
Managing Identity Manage-
ment Systems

Haitham S. Al-Sinani

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

1

Standard logo

The logo should be reproduced in the primary colour,
Pantone 660c, on all publications printed in two or
more colours. Refer to the ‘Branded merchandize’
sheet for guidelines on use on promotional items etc.

The text, ‘University of London’, is set as a 50%
transparency of white.

Do not use a keyline see ‘Non standard backgrounds’
for exceptions.

The College name has been specially drawn; please
use the original digital artwork and do not try to
re-set.

xx

x

Clear area

No graphic or text should be placed in an area
around the logo equivalent to the width of the base
of the clocktower silhouette as shown.

≤ 30mm
Minimum size

The logo should be never be reproduced at less than 30mm in width. The
text, ‘University of London’, should be reproduced as 100% white ie. no
transparency

Printing on absorbent and unusual surfaces

The text, ‘University of London’, should be reproduced
as 100% white ie. no transparency. When it is printed on
absorbent paper ie newsprint, or any unusual surface ie metal
fabric or plastic.

Non standard backgrounds

A keyline should only be used if the logo is
placed on a background other than white or
the primary or secondary colours.
The width of the keyline is the width of the
letter ‘l’.

x

x

Royal Holloway logo guidelines

Reversed logo

A white logo may only be used on
Pantone 660 or black. Refer to the
‘Branded merchandize’ sheet for
guidelines on use on promotional items
etc.

‘Royal Holloway’ and the clocktower
silhouette should be reproduced in
the background colour. ‘University of
London’ prints 50% white.

2012

Managing Identity Management
Systems

Department of Mathematics
Royal Holloway, University of London

To my wife, Nisnas!

(Haitham)

Declaration of Authorship

I, Haitham S. Al-Sinani, hereby declare that these doctoral studies were con-
ducted under the supervision of Professor Chris J. Mitchell.
The work presented in this thesis is the result of original research carried out
by myself, in collaboration with others, whilst enrolled in the Department
of Mathematics as a candidate for the degree of Doctor of Philosophy. This
work has not been submitted for any other degree or award in any other
university or educational establishment.

Signed:

(Haitham S. Al-Sinani)

Date:

Abstract

Although many identity management systems have been proposed, in-

tended to improve the security and usability of user authentication, major

adoption problems remain. In this thesis we propose a range of novel schemes

to address issues acting as barriers to adoption, namely the lack of interoper-

ation between systems, simple adoption strategies, and user security within

such systems.

To enable interoperation, a client-based model is proposed supporting in-

terworking between identity management systems. Information Card systems

(e.g. CardSpace) are enhanced to enable a user to obtain a security token from

an identity provider not supporting Information Cards; such a token, after en-

capsulation at the client, can be processed by an Information Card-enabled

relying party. The approach involves supporting interoperation at the client,

while maximising transparency to identity providers, relying parties and iden-

tity selectors. Four specific schemes conforming to the model are described,

each of which has been prototyped. These schemes enable interoperation be-

tween an Information Card-enabled relying party and an identity provider

supporting one of Liberty, Shibboleth, OpenID, or OAuth.

To facilitate adoption, novel schemes are proposed that enable Informa-

tion Card systems to support password management and single sign on. The

schemes do not require any changes to websites, and provide a simple, intu-

itive user experience through use of the identity selector interface. They fa-

miliarise users with Information Card systems, thereby potentially facilitating

their future adoption.

To improve user security, an enhancement to Information Card system

user authentication is proposed. During user authentication, a one-time pass-

word is sent to the user’s mobile device which is then entered into the com-

puter by the user.

Finally, a universal identity management tool is proposed, designed to

support a wide range of systems using a single user interface. It provides a

consistent user experience, addresses a range of security issues (e.g. phishing),

and provides greater user control during authentication.

i

Acknowledgments

First and foremost, I am extremely grateful to Allah Almighty for giving me

the strength and motivation to do my PhD. I am enormously indebted to

His Majesty, Qaboos bin Said, the Sultan of Oman; without his great and

wise leadership I would not have possibly found the necessary funding to

do my PhD.

I would like to express my deepest gratitude to Professor Chris J. Mitchell,

my PhD supervisor and role model. I have greatly benefited from his guid-

ance, kindness, patience, support and interest, and I wish to say a heartfelt

thank you to him. Indeed, without his insightful ideas, invaluable com-

ments and precious feedback, this thesis would never have become reality.

By the completion of this thesis, I am approaching the end of a 20-year

long life while I have been officially enrolled as a student. During those

years, I have gratefully received the support of many people; to them all I

wish to say: thank you!

I am particularly grateful to my father, Mr. Said Al-Sinani, my father-

in-law, Major General Said Al-Salmi, my mother, Mrs. Aysha Al-Saidi, and

my mother-in-law, Mrs. Salamah Al-Subhi, and to all of my family mem-

bers and friends, for their endless support, continuous endorsement and

enlightening advice; to them all I wish to say a sincere thank you.

I am profoundly appreciative to my beloved wife, Aisha Al-Salmi (Nis-

nas), for her endless support, continued encouragement and great patience.

To her, I wish to say a heartfelt thank you.

Finally, I owe sincere thanks to the Diwan of Royal Court of the Sultanate

iii

of Oman for sponsoring me during my PhD studies. The Diwan’s sponsor-

ship is very greatly appreciated.

