MINIMIZING AND MAXIMIZING THE DIAMETER IN ORIENTATIONS OF GRAPHS

G. Gutin

Raymond and Beverly Sackler
Faculty of Exact Sciences
School of Mathematical Sciences
Tel Aviv University
Ramat-Aviv 69978, Israel

Abstract

. For a graph G, let $G^{\prime}\left(G^{\prime \prime}\right)$ denote an orientation of G having maximum (minimum respectively) finite diameter. We show that the length of the longest path in any 2-edge connected (undirected) graph G is precisely $\operatorname{diam}\left(G^{\prime}\right)$. Let $K\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ be the complete n-partite graph with parts of cardinalities $m_{1}, m_{2}, \ldots, m_{n}$. We prove that if $m_{1}=m_{2}=\cdots=m_{n}=m, n \geq 3$, then $\operatorname{diam}\left(K^{\prime \prime}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)=2$, unless $m=1$ and $n=4$.

1. Introduction

The following is a well known Theorem of Robbings [1]; a connected graph G has a strongly connected orientation if and only if G has no bridge.

Therefore, we consider here only (connected) graphs without bridges (an edge e of a (connected) graph G is called a bridge if $G-e$ is not connected). For a graph G, let $G^{\prime}\left(G^{\prime \prime}\right)$ denote an orientation of G having maximum (minimum, respectively) finite diameter.

In this work we prove that for any graph $G \operatorname{diam}\left(G^{\prime}\right)$ is equal to the length of the longest path of G (denoting here by $\ell p(G)$). This implies the inequality of Ghouila-Houri (cf. [2], page 72) for oriented graphs.

Define $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\operatorname{diam}\left(K^{\prime \prime}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$. Boesh and Tindell [3] proved that $f(m, m)=3$ for $m \geq 2$. Plesnik (cf. [4]) showed that if $m_{1}, m_{2} \geq 2$,
then $f\left(m_{1}, m_{2}\right) \leq 4$. Finally, Soltes [4] determined the exact value of $f\left(m_{1}, m_{2}\right)$ for all m_{1}, m_{2}. If $m_{1} \geq m_{2} \geq 2$, then $f\left(m_{1}, m_{2}\right)=3$ for $m_{1} \leq\binom{ m_{2}}{\left\lfloor m_{2} / 2\right\rfloor}$, and otherwise $f\left(m_{1}, m_{2}\right)=4$. A short proof of this result, using the well known theorem of Sperner is given in [5].

In the present paper we prove that if $n \geq 3$, then $f\left(m_{1}, m_{2}, \ldots, m_{n}\right) \leq 3$ for all $m_{i}(i=1,2, \ldots, n)$ and determine $f\left(m_{1}, \ldots, m_{n}\right)$ precisely for all $m_{1}=m_{2}=\cdots=$ $m_{n}=m$; if $n \geq 3$ then $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=2$ unless $n=4$ and $m=1$.

2. Maximum Diameter

Let G be a graph or a diagraph. Then the symbol $V(G)(E(G), A(G))$ denotes the set of all vertices (edges, arcs, respectively) of G. For any $X, Y \subseteq V(G)$ a path $y_{1} y_{2} \ldots y_{p}$ is called an (X, Y)-path if $y_{1} \in X, y_{p} \in Y$, and $y_{2}, y_{3}, \ldots, y_{p-1} \notin X \cup Y$.

Theorem 1. Let G be a 2-edge-connected graph. Then $\operatorname{diam}\left(G^{\prime}\right)=\ell p(G)$.

Proof: For any strongly connected orientation G_{0} of G we obviously have $\operatorname{diam}\left(G_{0}\right) \leq$ $\ell p(G)$. Hence we must construct only some orientation G_{1} of G with the property $\operatorname{diam}\left(G_{1}\right)=\ell p(G)$. This is done by a process similar to the one known as ear-decomposition of a graph [6].

