
Hamiltonian paths and cycles in hypertournaments ∗

Gregory Gutin
Department of Maths and Stats

Brunel University, Uxbridge, Middx
UB8 3PH, U.K., z.g.gutin@brunel.ac.uk

Anders Yeo †

Department of Mathematics and Computer Science
Odense University, Denmark

Abstract

Given two integers n and k, n ≥ k > 1, a k-hypertournament T on n vertices is a
pair (V, A), where V is a set of vertices, |V | = n and A is a set of k-tuples of vertices,
called arcs, so that for any k-subset S of V , A contains exactly one of the k! k-tuples
whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament.
A path is a sequence v1a1v2a2v3...vt−1at−1vt of distinct vertices v1, v2, ..., vt and dis-
tinct arcs a1, ..., at−1 such that vi precedes vi+1 in ai, 1 ≤ i ≤ t − 1. A cycle can be
defined analogously. A path or cycle containing all vertices of T (as vi’s) is Hamilto-
nian. T is strong if T has a path from x to y for every choice of distinct x, y ∈ V . We
prove that every k-hypertournament on n (> k) vertices has a Hamiltonian path (an
extension of Redei’s theorem on tournaments) and every strong k-hypertournament
with n (> k + 1) vertices has a Hamiltonian cycle (an extension of Camion’s theo-
rem on tournaments). Despite the last result, it is shown that the Hamiltonian cycle
problem remains polynomial time solvable only for k ≤ 3 and becomes NP-complete
for every fixed integer k ≥ 4.

1 Introduction, terminology and notation

Hypertournaments have been studied by a number of authors (cf. Assous [1], Barbut and
Bialostocki [2, 3], Bialostocki [5], Frankl [6] and Marshall [9, 10]). Reid [12] (Section 8)
describes several results on hypertournaments obtained by the authors above and poses
some interesting problems on the topic. In particular, he raises the problem of extending
the most important results on tournaments to hypertournaments.

∗This paper is dedicated to the memory of Paul Erdős.
†The e-mail address of AY is gyeo@imada.ou.dk
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In this paper, we obtain extensions of two of the most basic theorems on tournaments:
every tournament has a Hamiltonian path (Redei’s theorem), and every strong tournament
has a Hamiltonian cycle (Camion’s theorem) [11]. We prove that every k-hypertournament
on n (> k) vertices has a Hamiltonian path and every strong k-hypertournament on
n ≥ k + 2 ≥ 5 vertices contains a Hamiltonian cycle. We also describe an infinite family
of strong k-hypertournaments on k + 1 ≥ 4 vertices which have no Hamiltonian cycles.
We consider the complexity of the Hamiltonian cycle problem for k-hypertournaments
and prove that the problem remains polynomial time solvable when k = 3 and becomes
NP-complete for every fixed integer k ≥ 4.

Given two integers n and k, n ≥ k > 1, a k-hypertournament T on n vertices is a
pair (V, A), where V is a set of vertices, |V | = n and A is a set of k-tuples of vertices,
called arcs, so that for any k-subset S of V , A contains exactly one of the k! k-tuples
whose entries belong to S. That is, T may be thought of as arising from an orientation
of the hyperedges of the complete k-uniform hypergraph. Clearly, a 2-hypertournament is
merely a tournament. For an arc a of T , ā denotes the set of vertices contained in a.

Let T = (V, A) denote a k-hypertournament T on n vertices. A path in T is a se-
quence v1a1v2a2v3...vt−1at−1vt of distinct vertices v1, v2, ..., vt, t ≥ 1, and distinct arcs
a1, ..., at−1 such that vi precedes vi+1 in ai, 1 ≤ i ≤ t − 1. A cycle in T is a sequence
v1a1v2a2v3...vt−1at−1vtatv1 of distinct vertices v1, v2, ..., vt and distinct arcs a1, ..., at, t ≥ 1,
such that vi precedes vi+1 in ai, 1 ≤ i ≤ t (at+1 = a1). The above definitions of a path
and cycle in a hypertournament are oriented analogs of the corresponding definitions of a
path and cycle in a hypergraph (cf. [4, 10]).

For a path or cycle Q, V (Q) and A(Q) denote the set of vertices (vi’s above) and the
set of arcs (aj ’s above), respectively. For a pair of vertices vi and vj of a path or cycle Q,
Q[vi, vj ] denotes the subpath of Q from vi to vj (which can be empty). A path or cycle
Q in T is Hamiltonian if V (Q) = V (T ). T is Hamiltonian if it has a Hamiltonian cycle.
A path from x to y is an (x, y)-path. T is called strong if T has an (x, y)-path for every
(ordered) pair x, y of distinct vertices in T .

We also consider paths and cycles in digraphs which will be denoted as sequences of
the corresponding vertices.