iv

Contents

Abbreviations xxi

1 Introduction 33

1.1 Introduction . 33

1.2 Motivation . 33

1.2.1 Lack of Interoperation . 34

1.2.2 Low Levels of Adoption 34

1.2.3 Insufficient Levels of Security 34

1.2.4 Lack of Consistency . 35

1.3 Contributions . 35

1.4 Thesis Structure . 37

1.5 Publications . 40

I Background 43

2 Identity, Privacy and Security 47

2.1 Introduction . 47

2.2 Identity . 47

2.2.1 Definition . 47

2.2.2 Properties . 49

2.2.3 A Life Cycle . 50

2.3 Privacy . 52

2.3.1 Definition . 52

v

CONTENTS

2.3.2 Related Concepts . 52

2.3.3 Categories of Personal Data 54

2.3.4 Threats . 57

2.3.5 Protection . 59

2.4 Security Services and Mechanisms 64

2.4.1 Definitions . 64

2.4.2 Security Mechanisms . 66

2.4.3 User Authentication . 72

2.4.4 Key Management Techniques 76

2.5 Protocols and Standards . 78

2.5.1 HTML . 78

2.5.2 Document Object Model (DOM) 81

2.5.3 HTTP . 82

2.5.4 SSL/TLS . 87

2.5.5 HTTPS . 88

2.5.6 Web Service Protocols . 89

2.5.7 SAML . 91

3 Identity Management 93

3.1 Introduction . 93

3.2 Definition . 93

3.3 Need for Identity Management 95

3.4 Abstract Model . 95

3.5 Supporting Infrastructure . 96

3.5.1 IdP-RP Communications 97

3.5.2 Discovery . 99

3.6 Single Sign on (SSO) . 100

3.7 Properties of Identity Management Systems 100

3.7.1 Information Card Systems 101

3.7.2 Federated Systems . 102

vi

CONTENTS

3.7.3 Communication-based Models 102

3.7.4 Other Properties . 103

3.8 Cameron’s Laws of Identity . 104

4 Identity Management Systems 107

4.1 Introduction . 107

4.2 Microsoft Passport . 107

4.2.1 Introduction . 107

4.2.2 Operation . 108

4.2.3 Criticism and Consequences 109

4.3 CardSpace . 110

4.3.1 Introduction . 110

4.3.2 InfoCard Contents . 111

4.3.3 Attribute Exchange . 113

4.3.4 IdP Discovery . 114

4.3.5 IdP-RP Negotiation . 114

4.3.6 User Control and Consent 115

4.3.7 Supporting CardSpace . 115

4.3.8 Security Policy . 115

4.3.9 Operation . 117

4.3.10 Token Processing . 119

4.3.11 PPIDs and Digital Signatures 121

4.3.12 Proof of Ownership . 123

4.3.13 IdPs and Auditing . 125

4.3.14 Possible Limitations of CardSpace 127

4.4 Higgins . 130

4.4.1 Introduction . 130

4.4.2 InfoCards . 130

4.4.3 Data Model . 131

4.4.4 Architecture . 131

vii

CONTENTS

4.4.5 Categories . 133

4.4.6 Possible Limitations of Higgins 136

4.5 OpenID . 136

4.5.1 Introduction . 136

4.5.2 IdP Discovery . 137

4.5.3 IdP-RP Negotiation . 138

4.5.4 Identity Federation . 138

4.5.5 User Control and Consent 139

4.5.6 Level of Assurance . 139

4.5.7 Supporting OpenID . 139

4.5.8 Operation . 140

4.5.9 Attribute Exchange . 142

4.5.10 Proof of Ownership . 144

4.5.11 Possible Limitations of OpenID 144

4.6 OAuth . 145

4.6.1 Introduction . 145

4.6.2 User Control and Consent 146

4.6.3 Operation . 147

4.6.4 Facebook Connect . 151

4.6.5 Possible Limitations of OAuth 151

4.7 Liberty . 151

4.7.1 Introduction . 151

4.7.2 Supported Functionality 152

4.7.3 Attribute Exchange . 153

4.7.4 User Control and Consent 154

4.7.5 IdP Discovery . 154

4.7.6 Negotiation . 155

4.7.7 SSO and Federation Profiles 155

4.7.8 Operation . 157

4.7.9 Proof of Ownership . 161

viii

CONTENTS

4.7.10 Possible Limitations of Liberty 161

4.8 Shibboleth . 162

4.8.1 Introduction . 162

4.8.2 Attribute Exchange . 162

4.8.3 Architecture and IdP Discovery 163

4.8.4 Identity Federation . 163

4.8.5 Shibboleth Profiles . 163

4.8.6 Operation . 164

4.8.7 Proof of Ownership . 165

4.8.8 Possible Limitations of Shibboleth 166

4.9 Anonymous Credential Systems 167

4.9.1 Overview . 167

4.9.2 U-Prove . 169

4.9.3 IdeMix . 176

4.10 Comparison . 178

II Interoperability 181

5 A General Interoperation Model 185

5.1 Introduction . 185

5.1.1 Overview . 185

5.1.2 Motivation . 186

5.1.3 Organisation . 187

5.2 The Interoperation Model . 187

5.2.1 System Entities . 188

5.2.2 Overview of Operation 188

5.2.3 Requirements . 189

5.2.4 Operation . 191

5.3 Operational Issues . 195

5.3.1 Triggering the Adaptor 195

ix

CONTENTS

5.3.2 Attribute Handling . 196

5.3.3 Implementing the Adaptor as a Browser Extension . . . 197

5.4 Advantages . 197

5.4.1 Defeating Fake IdP Attacks 197

5.4.2 Client Interoperation . 198

5.4.3 Consistency . 198

5.4.4 Unintentional Leakage . 198

5.5 Security Considerations . 199

5.6 Potential Issues . 200

5.7 Possible Extensions . 201

5.7.1 Scope . 201

5.7.2 U-Prove Tokens . 201

5.8 Related Work . 202

5.8.1 Specification and Open-source Development Projects . . 202

5.8.2 General-purpose Interoperation Models 204

5.8.3 Interoperation Between Specific Systems 205

5.8.4 Business Analysis of Interoperation Issues 206

5.9 Conclusions and Future Work 207

6 Interoperation Between an Information Card System and Liberty 209

6.1 Introduction . 209

6.2 Interoperating with Liberty . 210

6.2.1 System Entities . 210

6.2.2 Requirements . 210

6.2.3 Operation . 211

6.2.4 Liberty Profiles . 213

6.3 Discussion and Analysis . 214

6.3.1 Applicability . 214

6.3.2 Differences in Scope . 216

6.3.3 Token Forwarding . 217

x

CONTENTS

6.3.4 Possible Extensions . 219

6.4 Prototype Realisation . 220

6.4.1 User Registration . 220

6.4.2 Implementation Details 220

6.4.3 Prototype Operation . 221

6.4.4 Potential Features and Issues 225

6.5 Related Work . 226

6.6 Conclusions and Future Work 228

7 Enabling Interoperation Between Shibboleth and Information

Card Systems 231

7.1 Introduction . 231

7.2 Interoperating with Shibboleth 232

7.2.1 Requirements . 232

7.2.2 Operation . 233

7.3 Implementation Issues . 234

7.3.1 Token Storage and Forwarding 234

7.3.2 Attribute Handling . 236

7.3.3 Possible Extensions . 236

7.4 Prototype Realisation . 237

7.4.1 Implementation Details 237

7.4.2 Prototype Operation . 237

7.4.3 Potential Features and Issues 239

7.5 Related Work . 239

7.6 Conclusions and Future Work 240

8 Client-based Interoperation Between OpenID and Information

Card Systems 241

8.1 Introduction . 241

8.2 Interoperating with OpenID . 242

8.2.1 Requirements . 242

xi

CONTENTS

8.2.2 Operation . 242

8.3 Discussion and Analysis . 245

8.3.1 IDcard Contents . 245

8.3.2 IdP User Authentication 247

8.3.3 Security Considerations 247

8.3.4 Attribute Mapping . 249

8.4 Prototype Realisation . 250

8.4.1 User Registration . 250

8.4.2 Prototype Operation . 250

8.4.3 Potential Features and Issues 254

8.5 Related Work . 254

8.6 Conclusions and Future Work 255

9 Integrating OAuth with Information Card Systems 257

9.1 Introduction . 257

9.2 Interoperating with OAuth . 258

9.2.1 Requirements . 258

9.2.2 Operation . 259

9.3 Discussion and Analysis . 261

9.3.1 Security Considerations 261

9.3.2 Attribute Mapping . 263

9.4 Prototype Realisation . 263

9.4.1 Registration . 264

9.4.2 Prototype Operation . 264

9.4.3 Potential Features and Issues 267

9.5 Conclusions and Future Work 267

III Practicality and Security 269

10 Using an Information Card System as a Password Manager 273

10.1 Introduction . 273

xii

CONTENTS

10.2 PassCard . 275

10.2.1 Prerequisites . 275

10.2.2 Operation . 276

10.2.3 Discussion . 279

10.3 Prototype Realisation . 281

10.3.1 Registration . 281

10.3.2 Operation . 282

10.3.3 Discussion . 288

10.4 PassCard Properties . 292

10.4.1 Security . 292

10.4.2 Usability . 293

10.4.3 Limitations . 293

10.5 Related Work . 295

10.6 Conclusions and Future Work 296

11 Using an Information Card system as a Password-based SSO Sys-

tem 297

11.1 Introduction . 297

11.2 SingleSigner . 298

11.2.1 Prerequisites . 299

11.2.2 Operation . 300

11.3 Implementation . 303

11.3.1 Shared Properties . 303

11.3.2 The URL Query Parameters Prototype 306

11.3.3 The Cookies Prototype . 307

11.3.4 The Hidden Form Fields Prototype 308

11.4 Comparison . 309

11.5 Discussions . 310

11.5.1 Features . 310

11.5.2 Limitations . 310

xiii

CONTENTS

11.5.3 Enhancements . 311

11.6 Related Work . 312

11.7 Conclusions and Future Work 313

12 Enhancing User Authentication in Information Card Systems 315

12.1 Introduction . 315

12.2 The Scheme . 317

12.2.1 System Entities . 317

12.2.2 Operation . 318

12.3 Discussion . 320

12.3.1 Implementation Issues . 320

12.3.2 Variants of the Scheme . 320

12.3.3 Advantages . 321

12.4 Security Analysis . 322

12.4.1 Threats to the Mobile Device 322

12.4.2 Threats to the Supporting Infrastructure 322

12.4.3 Threats to the PC . 322

12.5 Prototype Realisation . 324

12.5.1 User Registration . 325

12.5.2 Prototype Operation . 325

12.5.3 Practical Issues . 327

12.6 Related Work . 327

12.7 Conclusions and Future Work 331

IV Universality 333

13 A Universal Client-based Identity Management Tool 337

13.1 Introduction . 337

13.1.1 The Need for Authentication 337

13.1.2 Identity Management . 338

13.1.3 A New Approach . 339

xiv

CONTENTS

13.1.4 CardSpace . 340

13.1.5 Organisation . 340

13.2 IDSpace . 341

13.3 High-level Architecture . 343

13.3.1 Context of Use . 343

13.3.2 IDSpace Components . 345

13.4 Supporting Functionality . 350

13.4.1 Identity System Discovery 351

13.4.2 Identity System Selection 351

13.4.3 Card Selector Invocation 353

13.4.4 cCard Storage . 353

13.4.5 cCard Format . 354

13.4.6 cCard Contents . 354

13.4.7 Process Isolation . 355

13.4.8 Authentication Methods 355

13.5 IDSpace Operation . 356

13.5.1 Initialisation . 356

13.5.2 Protocol Flows . 358

13.6 Mapping Specific Protocol Architectures onto IDSpace 364

13.6.1 IDSpace and OpenID . 365

13.6.2 IDSpace and LEC . 368

13.6.3 IDSpace and CardSpace 371

13.7 Implementation . 371

13.8 Concluding Remarks . 375

13.8.1 Relationship to the Prior Art 376

13.8.2 Novel Features . 377

13.8.3 Future Work . 377

xv

CONTENTS

V Conclusions 379

14 Conclusions and Future Work 383

14.1 Summary and Conclusions . 383

14.2 Possible Future Work . 386

Bibliography 389

xvi

List of Figures

2.1 An Identity Life Cycle . 51

2.2 CIA Triangle . 65

2.3 A Simple Username-password HTML Form 81

2.4 Web Services Technologies . 90

3.1 Identity Management Model . 97

4.1 The CardSpace Identity Selector . 112

4.2 CardSpace Operation (Using Managed Cards) 120

4.3 PPID and Signature Key Pair for Personal Cards 122

4.4 Higgins Architecture . 132

4.5 An OpenID Login Form (Taken From openid.net) 140

4.6 OpenID Operation in check setup Mode 143

4.7 Overview of OAuth Operation . 148

4.8 A Liberty Circle of Trust . 152

4.9 Operation of Liberty Browser-post and Artifact Profiles 159

4.10 Overview of LECP Operation . 160

4.11 Overview of Shibboleth Operation 166

5.1 Interoperation Model Operation . 189

6.1 Data Flows via Client Components 211

6.2 Exchanges Between the Principal Parties 215

6.3 A LibCard . 221

7.1 Protocol Exchanges . 235

xvii

LIST OF FIGURES

8.1 Protocol Exchanges . 246

9.1 Protocol Exchanges . 261

10.1 PassCard Operation in HTTP mode 279

10.2 PassCards . 282

10.3 PassCard Co-operating with a CardSpace-enabled RP 285

10.4 PassCard Logo . 286

10.5 Redirect URL (target URL→ HS) 286

10.6 Redirect URL (HS→ target URL) 287

11.1 SingleSigner Operation . 304

11.2 SingleSigner Logo . 306

12.1 Summary of the Protocol . 319

12.2 Protocol Exchanges . 319

13.1 IDSpace Context . 343

13.2 IDSpace Components . 346

13.3 The IDSpace Card Selector . 373

13.4 Resized Screenshot of an XML-based, Encrypted cCard 373

13.5 An IDSpace PassCard . 374

13.6 IDSpace IDcards . 374

13.7 An IDSpace IDcard . 375

xviii

List of Tables

2.1 HTTP Request and Response Messages 84

4.1 Auditing IdPs versus Non-auditing IdPs 127

4.2 General Comparison Between Identity Management Systems . . . 179

7.1 CardSpace-Shibboleth Attribute Mapping 236

8.1 CardSpace-OpenID Attribute Mapping 249

9.1 CardSpace-Facebook Connect Attribute Mapping 263

xix

Abbreviations

ACM Association of Computing Machinery

AES Advanced Encryption Standard

API Application Programming Interface

APPEL A P3P Preference Exchange Language

AX Attribute eXchange

CA Certification Authority

CBC Cipher-block Chaining

CIA Confidentiality, Integrity, and Availability

CoT Circle of Trust

CRL Certificate Revocation List

DES Data Encryption Standard

DHKE Diffie-Hellman Key Exchange

DNS Domain Name System

DOM Document Object Model

EPAL Enterprise Privacy Authorization Language

GPS Global Positioning System

GUI Graphical User Interface

xxi

LIST OF TABLES

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I2P Invisible Internet Project

IBM International Business Machines (Corporation)

ICT Information and Communication Technology

IdP Identity Provider

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

ISP Internet Service Provider

LEC Liberty-enabled Client

LECP Liberty-enabled Client and Proxy Profile

Liberty ID-FF Liberty Identity Federation Framework

Liberty ID-SIS Liberty Identity Service Interface Specifications

Liberty ID-WSF Liberty Identity Web Services Framework

LIP Local Identity Provider

LNCS Lecture Notes in Computer Science

LNEE Lecture Notes in Electrical Engineering

MAC Message Authentication Code

MITM Man-in-the-Middle

xxii

LIST OF TABLES

NIST National Institute of Standards and Technology

Nonce Number used once

OECD Organisation for Economic Co-operation and Development

OMB Office of Management and Budget

OP OpenID Provider

OS Operating System

OTP One-time Password

P3P Platform for Privacy Preferences

PII Personally Identifiable Information

PIN Personal Identification Number

PKI Public Key Infrastructure

RA Registration Authority

RP Relying Party

RSA Rivest-Shamir-Adleman

RSTRC Request Security Token Response Collection

RSTR Request Security Token Response

RST Request Security Token

SAML Security Assertion Markup Language

SIIP Self-issued Identity Provider

SIM Subscriber Identity Module

SIP Session Initiation Protocol

xxiii

LIST OF TABLES

SMS Short Message Service

SP Service Provider

SREG Simple Registration OpenID Extension

SSL Secure Sockets Layer

SSO Single Sign On

STS Security Token Service

TGC Ticket Granting Cookie

TLS Transport Layer Security

TOR The Onion Router

TPM Trusted Platform Module

TTP Trusted Third Party

UA User Agent

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAYF Where Are You From

WSDL Web Services Description Language

WWW World Wide Web

XACML eXtensible Access Control Markup Language

XHTML eXtensible Hyper Text Markup Language

xxiv

LIST OF TABLES

XML eXtensible Markup Language

XRDS eXtensible Resource Descriptor Sequence

XRI eXtensible Resource Identifier

xxv

Chapter 1

Introduction

1.1 Introduction

This chapter provides an introduction to the rest of the thesis, and it is or-

ganised as follows. Section 1.2 outlines the research motivations of this the-

sis, and, in section 1.3, we summarise its main contributions. Section 1.4

describes the structure of the thesis, and, finally, section 1.5 concludes the

chapter by listing relevant publications.

1.2 Motivation

In line with the continuing increase in the number of on-line services re-

quiring authentication, there has been a proportional rise in the number of

user-possessed digital identities needed for authentication purposes. This

has contributed to the recent rapid growth in identity-oriented attacks, such

as phishing, pharming, etc. One indication of this trend is that identity fraud

rose by 13% in 2011, according to a specialised report on identity fraud re-

leased in 2012 by Javelin Strategy & Research1.

In an attempt to mitigate such attacks, a relatively large number of iden-

tity management systems have recently been proposed. Unfortunately, al-

though these systems have the potential to reduce the threat of identity at-

tacks and improve user security, major problems, as described below, re-

main.

1http://www.businesswire.com/news/home/20120222005485/en/
Identity-Fraud-Rose-13-Percent-2011-Javelin

33

1. INTRODUCTION

1.2.1 Lack of Interoperation

The vast majority of identity management systems are not interoperable.

That is, a security token issued by an identity provider for one system can-

not be used at a relying party supporting another system. This is likely to

become a major usability issue in practice. Therefore, to make these systems

available to the largest possible group of users, effective interoperability be-

tween identity management systems is needed.

1.2.2 Low Levels of Adoption

Despite the introduction of many identity management systems, the vast

majority of websites still use username-password for authentication, and

this is likely to continue for at least the next few years [110]. One major prob-

lem with those identity management systems that are based on Information

Cards (see section 3.7.1), and with other similar systems providing more

secure means of user authentication, is that the transition from username-

password authentication is extremely difficult to achieve. Relying parties

will not wish to do the work necessary to support an identity management

system if very few users employ it; equally, users are hardly likely to use a

sophisticated system if it is only supported by a tiny minority of websites.

1.2.3 Insufficient Levels of Security

Some identity management systems, including Information Card systems

such as CardSpace, are susceptible to attacks arising from temporary unau-

thorised access to a user system, i.e. they offer inadequate levels of security

for sensitive identity information stored in the client device.

In addition, many identity management systems are susceptible to fake

identity provider attacks, in which a malicious relying party redirects a user

browser to a false identity provider. The user then reveals to the fake iden-

tity provider secrets that are shared with a genuine identity provider. This

34

1.3 CONTRIBUTIONS

arises because, in the absence of a system-aware client agent, many identity

management systems rely on browser redirects.

1.2.4 Lack of Consistency

The user experience of almost every identity management system is dif-

ferent, and this is likely to lead to user confusion and hence potentially

give rise to security breaches. It is widely acknowledged that users fail to

make good security decisions, even when confronted with relatively sim-

ple decisions [157]. The lack of consistency is likely to make the situation

much worse, with users simply not understanding the complex privacy-

and security-relevant decisions that they are being asked to make.

1.3 Contributions

In this thesis, we propose a number of novel schemes to address the prob-

lems identified in section 1.2, i.e. to enable interoperation between identity

management systems, to increase the rate of their adoption, to improve user

security (particularly user authentication), and to provide a consistent user

experience. The main contributions of this thesis are as follows.

• To enable interoperation (see section 1.2.1), a novel model is proposed

that supports interworking between Information Card-based identity

management systems (including CardSpace and Higgins) and iden-

tity management systems not supporting Information Cards, such as

OpenID, OAuth, Liberty, and Shibboleth. In this model, Information

Card users are able to obtain a security token from an identity provider

not supporting Information Cards, the contents of which can be pro-

cessed by an Information Card-enabled relying party. The model we

propose involves providing interoperation functionality at the client

in a way that is as transparent as possible to identity providers, rely-

ing parties and identity selectors. Four specific schemes conforming

35

1. INTRODUCTION

to this model are then described. These schemes enable interoperation

between an Information Card-enabled relying party and an identity

provider supporting one of Liberty, Shibboleth, OpenID, or OAuth.

• To enhance practicality and adoption (see section 1.2.2), two novel

schemes are proposed that extend Information Card systems to enable

them to support password management and password-based single

sign on. These schemes do not require any changes to the servers of

accessed web sites. The schemes provide a simple, intuitive user expe-

rience through their use of the identity selector interface. At the same

time, they familiarise users with Information Card systems, thereby

potentially facilitating future adoption of more secure means of au-

thentication.

• To improve user security (see section 1.2.3), a novel scheme is pro-

posed that enhances user authentication when using an Information

Card system. During the process of user authentication on a personal

computer (PC) using an Information Card system, a random and short-

lived one-time password is sent to the user’s mobile device; this must

then be entered into the PC by the user when prompted.

• A novel, universal identity management tool is proposed, designed

to support a wide range of identity management systems using a sin-

gle user interface. The tool provides a consistent user experience, ad-

dresses a range of possible security issues (including phishing), and

allows for greater user control during the authentication process (see

section 1.2.4).

All the novel schemes proposed in this thesis have been successfully proto-

typed.

36

1.4 THESIS STRUCTURE

1.4 Thesis Structure

This thesis is divided into five parts organised as follows.

1. Part I provides background material for the rest of the thesis. It con-

tains three chapters, as follows.

• Chapter 2 gives an introduction to, and definitions for, the concepts

of identity, privacy, and security, as well as outlining associated

protocols of importance in this thesis.

• Chapter 3 provides an introduction to identity management, cov-

ering related topics such as single sign on and Cameron’s identity

laws. The chapter also gives an abstract model for identity man-

agement, and considers a range of properties possessed by differ-

ent types of identity management systems.

• Chapter 4 describes in detail those identity management systems

of greatest relevance to this thesis, namely CardSpace, Higgins,

OpenID, OAuth, Liberty, and Shibboleth. The chapter also gives

an overview of certain other systems of background relevance,

namely Microsoft Passport, U-Prove, and IdeMix.

2. Part II proposes a novel approach to supporting interoperation be-

tween a wide range of identity management systems. This part con-

tains a total of five chapters. We first, in chapter 5, describe a general

model for interoperation between an Information Card-based identity

management system and almost any other existing identity manage-

ment system. Using this model, Information Card users are able to

obtain a security token from an identity provider not supporting In-

formation Cards. After processing at the client, an enhanced token is

produced that can be processed by an Information Card-enabled rely-

ing party. We then go on to describe four specific instantiations of this

37

1. INTRODUCTION

model, enabling interoperation between an Information Card system

and:

• Liberty (chapter 6);

• Shibboleth (chapter 7);

• OpenID (chapter 8); and

• OAuth (chapter 9).

3. Part III proposes novel schemes to enhance the practicality and secu-

rity of identity management systems. This part contains three chap-

ters, as follows.

• Chapter 10 proposes a novel scheme that allows an Information

Card system to be used as a password manager. Usernames and

passwords are stored in personal cards, and these cards can be

used to sign-on transparently to relevant websites. The scheme

does not require any changes to login servers, default browser se-

curity settings, or to identity selectors; in particular, it does not re-

quire websites to support an Information Card system. The chap-

ter describes how the scheme operates, and also gives details of

a proof-of-concept prototype. Security and usability analyses are

also provided.

• Chapter 11 proposes a scheme that allows an Information Card

system to be used as a password-based single sign on system.

The chapter describes three related approaches to achieving single

sign on using an Information Card system. In each case users are

able to store credentials for a set of websites in a single personal

card, and use it to seamlessly sign-on to all these websites. The ap-

proaches do not require any changes to login servers or to identity

selectors and, in particular, they do not require websites to sup-

port Information Cards. The chapter also describes three proof-of-

38

1.4 THESIS STRUCTURE

concept prototypes and gives usability, security and performance

analyses. Note that both chapters 10 and 11 are concerned with

techniques intended to help improve the usability and security of

password use, as well as potentially encouraging adoption of In-

formation Card systems.

• Chapter 12 proposes a scheme that uses a mobile device to enhance

user authentication in Information Card systems. During the pro-

cess of user authentication on a PC using an Information Card sys-

tem, a random and short-lived one-time password is sent to the

user’s mobile device; this must then be entered into the PC by the

user when prompted. The scheme does not require any changes to

login servers, identity selectors, or to the mobile device itself. The

chapter specifies how the scheme operates and gives details of a

proof-of-concept prototype. Security and operational analyses are

also provided.

4. Part IV proposes a universal identity management tool that can sup-

port a wide range of identity management systems using a single user

interface. The tool is designed to enhance user privacy and to address a

range of security issues, notably phishing attacks. This part consists of

a single chapter, chapter 13, which describes this client-based identity

tool. The goal of this tool is to simplify the use of a wide range of ex-

isting identity technologies, helping to encourage their use whilst im-

posing no additional burden on relying parties and identity providers.

The chapter also describes examples of the operation of the scheme

with certain existing identity management systems.

5. Part V concludes the thesis by summarising the main contributions as

well as highlighting possible areas for future work. This part of the

thesis consists of a single chapter, chapter 14.

39

1. INTRODUCTION

1.5 Publications

Publications describing some of the research results contained in this thesis

are listed below (in chronological order of publication).

1. Haitham S. Al-Sinani, Waleed A. Alrodhan, and Chris J. Mitchell. Car-

dSpace-Liberty integration for CardSpace users. In Ken Klingenstein

and Carl M. Ellison, editors, Proceedings of IDtrust ’10 — the 9th Sympo-

sium on Identity and Trust on the Internet, April 13–15, 2010, Gaithersburg,

Maryland, pages 12–25. ACM, New York, 2010.

2. Haitham S. Al-Sinani and Chris J. Mitchell. Using CardSpace as a pass-

word manager. In Elisabeth de Leeuw, Simone Fischer-Hübner, and

Lothar Fritsch, editors, Proceedings of IFIP IDMAN ’10 — the 2nd IFIP

WG 11.6 Working Conference on Policies and Research in Identity Manage-

ment, November 18–19, 2010, Oslo, Norway, volume 343 of IFIP Advances

in Information and Communication Technology, pages 18–30. Springer,

Boston, 2010.