Let $P=x_{1} x_{2} \ldots x_{n}$ be the longest path of G, and associate each vertex x_{i} with a mark $m\left(x_{i}\right)=i$. Since G has no bridges the edge $x_{n-1} x_{n}$ is not a bridge. Consequently, there exists an $\left(\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\},\left\{x_{n}\right\}\right)$-path P_{1} different from the path $x_{n-1} x_{n}$. Let x_{i} be the first vertex of P_{1}. Define $m(v)=i$ for all vertices $v \in V\left(P_{1}\right) \backslash\left\{x_{n}\right\}$. Since $x_{i-1} x_{i}$ is not a bridge there exists an $\left(\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\},\left\{x_{i}, x_{i+1}, \ldots, x_{n}\right\} \cup V\left(P_{1}\right)\right)$-path P_{2} different from the path $x_{i-1} x_{i}$. Similarly if x_{j} is the first vertex of P_{2} (note that $j<i$), then define $m(v)=j$ for all vertices in P_{2} besides the last one. Analogously, we can build paths P_{3}, P_{4}, \ldots, and define mark m of the vertices of P_{3}, P_{4}, \ldots until we obtain a path P_{s} with the first vertex x_{1}.

Now, we orientate path P from x_{1} to x_{n} (we obtain the dipath Q), and each path $P_{i}(i=1,2, \ldots, s)$ from its endvertex having a bigger mark to its other end vertex (with the smaller mark), we derive the dipath Q_{i}. It is easy to check that the oriented graph
induced by the arcs of the paths $\bigcup_{i=1}^{s} Q_{i} \cup Q$ is a strongly connected digraph. Define

$$
X=V(G) \backslash\left(V(P) \cup \bigcup_{i=1}^{s} V\left(P_{i}\right)\right)
$$

and suppose $X \neq \emptyset$ (the case $X=\emptyset$ is easier). Since G has no bridges there exists some vertex $v \in X$ and a pair of $(\{v\}, V(G) \backslash X)$-paths with no common vertices (besides v). We unite these two paths to one (path S_{1}). Now orientate the last path from its end vertex having the bigger mark to the one having the smaller mark. If the marks of the two end vertices coincide then the orientation is arbitrary.

If $X \backslash V\left(S_{1}\right) \neq \emptyset$ we shall continue the construction of paths S_{2}, S_{3}, \ldots passing over the rest of the vertices of X until $\bigcup_{i=1}^{t} V\left(S_{i}\right)=X$, where the orientation is chosen in the same manner. Finally orient each unoriented edge $u v$ from u to v if $m(n) \geq m(v)$ and from v to u otherwise.

Let D denote the obtained oriented graph. D contains a strongly connected spanning subgraph. Therefore, D is strongly connected. Since all the $\operatorname{arcs}(u, w)$ of D, besides those in P, are oriented such that $m(v) \geq m(w)$, there is no path from x_{1} to x_{n} having length less than $n-1$. Hence, $\operatorname{diam}(D)=n-1$.

Corollary 1. If $m_{1} \geq m_{i}(i=2, \ldots, n)$, and $M=\sum_{i=2}^{n} m_{i}, p=m_{1}+M$ then $\operatorname{diam}\left(K^{\prime}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)=p-1-\max \left\{m_{1}-1-M, 0\right\}$.

Proof: If $m_{1}>M$, then it is easy to see that

$$
\ell p\left(K\left(m_{1}, \ldots, m_{n}\right)\right)=2 M=p-1-\left(m_{1}-1-M\right) .
$$

Otherwise, $K\left(m_{1}, \ldots, m_{n}\right)$ is Hamiltonian (by Dirac's theorem, or by exhibiting an explicit Hamilton cycle $)$ and $\ell p\left(K\left(m_{1}, \ldots, m_{n}\right)\right)=p-1$.

3. Minimum Diameter

Let $V_{1}, V_{2}, \ldots, V_{n}$ be the parts of $K\left(m_{1}, m_{2}, \ldots, m_{n}\right)$, where $V_{i}=\left\{v_{j}^{(i)}\right.$: $\left.j=1,2, \ldots, m_{i}\right\}$; we use the following notation for a digraph D and $X, Y \subseteq V(D)$ $X \times Y=\{(x, y): x \in X, y \in Y\}, A_{D}(X, Y)=A(D) \cap(X \times Y \cup Y \times X)$; we write down
$X \rightarrow Y$ iff $A_{D}(X, Y)=X \times Y, X \mapsto Y$ iff for every $y \in Y$ there exists $x \in X$ such that $(x, y) \in A(D)$; and define the distance

$$
d(X, Y)=\max _{x \in X} \max _{y \in Y} d(x, y) ;
$$

if $m_{1}=m_{2}=\cdots m_{n}=m$, then $f\left(m^{(n)}\right)=f\left(m_{1}, m_{2}, \ldots, m_{n}\right), K\left(m^{(n)}\right)=K\left(m_{1}, m_{2}, \ldots, m_{n}\right)$,
$R\left(m^{(n)}\right)=R\left(m_{1}, \ldots, m_{n}\right)$, where R is defined below.
Theorem 2. If $n \geq 3$, then $f\left(m_{1}, m_{2}, \ldots, m_{n}\right) \leq 3$ for all positive integers $m_{1}, m_{2}, \ldots, m_{n}$.

