-bit key, designed as a replacement
for DES.

5

Modes of operation

� Using a block cipher in the naïve way, i.e. dividing the
data to be encrypted into blocks, and encrypting each
block separately, is not a good idea.

� This is because if two blocks in the plaintext are the
same (often likely) then the two ciphertext blocks will
be the same.

� That is, the ciphertext will ‘leak’ information about the
plaintext.

� Hence more complex ways of using a block cipher
have been devised – called modes of operation.

6

What is CBC mode?

� CBC (Cipher Block Chaining) mode is a widely

used technique for encrypting data using a

block cipher (i.e. it is a mode of operation).

� It is purely a confidentiality technique – it does

not provide any integrity protection for data.

� This is inevitable in that it does not add any

redundancy – i.e. n bits of plaintext encrypt to n

bits of ciphertext, so all ciphertexts are ‘valid’.

7

Confidentiality and integrity

� In many cases it is necessary to provide both

confidentiality and integrity.

� With symmetric crypto, this is typically

achieved by encrypting (e.g. using CBC mode)

and computing a MAC (Message

Authentication Code).

� Recent cryptanalytic results suggest that these

need to be combined with care!

8

Need for padding

� To use CBC mode, it is necessary for the data

that is to be encrypted to be a multiple of n bits

long (where n is the block cipher block length).

� This means that data often needs to be padded

prior to encryption.

� Means must be provided for receiver of

ciphertext to know which bits of final recovered

plaintext are padding.

9

Padding oracles

� Recipient of ciphertext must process final block to
recover and remove padding.

� Depending on padding method, some recovered

plaintexts may be ‘invalid’.

� In such a case the decrypter will typically generate an

error message, e.g. to request a retransmission.

� This is an example of a padding oracle, i.e. an entity

which will indicate whether or not a ciphertext yields
valid padding when decrypted.

10

Padding oracle attacks

� Suppose a cryptanalyst can modify/insert

messages into a communications channel.

� Then a padding oracle can be used to learn

information about the plaintext by repeatedly

sending modified versions of the ciphertext to

the oracle and seeing what the result is.

� This has been shown to work against real

implementations of well-known protocols.

11

Solutions

� One solution is to try to limit the use of error

messages – this is difficult to implement.

� Another widely advocated solution is to use

only padding methods for which all possible

deciphered messages are valid.

� Most satisfactory solution is to always use an

integrity check, and to only decrypt a message

if the integrity check passes.

12

Need for encryption only

� Unfortunately, the final solution is not always
practical.

� There are applications where encryption-only is
required (these should be minimised).

� Examples include:
– encrypted voice (telephony) – typically

retransmission is not an option because of latency;

– bulk data transfer (e.g. data trunks) – again
retransmission not an option.

13

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

14

Cipher Block Chaining (CBC) Mode

� Plaintext must be a series of n-bit blocks:

P1, P2, ..., Pq.

� Then: C1 = eK(P1 ⊕ IV)

Ci = eK(Pi ⊕ Ci-1) (i>1)

(where ⊕ denotes bit-wise exclusive-or), and:

P1 = dK(C1) ⊕ IV

Pi = dK(Ci) ⊕ Ci-1 (i>1).

15

CBC encryption

P1 P2

C1

Pq

CqC2

eK eKeK

IV
Cq-1

16

CBC decryption

C1 C2

P1

Cq

P2

dK dK

Pq

dK

IV
Cq-1

17

CBC mode properties

� If same message encrypted twice using same

IV, then the same ciphertext results.

� Two identical plaintext blocks produce different

ciphertext blocks.

� Need for padding.

� Error propagation – one bit error in ciphertext

means that one block of plaintext is lost, as

well as one bit in the next block of plaintext.

18

An observation

� Suppose P1, P2, …, Pq is a (padded) plaintext

message which has been encrypted to C1, C2,

…, Cq using key K and IV S.

� Suppose X1, X2, …, Xs-1, Cj, Xs+1, …, Xt is

submitted for decryption, where s>1, j>1, and

decrypted result is P′1, P′2, …, P′t.