3. Haitham S. Al-Sinani and Chris J. Mitchell. CardSpace-Shibboleth in-

tegration for CardSpace users. In ACNS ’11 [industrial track proceed-

ings], the 9th International Conference on Applied Cryptography and Net-

work Security, June 7–10, 2011, Nerja, Malaga, Spain, pages 49–66, 2011.

4. Haitham S. Al-Sinani and Chris J. Mitchell. Enhancing CardSpace au-

thentication using a mobile device. In Yingjiu Li, editor, Proceedings of

DBSEC ’11 — the 25th IFIP WG 11.3 Conference on Data and Applications

Security and Privacy, July 11–13, 2011, Richmond, Virginia, volume 6818

of LNCS, pages 201–216. Springer-Verlag, Berlin, 2011.

5. Haitham S. Al-Sinani and Chris J. Mitchell. Method and apparatus for

enabling authorised users to access computer resources. UK patent applica-

tion GB1115866.4, filed 14th September 2011.

40

1.5 PUBLICATIONS

6. Haitham S. Al-Sinani and Chris J. Mitchell. A universal client-based

identity management tool. To appear in: Proceedings of EuroPKI ’11

— the 8th European Workshop on Public Key Infrastructures, Services and

Applications, September 15–16, 2011, Leuven, Belgium, LNCS. Springer-

Verlag, Berlin, 2011.

7. Haitham S. Al-Sinani and Chris J. Mitchell. Client-based CardSpace-

OpenID interoperation. In Erol Gelenbe, Ricardo Lent, and Georgia

Sakellari, editors, Proceedings of ISCIS ’11 — the 26th International Sym-

posium on Computer and Information Sciences, September 26–28, 2011, Lon-

don, UK, Lecture Notes in Electrical Engineering (LNEE), pages 387–

393. Springer, London, 2011.

8. Haitham S. Al-Sinani and Chris J. Mitchell. Extending the scope of

CardSpace. In Mehmet A. Orgun, Atilla Elçi, Oleg B. Makarevich,

Sorin A. Huss, Josef Pieprzyk, Lyudmila K. Babenko, Alexander G.

Chefranov, and Rajan Shankaran, editors, Proceedings of SIN ’11 — the

4th International Conference on Security of Information and Networks, Nove-

mber 14–19, 2011, Sydney, Australia, pages 235–238. ACM, New York,

2011.

9. Haitham S. Al-Sinani. Integrating OAuth with Information Card sys-

tems. In Ajith Abraham, Daniel Zeng, Dharma Agrawal, Mohd Faizal

Abdollah, Emilio Corchado, Valentina Casola, and Choo Yun Huoy,

editors, Proceedings of IAS ’11 — the 7th International Conference on Infor-

mation, Assurance, and Security, December 5–8, 2011, Malacca, Malaysia,

pages 198–203. IEEE, New York, 2011.

10. Haitham S. Al-Sinani and Chris J. Mitchell. Enabling interoperation

between Shibboleth and Information Card systems. To appear in: Se-

curity and Communication Networks, 2012.

41

1. INTRODUCTION

11. Haitham S. Al-Sinani. Supporting interworking between OAuth and

Information Card systems. To appear in: Journal of Information Assur-

ance and Security, 7, 2012.

42

Part I

Background

43

Overview

Part I provides background material for the rest of the thesis. It contains

three chapters, as follows.

1. Chapter 2 gives an introduction to, and basic definitions for, the con-

cepts of identity, privacy, and security, as well as outlining associated

protocols of importance in this thesis.

2. Chapter 3 provides an introduction to identity management, including

coverage of single sign on and Cameron’s identity laws. The chapter

also gives an abstract model for identity management, and considers

a range of properties possessed by different types of identity manage-

ment systems.

3. Chapter 4 provides a detailed description of a number of identity man-

agement systems of relevance to this thesis, namely CardSpace, Hig-

gins, OpenID, OAuth, Liberty, and Shibboleth. The chapter also gives

an overview of certain other systems of background relevance, namely

Microsoft Passport, U-Prove, and IdeMix.

45

Chapter 2

Identity, Privacy and Security

2.1 Introduction

This chapter provides an introduction to, and basic definitions for, the con-

cepts of identity, privacy, and security, as well as outlining associated proto-

cols of importance in this thesis.

The chapter is organised as follows. Section 2.2 describes the concept

of identity, and, in section 2.3, we give an introduction to Internet privacy.

Section 2.4 outlines several security services and mechanisms, as well as

listing some key management techniques. Finally, section 2.5 concludes the

chapter by summarising a number of protocols of relevance to this thesis.

2.2 Identity

2.2.1 Definition

The study of the notion of identity encompasses a wide range of disci-

plines, including sociology, psychology, philosophy, as well as computer

science [32]. In the context of digital identity management, several def-

initions have been proposed for the term identity [19, 21, 30, 32, 36, 64,

117, 197, 200, 228, 229], including those given in published or draft stan-

dards [119, 120, 121, 132]. For example, in a draft of ITU-T X.1250, the term

identity is defined as the ‘representation of an entity (or group of entities) in

the form of one or more information elements which allow the entity(ies) to

be uniquely recognised within a context to the extent that is necessary (for

the relevant applications)’ [119]. Along similar lines, the recently published

47

2. IDENTITY, PRIVACY AND SECURITY

ISO/IEC 24760-1 [132] defines the term as the ‘information used to represent

an entity in an ICT (Information and Communication Technology) system.

The purpose of the ICT system determines which of the attributes describ-

ing an entity are used for an identity. Within an ICT system an identity shall

be the set of those attributes related to an entity which are relevant to the

particular domain of application served by the ICT system. Depending on

the specific requirements of this domain, this set of attributes related to the

entity (the identity) may, but does not have to be, uniquely distinguishable

from other identities in the ICT system’.

Note that ISO/IEC 24760-1 [132] deems any set of attributes describing

a particular entity to be an identity for the associated entity; that is, in cer-

tain contexts, the identity information for different entities may be the same.

However, in other standards, e.g. ITU-T X1252 [120], the explicit purpose of

an identity is the capability of the identity information to sufficiently differ-

entiate one entity from another (to the extent necessary in a specific context).

In this thesis, the term identity is used to refer to a digital representation

of an entity in a given context. An entity is an item that has a recognisably

distinct existence, and that can be uniquely identified in a specific domain,

such as a person or a device. An identity consists of a set of attributes of

an entity, where an attribute is defined as a characteristic or a property of an

entity [132]. An entity could have more than one identity (see section 2.2.2).

An identifier is a unique identity property that unambiguously distinguishes

one entity from another in a given context. A context, or a domain, is an envi-

ronment in which an entity can use a set of attributes for identification and

other purposes [132]. For example, PUAI003 (an identifier) is the username

(an attribute) of Haitham Al-Sinani (an entity) in the RHUL IT system (a

context or domain).

48

2.2 IDENTITY

2.2.2 Properties

Certain properties associated with a human identity have been identified in

the literature [19], including those specified in a document [187] published

by the Organisation for Economic Co-operation and Development (OECD)1.

We next list a number of such properties.

• Identity is social. People are naturally social, and, in order to engage in

social interactions, humans need something that persists and that can

be used as a basis for recognition of individuals — an identity.

• Identity is subjective. Different people are likely to have differing expe-

riences of interactions with an individual. It follows that one individ-

ual could be attributed distinct characteristics; i.e. different people are

likely to construct disparate identities for the same person.

• Identity is valuable. If a history of an individual’s previous actions is

built, an exchange of identity information could create social capital

and enable transactions which would not be possible without identity.

Put differently, identity could lend predictability to afford a level of

confidence during the decision-making process.

• Identity is referential. An identity is only a reference to a person; it is

not a person in itself.

• Identity is composite. Whilst some identity information about a person

arises voluntarily from the person him/herself, other identity data is

developed by others without the person’s involvement.

• Identity is consequential. Since a person’s identity provides information

about a person’s past actions, the decision to exchange identity data

has consequences. For example, whilst disclosure of identity informa-

tion in a certain context could cause harm, failure to reveal identity

information in another context could create a risk.
1http://www.oecd.org

49

2. IDENTITY, PRIVACY AND SECURITY

• Identity is dynamic. Identity information is not static and is always

changing; an identity record might become inaccurate at any given

moment. Examples of dynamic identity attributes include a person’s

age, address, level of education, etc.

• Identity is contextual. Individuals may have multiple identities, and

they may choose to keep them utterly separate. For example, a person

could be a professor at work and a husband at home.

• Identity is equivocal. An identification process is not foolproof; it is

inherently error-prone. For example, a technical identification system

could generate a number of false positives and false negatives.

2.2.3 A Life Cycle

A possible identity life cycle taken from Windley [229] is shown in Fig. 2.1

below; it includes five basic phases, as follows.

1. Provision. This represents the start of an identity’s life cycle, and in-

volves creating an identity record and populating it with attribute val-

ues. Provisioning can be third party-serviced (e.g. setting up a student

account by a university administrator), or can be self-serviced (e.g. set-

ting up an online account by populating an HTML form).

Note that the identity provisioning phase could involve initial entity

authentication to establish the accuracy of the provided attributes. For

example, setting up a bank account could require a presentation of a

passport as well as a manual, face-to-face identification. During this

phase, an identity could also be mapped to a certain level of assurance

(see section 2.4.3.3).

2. Propagation. This depends on the nature of the system within which

the identity is created, which may require the identity record to be

propagated to other systems or sub-systems (e.g. in a simple system

50

2.2 IDENTITY

propagation could mean storing the identity information in a file sys-

tem or a local database). Propagation is therefore complementary to

the provisioning phase and must also occur after the maintenance phase

(see below).

3. Usage. Once provisioned and propagated, the identity can now be

used (e.g. for authentication and authorisation purposes).

4. Maintenance. In this phase, an identity record is updated or altered,

and, once changed, must be re-propagated. Common examples in-

clude password resets and address changes.

5. De-provision. This takes place at the end of the identity’s life cy-

cle, and refers to the complete deletion/removal of the identity record

from its domain. For example, a university could de-provision a stu-

dent’s account from its IT system once the student has completed the

degree programme.

Provision Propagate Use De-provision

Maintain

Figure 2.1: An Identity Life Cycle

51

2. IDENTITY, PRIVACY AND SECURITY

2.3 Privacy

2.3.1 Definition

Privacy is defined by Windley [229] as the ‘protection of the attributes, pref-

erences, and traits associated with an identity from being disseminated be-

yond the subject’s needs in any particular transaction’. More generally, the

term privacy refers to different things in many contexts; however, in this

thesis we focus on the Internet privacy of human entities.

Internet privacy involves the capability to control what information an

individual discloses or withholds about themselves over the Internet, in-

cluding determining who has access to such information, and for what pur-

poses the information may or may not be used. With the advances in tech-

nology, Internet users are increasingly subject to privacy threats. For ex-

ample, Internet users may become concerned if they discover that visited

websites collect, store, and possibly share personally identifiable informa-

tion (see section 2.3.2.1) about them. Internet privacy protection is therefore

an issue of growing importance.

2.3.2 Related Concepts

2.3.2.1 Personally Identifiable Information (PII)

According to the U.S. Office of Management and Budget (OMB)2 [222], and

also as adopted by National Institute of Standards and Technology (NIST)

[164], PII is defined as ‘any information about an individual maintained by

an agency, including (1) any information that can be used to distinguish or

trace an individual’s identity, such as name, social security number, date

and place of birth, mother’s maiden name, or biometric records; and (2) any

other information that is linked or linkable to an individual, such as medi-

cal, educational, financial, and employment information’. In the context of

information security, the term PII refers to the information that can be used
2http://www.whitehouse.gov/omb

52

2.3 PRIVACY

(or can be combined with other sources) to uniquely identify a person. OMB

classes the following data items as PII: full name (if not common), national

identification number, IP address (in some cases), vehicle registration plate

number, driver’s license number, face, fingerprints, handwriting, credit card

number, digital identity, birthday, birthplace, and genetic information (see

also section 2.3.3).

Note that multiple pieces of information, which are not sufficient on their

own to uniquely identify an individual, might uniquely identify a person if

combined. For example, it has been claimed that, in 1990, 87% of the US

population could be uniquely identified by gender, ZIP code, and full date

of birth [216].

2.3.2.2 Anonymity

Anonymity enables a subject to be indistinguishable within a set of subjects,

known as the anonymity set (the set of all possible subjects) [197]. Anonymity

is also defined as being ‘a condition in identification whereby an entity can

be recognised as distinct, without sufficient identity information to establish

a link to a known identity’ [132]. Anonymity therefore ensures that a user

can use a resource without disclosing his or her identity.

If authentication and/or authorisation is required, anonymity typically

involves the use of special anonymised credentials which can be crypto-

graphically verified (see section 4.9). However, full anonymity on the In-

ternet is not guaranteed, e.g. because IP addresses may be tracked thereby

enabling the identification of the communicating device (albeit not necessar-

ily the actual user). Nonetheless, tracking of IP addresses can be addressed

using anonymising services, such as I2P3 (Invisible Internet Project) or TOR4

(The Onion Router); such anonymisers adopt a distributed technology ap-

proach, which could potentially grant a higher degree of anonymity than

3http://www.i2p2.de/
4https://www.torproject.org/

53

2. IDENTITY, PRIVACY AND SECURITY

centralised anonymising services where a central point exists that knows

and therefore could disclose a person’s identity.

2.3.2.3 Pseudonymity

A person may wish to maintain a long-term relationship (or a reputation)

with an entity, without necessarily revealing their PII. Pseudonymity can

support such a situation, allowing the person to establish a unique identifier

with the other entity. This identifier is called a pseudonym, which is defined

as an ‘identifier that contains the minimal identity information sufficient to

allow a verifier to establish it as a link to a known identity’ [132]. Such a

pseudonym does not reflect the person’s real identity [231]. Examples of

pseudonyms include pen names, nicknames, etc. A pseudonym enables the

other entity to link different messages from the same person and, thereby,

maintain a long-term relationship. Pseudonyms can be either temporary or

permanent. A pseudonym can have its value chosen by the person, or be

assigned randomly [132]. The subject referred to by a pseudonym is called

the holder of the pseudonym.

2.3.2.4 Unlinkability

True anonymity requires unlinkability [197], i.e. where an adversary’s inspec-

tion of a message from, or action by, a pseudonym holder yields no new

information about the holder’s true identity. Unlinkability enables a user to

make multiple uses of resources or services without others being able to link

these uses together. Unlinkability necessitates that users and/or subjects

cannot establish whether the same user caused certain specific operations

in the system.

2.3.3 Categories of Personal Data

The P3P (Platform for Privacy Preferences — see section 2.3.5.3) specifica-

tions [227] define the following 16 categories of personal data which should

54

2.3 PRIVACY

be protected when browsing websites.

1. Physical contact information, such as a telephone number of a physi-

cal address, allows a person to be contacted or located in the physical

world.

2. Online contact information, such as an email address, allows a person

to be contacted or located on the Internet. Such information is often

independent of the specific computer used to access the network.

3. Unique identifiers, excluding financial and government-issued identi-

fiers, are issued for the purposes of consistently identifying or recog-

nising a person. They include identifiers issued by a website or service.

4. Purchase information, including information about payment methods,

is generated as a result of the purchase of a product or service.

5. Financial information concerns an individual’s finances, including ac-

count status and activity information. Examples include account bal-

ance, payment or overdraft history, and information about a person’s

purchases or use of financial instruments including credit or debit card

information. Note that the information that is just derived from a dis-

crete purchase by a person, as described in purchase information, does

not fall under the definition of financial information.

6. Computer information, such as an IP address, domain name, browser

type or operating system, relates to the computer that the individual is

using to access the network.

7. Navigation and click-stream data, such as the pages visited and the pe-

riod of time each page is visited, is passively generated by browsing a

website.

55

2. IDENTITY, PRIVACY AND SECURITY

8. Interactive data, such as queries to a search engine or logs of an account

activity, is actively generated by explicit web interactions with a ser-

vice provider.

9. Demographic and socioeconomic data, such as gender, age, or income, con-

cerns the characteristics of an individual.

10. Content, such as the text of emails, bulletin board postings, or chat

room communications, is the collection of words and expressions con-

tained in the body of a communication.

11. State management mechanisms, e.g. HTTP cookies (see section 2.3.4.1),

are techniques for maintaining a stateful session with a user, or auto-

matically recognising users who have visited a particular site or ac-

cessed particular content previously.