For a pair of distinct vertices x and y in T , AT (x, y) denotes the set of all arcs of T in
which x precedes y. Clearly, for all distinct x, y ∈ V (T ),

|AT (x, y)|+ |AT (y, x)| =
(

n− 2
k − 2

)
. (1)
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2 Hamiltonian paths

Clearly, no k-hypertournament with k ≥ 3 vertices has a Hamiltonian path. However, all
other hypertournaments have Hamiltonian paths:

Theorem 2.1 Every k-hypertournament with n (> k) vertices contains a Hamiltonian
path.

Proof: Let T = (V,A) be a k-hypertournament T on n vertices 1,2,...,n. We consider the
cases k = n− 1 and k < n− 1 separately.

Case 1: k = n − 1. We proceed by induction on k ≥ 2. By Redei’s theorem, this
theorem holds for k = 2. Hence, suppose that k ≥ 3. Assume w.l.o.g. that T contains
the arc a = (23...n). Let b be the arc of T that has the vertices 1, 2, ..., n − 1. Consider
the k − 1-hypertournament T ′ = (V ′, A′) obtained from T by deleting the arc a, deleting
n from the arcs in A − {a, b}, and finally deleting 1 from b. So, V ′ = {1, 2, ..., n − 1},
A′ = {e′ : e′ is e without n, e ∈ A − {a, b}} ∪ {b′}, where b′ is b without the vertex
1. By the induction hypothesis, T ′ has a Hamiltonian path x1a

′
1x2a

′
2...a

′
n−2xn−1. This

path corresponds to the path Q = x1a1x2a2...an−2xn−1 in T . Clearly, {x1, ..., xn−1} =
{1, ..., n− 1} and A− {a1, ..., an−2} consists of the arc a and another arc c.

If xn−1 6= 1, then Qan is a Hamiltonian path in T . Hence from now on assume that
xn−1 = 1. Consider two subcases.

Subcase 1.1: c 6= b. If the last vertex of c is n, then Qcn is a Hamiltonian path in
T . Otherwise, xj is the last vertex of c for some j ≤ n − 1. If j > 1 we replace aj−1 by
anc in Q in order to obtain a Hamiltonian path in T . If j = 1, then ncQ is a Hamiltonian
path in T .

Subcase 1.2: c = b. If c 6= (xn−1xn−2...x1) so that xi precedes xi+1, for some i,
1 ≤ i ≤ n− 2, in c, then P = Q[x1, xi]cQ[xi+1, xn−1] is a path in T . Since ai 6= b, one can
construct a Hamiltonian path in T from P as in Subcase 1.1. If c = (xn−1xn−2...x1), then
Q[x2, xn−1]cx1an is a Hamiltonian path in T .

Case 2: k < n− 1. We proceed by induction on n ≥ 4. The case n = 4 (and, hence,
k = 2) follows from Redei’s theorem. Therefore, suppose that n ≥ 5. Consider the new
k-hypertournament T ′′ obtained from T by deleting the vertex n along with all arcs in A
containing n. T ′′ has a Hamiltonian path because of either Case 1 if n = k − 2 or the
induction hypothesis, otherwise.

Let P = x1a1x2a2...an−2xn−1 be a Hamiltonian path in T ′′. If T has an arc a ∈
AT (xn−1, n), then Pan is a Hamiltonian path in T . Suppose that AT (xn−1, n) = ∅.
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Then either ∪n−1
i=1 AT (xi, n) = ∅, or there is an i so that T has no arc where any xj ,

j > i precedes n and T contains an arc b where xi precedes n. In the first case, ncP
is a Hamiltonian path in T , where c is an arc of T containing both x1 and n. In the
second case, P [x1, xi]bndP [xi+1, xn−1] is a Hamiltonian path in T , where d is an arc of T
containing both xi+1 and n and distinct from b.

2.

3 Hamiltonian cycles

Clearly, every Hamiltonian hypertournament is strong. In this section, we prove that every
strong k-hypertournament with n vertices, where 3 ≤ k ≤ n− 2, is Hamiltonian.

However, for every k ≥ 3, there exists a strong k-hypertournament with n = k +
1 vertices which is not Hamiltonian. Indeed, let the n − 1-hypertournament Hn have
vertex set {x1, ..., xn} and arc set {a1, a2, ..., an}, where a1 = (x2x3...xn−2xnxn−1), a2 =
(x1x3x4...xn), a3 = (x1x2x4x5...xn), a4 = (x2x3x1x5x6...xn), and

ai = (x1x2...xi−4xi−3xi−1xi−2xi+1xi+2...xn) for 5 ≤ i ≤ n.