Proof: Let for any odd $n R\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ means an orientation of $K\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ such that $V_{i} \rightarrow V_{j}$ if and only if

$$
j-i \equiv 1,2, \ldots,\lfloor n / 2\rfloor(\bmod n) .
$$

If n is even, then $R\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ is determined by the following

$$
\begin{gathered}
R\left(m_{1}, m_{2}, \ldots, m_{n}\right)-V_{n} \cong R\left(m_{1}, m_{2}, \ldots, m_{n-1}\right), \\
V_{n} \rightarrow V_{i}(i=1,3,5, \ldots, n-1), V_{j} \rightarrow V_{n} \quad(j=2,4,6, \ldots, n-2) .
\end{gathered}
$$

We prove that $\operatorname{diam} R\left(m_{1}, m_{2}, \ldots, m_{n}\right) \leq 3$.
Case 1. $n \equiv 1(\bmod 2), n \geq 3$. It is sufficient to prove that $d\left(V_{1}, V_{i}\right) \leq 3$ for all $i=1,2, \ldots, n$. If $1<j \leq\left\lfloor\frac{n}{2}\right\rfloor+1$, then $V_{1} \rightarrow V_{j}$ by the definition. If $\left\lfloor\frac{n}{2}\right\rfloor+1<j \leq n$, then $V_{\left\lfloor\frac{n}{2}\right\rfloor+1} \rightarrow V_{j}$, hence $d\left(V_{1}, V_{j}\right)=2$. Since $V_{1} \rightarrow V_{\left\lfloor\frac{n}{2}\right\rfloor+1} \rightarrow V_{\left\lfloor\frac{n}{2}\right\rfloor+2} \rightarrow V_{1} \quad d\left(V_{1}, V_{1}\right) \leq 3$.

Case 2. $n \equiv 0(\bmod 2), n \geq 4$. Since $R\left(m_{1}, \ldots, m_{n}\right)-V_{n} \cong R\left(m_{2}, \ldots, m_{n-1}\right)$ we have $d\left(V_{i}, V_{j}\right) \leq 3$ for all $1 \leq i, j \leq n-1$. Besides, $V_{n} \rightarrow V_{i} \rightarrow V_{i+1}$ for $i=1,3,5, \ldots, n-3$; and $V_{n} \rightarrow V_{n-1}$, therefore $d\left(V_{n}, V_{t}\right) \leq 2$ for $t=1,2, \ldots, n-1$. Analogously, $V_{i} \rightarrow V_{i+1} \rightarrow V_{n}$ for $i=1,3,5, \ldots, n-3 ; V_{n-1} \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{n}$, hence $d\left(V_{t}, V_{n}\right) \leq 3$ for $t=1,2, \ldots, n-1$. Finally, $V_{n} \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{n}$, therefore $d\left(V_{n}, V_{n}\right) \leq 3$.

Lemma 1.

$$
f\left(1^{(n)}\right)= \begin{cases}2, & \text { if } \quad n \geq 3, n \neq 4 \\ 3, & \text { if } \quad n=4\end{cases}
$$

Proof: Clearly $f\left(1^{(n)}\right)>1$ for all $n \geq 3$. We prove that

$$
\operatorname{diam} R\left(1^{(n)}\right)=\left\{\begin{array}{lll}
2, & \text { if } n \geq 3, n \neq 4 \tag{1}\\
3, & \text { if } n=4 .
\end{array}\right.
$$

If the integer n is odd (1) follows from the proof of case 1 in Theorem 2 (if all $m_{i}=1$ we do not need 3 -cycles).

If $n \equiv 0(\bmod 2), n \geq 6$, then we can use discussion in case 2 in the proof of Theorem 2, but we change $V_{n-1} \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{n}$ to $V_{n-1} \rightarrow V_{2} \rightarrow V_{n}$. If $n=4$, then $d\left(V_{3}, V_{4}\right)=3$, hence $\operatorname{diam} R(1,1,1,1)=3$. But $R(1,1,1,1)$ is the unique strongly connected tournament on 4 vertices (up to isomorphism), therefore $f(1,1,1,1)=3$.