12. Political data, including membership of, or affiliation with, groups such

as religious organisations, trade unions, professional associations, po-

litical parties, etc.

13. Health information concerns a person’s physical or mental health, sexual

orientation, use of or inquiry into health care services or products, and

purchase of health care services or products.

14. Preference data, such as a favourite colour or musical tastes, concerns a

person’s likes and dislikes.

15. Location data, such as position data provided by a Global Positioning

System (GPS) receiver [90], can be used to identify a person’s current

physical location and track them as their location changes.

16. Government-issued identifiers are issued by a government for the pur-

pose of consistently identifying a person.

Finally note that the P3P specifications also include a category of other,

covering types of (personal) data not captured by the above definitions.

56

2.3 PRIVACY

2.3.4 Threats

We next discuss a number of examples that can give rise to privacy threats

when browsing the web.

2.3.4.1 Cookies

We describe three types of cookies, outlining how they can be used to pose

a privacy threat.

1. HTTP cookies [153] are small amounts of textual data stored on a user’s

machine, initially set by, and only retrievable by, a specific web server.

A web browser returns such a cookie to the originating web server on

every request made to that server. Cookies can therefore link multiple

HTTP requests together in an otherwise stateless HTTP protocol (see

section 2.5.3). User state information can be stored in cookies; such

information is typically used for user authentication, identification of

a user session, user preferences, shopping cart contents, etc.

Two categories of cookie of particular importance in this thesis are as

follows.

• Session cookies, also called transient cookies, are deleted when the

user closes the web browser. Such cookies are stored in temporary

memory and are not retained once the browser is closed.

• Persistent cookies can survive across a number of sessions, includ-

ing after exiting the browser and/or after a machine reboot. Such

cookies have an expiry date; if a cookie expires it is deleted.

However, cookies can be used for user-tracking and web profiling, in

which a user’s browsing activities are profiled/tracked. User profiling

(or tracking) refers to the process of assembling and analysing multiple

events, each attributable to a single originating entity. This could lead

to the construction of a set of information relating to this individual,

57

2. IDENTITY, PRIVACY AND SECURITY

e.g. certain patterns of activity or PII (see section 2.3.2.1). Such infor-

mation could be used for a range of purposes, e.g. targeted advertising,

some of which may not be in the user’s interests.

If a cookie is used to store user credentials (e.g. a password), certain

attacks (notably cross-site scripting [94]) can be used to fraudulently

obtain such credentials.

Many modern web browsers allow users to delete or disable cookies.

Although deletion/disabling of cookies might eliminate potential pri-

vacy threats, such an action could severely limit the functionality of

many websites. Cookies remain a significant privacy concern.

2. Flash cookies operate in the same way as HTTP cookies, and are em-

ployed by Adobe flash player to store information in a user’s computer.

Flash cookies, or local shared objects [165], pose similar privacy risks

to those arising from HTTP cookies. However, flash cookies are not

as easily deleted or disabled. The option displayed in most modern

browsers to block cookies does not affect flash cookies; browser exten-

sions can, however, be used to block such cookies.

3. Evercookies is a term used to describe a cookie-like mechanism used by

malicious software to store state on a user machine, and are intention-

ally designed to be difficult to delete. JavaScript [180] can be used to

create cookies (so called zombie cookies) in a web browser that actively

escape deletion by generating redundant copies of themselves in vari-

ous forms and locations on the user platform, e.g. as flash local shared

objects, or using various HTML version 5 storage mechanisms, win-

dow.name caching, etc.

2.3.4.2 Search Engines

Search engines are capable of tracking a user’s searches. Personal data and

patterns of activity can be deduced by analysing user searches, including

58

2.3 PRIVACY

the search items used, the time of the search, and the URLs visited as a

result of the search. Web profiles belonging to specific users can be built

which could, for example, be sold to third parties, e.g. advertising agencies.

Such actions, particularly when conducted in the absence of informed user

consent, constitute a potential privacy threat.

2.3.4.3 Data Logging

Operating systems (OSs) and applications can typically be configured to

perform logging of usage, e.g. recording the times at which the user browses

the Internet, the websites visited, etc. User privacy could be compromised

if a third party obtains illegal access to such logs stored on a user platform.

Such privacy risks can be mitigated, e.g. by encrypting the logs, disabling

logging, or regularly deleting logs.

2.3.4.4 Internet Service Providers (ISPs)

ISPs provide Internet access to subscribers (users). All web data transmit-

ted to and from user machines must pass via an ISP. Such an ISP therefore

has the capability to monitor user activities on the Internet. ISPs are not

expected to conduct such actions, not least for legal, ethical, business, and

technical reasons; however, a degree of tracking and record retention may

be required in some jurisdictions in order to enable law enforcement inves-

tigations.

2.3.5 Protection

We next discuss privacy protection.

2.3.5.1 Guidelines

Back in 1980, the OECD published guidelines on the protection of privacy

and transborder flows of personal data, aimed to ‘harmonise national pri-

vacy legislation and, while upholding such human rights, would at the

59

2. IDENTITY, PRIVACY AND SECURITY

same time prevent interruptions in international flows of data’ [186]. The

OECD privacy guidelines have since been used to derive privacy laws gov-

erning the use of information systems now in place in a number of coun-

tries [21]. These guidelines contain eight basic principles for personal data

protection, as listed below. A system that fails to fairly satisfy the require-

ments of any of these principles could be considered vulnerable to privacy

violation.

1. Collection Limitation Principle. Collection of personal data should

have limits, and should be obtained by lawful and fair means, and,

where appropriate, with the knowledge or consent of the data subject.

2. Data Quality Principle. Personal data should be relevant to its use

purposes, and, to the extent necessary for those purposes; such per-

sonal information should be accurate, complete and kept up-to-date.

3. Purpose Specification Principle. Purposes for (personal) data collec-

tion should be specified at or before the time of collection, and the

subsequent use limited to the fulfilment of those purposes or such oth-

ers as are not incompatible with those purposes and as are specified on

each occasion of a change of purpose.

4. Use Limitation Principle. Personal data should not be revealed, made

available or otherwise used for purposes other than those specified at

the collection time, except with the consent of the data subject, or by

the authority of law.

5. Security Safeguards Principle. Reasonable security safeguards shou-

ld be employed to protect personal data against risks such as loss or

unauthorised access, destruction, use, modification or disclosure of

data.

6. Openness Principle. A general policy of openness about develop-

ments, practices and policies with respect to personal data should ex-

60

2.3 PRIVACY

ist. Means should be readily available of establishing the existence and

nature of personal data, and the main purposes of their use, as well as

the identity and usual residence of the data controller.

7. Individual Participation Principle. A person should have the right to:

a) obtain from a data controller, or otherwise, confirmation of wheth-

er or not the data controller has data relating to them;

b) have communicated to them data relating to them:

• within a reasonable time;

• at a charge, if any, that is not excessive;

• in a reasonable manner; and

• in a form that is readily intelligible to them;

c) be given reasons if a request made under subparagraphs (a) and

(b) is denied, and to be able to challenge such denial; and

d) challenge data relating to them, and, if the challenge is successful,

to have the data erased, rectified, completed or amended.

8. Accountability Principle. Finally, this principle states that a data con-

troller should be held accountable for complying with measures which

give effect to the principles stated above.

2.3.5.2 Designing for Privacy

An identity management system conforming to ISO/IEC 24760-1 [132] shall

obey all statutory and regulatory requirements for the protection of personal

privacy. ISO/IEC 24760-1 requires that any sensitive information which an

identity management system processes shall be clearly specified in the de-

sign phase. An ISO/IEC 24760-1-conformant identity management system

should provide a range of privacy-related capabilities, including the follow-

ing [132].

61

2. IDENTITY, PRIVACY AND SECURITY

• Mechanisms, including policies, processes, and technology, should be

implemented to enable minimal disclosure.

• Entities that use identity information should be authenticated.

• The ability to link identities should be minimised.

• The use of identity information should be recorded and audited.

• Protection should be provided against inadvertently generating risks

to privacy, e.g. those posed by poorly protecting identity information

in logs and audit trails.

• Policies for selective disclosure should be implemented.

• Use of pseudonyms should be supported.

• Policies should be implemented to engage a human entity for explicit

direction or consent, for activities related to sensitive personal data.

2.3.5.3 Privacy-protecting Technologies

A wide range of privacy-protecting languages and protocols exist. We next

briefly review some of them.

• P3P. The Platform for Privacy Preferences (P3P)5 is a standard for com-

municating privacy practices and comparing them to user preferences.

The P3P [227], developed by the World Wide Web Consortium (W3C)6,

is designed to grant users more control over their personal informa-

tion when browsing the web. It enables websites to express privacy

policies in a standard format using the P3P Preference Exchange Lan-

guage [155] (APPEL), which can be retrieved and interpreted by P3P-

enabled web browsers.

5http://www.w3.org/P3P
6http://www.w3.org

62

2.3 PRIVACY

A P3P-enabled website will have a set of policies, e.g. stating the in-

tended uses of personal information that is gathered from site visitors.

Using a P3P-enabled web browser, a P3P user can also define a set of

policies, e.g. stating what personal information can be seen by the sites

that they visit. During a site visit, the P3P functionality (expressed us-

ing XML — see section 2.5.6) compares what personal information the

user is willing to release with what information the website wishes to

obtain; if a mismatch occurs, P3P will inform the user and ask whether

to proceed to the site and risk releasing personal information in ways

at variance with the user’s policy.

The Electronic Privacy Information Centre (EPIC)7 has criticised P3P,

referring to the technology as a Pretty Poor Policy8. EPIC claims that

P3P software is too complex and difficult for an average person to un-

derstand, and that many Internet users are likely to be unable to use

the default P3P software or install additional P3P software. Further-

more, neither websites nor Internet users are obliged to use P3P.

• XACML. The eXtensible Access Control Markup Language (XACML)

[88] is a standardised means of expressing privacy policies in an (XML-

based) machine-readable language; such a language can be used by a

software system to enforce privacy policies in IT systems.

• EPAL. The Enterprise Privacy Authorization Language (EPAL) [199]

is very similar to XACML; however, it has not yet been standardised.

• WS-Privacy. Web Service Privacy (WS-Privacy) is a protocol under de-

velopment intended for use in communicating privacy policies in web

services. For example, it could be used to specify how privacy policy

information can be embedded in the SOAP envelope (see section 2.5.6)

of a web service message.

7http://epic.org/
8http://www.epic.org/reports/prettypoorprivacy.html

63

2. IDENTITY, PRIVACY AND SECURITY

2.4 Security Services and Mechanisms

2.4.1 Definitions

The term information security is defined in ISO/IEC 27000 [133] and ISO/IEC

27001 [134] as the ‘preservation of confidentiality, integrity and availability

of information; in addition, other properties such as authenticity, account-

ability, non-repudiation and reliability can also be involved’.

ISO/IEC 27000 [133] further states that information security ‘includes

three main dimensions: confidentiality, availability and integrity. With the

aim of ensuring sustained business success and continuity, and in min-

imising impacts, information security involves the application and manage-

ment of appropriate security measures that involves consideration of a wide

range of threats’.

According to the Title 44 of the United States Code [221], information se-

curity refers to the protection of information and information systems from

unauthorised access, use, disclosure, disruption, modification, or destruc-

tion in order to provide: integrity (including non-repudiation and authen-

ticity); confidentiality (including protecting personal privacy and propri-

etary information); and availability. Confidentiality, integrity, and availabil-

ity are commonly abbreviated to CIA (see Fig. 2.2).

We next list a number of key concepts.

Confidentiality refers to the concealment of information or resources [36],

such that they are only disclosed to authorised entities [134].

Integrity protects against improper modification or destruction of informa-

tion. It refers to the trustworthiness of data or resources [36].

Availability ensures that systems or resources are accessible and usable

upon demand by an authorised entity [134]. That is, it guarantees that

systems work promptly and that service is not denied to authorised

users [215].

64

2.4 SECURITY SERVICES AND MECHANISMS

Figure 2.2: CIA Triangle

Non-repudiation involves the generation of evidence regarding the occur-

rence of a claimed event or action and its originating entities; it can be

used to help to resolve disputes about the occurrence/non-occurrence

of the event or action, and the involvement of entities in the event [133].

Accountability enables an entity to be held accountable for its actions and

decisions [133].

Access control provides protection of system resources against unautho-

rised access [213]. A security policy (see below) regulates the use of

system resources, including the use of a communication resource, and

execution of a processing resource. Read and write operations on sys-

tem resources can also be access-controlled.

Security policies are statements of what is, and what is not, allowed [36].

A security policy is a set of rules and practices which specify/regu-

late how a system or an organisation provides security services to pro-

tect sensitive and critical system resources [213]. A security policy is

65

2. IDENTITY, PRIVACY AND SECURITY

enforced by security mechanisms (see section 2.4.2). Note that achiev-

ing overall/holistic security typically requires both technological secu-

rity (e.g. application, OS, and network security) and physical security,

as well as the deployment of appropriate security policies and proce-

dures [76].

Several of the concepts introduced above (e.g. data confidentiality, data

integrity, availability and non-repudiation) are sometimes referred to as se-

curity services [215]. Such services are intended to counter security attacks,

and are provided using security mechanisms, which we next describe.

2.4.2 Security Mechanisms

A security mechanism is any process designed to detect, prevent, or recover

from a security attack [215]. Security mechanisms are the means by which

security services (which include authentication, access control, data confi-

dentiality, data integrity, non-repudiation, and availability [215]) are pro-

vided [81]. We next outline the security mechanisms of relevance to this

thesis.

2.4.2.1 Symmetric Cryptography

Introduction

When symmetric cryptography [167, 215] is used to protect a transmitted

message, both the sender and recipient of the message must share the same

secret key. We next describe two widely used classes of symmetric crypto-

graphic mechanisms, namely symmetric encryption schemes and message

authentication code algorithms.

Symmetric Encryption

When using a symmetric encryption scheme, a plaintext message is en-

crypted to generate ciphertext using a secret key. The same key must be

66

2.4 SECURITY SERVICES AND MECHANISMS

subsequently used to decrypt the ciphertext to produce the original plain-

text. Two commonly used types of symmetric encryption algorithms are as

follows.

1. Block ciphers take as input a block of plaintext (typically of 64 or 128 bits

in length) and a key, and output a block of ciphertext. Such algorithms

can be used in a variety of ways, called modes of operation, e.g. CBC

(Cipher-block Chaining) and CTR (Counter), to encrypt messages of

arbitrary length. Examples of such ciphers include AES (Advanced

Encryption Standard) [179] and triple-DES [147], where DES stands

for Data Encryption Standard.

2. Stream ciphers encrypt data one bit at a time. RC4 [148] is a widely used

stream cipher.

Symmetric encryption algorithms are standardised in ISO/IEC 18033–

3 [130] and ISO/IEC 18033–4 [131]. Symmetric encryption mechanisms can

be used to preserve data confidentiality.

Message Authentication Codes

A message authentication code (MAC) [138] is a relatively short piece of data,

used to authenticate a message. A MAC function/algorithm takes as input

a secret key and a message (of arbitrary length), and produces a MAC (of

a fixed length). Examples of MAC functions include CBC-MAC [137] and

HMAC (Hashed-based MAC) [183]. MACs can be used to:

• protect data integrity, by allowing the verifier to detect changes in mes-

sage contents; and

• provide the data origin authentication service, as a valid MAC could

only have been generated by the party possessing the appropriate se-

cret key.

67

2. IDENTITY, PRIVACY AND SECURITY

Issues

One major practical issue with the deployment of symmetric cryptogra-

phy is establishing/distributing the necessary secret keys in a secure man-

ner.

2.4.2.2 Asymmetric Cryptography

Introduction

Asymmetric cryptographic schemes [167, 215] use keys in a somewhat dif-

ferent way to symmetric schemes. Instead of using secret keys (which must

be shared by senders and recipients of protected messages), every partici-

pating user must have a related pair of keys, as follows:

1. a public key, which is publicly available and is used to encrypt, or verify

a digital signature of, a message; and

2. a private key, which is kept secret and is used to decrypt, or digitally

sign, a message.

It must be computationally hard to deduce the private key from the public

key. We next outline two commonly used classes of asymmetric crypto-

graphic mechanisms, namely asymmetric encryption schemes and digital

signatures.

