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Abstract.

For a graph G, let G'(G") denote an orientation of G having maximum
(minimum respectively) finite diameter. We show that the length of the longest
path in any 2-edge connected (undirected) graph G is precisely diam(G'). Let

K(my,ms,...,my) be the complete n-partite graph with parts of cardinalities
miy,ma,...,My. We prove that if my = ms = -+ = my, = m, n > 3, then
diam(K"(my,ma,...,my)) =2, unless m =1 and n = 4.

1. Introduction

The following is a well known Theorem of Robbings [1]; a connected graph G has a

strongly connected orientation if and only if G has no bridge.

Therefore, we consider here only (connected) graphs without bridges (an edge e of

a (connected) graph G is called a bridge if G — e is not connected). For a graph G,

let G'(G") denote an orientation of G having maximum (minimum, respectively) finite

diameter.

In this work we prove that for any graph G diam(G') is equal to the length of the

longest path of G (denoting here by {p(G)). This implies the inequality of Ghouila-Houri

(cf. [2], page 72) for oriented graphs.
Define f(mq,maz,...,my,) = diam(K"(my,ma,...,my,)). Boesh and Tindell [3]

proved that f(m,m) = 3 for m > 2. Plesnik (cf.

1

[4]) showed that if mq,ms > 2,



then f(mi,m2) < 4. Finally, Soltes [4] determined the exact value of f(mi,msy) for
all my,my. If my > mg > 2, then f(my,ms2) = 3 for my < (Lm";jﬂ), and otherwise
f(mi,my) =4. A short proof of this result, using the well known theorem of Sperner is
given in [5].

In the present paper we prove that if n > 3, then f(mi,mo,...,my) < 3 for all
m;(¢ = 1,2,...,n) and determine f(mq,...,m,) precisely for all my = my = --- =

my, =m; if n > 3 then f(mi,msa,...,m,) =2 unless n =4 and m = 1.

2. Maximum Diameter

Let G be a graph or a diagraph. Then the symbol V(G)(E(G), A(G)) denotes the
set of all vertices (edges, arcs, respectively) of G. For any X.Y C V(G) a path y1y2 ...y,
is called an (X,Y )-path if y; € X,y, € Y, and y2,y3,...,yp—1 € X UY.

Theorem 1. Let G be a 2-edge-connected graph. Then diam(G') = (p(G).

Proof: For any strongly connected orientation Gy of G we obviously have diam(Gy) <
(p(G). Hence we must construct only some orientation Gy of G with the property
diam(G1) = lp(G). This is done by a process similar to the one known as ear-decomposition
of a graph [6].

Let P = xy25...x, be the longest path of G, and associate each vertex z; with a
mark m(xz;) =¢. Since G has no bridges the edge ©,_1x, is not a bridge. Consequently,
there exists an ({x1,z2,...,20—1}, {2, })-path P; different from the path a,,_yx,. Let x;
be the first vertex of P;. Define m(v) = ¢ for all vertices v € V(P )\{x,}. Since x;_1x;
is not a bridge there exists an ({@1,22,...,2i—1}, {@i, 2i41,. .., 20} U V(Py))-path P,
different from the path x;_jz;. Similarly if x; is the first vertex of P, (note that j < 1),
then define m(v) = j for all vertices in P» besides the last one. Analogously, we can
build paths Ps, Py, ..., and define mark m of the vertices of Ps, Py, ... until we obtain a
path P, with the first vertex xy.

Now, we orientate path P from x; to x, (we obtain the dipath @), and each path
Pi(i =1,2,...,s) from its endvertex having a bigger mark to its other end vertex (with

the smaller mark), we derive the dipath @;. It is easy to check that the oriented graph
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induced by the arcs of the paths |J;_, @; U Q is a strongly connected digraph. Define
X =VENVEP)ul V)
=1

and suppose X # () (the case X = ) is easier). Since G has no bridges there exists some
vertex v € X and a pair of ({v}, V(G)\X)-paths with no common vertices (besides v).
We unite these two paths to one (path S7). Now orientate the last path from its end
vertex having the bigger mark to the one having the smaller mark. If the marks of the
two end vertices coincide then the orientation is arbitrary.

If X\V(S1) # 0 we shall continue the construction of paths Ss,Ss,... passing over
the rest of the vertices of X until Ule V(Si) = X, where the orientation is chosen in
the same manner. Finally orient each unoriented edge uv from u to v if m(n) > m(v)
and from v to u otherwise.

Let D denote the obtained oriented graph. D contains a strongly connected spanning
subgraph. Therefore, D is strongly connected. Since all the arcs (u,w) of D, besides
those in P, are oriented such that m(v) > m(w), there is no path from x; to x, having

length less than n — 1. Hence, diam(D) =n — 1. O

Corollary 1. If my > m;(i = 2,...,n), and M = >0 ,m;, p = my + M then
diam(K'(mq,mz,...,my)) =p—1—max{m; — 1 — M,0}.