The hypertournament Hn is strong because of the following paths: xia2xj for all
i < j, 2 /∈ {i, j}, x1a3x2, x2a1xj for all j > 2; xjaj+1xj−1ajxj−2...xi+1ai+2xi for all
3 ≤ i < j ≤ n, where an+1 = a1, xjaj+1xj−1...x4a5x3a4x1a3x2 for all 3 ≤ j ≤ n, x2a4x1,
and xjaj+1xj−1...x3a4x1 for all 3 ≤ j ≤ n.

However, Hn is not Hamiltonian. To prove that, assume that Hn has a Hamiltonian
cycle C. We will try to construct C starting from the vertex xn. Since a1 is the only
arc which has a vertex that succeeds xn, C has the form xna1xn−1.... Since an is the
only arc which has a vertex different from xn that succeeds xn−1, C = xna1xn−1anxn−2....
Continuing this process, we obtain that C = xna1xn−1...x4a5x3.... The only arc where x3

precedes x1 or x2 is a4. Hence, C = xna1xn−1...x4a5x3a4x1.... Now we need to include x2,
a3 and a2 into C. However, this is impossible because only one of the arcs a3, a2 contains
x2.

The majority digraph M(H) of a k-hypertournament with n vertices H has the same
vertex set V as H and, for every pair x, y of distinct vertices in V , the arc xy is in M(H) iff
AH(x, y) ≥ AH(y, x) (or, by (1), |AT (x, y)| ≥ 1

2

(n−2
k−2

)
). Obviously, M(H) is a semicomplete

digraph, i.e. every pair of vertices in M(H) is adjacent.

Let C1, C2, . . . , Ct be the strong components of M(H) such that there is no arc from
V (Cj) to V (Ci) if 1 ≤ i < j ≤ t (if M(H) is strong, then t = 1). Define the function
cn (component number) such that cn(x) = r if x ∈ V (Cr). We say that (P,Q) is a
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Hamiltonian pair of paths, if P is a (x, y)-path in H and Q is a (y, x)-path in M(H)
such that V (P ) ∪ V (Q) = V (H), V (P ) ∩ V (Q) = {x, y} and if M(H) is not strong, then
cn(y) < cn(x).

The main result of this section is the following:

Theorem 3.1 Every strong k-hypertournament with n vertices, where 3 ≤ k ≤ n − 2,
contains a Hamiltonian cycle.

Theorem 3.1 follows immediately from Lemma 3.3 (the case k = 3), Lemma 3.4 (the
case k ≥ 4 and n ≥ 7) and Lemma 3.6 (the remaining case k = 4 and n = 6). Proofs of
these lemmas are given in the rest of this section and based on the following:

Lemma 3.2 For every strong k-hypertournament with n vertices H, there exists a Hamil-
tonian pair of paths.

Proof: Suppose first that M(H) is not strong. Let C1 (Ct, resp.) be the first (ter-
minal, resp.) strong component of M(H). Since H is strong there exists a path P =
x1a1x2a2 . . . am−1xm from Ct to C1 in H. Suppose that P is a shortest such path.
Then, x1 ∈ V (Ct), xm ∈ V (C1) and {x2, x3, ..., xm−1} ∩ (V (C1) ∪ V (Ct)) = ∅. Since
M ′ = M(H) − {x2, x3, . . . , xm−1} is semicomplete and xm (x1) is in the first (terminal)
strong component of M ′, there exists a Hamiltonian path in M ′ from xm to x1. Let
Q = y1y2 . . . yl (x1 = yl and xm = y1), be such a path. Clearly (P, Q) is a Hamiltonian
pair of paths.

Suppose that M(H) is strong. Then, there is a Hamiltonian cycle R = x1x2 . . . xnx1 in
M(H). Clearly P = x1ax2, where a ∈ AH(x1, x2), and Q = R[x2, x1] form a Hamiltonian
pair of paths. 2.

Lemma 3.3 Every strong 3-hypertournament with n vertices, where n ≥ 5, contains a
Hamiltonian cycle.

Proof: Let H be a 3-hypertournament with n ≥ 5 vertices and let M be the majority
digraph of H.

By Lemma 3.2, there exists a Hamiltonian pair of paths (Pi, Q), where

Pi = x1a1x2a2 . . . ai−1xi is a path in H and Q = xixi+1 . . . xnx1 is a path in M .
Observe that if uv is an arc of M , then |AH(u, v)| ≥ 2. Since |AH(xi, xi+1)| ≥ 2, there
is an arc ai ∈ AH(xi, xi+1) − ai−1. The arc ai 6∈ {a1, a2, . . . , ai−1}, since if ai = aj then
j < i − 1 and the arc ai includes the vertices xj , xj+1, xi and xi+1, which is impossible
as H is a 3-hypertournament. Thus, we can extend Pi to Pi+1 = Piaixi+1. Continuing
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this process we obtain a (x1, xn)-path, Pn = x1a1x2 . . . an−1xn, which is Hamiltonian, and
|AH(xn, x1)| ≥ 2.