Asymmetric Encryption

In an asymmetric encryption scheme, a plaintext message is encrypted to

generate ciphertext using a public key. The corresponding private key must

subsequently be used to decrypt the ciphertext to produce the original plain-

text. For example, suppose entity B possesses a public-private key pair. En-

tity A can encrypt a message intended for entity B using B’s public key. On

receipt of the ciphertext, B can decrypt the ciphertext using its correspond-

ing private key.

68

2.4 SECURITY SERVICES AND MECHANISMS

Examples of asymmetric encryption algorithms include ElGamal [89],

and RSA (Rivest-Shamir-Adleman) [208]. Asymmetric encryption schemes

are standardised in ISO/IEC 18033-2 [129]. Asymmetric encryption mecha-

nisms can be used to preserve data confidentiality.

Digital Signatures

In a digital signature scheme, a message is signed using a private key (the

signing key); the signature can be subsequently verified using the corre-

sponding public key (the verification key). For example, suppose entity A

possesses a public-private signature key pair. Entity A can sign a message

using its private (signing) key. Entity B can then verify the digital signature

using A’s corresponding public (verification) key.

Examples of digital signature algorithms include the ElGamal signature

scheme [89] and the RSA signature scheme [208]. Digital signature tech-

niques are standardised in ISO/IEC 9796 [135, 136], and ISO/IEC 14888

[126, 127, 128]. Digital signatures can be used to provide data origin au-

thentication, data integrity, and non-repudiation services.

Issues

Establishing a secure binding between a public key and a user identifier

is a major issue when using asymmetric cryptography. Several approaches

have been designed to meet this requirement, notably public key infrastruc-

tures (see section 2.4.4.1), and webs of trust (e.g. as instantiated by Pretty

Good Privacy (PGP) [101]). In practice, asymmetric cryptography is less

efficient at processing large volumes of data than symmetric cryptography.

2.4.2.3 A Hybrid Approach

The two types of cryptography can be combined to take advantage of the

efficiency of symmetric cryptography and the convenience of public-key

cryptography (since a sender-receiver shared secret key is not required).

69

2. IDENTITY, PRIVACY AND SECURITY

Using hybrid encryption (or digital enveloping) [114], data can be encrypted

using a symmetric algorithm (for speed and size considerations [104]) em-

ploying a randomly selected key. The randomly chosen key must also be

encrypted using the public key of the receiver. To decrypt, the receiver uses

its private decryption key to recover the randomly chosen secret key, which

can then be used to decrypt the data. Certain identity management systems,

including CardSpace (see section 4.3), adopt this approach.

2.4.2.4 Hash Functions

According to Stallings [215], a ‘hash function, H, accepts a variable-length

block of data, M, as input and produces a fixed-size hash value, h = H(M)’.

A cryptographic hash function must satisfy the following properties, as out-

lined by Stallings [215].

• Preimage resistance (one-way property). For any given hash value h, it

is computationally infeasible to find a value y such that H(y) = h.

• Second preimage resistance. For any given block x, it is computationally

infeasible to find y 6= x with H(y) = H(x).

• Collision resistance. It is computationally infeasible to find any pair (x,

y) such that H(x) = H(y).

Cryptographic hash functions are an integral part of the computation of

most practical digital signature schemes; a hash function can also be used

to construct a MAC function, as in the HMAC scheme [183]. Examples of

hash functions include Whirlpool [124] and SHA-1, where SHA stands for

Secure Hash Algorithm [84, 124, 182]. Cryptographic hash functions are

standardised in ISO/IEC 10118 [122, 123, 124, 125].

2.4.2.5 Time-stamps

A time-stamp can be used to guarantee the freshness of a message. If used

as part of a security mechanism, the integrity of a time-stamp must be pro-

70

2.4 SECURITY SERVICES AND MECHANISMS

tected, e.g. by using cryptographic means. Two commonly discussed types

of time-stamps are given below.

1. Clock-based time-stamps consist of a time value, typically recorded from

the clock of the message sender.

2. Logical time-stamps are bilaterally managed sequence numbers.

The use of clock-based time-stamps in protocol messages requires the

communicating entities to be equipped with securely synchronised clocks.

To cope with the fact that clocks can only ever be perfectly synchronised for

an instant, and also with variable propagation delays, each entity must de-

fine a time-acceptance-window, so that a received message is only considered

fresh if and only if its time-stamp falls within this window.

2.4.2.6 Nonces

RFC 2828 [213] defines a nonce as ‘a random or non-repeating value that is

included in data exchanged by a protocol, usually for the purpose of guar-

anteeing liveness and thus detecting and protecting against replay attacks’.

A nonce (derived from number used once), which is typically randomly- or

pseudorandomly-chosen, is used to guarantee freshness and prevent replay

attacks on messages exchanged in a protocol. As introduced by Needham

and Schroeder in the late 1970s, a nonce is generated by one party (A say)

and sent to the other party (B say); B then includes it, or a function of it,

in messages sent back to A. This then enables A to verify whether or not a

received message is a response to a message it sent, and hence is fresh.

An alternative use of nonces is as follows. A sender includes a fresh

nonce in each message it sends, and a receiver keeps a log of all received

nonces. A replay attack is detected by the receiver if a message is received

containing a previously used nonce. A nonce of this latter type may also

be used in conjunction with a time-stamp (see section 2.4.2.5) to discard

responses (messages) that are too old, thus limiting the period of time for

71

2. IDENTITY, PRIVACY AND SECURITY

which received nonces must be kept; a number of identity management sys-

tems, including OpenID (see section 4.5), adopt such a technique.

2.4.3 User Authentication

2.4.3.1 Definition

ISO/IEC 27000 [133] states that authentication is the ‘provision of assurance

that a claimed characteristic of an entity is correct’. RFC 2828 [213] defines

authentication as ‘the process of verifying an identity claimed by or for a

system entity’.

An authentication process consists of two steps [213, 215]:

1. an identification step, in which an identifier (e.g. a username) is pre-

sented to a security system; and

2. a verification step, in which authentication data (e.g. a password), which

corroborates the entity-identifier binding, is presented.

Note that user authentication is distinct from message authentication, which

allows a communicating entity to verify that the contents of a received mes-

sage have not been modified and that the message source is authentic [215].

This thesis focuses on user authentication.

2.4.3.2 Authentication Methods

Techniques (or factors) [215] for authenticating a user’s identity can be di-

vided into the following categories.

1. Something the user knows. Examples include a password, a personal

identification number (PIN), or answers to a set of questions.

2. Something the user possesses. Examples include bank cards, smart cards,

and one-time password (OTP) generating tokens.

72

2.4 SECURITY SERVICES AND MECHANISMS

3. Something the user is or does. Most examples of this approach are com-

monly associated with biometrics, and can be divided into two groups,

as follows.

a) Static biometrics (something the user is). Examples include recogni-

tion by fingerprint, retina or iris pattern, and face.

b) Dynamic biometrics (something the user does). Examples include rec-

ognition by handwriting, manual signature, and voice patterns.

Techniques for user authentication can be used alone or in combination

to enhance the security of the authentication process. If two factors are used,

then this is referred to as two-factor authentication [17, 224]. A common exam-

ple of two-factor authentication is the use of a bank card and a PIN. Multi-

factor authentication is a generic term used to describe the case where two or

more authentication factors are used.

Although the combination of authentication methods/factors can help to

enhance security, it does not make the systems employing them absolutely

secure. Indeed, the three categories listed above have been facetiously de-

scribed as something the user forgets, something the user loses and something the

user ceases to be [189].

2.4.3.3 Assurance Level

An assurance level is a defined level of trust associated with a credential [102].

Assurance levels can be specified in terms of the technology and/or pro-

cesses used, and/or policy and practice statements governing the opera-

tional environment. In the context of user authentication, an assurance level

identifies the degree of confidence:

• in the vetting process employed to establish the identity of the entity

to whom a credential was issued; and

73

2. IDENTITY, PRIVACY AND SECURITY

• that the entity using a credential is the same entity to which the cre-

dential was originally issued [37].

That is, an authenticating party’s level of assurance in a user’s claimed

identity depends on the authentication mechanism and the initial registra-

tion process [64]. An authenticator could therefore choose to give the same

user differing access privileges depending on its confidence in the identity

provider’s registration and authentication processes [21].

In principle, the required level of assurance [102] should correspond to

the level of risks involved with the requested access to the protected re-

sources [228]; that is, the higher the risk the greater the level of assurance

should be.

NIST provides guidance [48] defining 4 assurance levels, ranging from

low to very high. We next list these levels.

1. Level 1: Low. This level provides a relatively low level of confidence

in the asserted identity. It does not require a proof of identity during

the registration process, and does not require the use of cryptographic

methods. Use of level 1 is appropriate when relatively minor negative

consequences would result from a flawed authentication technique,

and the authentication mechanism used provides minimal assurance.

An example use case is where a claimant presents a self-registered user

ID or PIN to create a customised web page or to access online materi-

als, such as news or product documentation [32, 48, 102].

2. Level 2: Moderate. This level provides a moderate degree of con-

fidence in the asserted identity. This level requires a more stringent

identity proof than required by level 1, and the authentication mech-

anisms employed at level 2 must also be more secure; level 2 requires

at least single-factor authentication (see section 2.4.3.2). Authentica-

tion failure here would result in moderate risks. An example use case

is where a beneficiary updates an address of record through an insur-

74

2.4 SECURITY SERVICES AND MECHANISMS

ance provider’s website. Such a website would require authentication

to ensure that the address being updated is the correct beneficiary’s

address. If an incorrect address is provided, official documents (e.g.

payment amounts, account status, etc.) might be sent to this address,

leading to a moderate risk of unauthorised release of personally sensi-

tive data [32, 48, 102].

3. Level 3: High. This level provides a high level of confidence in the as-

serted identity. It requires verification of identifying materials and in-

formation during the identity proof process. It mandates multi-factor

authentication; authentication must be based on proof-of-possession

of a key or OTP using a cryptographic protocol. Tokens can be imple-

mented in software or hardware. Use of this level is appropriate when

a substantial (or high) risk is associated with erroneous authentication.

An example use case is where a patent attorney electronically submits

confidential patent information to a patent authority; improper disclo-

sure would give competitors a competitive advantage [32, 48, 102].

4. Level 4: Very High. This level provides a very high degree of con-

fidence in the asserted identity, producing the highest practical level

of authentication assurance based on proof-of-possession of a key us-

ing a cryptographic protocol. Level 4 is similar to level 3, except that

only hardware-based cryptographic tokens are permitted. This level

requires high levels of cryptographic assurance for all elements of cre-

dential and token management; all sensitive data transfers must be

cryptographically authenticated using keys bound to the authentica-

tion process. An example scenario of level 4 transaction is the approval

by an executive of a transfer of funds exceeding one million US dollars

from an organisation’s bank account [102].

75

2. IDENTITY, PRIVACY AND SECURITY

2.4.4 Key Management Techniques

When using cryptography of any kind, key management is of great signifi-

cance. Two widely discussed techniques for key management are described

below.

2.4.4.1 Public Key Infrastructures

RFC 2828 [213] states that a public key infrastructure (PKI) is ‘the set of hard-

ware, software, people, policies, and procedures needed to create, manage,

store, distribute, and revoke digital certificates based on asymmetric cryp-

tography’.

In a PKI [3], a trusted third party (TTP) known as a certification authority

(CA) signs and publishes public-key certificates, i.e. signed data structures

containing (amongst other things) a public key and an identifier. Such a

certificate binds a user identity to a cryptographic public key. A widely used

format for such certificates is defined in X.509 [139]. In addition to issuing

certificates, a CA typically also regularly issues certificate revocation lists

(CRLs), containing identifiers of certificates that are no longer valid. A CRL

can be used by a verifier to check the revocation status of a certificate issued

by the corresponding CA.

A CA might also support a variety of other administrative functions, al-

though some such functions might be delegated to one or more registration

authorities (RAs).

One particularly important such function is user registration. User reg-

istration requires that the identity of an applicant for a public-key certificate

is verified before the CA issues a certificate for that user’s public key. The

procedures for identity verification vary from one CA to another, and deter-

mine the level of assurance (see section 2.4.3.3) in the public key-applicant

binding guaranteed by a certificate issued by that CA.

Extended validation (EV) certificates have been defined. To obtain such

76

2.4 SECURITY SERVICES AND MECHANISMS

a certificate, an applicant must go through additional validation steps (e.g.

proving the physical location of the applicant) during the validation pro-

cess. Some web browsers (e.g. Internet Explorer from version 7 onwards)

show a green address bar if an SSL connection has been established using

an EV certificate [34].

2.4.4.2 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange (DHKE) protocol [206] enables two en-

tities to securely establish a shared secret key using an unsecured chan-

nel. The shared key can subsequently be used in symmetric cryptographic

mechanisms (see section 2.4.2.1). The protocol objectives are accomplished

even if all the messages exchanged during a protocol run are intercepted;

however, the protocol is vulnerable to active attacks, including man-in-the-

middle (MITM) attacks. The protocol does not require the communicating

entities to have prior knowledge of each other. The security of the scheme

rests on the difficulty of the discrete logarithm problem [215]. The protocol

is used with some identity management systems, e.g. in OpenID; it is also

employed in a number of commercial products.

We next describe how the DHKE protocol allows two users (referred to

below as Alice and Bob) to securely establish a shared key over a non-secure

channel. As a prerequisite for use of the protocol, Alice and Bob must agree

on a large prime p and an element i of multiplicative order q modulo p,

where q is a large prime dividing p–1 [215].

• Alice→ Bob: A = ia mod p. Alice (independently) selects a secret ran-

dom integer a, and sends Bob: A = ia mod p.

• Bob→Alice: B = ib mod p. Bob (independently) selects a secret random

integer b, and sends Alice: B = ib mod p.

• Alice: computes the shared key as Ba mod p.

77

2. IDENTITY, PRIVACY AND SECURITY

• Bob: computes the shared key as Ab mod p.

Note that if p and i are chosen appropriately then an adversary cannot de-

termine the shared key even if all the exchanged messages are public.

2.5 Protocols and Standards

We conclude this chapter by introducing a number of technologies, proto-

cols and standards of importance in this thesis.

2.5.1 HTML

2.5.1.1 Overview

HTML (HyperText Markup Language) is a markup language involving a

predefined set of markup tags. Web pages are typically written in HTML,

and transferred from servers to browsers using HTTP (see section 2.5.3).

According to the HTML 4.01 specification [202], ‘HTML gives authors the

means to:

• publish online documents with headings, text, tables, lists, photos, etc.;

• retrieve online information via hypertext links, at the click of a button;

• design forms for conducting transactions with remote services, for use

in searching for information, making reservations, ordering products,

etc.; and

• include spread-sheets, video clips, sound clips, and other applications

directly in their documents.’

A web browser (such as Internet Explorer or Firefox) uses HTML tags

to interpret the content of an HTML document, and display it as a web

page. HTML enables objects and images to be embedded in an HTML web

page, and can be used to create interactive forms. Scripting languages, such

as JavaScript [180], can be embedded in HTML documents; such scripts

78

2.5 PROTOCOLS AND STANDARDS

affect the behaviour of HTML web pages when displayed by a browser.

HTML [201, 202] is maintained by W3C. HTML 5 [87] is the fifth revision

of the HTML standard; as of February 2012, HTML 5 is still under develop-

ment.

2.5.1.2 HTML Forms

According to the HTML 4.01 specification [202], an HTML form is ‘a section

of a document containing normal content, markup, special elements called

controls (checkboxes, radio buttons, menus, etc.), and labels on those con-

trols. Users generally complete a form by modifying its controls (entering

text, selecting menu items, etc.), before submitting the form to an agent for

processing (e.g., to a web server, mail server, etc.)’.

HTML forms are used to pass data, including user input, to a web server.

The input element of an HTML form (see Listing 2.1) can be of type: text

field, password, checkbox, radio button, submit button, etc.

The HTML 4.01 specification [202] states that the form element acts as a

container for controls, and specifies a number of things including:

• the program that will handle the completed and submitted form (spec-

ified using the action attribute9);

• the character encoding that must be accepted by the server in order to

handle this form (specified using the accept-charset attribute); and

• the method by which input data will be sent to the server (specified

using the method attribute).

The method attribute is used to specify which HTTP method is used to

submit the form data set (HTTP methods are described in section 2.5.3.4).