Define $V_{i}^{\prime}=V_{i} \backslash\left\{v_{1}^{(i)}\right\}, i=1,2, \ldots, n$.
Lemma 2. For $m \geq 3, n \neq 4, n \geq 3 f\left(m^{(n)}\right)=2$.
Proof: We change the direction of all arcs of the form $\left(v_{t}^{(i)}, v_{t}^{(j)}\right)(t=1,2, \ldots, m$; $1 \leq i \neq j \leq n)$ in $R\left(m^{(n)}\right)$ (see the proof of Theorem 2) and obtain $R_{1}\left(m^{(n)}\right)$. We next show that $\operatorname{diam} R_{1}\left(m^{(n)}\right)=2$ for $n \geq 3, n \neq 4, m \geq 3$. Note that $X \rightarrow Y, Y \mapsto Z$ implies $d_{D}(X, Z) \leq 2(X, Y, Z \subseteq V(D))$.

Case 1. $n \equiv 1(\bmod 2), n \geq 3$. Put $q=\left\lfloor\frac{n}{2}\right\rfloor$. It is easy to check that

$$
\begin{aligned}
& v_{1}^{(1)} \rightarrow V_{2}^{\prime} \cup V_{3}^{\prime} \cup \cdots \cup V_{q+1}^{\prime}, \\
& v_{1}^{(1)} \rightarrow\left\{v_{2}^{(q+1)}, v_{3}^{(q+1)}\right\} \mapsto V_{q+2} \cup V_{q+3} \cup \cdots \cup V_{n} \\
& v_{1}^{(1)} \rightarrow v_{1}^{(q+2)} \rightarrow v_{1}^{(s)}, \text { where } s=2,3, \ldots, q+1, \text { and } \\
& v_{1}^{(1)} \rightarrow v_{t}^{(2)} \rightarrow v_{t}^{(1)}, \text { where } t=2,3, \ldots, m .
\end{aligned}
$$

Hence, $d\left(v_{1}^{(1)}, V\left(R_{1}\left(m^{(n)}\right)\right)\right)=2$. By the symmetry of $R_{1}\left(m^{(n)}\right)$ the distance from any vertex of $R_{1}\left(m^{(n)}\right)$ to any other vertex less or equal to 2 . Therefore, $f\left(m^{(n)}\right)=2$.

Case 2. $\quad n \equiv 0(\bmod 2), n \geq 6$. Since $R_{1}\left(m^{(n)}\right)-V_{n}^{\cong} R_{1}\left(m^{(n-1)}\right)$ the distance $d\left(V_{i}, V_{j}\right) \leq 2$ for all $1 \leq i, j \leq n-1$. We note that

$$
v_{1}^{(i)} \rightarrow\left\{v_{2}^{(i+1)}, v_{3}^{(i+1)}\right\} \mapsto V_{n} \quad(i=1,3,5, \ldots, n-3) .
$$

Consequently, $d\left(v_{1}^{(i)}, V_{n}\right)=2 \quad(i=1,3, \ldots, n-3)$. For $j=2,4, \ldots, n-2 v_{1}^{(j)} \rightarrow$ $V_{n}^{\prime}, v_{1}^{(j)} \rightarrow v_{1}^{(j-1)} \rightarrow v_{1}^{(n)}$, thus,

$$
d\left(v_{1}^{(j)}, V_{n}\right)=2
$$

Since $n \geq 6, v_{1}^{(n-1)} \rightarrow\left\{v_{2}^{(2)}, v_{3}^{(2)}\right\} \mapsto V_{n}$. Hence, $d\left(v_{1}^{(n-1)}, V_{n}\right)=2$. Obviously, $d\left(V_{n}, V_{n}\right)=2$. Thus, $d\left(V_{1} \cup V_{2} \cup \cdots \cup V_{n}, V_{n}\right)=2$. It is easy to see that

$$
\begin{aligned}
& v_{1}^{(n)} \rightarrow V_{1}^{\prime} \cup V_{3}^{\prime} \cup \cdots \cup V_{n-1}^{\prime} \\
& v_{1}^{(n)} \rightarrow v_{1}^{(i+1)} \rightarrow v_{1}^{(i)}(i=1,3, \ldots, n-3), v_{1}^{(n)} \rightarrow v_{1}^{(2)} \rightarrow v_{1}^{(n-1)}
\end{aligned}
$$

Therefore, $d\left(V_{n}, V_{1} \cup V_{3} \cup \cdots \cup V_{n-1}\right)=2$.