Proof: If m; > M, then it is easy to see that
Up(K(my,...,my))=2M =p—1—(m; —1—M).

Otherwise, K(my,...,my) is Hamiltonian (by Dirac’s theorem, or by exhibiting an

explicit Hamilton cycle) and {p(K(mq,...,my)) =p — 1. =

3. Minimum Diameter

Let V4, Vs, ..., V, be the parts of K(mq,ma,...,my), where V; = {v;i) :
J = 1,2,...,m;}; we use the following notation for a digraph D and X,Y C V(D)
XxY={(z,y):2€X,yeY}, Ap(X,)Y)=A(D)N(X xY UY x X); we write down
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X =Y it Ap(X,)YV)=X xY, X — Y iff for every y € Y there exists € X such that
(z,y) € A(D); and define the distance

dXY)= d :
(X,Y) max max (z,y) ;

-

if my =my =---my, =m, then f(m™) = f(my,ma,...,my), K(m™) = K(my,ma,...,my),

R(m™) = R(my,...,m,), where R is defined below.

Theorem 2. Ifn > 3, then f(my,ma,...,my) < 3 for all positive integers my, ma, ..., My.

Proof: Let for any odd n R(mq, mz,...,my) means an orientation of K (my, ma,...,my)

such that V; — V; if and only if
J—i1=12,...,n/2](modn) .
If n is even, then R(my,ma,...,my) is determined by the following
R(my,mg,...,myp) =V, = R(my,ma,...,mMn_1) ,

Vo= Vi1 =1,8,5,....n—=1), V; =V, (j=2,4,6,...,n—2).
We prove that diam R(my,ma,...,my,) < 3.

Case 1. n = 1(mod?2
i=1,2,...,n. If1 < j < [§]+1, then Vi — V; by the definition. If | §|+1 < j < n, then
Vizj41 — V5, hence d(V4,V;) = 2. Since V; — Vigjpr = Vizjpe = V1 d(Vq, V1) < 3.

, n > 3. It is sufficient to prove that d(V;,V;) < 3 for all

~—

Case 2. n =0(mod2), n > 4. Since R(my,...,my)—V, Z R(ma,...,my_1) we have
d(V;,V;) <3foralll <i, j <n—1. Besides, V;, = V; — Viqqfori:=1,3,5,...,n—3; and
Vi — Va1, therefore d(V,,, V) <2 fort =1,2,...,n — 1. Analogously, V; — Vii1 — V,,
fore =1,3,5,...,n=3; V.1 = V4 = Vo — V,,, hence d(V4, V,,) < 3fort=1,2,... ,n—1.
Finally, V;, — Vi — V4 — Vj,, therefore d(V,,,V,) < 3. O
Lemma 1.
(myy _ J2, if n>3, n#td
= {5 ey
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Proof: Clearly f(17") > 1 for all n > 3. We prove that

2, if n>3, n#4,

&wﬁW“UZ{&ifn:4. ()

If the integer n is odd (1) follows from the proof of case 1 in Theorem 2 (if all m; =1
we do not need 3-cycles).

If n = 0(mod?2), n > 6, then we can use discussion in case 2 in the proof of
Theorem 2, but we change V,,-1 — Vi = Vo —» V, to V.1 — Vo — V,,. If n = 4,
then d(Vs,Vy) = 3, hence diam R(1,1,1,1) = 3. But R(1,1,1,1) is the unique strongly
connected tournament on 4 vertices (up to isomorphism), therefore f(1,1,1,1) =3. o

Define V! = Vi\{vii)}, 1=1,2,...,n.

Lemma 2. Form >3, n#4, n >3 f(m™) =2,

Proof: We change the direction of all arcs of the form <v,§i), v,@) (t=1,2,...,m;
1<i#j<n)in R(m(")) (see the proof of Theorem 2) and obtain Rl(m(")). We next
show that diam Ry(m(™) = 2 forn >3, n # 4, m > 3. Note that X - Y, ¥ — Z
implies dp(X,7) <2(X,Y,Z C V(D)).

Case 1. n =1(mod2), n > 3. Put ¢ = |§]. It is easy to check that

oV SV UVIU- UV

v;l) . {vgqﬂ)7 v§q+1)} s Vo UVqs U+~ U Vi

vil) — v§q+2) — vis) , where s=2,3,...,g+ 1, and
vgl) (2) (1)

— v, — v, , where t=23 ....m.

Hence, d <v§1), V(Rl(m(")))> = 2. By the symmetry of R;(m(™) the distance from any

vertex of Ry(m(™) to any other vertex less or equal to 2. Therefore, f(m(™) = 2.