If AH(xn, x1) = {an−1, a1}, then there is an arc b ∈ AH(x1, xn), and a1 = (xnx1x2) and
an−1 = (xn−1xnx1). We now obtain the Hamiltonian cycle Pn[x2, xn−1]an−1x1bxna1x2.

If AH(xn, x1) 6= {an−1, a1}, then there is an arc b ∈ AH(xn, x1)−{an−1, a1}. As before
we see that b 6∈ {a1, a2, . . . , an−1}, and therefore we get the Hamiltonian cycle Pnbx1.

2.

Lemma 3.4 Every strong k-hypertournament with n vertices, where 4 ≤ k ≤ n − 2 and
n ≥ 7, contains a Hamiltonian cycle.

Proof: It is easy to check that, for 4 ≤ k ≤ n−2,
(n−2
k−2

) ≥ 2n−4 if and only if n ≥ 7. Let
H be a k-hypertournament with n vertices, such that 4 ≤ k ≤ n− 2 and

(n−2
k−2

) ≥ 2n− 4,
and let M = M(H) be the majority digraph of H. Now consider the following two cases.

Case 1: M is not strong. Let C1 (Ct) be the first (terminal) strong component of M .
We first prove that H has a pair of distinct vertices x, y such that

there exists a Hamiltonian (x, y)-path in H and |AH(y, x)| ≥ n− 1. (2)

By Lemma 3.2, there exists a Hamiltonian pair of paths (P, Q), where

P = x1a1x2a2 . . . am−1xm is a path in H, x1 ∈ V (Ct), xm ∈ V (C1), and Q = y1y2...yl

is a path in M . Recall that y1 = xm and yl = x1.

We may assume w.l.o.g that, for some i > 1, cn(yi) < cn(yi+1) (the case i = 1 can be
considered analogously). It follows from the definition of M that

|AH(yj , yj+1)| ≥ n− 2 for j = 1, 2, . . . , l − 1, (3)

|AH(yp, yq)| ≥ n− 1 for 1 ≤ p ≤ i < q ≤ l. (4)

If l = 2, then P is a path satisfying (2). Hence we may assume that l > 2. By
(3), we can extend the path P to a path R = r1b1r2b2 . . . bn−2rn−1 in H with r1 =
yi+1, rn−1 = yi−1, V (R) = V (H) − yi. If there is an arc in H in which yi−1 precedes yi

and which is not already used in R, then we can find a Hamiltonian (yi+1, yi)-path in H
and |AH(yi, yi+1)| ≥ n− 1, therefore we may assume that AH(yi−1, yi) = A(R).

Since A(yi−1, yi) = A(R), we observe that bn−2 contains the vertices rn−2, yi−1, yi

(in that order), thus, bn−2 ∈ AH(rn−2, yi). Let c be an arbitrary arc in AH(yi, yi−1)
(AH(yi, yi−1) 6= ∅ since |AH(yi, yi−1)| ≥ n− 2). We now obtain a path
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R′ = R[r1, rn−2]bn−2yicyi−1 which satisfies (2) because of (4). Thus the claim (2) is
completely proved.

Let S = s1d1s2d2 . . . dn−1sn be a Hamiltonian path in H such that |AH(sn, s1)| ≥ n−1.

If AH(sn, s1) 6= A(S) then there is an arc e ∈ AH(sn, s1)−A(S), since |AH(sn, s1)| ≥
n− 1 and |A(S)| = n− 1. Now Ses1 is a Hamiltonian cycle in H.

If AH(sn, s1) = A(S), then |AH(sn, s1)| = n − 1. Let f be an arbitrary arc in
AH(s1, sn) (AH(s1, sn) is not empty since |AH(s1, sn)| ≥ n − 3 ≥ 3). Since AH(sn, s1) =
A(S), it follows that dn−1 ∈ AH(sn−1, s1) and d1 ∈ AH(sn, s2). This implies that
S[s2, sn−1]dn−1s1fsnd1s2 is a Hamiltonian cycle of H.

Case 2: M is strong. There is a Hamiltonian cycle, C = x1x2 . . . xnx1, in M . Since
k ≥ 4, there exist distinct arcs a1 and a2, such that {a1, a2} ⊆ AH(x1, x2). Since k ≥ 4
and a1 and a2 cannot include exactly the same vertices, either a1 or a2 does not contain
at least one vertex from the set {x4, x5, . . . , xn−1}. Assume w.l.o.g. that xi 6∈ a1, where
i ∈ {4, 5, . . . , n − 1}. Since |AH(xj , xj+1)| ≥ n − 2 for all j = 1, 2, . . . , n − 1 we can find
distinct arcs in H, b1, b2, . . . , bn−3, such that the following sequence is a path in H:

P = xi+1b1xi+2b2 . . . xnbn−ix1a1x2bn−i+1x3 . . . bn−3xi−1.