Possible values for the method attribute are:

9Note that the processing program or agent must be able to parse name-value pairs in order to
make use of them.

79

2. IDENTITY, PRIVACY AND SECURITY

• GET (the default method), where the form data set is appended as a

query string (see section 2.5.3.7) to the Uniform Resource Identifier

(URI) specified by the action attribute, and this new URI is sent to the

processing agent or program; and

• POST, where the form data set is included in the body of the form and

sent to the processing agent or program.

Note that the GET method should not be used to transfer sensitive data

(such as passwords) to a server, since the data will be displayed in the

browser address bar and possibly also stored in server logs. The length

of the data string that can be sent is also restricted when using the GET

method (see also section 2.5.3.8). By contrast, the POST method allows for

data strings of any length and type to be sent to a server, and the data is not

displayed in the browser address bar. Listing 2.1 shows a piece of HTML

which produces the username-password form shown in Fig. 2.3.

Listing 2.1: A Simple Username-password HTML Form (HTML Code)

<html>

<body>

<form act ion = ‘ ht tp ://www. website . com/ProcessingProgram .

php ’ method= ‘POST’ accept−charse t = ‘ISO−8859−1’>

Username : <input type = ‘ tex t ’ name= ‘username ’ />

Password : <input type = ‘ password ’ name= ‘ password ’ />

<input type = ‘ submit ’ name= ‘ submit ‘ value = ‘

Submit ’ />

</form>

</body>

</html>

80

2.5 PROTOCOLS AND STANDARDS

Figure 2.3: A Simple Username-password HTML Form

2.5.2 Document Object Model (DOM)

The DOM is a W3C-standardised and language-independent means of de-

riving a hierarchical object model (referred to as the DOM from the structure

of a document). An application programming interface (API) is also defined

that allows scripting languages, such as JavaScript [180], to inspect and ma-

nipulate a parsed document within a browser [115]. Standards defined in

the DOM include:

• HTML DOM, which is a standard model for HTML documents;

• XML DOM, which is a standard model for XML documents; and

• core DOM, which is a standard model for any structured document.

The DOM defines the objects and properties of all document elements

and methods that can be used to access them. A client-side scripting lan-

guage can use the DOM to read and modify the contents of a web page

or completely alter its appearance. Additionally, a scripting language can

interact with the browser’s DOM event model. For example, a script can

receive and react to user-originated events, such as mouse clicks and key

presses, and can also create and dispatch events, such as simulating a mouse

click on a button in an HTML document [76].

When using the DOM, a script can reference the document objects, such

as forms, links, images, etc., via a hierarchical name that starts with the root

document object. A hierarchical name might be the actual element name

or it could be the sequential index of the traversed element. For exam-

ple, the script could access an input element in an HTML form as either

81

2. IDENTITY, PRIVACY AND SECURITY

document.formName.inputName or document.forms[sequential index (e.g. 0)].ele-

ments[sequential index (e.g. 0)].

In many of the proof-of-concept prototypes described in chapters 6 to 13

of this thesis, the HTML DOM is used to allow a scripting language to in-

spect and manipulate HTML elements in a web page; the XML DOM is also

employed to enable a script to parse and manipulate XML-based security

tokens.

2.5.3 HTTP

Given the central role it plays in this thesis, we next give an introduction to

HTTP (Hypertext Transfer Protocol). HTTP is the protocol which underlies

the web, since it is used by web browsers to communicate with web servers,

and by web servers to transfer HTML and/or other resources to browsers.

2.5.3.1 Definition

HTTP is ‘an application-level protocol for distributed, collaborative, hyper-

media information systems’ [91]. According to RFC 2616 [91], one feature

of HTTP is ‘the typing and negotiation of data representation, allowing sys-

tems to be built independently of the data being transferred’.

2.5.3.2 Roles (Client, Server)

HTTP is a request-response protocol, enabling a client to request and receive

data from a server.

• The client is typically a program running on a user platform, used to

send requests to servers and receive responses from them. It processes

protocol messages on behalf of the user, and prompts the user to make

decisions, provide secrets, etc. One particularly important example of

a client, also known as a user agent, is a web browser, such as Internet

Explorer, Firefox, etc.

82

2.5 PROTOCOLS AND STANDARDS

• The server is a program, typically running on a remote machine, which

can provide resources (such as HTML files), store content, or perform

other functions. In this thesis we are specifically interested in web

servers.

2.5.3.3 Requests and Responses

A client (web browser) submits an HTTP request message to a web server,

which returns a response message to the client; such a response message

contains information about the completion status of the request (i.e. whether

or not it was successfully completed), and may also contain content re-

quested by the client (see section 2.5.3.4 below). HTTP resources are iden-

tified and located on the Internet using URIs or, more specifically, URLs

(Uniform Resource Locators) employing the HTTP or HTTPS schemes.

2.5.3.4 Messages

RFC 2616 [91] specifies that HTTP request and response messages consist

of:

1. a start-line, which may be a request or a status line;

2. zero or more header fields, also known as headers, which are colon-

separated, name-value pairs in clear-text string format;

3. an empty line, indicating the end of the header fields; and

4. an optional message-body (e.g. an HTTP response message may in-

clude HTML content).

The start-line and headers must end with a carriage return followed by a

line feed (commonly written as CRLF).

Every HTTP request contains an HTTP method, used to indicate the op-

eration that is being requested by the client. Examples of HTTP methods

include:

83

2. IDENTITY, PRIVACY AND SECURITY

• GET, which should be used to retrieve data from the server (so that the

client can display a representation of the retrieved data); and

• POST, which is typically used to submit data to the server to be pro-

cessed (see also section 2.5.1.2).

Table 2.1 shows the structure of HTTP request and response messages.

Table 2.1: HTTP Request and Response Messages

HTTP Request Message HTTP Response Message
Start-line Request line, e.g. GET The-

sis.html, which requests a re-
source called Thesis.html from
the server.

Status line, e.g. HTTP/1.1 200
OK, which indicates that the
client’s request has succeeded.

Headers E.g. Accept-Language: en, which
indicates the acceptable lan-
guage(s) for the response (En-
glish in this case).

E.g. Content-Type: text/html,
which indicates the content
type.

Empty Line CRLF CRLF
Optional
Message
Body

E.g. HTML content

Example GET Thesis.html HTTP/1.1
Accept-Language: en
Host: www.website.com

HTTP/1.1 200 OK
Date: Mon, 5 May 2012 22:38:34
Content-Type: text/html
Content-Length: 1354

<html>
<body>
<h1>PhD Thesis</h1>

This thesis is . . .
. . .
. . .
</body>
</html>

2.5.3.5 HTTP and State

HTTP is a stateless protocol, i.e. it does not require the server to retain infor-

mation or status about a client between requests. This causes problems in

84

2.5 PROTOCOLS AND STANDARDS

applications where session state is needed. Common methods for rectifying

this problem to enable state to be included in HTTP include the following.

• HTTP cookies are used by a server to send state information to a client

(browser); they are stored by the client, and returned by the client to

the server on the next occasion that an HTTP request is sent to that

server [29] (see also section 2.3.4.1).

• Hidden (HTML) form variables are HTML input tags of type hidden (e.g.

<input type=‘hidden’ name=‘username’ value=‘PUAI003’ />).

• URL-encoded parameters are described in section 2.5.3.7 below.

2.5.3.6 Redirects

An HTTP redirect is a response message containing a status code that in-

structs a UA (a web browser) to go to another location. An annotation is

included in the message to describe the reason for the redirect. HTTP de-

fines a number of status codes, including 300 (multiple choices), 301 (moved

permanently), and 307 (temporary redirect). All these status codes require

that the URL of the redirect target be given in the location header of the

HTTP message response. Server-side or client-side scripts can redirect the

UA from one site to another, either manually, e.g. via a clickable link or

button, or automatically, e.g. using JavaScript. However, such redirects can

pose security and privacy risks (see sections 3.5.1 and 3.7.3).

2.5.3.7 Query Strings

As mentioned in section 2.5.3.5, one means of passing data (including state)

from a client to a server is to embed it in the URL. A query string, or a URL-

encoded parameter, is the part of a URL that contains data to be passed to

a web server. A question mark (?) is used to separate the query string from

the rest of the URL [31]. A redirect URL may contain query strings, thereby

85

2. IDENTITY, PRIVACY AND SECURITY

allowing a website in one domain to transfer arbitrary data to another site

in a different domain.

An HTTP query string can be composed of a series of field-value pairs,

separated by the ampersand (&) or the semicolon (;), e.g. http://www.

website.com/index.php?SessionID=UniqueSessionCode&Stud-

ent=Haitham&Supervisor=Chris. When a query string is employed

to transfer a form data set using the GET method (see section 2.5.1.2), it

contains a field-value pair for each field in the form (including the hidden

fields). That is, form fields are included in the query string when the (GET)

HTML form is submitted. In order for some characters, such as the space

character, to be added to a URL, they must first be converted using URL

encoding [31]. For example, the space character is encoded as the plus (+)

sign.

An HTTP resource (identified by a URL) requested by client from a web

server may be a plain file (such as an HTML file) or a program. If the re-

source is a:

• file, then any query string contained in the corresponding URL is ig-

nored; and

• program, then the program may ignore part or all of the query string.

However, the program can be coded to make use of query strings.

Note that data passed via query strings or HTML forms must be sani-

tised by the processing program or agent. This is to protect against a wide

range of attacks, including malicious code or SQL injections [76].

2.5.3.8 Issues With Query Strings

Regardless of whether or not it contains a query string, the full URL includ-

ing any query string is stored in the server log files. Query strings can there-

fore pose security and/or privacy issues, e.g. they can be used to track users

in a manner similar to that posed by HTTP cookies (see section 2.3.4.1).

86

2.5 PROTOCOLS AND STANDARDS

When a user requests a web page from a web server, a unique identifier

can be appended as a query string10 to the URLs of all links the page con-

tains. If the user follows one of these links, then the request to the server will

include this unique identifier, thereby making it possible to establish that all

these pages have been viewed by the same user, i.e. multiple requests may

be linked and perhaps traced to the user responsible. Unlike HTTP cookies,

which can be disabled, an end user cannot disable query strings, and hence

query string-based tracking should work in most situations. Whereas query

strings form a part of the URL, and are therefore included if the user saves

or sends the URL to another user, cookies are not saved or stored with the

URL. Nonetheless, as stated previously, cookies can survive across different

browsing sessions (see section 2.3.4.1).

Possible limits on the length of a URL can also pose problems with the

use of URL query strings. Some older servers may impose restrictions on

the URL length; indeed the HTTP specification [91], whilst not specifying a

maximum URL or path length, states that servers should be cautious about

depending on URI lengths greater than 255 bytes, because they may not be

properly supported by some older client or proxy implementations. Addi-

tionally, the HTML 3 specification [201] states that the attribute value, e.g.

a URL set as the value of the href attribute in a hyperlink tag, is limited to

1024 characters11; however, the HTML 4 specifications [202] omit this re-

striction12. According to the Microsoft help and support centre, Microsoft

Internet Explorer supports a maximum URL length of 2083 characters13.

2.5.4 SSL/TLS

The SSL (Secure Sockets Layer) protocol and its successor, TLS (Transport

Layer Security), provide a secure communication channel above the IP layer
10Note that the addition of such a query string does not change the way the page is displayed to

the user.
11http://www.w3.org/MarkUp/html3/HTMLandSGML.html
12http://www.w3.org/TR/html4/intro/sgmltut.html#h-3.2.2
13http://support.microsoft.com/kb/208427

87

2. IDENTITY, PRIVACY AND SECURITY

and below application layer protocols such as HTTP. SSL was produced by

Netscape14, and was first published in 1995 [111]. A modified version of the

proprietary SSL protocol was published in 1999 by the Internet Engineering

Task Force (IETF) under the name TLS; TLS 1.0 [82] essentially functions as

version 3.1 of SSL. A revised version of TLS, version 1.2, has recently been

published [83]. SSL/TLS has been widely discussed in the literature [77,

214, 217].

SSL/TLS enables client-server applications to exchange data across a

network in a way that provides reliable data confidentiality and integrity.

To achieve this, SSL/TLS encrypts and MAC-protects segments of network

connections above the transport layer, to provide confidentiality and in-

tegrity services.

2.5.5 HTTPS

HTTPS (Hypertext Transfer Protocol Secure) [207] is a combination of HTTP

and SSL/TLS [215]. It provides an encrypted and integrity-protected client-

server communication channel, building on an initial authentication pro-

cess. This initial authentication can, in principle, be mutual, but in practice

the server is typically authenticated to the browser (i.e. the client) but not

vice versa. HTTPS is supported by modern browsers, including Internet Ex-

plorer, Firefox, Safari, and Chrome. Note that the trust inherent in HTTPS

is based on the CA public keys that come pre-installed in the browser soft-

ware, which are used to verify certificates provided by web servers.

If HTTPS is used, then the HTTP protocol elements are encrypted for

transmission, including [215]:

1. the URL of the requested document;

2. the contents of the document;

3. the contents of HTML forms (as completed by a user);
14http://netscape.aol.com/

88

2.5 PROTOCOLS AND STANDARDS

4. the cookies exchanged between a browser and a server; and

5. the contents of the HTTP header.

2.5.6 Web Service Protocols

Web service protocols are open, XML-based, specifications, which are often

referred to collectively as WS-* (since many of them have a name beginning

with WS-). WS-* protocols15 are designed to enable interoperable, cross-

platform software communication. We outline a number of technologies

and protocols associated with web service protocols, relevant to this thesis.

XML (eXtensible Markup Language) is a self-descriptive, platform-indepe-

ndent, markup language. It resembles a general-purpose version of

HTML, except that whereas HTML tags serve to instruct web browsers

how to render a web page, XML is designed to represent, transport

and/or store a range of types of structured data. XML is platform-

agnostic, and is readable by machines and also by humans, where

size and complexity permits. XML is specified in a W3C recommen-

dation [44], the most recent version of which was published in 2008.

SOAP is a standardised XML-based protocol [105], defining the format of

web service messages and specifying how such messages should be

exchanged between end points. A typical, simple SOAP16 message

is enclosed inside an envelope tag, which contains a header and a body

element [181].

WSDL (Web Services Description17 Language) [38, 69, 70] is an XML-based

language which can be used to describe the functionality offered by

a web service. Such a description specifies how a web service should

15http://en.wikipedia.org/wiki/List_of_Web_service_specifications
16SOAP was originally intended as an acronym for Simple Object Access Protocol; however, the

current specification [105] explicitly drops this acronym.
17Note that the acronym has changed from version 1.1, where the D stood for Definition.

89

2. IDENTITY, PRIVACY AND SECURITY

be called, what parameters it expects, and what data structures it re-

turns [181].

UDDI (Universal Description, Discovery and Integration18) is an XML-ba-

sed service enabling businesses worldwide to list themselves on the

Internet. It also provides a mechanism to register and locate web ser-

vice applications. Using UDDI, businesses can publish service listings

online, thereby discovering each other. UDDI is designed to be in-

terrogated by SOAP messages and to provide access to WSDL doc-

uments describing how to interact with the web services listed in a

directory [181].

Fig. 2.4 (due to Malik and Tomlinson [162]) shows the relationships between

web services technologies.

Figure 2.4: Web Services Technologies

We conclude this brief discussion of web services by listing the WS-*

standards of greatest relevance to this thesis.

WS-Policy/WS-SecurityPolicy is used to describe security policies [27, 80].

Note that a website can alternatively describe its policy in HTML or

XHTML (eXtensible Hyper Text Markup Language) [23].
18http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

90

2.5 PROTOCOLS AND STANDARDS

WS-MetadataExchange is used to fetch security policies and exchange ser-

vice description metadata over the Internet [28]. Note that a website

can transmit its security policy using HTTP/S.

WS-Trust is used to acquire security tokens (e.g. SAML tokens) from iden-

tity providers [24].

WS-Security is used to securely deliver security tokens to service providers

[176]. Note that HTTP/S can also be used.

2.5.7 SAML

SAML (Security Assertion Markup Language) is an XML-based standard

for exchanging identity-related information across the Internet. The SAML

specifications cover four major elements.

SAML assertions are XML data structures containing cryptographically-

protected identity information. An assertion may contain three types

of statement:

1. an authentication statement, asserting that a user was authenticated

at a particular time using a specific authentication method;

2. an attribute statement, asserting that a user is associated with cer-

tain attributes; and

3. an authorisation decision statement, asserting that a particular user

is permitted to perform a certain action on a specific resource.