$$
\left.v_{1}^{(n)} \rightarrow\left\{v_{2}^{(i)}, v_{3}^{(i)}\right\} \mapsto V_{i+1}(i=1,3, \ldots, n-3)\right\}
$$

Hence, $d\left(V_{n}, V_{2} \cup V_{4} \cup \cdots \cup V_{n-2}\right)=2$.
Lemma 3. For $m \geq 2 f\left(m^{(4)}\right)=2$.
Proof: The orientation $Q=Q\left(m^{(4)}\right)$ of $K\left(m^{(4)}\right)$ is determined by the following

$$
A(Q)=V_{2} \times V_{1} \cup V_{1} \times V_{3} \cup V_{1} \times V_{4} \cup V_{3} \times V_{2} \cup V_{2} \times V_{4} \cup V_{3} \times V_{4} .
$$

We change the direction of all arcs of the form $\left(v_{t}^{(i)}, v_{t}^{(j)}\right)(t=1,2, \ldots, m ; 1 \leq i \neq j \leq n)$ in Q and obtain $Q_{1}\left(m^{(4)}\right)$. We next show that $\operatorname{diam} Q_{1}\left(m^{(4)}\right)=2$ for $m \geq 3$. It is easy to check that

$$
v_{1}^{(1)} \rightarrow V_{3}^{\prime} \mapsto V_{2} \cup V_{4}, v_{1}^{(1)} \rightarrow v_{1}^{(2)} \rightarrow v_{1}^{(3)} .
$$

Hence, $d\left(V_{1}, V_{2} \cup V_{3} \cup V_{4}\right)=2$. Analogously, $v_{1}^{(2)} \rightarrow V_{1}^{\prime} \mapsto V_{3} \cup V_{4}, v_{1}^{(2)} \rightarrow v_{1}^{(3)} \rightarrow v_{1}^{(1)}$,

$$
v_{1}^{(3)} \rightarrow V_{2}^{\prime} \mapsto V_{1} \cup V_{4}, v_{1}^{(3)} \rightarrow v_{1}^{(1)} \rightarrow v_{1}^{(2)}
$$

Therefore, $d\left(V_{i}, V\left(Q_{1}\left(m^{(4)}\right)\right) \backslash V_{i}\right)=2$ for $i=2,3$. Obviously, $v_{1}^{(4)} \rightarrow v_{1}^{(1)} \rightarrow V_{3}^{\prime}, v_{1}^{(4)} \rightarrow$ $v_{1}^{(2)} \rightarrow V_{1}^{\prime}, v_{1}^{(4)} \rightarrow v_{1}^{(3)} \rightarrow V_{2}^{\prime}$. Hence, $d\left(V_{4}, V_{1} \cup V_{2} \cup V_{3}\right)=2$. Finally, if

$$
\begin{equation*}
\left\{\left(v_{t}^{(i)}, v_{t}^{(j)}\right): i=1,2, \ldots, m\right\} \subset A\left(Q_{1}\left(m^{(4)}\right)\right) \tag{2}
\end{equation*}
$$

then $v_{t}^{(i)} \rightarrow v_{t}^{(j)} \rightarrow V_{i} \backslash\left\{v_{t}^{(i)}\right\}, t=1,2, \ldots, m$ (by the definition of $Q_{1}\left(m^{(4)}\right)$). Since for any $i=1,2,3,4$ there exists j such that (2) holds, we have

$$
d\left(V_{i}, V_{i}\right) \leq 2 \quad \text { for } \quad i=1,2,3,4
$$

Similarly one can consider the case $m=2$.

Lemma 4. If

$$
\begin{equation*}
2 \leq m_{1} \leq m_{2} \leq\binom{ m_{1}}{\left\lfloor m_{1} / 2\right\rfloor} \tag{3}
\end{equation*}
$$

then $f\left(m_{1}, m_{2}, 2\right)=2$.
Proof: By (3) and the result of Soltes [4] (see section 1) one can construct an orientation B of $K\left(m_{1}, m_{2}\right)$ with diameter three. Hence $d_{B}\left(V_{1} \cup V_{2}, V_{1} \cup V_{2}\right)=3$. But $d_{B}\left(V_{i}, V_{i}\right) \equiv 0(\bmod 2)(i=1,2)$, therefore $d_{B}\left(V_{i}, V_{i}\right)=2(i=1,2)$.