Since a1 6∈ AH(xi−1, xi) and |AH(xi−1, xi)| ≥ n−2, there is an arc bn−2 ∈ AH(xi−1, xi)−
A(P ).

If AH(xi, xi+1) 6= {b1, b2, . . . , bn−2}, then let bn−1 ∈ AH(xi, xi+1) − {b1, b2, . . . , bn−2}
be arbitrary. Now Pbn−2xibn−1xi+1 is a Hamiltonian cycle in H.

If AH(xi, xi+1) = {b1, b2, . . . , bn−2}, then let c ∈ AH(xi+1, xi) be arbitrary. Observe
that b1 ∈ AH(xi, xi+1)∪AH(xi+1, xi+2), thus, b1 ∈ AH(xi, xi+2), and bn−2 ∈ AH(xi−1, xi)∪
AH(xi, xi+1), thus, bn−2 ∈ AH(xi−1, xi+1). We now obtain the Hamiltonian cycle

P [xi+2, xi−1]bn−2xi+1cxib1xi+2,

where we define xn+1 = x1 (when i = n− 1). 2.

In the rest of this section we adopt the following: H is a strong 4-hypertournament
with 6 vertices and M = M(H) is the majority digraph of H.

To prove Lemma 3.6, we need one more lemma.

Lemma 3.5 If M contains a Hamiltonian path P = x1x2x3x4x5x6 such that AH(x6, x1) 6=
∅, then H is Hamiltonian.
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Proof: To show that H is Hamiltonian, it is sufficient to prove that the family of sets
A1, A2, ..., A6, where Ai = AH(xi, xi+1) for 1 ≤ i ≤ 5 and A6 = AH(x6, x1), has a system
of distinct representatives (arcs of H). By P. Hall’s matching theorem, such a system
exists iff

| ∪r∈R Ar| ≥ |R| for all subsets R of {1, 2, 3, 4, 5, 6}. (5)

If |R| ≤ 3, then (5) holds by the definition of M (|Ai| ≥ 3 for all 1 ≤ i ≤ 5). If
4 ≤ |R| ≤ 5, then R contains two integers i, j such that 1 < i + 1 < j ≤ 5. Obviously,
|Ai ∩Aj | ≤ 1, |Ai|, |Aj | ≥ 3. Hence, | ∪r∈R Ar| ≥ |Ai ∪Aj | ≥ 5.

If |R| = 6, then
| ∪r∈R Ar| ≥ |A1 ∪A3 ∪A5| ≥ 6.

2.

Lemma 3.6 Every strong 4-hypertournament with 6 vertices contains a Hamiltonian cy-
cle.

Proof: Assume that H is not Hamiltonian.

Assume that M is strong. Since M is semicomplete, M has a Hamiltonian cycle.
Hence, H is Hamiltonian by Lemma 3.5. Therefore, we may and will assume that M is
not strong.

Let (P, Q) be a Hamiltonian pair of paths such that P has maximum possible length
and let P = x1a1x2a2 . . . am−1xm, Q = y1y2 . . . yl (l = 8 − m, x1 = yl and xm = y1).
If l ≥ 3, then assume w.l.o.g. that cn(y2) < cn(yl) (otherwise cn(y1) < cn(yl−1), so we
may reverse all arcs). Since y1y2 and yl−1yl are arc in M , we have |AH(y1, y2)| ≥ 3 and
|AH(yl−1, yl)| ≥ 3. By the maximality of P and the fact that H is not Hamiltonian, we
conclude that

AH(y1, y2) ⊆ A(P ), AH(yl−1, yl) ⊆ A(P ). (6)

Since m−1 = |A(P )| ≥ |AH(y1, y2)| ≥ 3, we obtain 4 ≤ m ≤ 6. Consider the following
three cases depending on the value of m.

Case 1 (m = 4): By |AH(y1, y2)| ≥ 3, |AH(yl−1, yl)| ≥ 3 and (6), we conclude that
AH(y1, y2) = AH(yl−1, yl) = {a1, a2, a3}. The last formula and |{y1, y2, y3, y4}| = 4 = k
imply that a1, a2, a3 consist of the same vertices, which is impossible.
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Case 2 (m = 5): By (6) and since |A(P )| < 6, there exists an arc d ∈ (AH(y1, y2) ∪
AH(y2, y1))−A(P ) = AH(y2, y1)−A(P ). If a4 ∈ AH(y1, y2) then (x1a1x2a2x3a3x4a4y2dy1, y1y3)
is a Hamiltonian pair of paths (since cn(y1) < cn(y3)). This contradicts the maximality
of m. Therefore a4 6∈ AH(y1, y2) which together with (6) and |AH(y1, y2)| ≥ 3 implies
that AH(y1, y2) = {a1, a2, a3}. Now, the last formula, (6) and |AH(y2, y3)| ≥ 3 imply that
at least two of a1, a2, a3 contain all of y1, y2, y3. However, a2 and a3 contain at least two
vertices which are not in {y1, y2, y3}, a contradiction (as k = 4).