� Then we have:

P′s ⊕ Pj = Xs-1 ⊕ Cj-1

19

This observation is key

� This simple observation is the basis of all

padding oracle attacks.

� The observation can be use as the basis of two

main types of attack designed to learn

information about a plaintext message.

� We review these two attack approaches.

20

Attack type 1

� This attack is designed to learn information about a
single ‘target’ plaintext block Pj.

� Using the previous notation the attacker sets:

Xs-1 = Cj-1 ⊕ Q

where Q is a chosen bit pattern.

� By our observation: P′s ⊕ Pj = Q, i.e. the attacker can
select the difference between P′s and the target
plaintext Pj.

� If the attacker has some means of learning whether or
not P′s generates a formatting error, then he may learn
something about Pj.

21

Attack type 2

� This attack involves learning information about an
entire message.

� Suppose C1, C2, …, Cq and C*1, C*2, …, C*t are two
ciphertext messages (which may be the same)
encrypted using the same key.

� The cryptanalyst now submits the message:

C*1, C*2, …,C*s-1, Cj, C*s+1, …, C*t

� We also suppose that, in this case, the cryptanalyst
can force the ‘oracle’ to decrypt this message using the
same IV as was used to encrypt C*1, C*2, …, C*t.

22

Attack type 2 (continued)

� Suppose decrypted result is P′1, P′2, …, P′t.

� Then:
– P′i = P*i for every i ≠ s or s+1;

– P′s ⊕ P*s = P*s ⊕ Pj ⊕ C*s-1 ⊕ Cj-1;

– P′s+1 ⊕ P*s+1 = C*s ⊕ Cj.

� If the attacker has some means of learning
whether or not the plaintext generates an error,
then this may reveal information about P*s ⊕ Pj

(since everything else is known).

23

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

24

Padding oracles reviewed

� In a padding oracle attack, an attacker has one

or more valid ciphertexts, and can inject

modified ciphertexts into the channel.

� The receiver will decrypt each ciphertext and

generate an error message if the padding is

incorrect.

25

Error oracles

� In an error oracle attack we suppose that, after

decryption, the message is passed to a

protocol implementation (e.g. an application)

which will generate a detectable action (e.g. an

error message) if the message format is

incorrect.

� In this sense a padding oracle attack is just a

special case of an error oracle attack.

26

Discussion

� Unlike padding oracles, it may not be possible to
prevent error oracles.

� Applications are run across encrypted networks, where
the application is not encryption-aware and the
encryption layer is not application-aware.

� It is inevitable that some applications will react in
unexpected ways to ill-formatted messages.

� Hence likelihood of error oracles should be minimised,
e.g. by using authenticated encryption whenever
possible.

27

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

28

Assumptions

� Suppose a protocol, running at a higher layer
in the protocol hierarchy than the encrypting
protocol, provides error protection using a 16-
bit CRC.

� I.e. suppose plaintext P1, P2, …, Pq

corresponding to ciphertext C1, C2, …, Cq,
incorporates a 16-bit CRC.

� Suppose attacker can also find out if error
detection fails.

29

The error oracle query (attack type 2)

� The attacker replaces Cs with Cj for some s ≠ j.

� If the recovered ‘plaintext’ is P′1, P′2, …, P′t, then:

– P′i = Pi for every i ≠ s or s+1;

– P′s ⊕ Ps = Ps ⊕ Pj ⊕ Cs-1 ⊕ Cj-1;

– P′s+1 ⊕ Ps+1 = Cs ⊕ Cj.

� Given the original message contained a valid CRC,
then the corrupted message will contain a valid CRC if

and only if the exor of the original and corrupted
messages contains a valid CRC (by linearity).

30

Results

� The exor of the original and corrupted
plaintexts will be zero in all but two blocks, and
the only unknown for these two blocks is the
value of Ps ⊕ Pj.

� The probability the CRC will be correct is 2-16,
but in that case the attacker will instantly know
16 bits of information about the message.

� If an 8-bit CRC is used, then information can
be obtained more rapidly.

31

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

32

A message structure attack (type 1)

� Suppose the target plaintext message contains

a fixed byte in a known position.

� Suppose the fixed byte is the kth byte of block

Ps, for some s > 1.