SAML protocols define data structures for sending SAML requests and re-

turning assertions.

SAML bindings map SAML protocol messages onto standard communica-

tion protocols, e.g. HTTP.

SAML profiles describe how SAML assertions, protocols and bindings are

combined together to support a particular use case.

91

2. IDENTITY, PRIVACY AND SECURITY

Each of the elements listed above builds on the elements earlier in the list.

For example, SAML assertions can be used without the protocol profiles and

bindings, but not vice versa [21].

SAML 1.0 was first adopted as an OASIS standard in 2002; a minor revi-

sion, SAML 1.1 [161], was formally adopted in 2003. A major revision led to

SAML 2.0 [59], which became a standard in 2005. The differences19 between

version 1.1 and 2.0 are significant, and SAML assertions of the two types are

incompatible.

SAML 2.0 incorporates features from SAML 1.1, Liberty ID-FF 1.2 (see

section 4.7), Shibboleth 1.3 (see section 4.8), and other proprietary exten-

sions. However, although ID-FF 1.2 was contributed to OASIS and used

as input to the definition of SAML 2.0, there are a number of important

differences20 between SAML 2.0 and ID-FF 1.2; in particular, the two speci-

fications, despite their common roots, are incompatible.

Finally, note that, although the specifications allow SAML to be used as a

protocol to exchange identity data between entities, it has been widely used

by identity management systems as a token format and not as a full-fledged

identity management system [34]. In this thesis, unless otherwise stated, the

term SAML refers to a token format.

19https://spaces.internet2.edu/display/SHIB/SAMLDiffs
20http://saml.xml.org/differences-between-saml-v2-0-and-liberty-id-ff-1-2

and https://wiki.shibboleth.net/confluence/display/SHIB/SAMLLibertyDiffs

92

Chapter 3

Identity Management

3.1 Introduction

This chapter provides an introduction to identity management covering re-

lated topics. The chapter is organised as follows. Section 3.2 provides a

definition of identity management, and, in section 3.3, we consider why it is

needed. Section 3.4 gives an abstract model for identity management. Sec-

tion 3.5 describes the supporting infrastructures, and section 3.6 addresses

single sign on. In section 3.7, we consider a range of possible properties of

identity management systems. Finally, section 3.8 gives Cameron’s laws of

identity.

3.2 Definition

In a recent draft of ITU-T recommendation Y.2720 [121] identity management

is defined as ‘a set of functions and capabilities (e.g. administration, man-

agement and maintenance, discovery, communication exchanges, correla-

tion and binding, policy enforcement, authentication and assertions) used

for:

• assurance of identity data (e.g. identifiers, credentials, attributes);

• assurance of the identity of an entity (e.g. users/subscribers, groups,

user devices, organisations, network and service providers, network

elements and objects, and virtual objects); and

• enabling business and security applications’.

93

3. IDENTITY MANAGEMENT

We adopt this definition throughout this thesis.

Identity management encompasses the complete lifecycle of identity in-

formation from initial enrolment to archiving or deletion [132], and includes

governance, policies, processes, data, technologies, and standards. Typical

issues deemed to be part of identity management include:

• application(s) that implement an identity store;

• authentication of the identity of an entity;

• the provision of credentials and services to support authentication of

an entity;

• establishment of the provenance of identity information;

• establishment of the link between identity information and an entity;

• maintenance of identity information;

• protection of the integrity of identity information; and

• mitigation of risks applying to identity information (e.g. theft or mis-

use) [132].

For an organisation, identity management forms a basis for the secure

management of interactions with its employees and/or clients. For an in-

dividual, identity management can be used to help improve security and

reduce the risk of privacy threats [132]. However, the implementation of

identity management has the potential to raise serious privacy concerns for

end users, because it involves the storage, processing, and transformation

of identity information (including PII — see section 2.3.2.1). In addition,

requirements for identity management and privacy may conflict; although

protecting privacy requires that the amount of identity information held by

a third party is minimised (see section 2.3.5), this may adversely affect the

level of assurance regarding the accuracy of a claimed identity [21].

94

3.3 NEED FOR IDENTITY MANAGEMENT

3.3 Need for Identity Management

As the number of on-line services requiring user authentication continues

to grow, so does the number of (user-possessed) digital identities. Man-

agement of large numbers of such identities by a user gives rise to major

usability and security issues. These issues appear likely to have contributed

to the recent rapid growth in identity-oriented attacks, including phishing

and pharming. To help address these issues, a range of identity manage-

ment systems have been proposed. These systems are designed to simplify

and increase the security of the management of user identities, thereby pro-

tecting against potential identity attacks.

Given the growing popularity of the web, this thesis focuses on web-

based identity management systems. Such systems use the World Wide

Web and WS-* protocols (see section 2.5.6) to communicate between the in-

volved parties, and have been developed to help users manage their digital

identities on the web [5, 21, 39, 145].

3.4 Abstract Model

The majority of proposed identity management systems share a number of

technical features and have similar objectives. Architectures for identity

management typically involve the following roles, as illustrated in Fig. 3.1.

1. The user wishes to access a resource offered by a service provider (see

below). The user is also known as the principal. The user employs a user

agent (UA), i.e. software (such as a web browser) used to send requests

to identity providers and/or service providers (see below) and receive

responses from them (see also section 2.5.3.2).

2. The identity provider (IdP)1 issues an assertion token (i.e. a data struc-

ture containing statements about the user) to a user. The IdP is some-
1The term identity provider is occasionally abbreviated to IP [34]; however, we do not adopt this

abbreviation since IP is a widely-used acronym for the Internet Protocol [184].

95

3. IDENTITY MANAGEMENT

times referred to as an identity authority.

3. The service provider (SP) consumes an IdP-issued assertion token in or-

der to make an authentication and/or authorisation decision. Since the

SP relies on the correctness of the provided assertion token, it is also re-

ferred to as a relying party (RP), and we use this term throughout. The

RP thus offloads the burden of user authentication to the IdP [152].

Web-based identity management systems typically employ the follow-

ing sequence of interactions (see Fig. 3.1).

1. A user employs a UA to access an RP-protected resource. Before grant-

ing access, the RP indicates to the user that it requires an assertion to-

ken issued by an IdP trusted by the RP.

2. An IdP with which the user has a relationship is asked to supply an

assertion token meeting the requirements of the RP.

3. If necessary2, the IdP authenticates the user, and, if successful, issues

an assertion token vouching for the user’s identity.

4. The user presents the IdP-issued token to the RP, and the RP relies on

the token to decide whether or not to grant access to the requested

resource.

3.5 Supporting Infrastructure

We next consider certain properties of the infrastructure required to support

the sequence of interactions identified immediately above.

2Unless re-authentication is explicitly requested by the RP, user authentication may be unneces-
sary if an authenticated IdP-user session already exists.

96

3.5 SUPPORTING INFRASTRUCTURE

IdP

SP

User

Authenticate

Access Resource

Tr
us

t

Figure 3.1: Identity Management Model

3.5.1 IdP-RP Communications

As stated previously, we assume that the involved parties (i.e. the RP, IdP

and UA) intercommunicate using web protocols. An RP and IdP can inter-

communicate in one of two main ways, as follows.

1. Direct communication, also referred to as back-channel communication, in-

volves a direct communication channel between an RP and an IdP, i.e.

communications do not pass via the user platform (or the UA). In some

identity management systems an assertion token is passed from the

IdP to the RP via such a back-channel; in such cases a temporary ID

or a pseudonym is sometimes used to refer to the user instead of an

identifiable user attribute, such as an email address. Such a technique

helps to preserve user privacy.

If the back-channel between the IdP and RP is SSL/TLS-protected then

(depending on the associated security policy) it may be unnecessary

97

3. IDENTITY MANAGEMENT

for the IdP to independently encrypt the assertion token. This is be-

cause an SSL/TLS channel provides data integrity and confidentiality

services (see sections 2.5.4 and 2.5.5).

2. UA-managed communication describes the case where the UA acts as a

relay for communications between an RP and an IdP. There are var-

ious ways in which this could happen; we outline two of particular

importance in identity management systems.

a) In the case where the UA is a web browser with no special func-

tionality added to support identity management, HTTP redirec-

tion (see section 2.5.3.6) can be used. Such a UA is sometimes

referred to as a passive UA or passive client [25, 26].

b) Some identity management systems require the user platform to

be equipped with a special client component to support IdP-RP

communications, thereby extending the functionality of an ordi-

nary UA. Such a UA is sometimes referred to as an active UA or

active client [25, 26].

The active client approach has a number of advantages, including the

following.

• The client component could provide discovery services (see sec-

tion 3.5.2 below).

• The client component could help to mitigate phishing attacks, to

which the redirection approach is prone (see section 1.2.3).

• If an assertion token is passed from the IdP to the RP via the UA,

then certain identity management systems enable the UA to pro-

vide proof-of-rightful-possession services, also known as subject con-

firmation or proof-key methods. These allow the UA (on behalf of

the user) to prove its rightful possession of the assertion token to

98

3.5 SUPPORTING INFRASTRUCTURE

the RP; this helps to mitigate a wide range of attacks including

user-impersonation attacks.

• Some identity management systems use the client component to

provide a consistent user experience, and/or to obtain user con-

sent to the use of a particular IdP and/or to the transfer of an

assertion token to the RP.

It is often necessary to explicitly protect the confidentiality and/or in-

tegrity of assertion tokens whilst in transit between the IdP and the RP via

the UA. Integrity protection can be achieved either by computing a MAC

using a shared secret key, or by the generation of a signature by the IdP us-

ing a dedicated IdP private pair. Similarly, confidentiality can be protected

by encryption, e.g. using an asymmetric algorithm in conjunction with the

public key of the RP. End-to-end protection of this type has value over and

above the protection provided by SSL/TLS sessions, since it prevents ma-

nipulation or eavesdropping by a malicious user platform.

3.5.2 Discovery

The discovery process, also known as discovery of identity source [21, 118], is

concerned with selecting and locating the IdP that is to be asked to provide

an assertion token. There are two main approaches to providing a discovery

service.

1. In a server-based process, the RP is responsible for performing discovery.

Such an approach is typically used when there is no additional client

component installed on the user platform, i.e. the passive client case.

However, server-based discovery is susceptible to attacks in which a

malicious RP redirects the UA to a fake IdP of its choosing; such a fake

IdP could capture user credentials and/or fraudulently obtain sensi-

tive user attributes (see section 1.2.3).

99

3. IDENTITY MANAGEMENT

2. In a client-based process, which only applies in the active client case,

a locally running client component is responsible for performing dis-

covery. In this case, IdP addresses are typically stored by the client

component. False IdP attacks are mitigated, since an RP can no longer

redirect the user to an IdP of its choosing.

3.6 Single Sign on (SSO)

SSO [32, 78, 195, 228] involves a user authenticating only once to an IdP

and thereby gaining access to multiple RPs without the need to sign-on sep-

arately at each of them. Single sign off is the reverse process, i.e. where a

user signs-off only once and is then automatically signed-off from all ac-

cessed RPs. An identity management system that supports SSO typically

also supports single sign off.

The notion of SSO is clearly attractive, not least from a user convenience

perspective, particularly as the number of on-line services requiring authen-

tication continues to grow. Furthermore, SSO helps to reduce the risk of

exposure of passwords to malicious parties, including through key logging

and shoulder surfing.

However, SSO also raises potential security and privacy concerns. Com-

promising the authentication process at the IdP enables the adversary to

access all the participating RPs. In addition, SSO could result in a single

point of failure; failing to authenticate to the IdP could automatically im-

pede access to all the participating RPs. Use of SSO could also lead to pri-

vacy violations; user interactions on the web could be linked by an IdP to

build a unique user profile.

3.7 Properties of Identity Management Systems

In this section we consider a range of properties that may be possessed by

an identity management system.

100

3.7 PROPERTIES OF IDENTITY MANAGEMENT SYSTEMS

3.7.1 Information Card Systems

Information Card systems3, also referred to as InfoCard- or iCard-based sys-

tems, are identity management systems that are based on the digital card

metaphor. They must conform to the OASIS-standardised Information Card

protocol [143]. Such systems are active client-based, where the active client

uses a card-based user interface to enable users to manage and select IdPs.

Each InfoCard specifies a set of attribute (or claim4) types, the values of

which can be obtained from the issuing IdP. This is analogous to real-world

physical cards, where each card (e.g. a driving licence, credit card, passport,

etc.) asserts a set of user attributes. Information Card systems also allow

users to issue self-asserted claims (see section 4.3.1).

IdP discovery is performed on the user platform; if a user selects a card,

the user is also implicitly selecting an IdP, and the card contains the URL

of the IdP server. Information Card users can also review (and possibly

modify) the contents of an IdP-supplied security token before it is released

to an RP.

One widely discussed example of an Information Card-based system

is CardSpace (see section 4.3). Other examples include Higgins (see sec-

tion 4.4), OpenInfoCard5, and DigitalMe6, the last of which is supported by

the Bandit Project7. This thesis concentrates on CardSpace, given its ubiq-

uity as part of Windows Vista and Windows 7. However, many of the ob-

servations made in the remainder of this thesis regarding CardSpace also

apply to other Information Card systems.

3http://informationcard.net
4Information Card systems are also occasionally referred to as claim-based systems [33].
5http://code.google.com/p/openinfocard
6http://code.bandit-project.org/trac/wiki/DigitalMe
7http://bandit-project.org

101

3. IDENTITY MANAGEMENT

3.7.2 Federated Systems

In a federated system, RPs and IdPs group together to form a federation, also

known as a circle of trust (CoT), bound together by contractual agreements

and mutual trust.

The existence of a federation simplifies the discovery process, since the

IdPs are defined by the CoT. Also, the trust relationships between parties

are clear, since they are defined by the CoT. However, there may be only

one IdP in a CoT, in which case the privacy problems inherent to centralised

systems (see section 3.7.4 below) apply.

Examples of federated systems include Liberty and Shibboleth (intro-

duced in sections 4.7 and 4.8, respectively).

3.7.3 Communication-based Models

As discussed in section 3.5.1, identity management systems can be classified

according to how the RP communicates via the user platform with the IdP.

There are two main ways in which this can be achieved, namely by using an

HTTP redirect or involving an active client.

3.7.3.1 Redirect-based Identity Management Systems

In such a scheme, the UA is redirected by an RP to an IdP (and vice versa).

In such a case the UA is essentially passive, and does not need to be aware

of the identity management system in use (see also section 3.5.1). One ma-

jor disadvantage of this approach is that a malicious RP can redirect the UA

to a malicious IdP impersonating a genuine IdP, e.g. to fraudulently obtain

user credentials. Examples of such systems include OpenID, Liberty (arti-

fact and browser-post profiles), Shibboleth, and OAuth (e.g. as instantiated

by Facebook Connect — see section 4.6.4).

102

3.7 PROPERTIES OF IDENTITY MANAGEMENT SYSTEMS

3.7.3.2 Active Client-based Identity Management Systems

In schemes of this type the UA must incorporate an active client which acts

as an intermediary between RPs and IdPs, and which must be aware of the

identity management system in use. Typically all communications between

an RP and an IdP occur via this active client, and there is usually no need

for direct RP-IdP communication. Depending on the details of the system in

use, the active client can prompt the user to select a digital identity, choose

an IdP, review (and possibly modify) a security token created by the IdP, and

approve a transaction. Phishing attacks are mitigated since an RP cannot

redirect the UA to an IdP of its choosing. The active client can also aid in

providing a consistent user experience, and its existence helps to give the

user a greater degree of control (see also section 3.5.1). Examples of such

systems include CardSpace and a Liberty-enabled client.

3.7.4 Other Properties

An isolated system, also sometimes referred to as a silo system [146], is a sys-

tem in which an RP takes the role of the IdP and manages the entire identity

life cycle, including issuing, consuming and deleting user identities. A user

may be allowed to use a self-defined identifier (e.g. a username) and a self-

issued credential (e.g. a password). This approach is simple to deploy and

use, and the identity data are only ever released to one party (the RP). How-

ever, users must set up and remember an identifier-credential pair for every

RP with which they have a relationship.