We add to B a new party $V_{3}\left(\left|V_{3}\right|=2\right)$ and the arcs

$$
\begin{aligned}
& \left\{\left(v_{j}^{(3)}, x^{(j)}\right): x^{(j)} \in V_{j}, \quad j=1,2\right\} \cup \\
& \left\{\left(x^{(j)}, v_{j+1}^{(3)}\right): x^{(j)} \in V_{j}, \quad j=1,2 ; v_{3}^{(3)}=v_{1}^{(3)}\right\},
\end{aligned}
$$

and obtain the oriented graph $D\left(m_{1}, m_{2}, 2\right)$ with diameter 2 .
In fact, $V_{1} \rightarrow v_{2}^{(3)} \rightarrow V_{2}, V_{2} \rightarrow v_{1}^{(3)} \rightarrow V_{1}$, and since $d\left(V_{1}, V_{1}\right)=d\left(V_{2}, V_{2}\right)=2$ we have

$$
d\left(V_{i}, V_{j}\right)=2 \quad(i, j \in\{1,2\})
$$

Since $v_{1}^{(3)} \rightarrow V_{1} \mapsto V_{2}, v_{2}^{(3)} \rightarrow V_{2} \mapsto V_{1}, V_{1} \rightarrow v_{2}^{(3)}, V_{2} \rightarrow v_{1}^{(3)}$, and for $i=1,2 d\left(V_{i}, v_{i}^{(3)}\right)=$ 2 (the outdegree of any vertex in B is positive, hence for any $v_{k}^{(i)}(k=1,2, \ldots, m)$ there exists a path $\left.v_{k}^{(i)} v_{j}^{(i+1)} v_{i}^{(3)}\right)$, we have

$$
d\left(V_{3}, V_{1} \cup V_{2}\right)=d\left(V_{1} \cup V_{2}, V_{3}\right)=2
$$

Besides, $v_{1}^{(3)} \rightarrow V_{1} \rightarrow v_{2}^{(3)}, v_{2}^{(3)} \rightarrow V_{2} \rightarrow v_{1}^{(3)}$, i.e. $d\left(V_{3}, V_{3}\right)=2$.
Lemma 5. If $n \geq 3, n \neq 4$, then $f\left(2^{(n)}\right)=2$.
Proof: If $n=3$, then by Lemma $4 f\left(2^{(3)}\right)=2$. If $n \geq 5$ and $\left|V_{i}\right|=2(i=1,2, \ldots, n)$ we can construct an oriented graph, isomorphic to $D\left(M_{1}, M_{2}, 2\right)$ (see the proof of Lemma 4) where

$$
M_{2}=m_{1}+m_{2}+\cdots+m_{\lfloor n / 2\rfloor}, \quad M_{1}=m_{\lfloor n / 2\rfloor+1}+m_{\lfloor n / 2\rfloor+2}+\cdots+m_{n-1}
$$

It is easy to check that if $n \geq 5$, then

$$
M_{1} \leq M_{2} \leq\binom{ M_{1}}{\left\lfloor M_{1} / 2\right\rfloor} .
$$

Hence, by virtue of Lemma 4, $\operatorname{diam} D\left(M_{1}, M_{2}, 2\right)=2$, and therefore $f\left(2^{(n)}\right)=2$ for $n \geq 5$.

Lemmas $1-3,5 \mathrm{imply}$ immediately the next theorem.
Theorem 3. $f\left(m^{(n)}\right)=2$ for any integer $m \geq 1$, and any integer $n \geq 3$, except the pair $(m, n)=(1,4)$, for which $f\left(1^{(4)}\right)=3$.

Acknowledgment. I would like to thank N. Alon for helpful comments and ideas and the referee for some important remarks.

References

1. Robbins H.E., Theorem on graphs, with an application to a problem of traffic control. Amer. Math. Monthly, 1929, Vol. 46, N 5, P. 281-283.
2. Berge C., Graphs and Hypergraphs, North-Holland, 1976.
3. Boesch F., Tindell R. Robbins' theorem for mixed multigraphs. Amer. Math. Monthly, 1980, Vol. 87, P. 716-719.
4. Soltes L., Orientations of graphs minimizing the radius or the diameter. Math. Slovaca. 1986, Vol. 38, N 3, P. 289-296.
5. Gutin G., m-sources in complete multipartite diagraphs. Vestsi Acad. Navuk BSSR, Ser. Fiz.-Mat. Navuk. 1989, N 5, P. 101-106 (In Russian).
6. Lovasz L., Combinatorial Problems and Exercises, North-Holland, 1979, p. 43.