� Many protocols contain fixed bytes (e.g. set to

zero) for future-proofing – perhaps containing

the version number of the protocol.

33

The error oracle query

� The attacker constructs 256 queries, one for
each value of t (0 ≤ t ≤ 255).

� The attacker replaces Cs with Cj for some j ≠ s,
and replaces Cs-1 with Cj-1 ⊕ Qt, where Qt has
zeros everywhere except in the kth byte, which
contains the binary representation of t.

� Precisely one of these (Qu say) will yield a
plaintext with the correct value for the kth byte
of the sth plaintext block.

34

Results

� By the key observation, the recovered plaintext

block P′s will equal:

Pj ⊕ Qu

� That is, for the value of t (i.e. u) that does not

yield an error, the attacker knows that the kth

byte of Pj ⊕ Qu will equal the correct fixed byte.

� This immediately gives a byte of p/text block Pj.

� Repeat for every plaintext block (except P1).

35

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

36

A content-based padding oracle attack

� We now describe a padding oracle attack

which works against padding methods which

are resistant to ‘normal’ padding oracle attacks.

� We need to suppose that the message sent is

of fixed length, and that an error message will

be generated if a message is received of the

wrong length.

37

Assumptions

� We suppose that the padding method in use
involves adding a single one to the end of the
data followed by the smallest number of zeros
(at most n-1) necessary to create a whole
number of n-bit blocks.

� This padding method is uniquely unpaddable,
and resists known padding oracle attacks
(almost every possible string of bits
corresponds to a padded message).

38

The error oracle query

� Suppose C1, C2, …, Cq is a valid ciphertext message
for which the last d bits of Pq are 100…0 (the fixed

message length is qn-d).

� The attacker makes 2d messages variants (0 ≤ t ≤ 2d-1)
by modifying the last two blocks to:

Cj-1 ⊕ Qt, Cj

where Qt contains n-d zeros followed by the binary

representation of t.

� One will not return a message length error – say Qu.

39

Results

� By the key observation, the recovered plaintext

block P′q will equal:

Pj ⊕ Qu

� That is, for the value of t (i.e. t=u) that does not

yield an error, the attacker knows that the final

d bits of Pj ⊕ Qu will equal 100…0.

� This immediately gives d bits of p/text block Pj.

� Repeat for every plaintext block (except P1).

40

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

41

CBC mode and stream ciphers

� It would thus appear that CBC mode is
dangerously prone to error oracle attacks,
regardless of the padding method used.

� One other widely used method of encryption is
the stream cipher.

� In a stream cipher, the data is encrypted by bit-
wise exoring it with a pseudorandom
keystream sequence (generated as a function
of a secret key).

42

Stream ciphers and error oracles

� Stream ciphers do not suffer in the same way (they
also do not require padding).

� There are examples of error oracle attacks on stream
ciphers, but they seem harder to construct.

� Suppose two consecutive bits of a plaintext message
are always equal to one of 00, 01, and 10 (and that 11
will cause a detectable behaviour by the recipient).

� If the second of the two corresponding ciphertext bits is
changed then error/no error means that the previous bit
is 1/0.

43

Agenda

1. Introduction

2. CBC mode

3. Error oracles

4. Example 1

5. Example 2

6. Example 3

7. Stream ciphers

8. Conclusions

44

Use authenticated encryption

� The simplest and best solution to all these

attacks is to use authenticated encryption (AE).

� This either means use the ‘encrypt-then-MAC’

paradigm, or use one of the AE block cipher

modes recently developed (OCB versions 1

and 2, EAX, CCM, …).

� Indeed, an international standard for AE

schemes, ISO/IEC 19772, is being developed.

45

Use a stream cipher

� If unauthenticated encryption is really

necessary, then don’t use CBC mode!

� Probably the best choice is a stream cipher.

� This either means using a bespoke keystream

generator (e.g. SNOW 2.0 or MUGI) or a block

cipher in an appropriate mode, e.g. OFB or

CTR mode.

46

Acknowledgements

� Must thank Kenny Paterson for many helpful

comments.

� A shorter version of this talk will be presented

at ISC 2005 (Singapore, September 2005).