Case 3 (m = 6): By the definition of a Hamiltonian pair of paths, we have that
cn(x6) < cn(x1), which implies that |AH(x6, x1)| ≥ 4. Suppose that {a1, a5} ⊆ AH(x6, x1).
By (6), there is an arc c1 ∈ AH(x1, x6) − A(P ). Thus, x1c1x6a1x2a2x3a3x4a4x5a5x1 is
a Hamiltonian cycle in H. This implies that {a1, a5} 6⊆ AH(x6, x1). Assume w.l.o.g.
that AH(x6, x1) = {a1, a2, a3, a4} (otherwise AH(x6, x1) = {a2, a3, a4, a5} and reverse
all arcs). Observe that a1 includes the vertices {x1, x2, x6}, ā2 = {x1, x2, x3, x6}, ā3 =
{x1, x3, x4, x6}, ā4 = {x1, x4, x5, x6}, and a5 includes the vertices {x5, x6}.

Suppose that |AH(x5, x1)| ≥ 3. Observe that |AH(x1, x6)| = 2 and AH(x1, x6) ∩
{a1, a2, a3, a4} = ∅. Therefore there exists an arc c1 ∈ AH(x5, x1) − {a1, a4} and an
arc c2 ∈ AH(x1, x6) − {a1, a2, a3, a4, c1}. Note that c1 6∈ {a2, a3}. This implies that
x1c2x6a1x2a2x3a3x4a4x5c1x1 is a Hamiltonian cycle in H, a contradiction.

Therefore, |AH(x5, x1)| < 3. This implies that x1x5 is in M , thus, cn(x5) ≥ cn(x1). We
note that AH(x1, x2) ⊆ {a1, a2, a5}, since we could otherwise find an arc c1 ∈ AH(x1, x2)−
{a1, a2, a3, a4, a5}, such that x1c1x2a2x3a3x4a4x5a5x6a1x1 is a Hamiltonian cycle in H.
Analogously, we can show that AH(x2, x3) ⊆ {a1, a2, a5}, AH(x3, x4) ⊆ {a3, a5} and
AH(x4, x5) ⊆ {a4, a5}. This implies that cn(x1) ≥ cn(x2) ≥ cn(x3) ≥ cn(x4) ≥ cn(x5) ≥
cn(x1), which in turn yields cn(x1) = cn(x2) = cn(x3) = cn(x4) = cn(x5). Hence, M
contains exactly two strong components: the initial one consists of the vertex x6 and
the second one contains all other vertices. Since the second strong component has a
Hamiltonian cycle, M contains a Hamiltonian (x6, x1)-path. Moreover, |AH(x1, x6)| = 2.
Therefore, by Lemma 3.5, H is Hamiltonian, a contradiction.

4 Complexity of the Hamiltonian cycle problem for k-hypertournaments

It is well known (see [8] for an efficient algorithm) that the Hamiltonian cycle problem for
2-hypertournaments, i.e. (ordinary) tournaments is polynomial time solvable. The aim of
this section is to show that the problem remains polynomial time solvable for k = 3, but
becomes NP-complete for every fixed k ≥ 4.

Let H = (V,A) be a k-hypertournament, A = {a1, ..., am}. Associate with H the
following edge-coloured directed multigraph D(H): the vertex set of D(H) is V ; for distinct
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vertices x, y ∈ V , D(H) has the arc xy of colour i iff ai ∈ AH(x, y). Clearly, H contains a
path from a vertex x to another vertex y iff D(H) has a path P from x to y such that no
two arcs in P have the same colour.

Proposition 4.1 The Hamiltonian cycle problem for 3-hypertournaments is polynomial
time solvable.

Proof: Let H be a 3-hypertournament. By Theorem 3.1, it suffices to prove that one can
check the existence of a path, in H, from a vertex x to another vertex y in polynomial
time. Construct the edge-coloured directed multigraph D(H) as above. We prove that H
has a path from x to y iff D(H) has some (x, y)-path. Clearly, if H has a path from x
to y, then D(H) contains such a path. Suppose that D(H) has a path Q = x1...xp from
x = x1 to y = xp. If Q has no arcs of the same colour, then Q corresponds, in the obvious
way, to an (x, y)-path of H. Suppose that Q contains arcs of the same colour. This means
that there exist a subscript i and an integer j such that the arcs xi−1xi and xixi+1 have
the same colour j (these two are the only arcs of colour j which can be in Q). We can
replace Q by the path Q[x1, xi−1]Q[xi+1, xp]. Continuing this process, we obtain a new
path, in D(H), from x to y without repetition of colours. The new path corresponds to
an (x, y)-path in H. 2.