Case 2. n = 0(mod2), n > 6. Since Rl(m(")) — VngRl(m("_l)) the distance
d(V;,V;) <2for all 1 <, j <n—1. We note that

SO {v£i+1)7 v§i+1)} =V, (1=1,3,5...,n—3).



Consequently, d<v() V> =2 (t=13,....,n—=3). Fory =24,...,n-2 v(])
V. (]) — vij 2 vg ), thus,
d <v§j),Vn> =2
Since n > 6, vin 2 {vgz),véz)} — V,p. Hence, d <v§n_1), Vn> = 2. Obviously,
d(Va, Vi) = 2. Thus, dV3 UV U--- UV, V,) = 2. It is easy to see that
o =V UViU- U,

n—1 >
o™ S (D

n n—1
4 L L

5 (1=1,3 — vy
Therefore, d(V,, V1 UVsU---UV,_1) =
vin)—>{ , U } +1(0=1,3,...,n—3)}.
Hence, d(V,, Vo UV, U---UV,_2) = 2.

Lemma 3. Form > 2 f(m®) =2,

Proof: The orientation Q = Q(m™) of K(m¥) is determined by the following
A(Q):VQ ><V1UV1 ><V3UV1 ><V4UV3 XVQUVQ ><V4UV3 ><V4 .

We change the direction of all arcs of the form <v£ ), vi‘”) (t=1,2,....m; 1 <i#j<n)
in ) and obtain ()4 (m(4)>. We next show that diam ()4 (m(4)> = 2 for m > 3. It is easy
to check that

vil) — Vi = VUV, v( ) viz) — v§3) .

Hence, d(V4,V2 U V3 U Vy) = 2. Analogously, vy ) _, Vi VauVy, v (2) — v§3) — vgl),
()—>V2 — Vi U Vy, ()—>v§1)—>v§2) .

Therefore, d (Vi, V(Ql(m(4))> \Vi) =2 for ¢ = 2,3. Obviously, v ( ) vg ) Vi, v (4)
(2) — V!, v (4) - vg ), Vy. Hence, d(Vy, V4 U V2 U V) = 2. Finally, if

{(vi ),v£])> i1 = 1,2,...,m} C A <Q1(m(4))> , (2)

then vg D, v( — Vi\ { } , t=1,2,...,m (by the definition of @, (m(4))>. Since for
any ¢ = 1,2,3,4 there exists j such that (2) holds, we have

d(Vi,Vi) <2 for 1=1,2,3,4.

Similarly one can consider the case m = 2. o



Lemma 4. If
2§m1§m2§<tm1 ) (3)
then f(my,msy,2) = 2.
Proof: By (3) and the result of Soltes [4] (see section 1) one can construct an ori-
entation B of K(mj,mz) with diameter three. Hence dp (V4 U V2, V1 UV2) = 3. But
dp(V;i, Vi) = 0(mod 2) (¢ = 1,2), therefore dp (V;, Vi) =2 (1 =1,2).
We add to B a new party Vs (|V5] = 2) and the arcs
{<v;3),x(j)> 20 ¢ Vi, 1= 1,2} U
{(x(j),v;i_)l> 2 e Vi, J=1,2; v§3) = viS)} ,
and obtain the oriented graph D(mq,m2,2) with diameter 2.
In fact, V4 — véS) = Vo, Vo — viS) — V1, and since d(V1, V1) = d(Va,V2) = 2 we
have
d(Vi,Vj)=2 (i, €{1,2}) .
Since viS) — Vi = Vs, v£3) - Vo=V, V] — U£3),V2 — viS), andfor:=1,2 d <Vi,v£3)> =
2 (the outdegree of any vertex in B is positive, hence for any v,(ci) (k=1,2,...,m) there
(1+1), (3)

exists a path v,(ci)v v

; ."’), we have

d(Vz3,ViuVa)=d(Vi UV, V3)=2.
Besides, v§3) -V - véS),vg?)) — Vs — vES), le. d(Vs, V) =2. o
Lemma 5. If n > 3, n # 4, then f (2(")) = 2.

Proof: If n =3, then by Lemma 4 f (2(3)> =2 Ifn>5and |Vi|=2(: =1,2,...,n)
we can construct an oriented graph, isomorphic to D(M;y, Mz, 2) (see the proof of Lemma

4) where
My=mi+ma+ - +mps, Mi=mno41+Mnj242++mp-1 .

It is easy to check that if n > 5, then

Mi=db = (mf}%) |
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Hence, by virtue of Lemma 4, diam D(M;,M>,2) = 2, and therefore f (2(")> = 2 for
n > 5. o

Lemmas 1-3,5 imply immediately the next theorem.

Theorem 3. f (m(")> = 2 for any integer m > 1, and any integer n > 3, except the
pair (m,n) = (1,4), for which f (1(4)> = 3.
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