Theorem 4.2 Let k ≥ 4 be an integer. The Hamiltonian cycle problem for k-hypertournaments
(k-HCHT) is NP-complete.

Proof: It is easy to see that k-HCHT is in NP.

To show that our problem is NP-hard, we first transform the well known problem 3-
SAT ([7], p. 46) to 4-HCHT. Let U = {u1, ..., uk} be a set of variables, let C = {c1, ..., cm}
be a set of clauses such that every ci has three literals, and let vil be the l’th literal in the
clause ci. We may and will assume that m ≥ 3. We shall construct a 4-hypertournament
H which is Hamiltonian iff C is satisfiable. Since it is more convenient, we shall actually
construct D = D(H) instead of H.

We first construct a spanning subgraph D′ of D. The edge-coloured directed multi-
graph D′ consists of m + k + 1 parts: the first m parts X1

i , i = 1, ..., m, correspond to
the clauses of C, the next k parts X2

i , i = 1, ..., k, correspond to the variables of U , and
the last part X3 = X3

1 is auxiliary. Every part X1
i (X2

i ) consists of vertices xij = x1
ij

(yij = x2
ij , resp.). X3

1 has two vertices z1 = x3
11, z2 = x3

12. For a pair of distinct vertices
v, w in D′, we say that v < w if either v ∈ X l

i , w ∈ Xj
q such that l ≤ j and if l = j then

i < q, or v = xl
ij , w = xl

iq, where j < q.

Note that, in the constructions below, different symbols denote different colours.

Each of the first m parts X1
i (i ∈ {1, 2, ...,m}) consists of six vertices xi1, ..., xi6 and

the following arcs: there are two arcs from xi1 to xi2, the first of colour ai1 and the second
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of colour bi1; there is an arc from xi2 to xi3 and from xi4 to xi5 of colours di1 and di2,
respectively; there are three arcs from xi3 to xi4 of colours ai2, bi1 and bi2; and there are
two arcs from xi5 to xi6 of colours ai3 and bi2. Every X1

i is connected to X1
i+1 by the arc

xi6xi+1,1 of colour ei, for i = 1, 2, ...,m− 1.

For each i = 1, 2, ..., k, let f ′i1 be the number of appearances of the literal ui in the
clauses of C, and let f ′i2 be the number of appearances of the literal ūi in the clauses of C.
Define fij , i = 1, 2, ..., k, j = 1, 2, as follows: fij = f ′ij +1 if f ′ij > 0 and fij = 0, otherwise.

Each of the k parts X2
i consists of fi = fi1 + fi2 vertices yi1, ..., yifi , and the basic

arcs yijyi,j+1 for every j = 1, 2, ..., fi − 1 and additional arcs yi1yifi1 , yi,fi1+1yifi (the first
additional arc does not exist if fi1 = 0 and the second additional arc does not exist if
fi2 = 0). For every j = 1, ..., fi1 − 1, the basic arc yijyi,j+1 has colour aqt, if the j’th
appearance of the variable ui in C is the t’th literal in the q’th clause cq. For every
j = fi1 + 1, ..., fi − 1, the basic arc yijyi,j+1 has colour aqt, if the j’th appearance of the
negation of the variable ui in C is the t’th literal in the q’th clause cq. If both fi1 and fi2

are positive, then there exists an arc yifi1yi,fi1+1 and its colour is gi. The colour of the
additional arcs yi1yifi1 and yi,fi1+1yifi (possibly, only one of these two arcs does exist) is
si (i = 1, ..., k). Every X2

i is connected to X2
i+1 by the arc yifiyi+1,1 of colour pi.

We say that an arc yi1yifi1 corresponds to the literal ui and an arc yi,fi1+1yifi corre-
sponds to the literal ūi. We also say that an arc of D′ of colour ail corresponds to the
literal vil.

The part X3 consists of two vertices z1, z2 and an arc z1z2 of colour c3. Add two more
arcs: xm6y11 of colour c1 and ykfk

z1 of colour c2.

We have obtained the edge-coloured directed multigraph D′. We shall prove that D′

has a path P from x11 to z2 such that no colour in P appears twice iff C is satisfiable.

Suppose first that D′ has a path P from x11 to z2 such that no colour in P appears
twice. Hence, for every i = 1, 2, ..., m, there is at least one arc of colour ai,li which is in
P [x11, xm6]. Hence, the subpath P [y11, ykfk

] contains the arcs of colours sj ’s corresponding
to the literals vi,li , i = 1, 2, ..., m. It follows that if the negation of vi,li is also in C, then
the arcs of colours ajq’s of D′ corresponding to the negation of vi,li and belonging to P
must be in P [y11, ykfk

] and must not be in P [x11, xm6]. This fact allows us to assign
”true” to every literal vi,li , i = 1, 2, ..., m such that there is an arc of colour aili belonging
to P [x11, xm6]. This assignment is proper and makes C satisfied.

Suppose now that C is satisfiable and consider a truth assignment α for U that satisfies
all the clauses in C. Let vi,li , i = 1, 2, ..., m be true under α. Then the arcs xi,2li−1xi,2li , i =
1, 2, ..., m and the arcs of colours sr’s corresponding to vi,li , i = 1, 2, ..., m can be easily
extended to a path P from x11 to z2 such that no colour in P appears twice.

Now we construct D from D′. Choose any four vertices v1, v2, v3, v4 in D′ such that
v1 < v2 < v3 < v4. In D, the four vertices together with some arcs between them must form
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a monochromatic transitive 4-tournament such that the colour of this tournament differs
from the colours of all other such transitive 4-tournaments. So, we shall add some arcs to
D′ in order to meet this condition. The symbol TT (vi1vi2vi3vi4) will denote the transitive
4-tournament with vertex set {vi1 , vi2 , vi3 , vi4} and arc set {vipviq : 1 ≤ q < p ≤ 4}.

If D′ contains arcs v1v2 and v3v4 of the same colour c (aij or bij or si), then let
v1, v2, v3, v4 form in D the tournament TT (v3v4v1v2) of colour c. Otherwise, if {v3, v4} 6=
{z1, z2}, then v1, v2, v3, v4 form the tournament TT (v4v3v2v1) of a new colour. If {v3, v4} =
{z1, z2} and D′ has an arc from v1 to v2 of colour c that appears in D′ only once, then let
v1, v2, v3, v4 form the tournament TT (z2z1v1v2) of colour c. If {v3, v4} = {z1, z2} and either
D′ has an arc from v1 to v2 of colour that appears in D′ twice or D′ has no arc from v1 to v2,
but {v1, v2} 6= {x11x21} or {x11yk,fk

}, then v1, v2, v3, v4 form the tournament TT (v4v3v2v1)
of a new colour. If (v1, v2, v3, v4) = (x11, ykfk

, z1, z2) ((v1, v2, v3, v4) = (x11, x21, z1, z2),
resp.), then v1, v2, v3, v4 form the tournament TT (z2ykfk

z1x11) (TT (z1z2x21x11), resp.) of
colour c2 (c3, resp.).

Observe that D is an edge-coloured directed multigraph of some 4-hypertournament
H and all arcs vw of D such that v < w are the arcs of D′. Thus, by the construc-
tion of D, D has a path P from x11 to z2 which contains no arcs of the same colour
iff D′ has such a path. Moreover, if D has such a path P , the path P can be ex-
tended to a Hamiltonian cycle W in D which contains no arcs of the same colour.
Indeed, only some vertices y′r = yjr,qr ∈ ∪k

i=1X
2
i (r = 1, 2, ..., p) are not in P . If

p = 0, then we use the arc z2x11 of the tournament TT (z2x31x21x11) to construct W . If
p > 0, then we use the arcs z2y

′
r, y

′
ry
′
r−1, ..., y

′
2y
′
1, y

′
1x11 of the tournaments TT (z2y

′
rx21x11),

TT (y′ry′r−1x21x11),...,TT (y′2y′1x21x11), TT (y′1x31x21x11) to construct W .

Therefore, the 4-hypertournament H corresponding to D is Hamiltonian iff C is sat-
isfiable. This completes the proof for 4-hypertournaments. One can easily modify the
construction of D such that D will correspond to a q-hypertournament, q ≥ 5, using q− 2
vertices, instead of two, in the last part X3 of D′. 2.

5 Remarks and open problems

When all results of this paper except Lemma 3.6 were already proved, Susan Marshall
informed us (personal communication) that she independently obtained Theorem 2.1 (un-
published).

We have obtained a characterization of Hamiltonian k-hypertournaments with n ≥ k+2
vertices. Yet, we were unable to characterize Hamiltonian n−1-hypertournaments with n
vertices. Note that a non-difficult modification of the construction in the proof of Theorem
4.2 shows that the Hamiltonian cycle problem for n− 1-hypertournaments with n vertices
is NP-complete.
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It would also be interesting to characterize pancyclic and vertex pancyclic hypertour-
naments (extensions of well-known theorems by Moser and Moon, respectively, [11]).
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