A centralised system [146] corresponds to the case where a single entity

acts as the sole IdP for a set of RPs. The IdP manages the identity life cy-

cle, including issuing, consuming and deleting security tokens for all its

users. This can be regarded as a special case of the general model given

in section 3.4 where there is a single IdP. A user only needs to manage a

single identifier-credential pair since there is only one IdP. However, such

103

3. IDENTITY MANAGEMENT

an approach poses a potentially serious privacy threat to users, since user

attributes are managed and used by a single entity. This single IdP could

abuse this knowledge, e.g. by profiling user activities. A single IdP also rep-

resents a single point of failure [117], since its unavailability would impede

access to the participating RPs. Microsoft Passport (see section 4.2) was an

example of such a system, although it never achieved much success in this

form [56, 169].

3.8 Cameron’s Laws of Identity

Cameron [56] has proposed a set of seven so called laws of identity, captur-

ing what he asserts are fundamental requirements for a widely-acceptable

identity architecture. These laws emerged from an open dialogue with iden-

tity management experts and the wider public. We present the laws (text in

quotes) as stated by Cameron [56], along with a brief interpretation where

necessary.

1. User Control and Consent. ‘Technical identity systems must only re-

veal information identifying a user with the user’s consent.’ The user

must therefore be made aware of what items of personal information

are being requested, by whom, and for what purpose.

2. Minimal Disclosure for a Constrained Use. ‘The solution which dis-

closes the least amount of identifying information and best limits its

use is the most stable long-term solution.’

3. Justifiable Parties. ‘Digital identity systems must be designed so the

disclosure of identifying information is limited to parties having a nec-

essary and justifiable place in a given identity relationship.’

4. Directed Identity. ‘A universal identity system must support both

omni-directional identifiers for use by public entities and unidirectional

identifiers for use by private entities, thus facilitating discovery while

104

3.8 CAMERON’S LAWS OF IDENTITY

preventing unnecessary release of correlation handles.’ Correlation

handles enable different user activities to be linked.

5. Pluralism of Operators and Technologies. ‘A universal identity sys-

tem must channel and enable the interworking of multiple identity

technologies run by multiple identity providers.’

6. Human Integration. ‘The universal identity metasystem must define

the human user to be a component of the distributed system integrated

through unambiguous human-machine communication mechanisms

offering protection against identity attacks.’

7. Consistent Experience Across Contexts. ‘The unifying identity meta-

system must guarantee its users a simple, consistent experience while

enabling separation of contexts through multiple operators and tech-

nologies.’

It seems reasonable to believe that, by following the laws stated above,

identity management systems can reach a reasonable level of usability, reli-

ability, flexibility, and privacy. A number of these laws relate closely to the

OECD principles for personal data protection (see section 2.3.5.1). As noted

by Alrodhan [21], the requirements of:

• law 1 are covered by principles 6 and 7;

• law 2 are covered by principles 1, 2 and 4; and

• law 3 are covered by principles 1 and 3.

105

Chapter 4

Identity Management Systems

4.1 Introduction

This chapter describes in detail those identity management systems of great-

est relevance to this thesis, namely CardSpace, Higgins, OpenID, OAuth,

Liberty, and Shibboleth. The chapter also gives an overview of certain other

systems of background relevance, namely Microsoft Passport, U-Prove, and

IdeMix.

The chapter is organised as follows. Sections 4.2–4.8 respectively con-

tain descriptions of Passport, CardSpace, Higgins, OpenID, OAuth, Liberty

and Shibboleth. Section 4.9 provides an overview of anonymous credential

systems, as well as describing two examples, namely U-Prove and IdeMix.

Finally, section 4.10 compares between these systems.

4.2 Microsoft Passport

The design of, and reaction to, Passport appear to have provided part of the

motivation for the development of CardSpace and other similar systems.

4.2.1 Introduction

.NET Passport, introduced by Microsoft in 1999, is an SSO system that en-

ables users to sign-on to multiple websites using a single set of credentials.

A Passport user shares account credentials (typically an email address and

password) with the Passport server, which could also store other user at-

tributes such as first name, last name, date of birth, etc. [64]. Passport-

107

4. IDENTITY MANAGEMENT SYSTEMS

participating RPs must install special software to support Passport, and

must also share a secret key with the Passport server. Passport requires

the use of SSL/TLS between the user browser and the Passport server, and

optionally between the browser and a participating RP [195].

4.2.2 Operation

Passport works in the following way.

1. A user employs a UA to visit a Passport-enabled RP, say a.com, and

clicks on a special Passport sign on button.

2. The UA is redirected to the Passport site, which, if necessary (i.e. if a

suitable cookie is not present on the user platform), authenticates the

user.

3. If authentication is successful, the UA is redirected back to the RP. At

the same time, four encrypted, time-limited, cookies are sent back to,

and stored by, the UA (the browser). These cookies are a ticket granting

cookie (TGC) containing a secret key, a participating-sites cookie, an

authentication cookie, and a profile cookie. The last three cookies are

encrypted using the secret key contained in the TGC; the TGC is itself

encrypted under the secret key shared between the Passport service

and the RP.

4. The RP (a.com) decrypts the received cookies, and, if satisfied, grants

the user access.

Note that the process repeats if another Passport-enabled RP, say b.com, is

visited; however, the Passport service no longer needs to authenticate the

user as long as the cookies submitted by the browser to the Passport server

remain valid. Every time the Passport service is used it updates these cook-

ies, including the participating-sites cookie which contains a list of all Pass-

port participating sites that the user has visited during this session. Finally,

108

4.2 MICROSOFT PASSPORT

if the user signs-out from Passport, then the user is also logged-out of all

Passport-enabled RPs accessed during this session. The four cookies are

deleted from the user’s browser and the participating-sites cookie is used to

notify the participating sites to close the user session.

4.2.3 Criticism and Consequences

Passport was initially supported by some well-known RPs, e.g. eBay and

Visa; however, it was not a universal success and received much criticism

[168]. It would appear that Passport was originally intended to become the

IdP for the Internet. Because Microsoft alone provided the Passport ser-

vice, the participating RPs needed to trust Microsoft to store the user cre-

dentials securely, and to authenticate the users correctly. Users would have

also needed to be willing to accept Microsoft’s involvement in web activi-

ties completely unrelated to Microsoft. However, although Passport failed

to become the universal Internet IdP, it has been and continues to be success-

fully used with Microsoft-affiliated websites (see below). Other potentially

undesirable properties of Passport include that it does not provide adequate

user control, nor appropriate privacy protection [64]; indeed it could violate

user privacy, since Passport enables Microsoft to track user activities over

the Internet.

Microsoft has re-branded Passport as Windows Live ID, and it is now the

main method for Microsoft-affiliated websites to authenticate users. Mi-

crosoft has published a number of white papers [56, 169], discussing the

failure of Passport; this discussion appears to have influenced Microsoft’s

subsequent offerings in this area, including in particular CardSpace. It also

appears to have provided the motivation for the development of the laws of

identity (discussed in section 3.8).

109

4. IDENTITY MANAGEMENT SYSTEMS

4.3 CardSpace

4.3.1 Introduction

CardSpace [34, 168] is an identity management system that provides a se-

cure and consistent way for users to control and manage personal data, to

review data before sending it to a website, and to verify the identity of vis-

ited websites. It also enables websites to obtain personal information from

users, e.g. to support user authentication and authorisation. CardSpace is

InfoCard-based and involves an active client.

In CardSpace, digital identities are visually represented to users as Info-

Cards, implemented as XML files that list the types of claim made by one

party about itself or another party. A claim is a piece of information about

an individual or an entity that an IdP asserts about that individual or en-

tity [143]. Both user identifiers (e.g. a username) and user attributes (e.g.

birthday) are treated as claims. CardSpace is designed to reduce reliance on

username-password authentication, and to provide a consistent user expe-

rience across the web to improve user understanding of the authentication

process. CardSpace is also designed to reflect the seven identity laws pro-

posed by Cameron (see section 3.8).

The concept of an InfoCard is inspired by real-world cards, such as driv-

ing licences and credit cards. A user can employ one InfoCard with multiple

websites. Alternatively, just as different physical ID cards are used in dis-

tinct situations, separate InfoCards can be used at disparate websites, help-

ing to enhance user privacy and security. If InfoCards are obtained from

different IdPs, the credentials referred to by such cards are remotely stored

in distinct locations, potentially improving reliability and security, as well

as giving users flexibility in choosing points of trust.

There are two types of InfoCards: personal (self-issued) cards and man-

aged cards. Personal cards are created by users themselves, and the claims

110

4.3 CARDSPACE

listed in such an InfoCard are asserted by the self-issued IdP (SIIP)1 that

co-exists with the CardSpace identity selector (see Fig. 4.1) on the user plat-

form. Managed cards, on the other hand, are obtained from remote IdPs.

The InfoCards themselves do not contain any sensitive information; in-

stead an InfoCard carries metadata that indicates the types of personal data

that are associated with this identity, and from where assertions regarding

this data can be obtained. The data referred to by a personal card is stored

locally on the user platform, whereas the data referred to by a managed card

is held remotely by the IdP that issued it [34, 63, 96, 142, 168, 169, 210].

By default, CardSpace is supported in Internet Explorer from version 7

onwards. Extensions to other browsers, such as Firefox2 and Safari3, also

exist. An updated version of CardSpace, known as CardSpace 2.0 Beta 2,

was released, although Microsoft announced in early 2011 that it will not

ship; instead Microsoft has released a technology preview of U-Prove (see

section 4.9.2). Unless explicitly stated, in this thesis we refer throughout to

the CardSpace version that is shipped by default as part of Windows Vista

and Windows 7, that is available as a free download for XP and Server 2003,

and which has been approved as an OASIS standard [143].

4.3.2 InfoCard Contents

The following data items are contained in an InfoCard [34].

1. Card metadata, which includes:

a) card ID, which can be used to index the card;

b) card version, used to determine whether a current card is newer or

older than an existing card with the same card ID in the card store;

1Although some CardSpace documents occasionally abbreviate the self-issued identity provider
to SIP, we have used the abbreviation SIIP since SIP is widely used to refer to the Session Initiation
Protocol [209].

2https://addons.mozilla.org/en-US/firefox/addon/10292
3http://www.hccp.org/safari-plug-in.html

111

4. IDENTITY MANAGEMENT SYSTEMS

Figure 4.1: The CardSpace Identity Selector

c) issuance and expiry time, timestamps specifying when the card was

issued and when it will expire; and

d) display information, an image and/or a name for the card.

2. Issuer data, which includes:

a) issuer name, specifying the name of the IdP that issued the man-

aged card. Since this is a name rather than a URI, a single IdP

can have multiple URIs; this may be useful in certain scenarios,

such as setting up a fallback IdP server (i.e. an STS)4 or deploying

multiple servers in different geographical regions;

b) IdP location, specifying the URIs of the IdP servers from which a

security token can be obtained.
4The STS (Security Token Service) is responsible for security policy and token management

within an IdP and, optionally, within an RP [142].

112

4.3 CARDSPACE

c) MEX address, an HTTPS-based IdP URL used for metadata ex-

change and for IdP server authentication; and

d) identity, an X.509 certificate (see section 2.4.4.1) used to support

authentication of the IdP to the user.

3. Privacy policy, a URL for a document specifying the IdP’s privacy pol-

icy.

4. User authentication method(s), specifying the method(s) employed by

the IdP to authenticate the user. CardSpace supports four authen-

tication methods, namely username-password, a Kerberos version 5

service ticket, an X.509 version 3 certificate (either software-based or

using a smart card), and a self-issued token.

5. A list of supported attribute types, e.g. birthday, first name, and last name,

the values of which are known by the IdP, and for which the IdP will

be prepared to generate a security token.

6. A list of supported token type(s) indicating which type(s) of security to-

ken, e.g. SAML assertions, the card issuer is capable of issuing.

4.3.3 Attribute Exchange

CardSpace supports the assertion of user attributes by an IdP to an RP, both

when using third party IdPs and when using the SIIP. We consider the two

cases separately below.

4.3.3.1 Personal Cards

The identity selector allows a user to create a personal card and populate

its fields with self-asserted claims. To protect users from disclosing sensi-

tive information, CardSpace restricts the contents of personal cards to non-

sensitive data, such as that published in telephone directories. More specif-

ically, personal cards can only contain claims of 14 predefined and editable

113

4. IDENTITY MANAGEMENT SYSTEMS

types, namely first name, last name, email address, street, city, state, postal code,

country/region, home phone, other phone, mobile phone, date of birth, gender, and

web page. Data inserted in personal cards is stored in encrypted form on the

user platform.

4.3.3.2 Managed Cards

A managed card can specify any attribute type that is supported by the

issuing IdP. The InfoCard will list the attribute types for which the IdP

holds user-specific values.

4.3.4 IdP Discovery

When selecting an InfoCard (personal or managed), the user is also implic-

itly selecting an IdP. If a personal card is chosen then the selected IdP is the

local SIIP, whereas if a managed card is chosen then the selected IdP is the

remote IdP that issued it. The InfoCard XML encoding contains either the

address of a remote IdP or an indication that it is a self-issued card.

4.3.5 IdP-RP Negotiation

Unlike Liberty or Shibboleth (described in sections 4.7 and 4.8, respectively),

CardSpace does not require an explicit contractual agreement to be made or

a federation process to be completed before it can be used. Instead it uses

dynamic negotiation at run-time, much like OpenID (see section 4.5). An RP

can specify its security requirements in a security policy that the CardSpace

identity selector can retrieve when required. However, in practice this may

mean that an implicit contractual agreement is necessary between an IdP

and an RP before the system can be used.

If a remote IdP is being used and the RP is employing HTTPS, then the

identity selector retrieves the RP certificate and sends it to the IdP. This en-

ables the IdP to encrypt its security token using the RP’s public key, thereby

114

4.3 CARDSPACE

providing end-to-end protection5. This contrasts with SAML profiles (and,

analogously, Liberty and Shibboleth profiles) where metadata must be re-

trieved to allow the exchange of certificates.

4.3.6 User Control and Consent

The CardSpace identity selector allows the user to review an IdP-issued se-

curity token before it is released to the RP. A user can modify a personal

card at will; however, a managed card cannot be modified by the selector,

but can only be changed by the issuing IdP. When a remote IdP issues a

security token, it also typically issues a display token, so that the identity se-

lector can display it to the user before forwarding the real token to the RP;

this is particularly useful if the security token is end-to-end encrypted to the

requesting RP. We observe that in such a case the user has no guarantee that

the display token actually matches the real token.

4.3.7 Supporting CardSpace

To enable support for CardSpace, an RP web page will typically include

either an HTML or an XHTML tag. The HTML (object tag) syntax is used by

an ActiveX object and appears to be more commonly adopted by websites.

However, ActiveX objects could be disabled, e.g. if high browser security

settings are chosen by the user. The XHTML is used by a binary behaviour

object, and can thus still work even if ActiveX objects are disabled; however,

not all websites support XHTML [34, 168].

4.3.8 Security Policy

An RP can specify its security policy using HTML or XHTML (see section

4.3.7). The defined policy syntax includes the following data items [143].

5Note that if a non-auditing IdP (see section 4.3.13) is used, then the RP certificate is not sent to
the IdP.

115

4. IDENTITY MANAGEMENT SYSTEMS

1. Issuer. This optional parameter specifies the address of the IdP-STS

from which a token is to be obtained. If it is omitted, then any IdP

can be used. To specify the SIIP, the following URL is used: http://

schemas.xmlsoap.org/ws/2005/05/identity/issuer/self.

2. IssuerPolicy. This optional parameter specifies the HTTPS-based URL

of an endpoint from which the IdP security policy (WS-SecurityPolicy)

can be retrieved using WS-MetadataExchange (see section 2.5.6).

3. RequiredClaims. This parameter specifies the type(s) of claim about

the user that must be supplied to the requesting RP.

4. OptionalClaims. This optional parameter specifies the type(s) of claim

that the RP would like to know about the user, but which are not

mandatory.

5. TokenType. This optional parameter specifies the type(s) of token that

the RP is willing to accept. If omitted, then the RP is willing to accept

any token type.

6. PrivacyURL. This optional parameter specifies the URL from which

the RP’s privacy policy can be obtained.

7. PrivacyVersion. This optional parameter specifies the version number

of the RP’s privacy policy. If a PrivacyURL is specified, the value of the

PrivacyVersion must be greater than 0. If the value changes from one

visit to an RP to the next, the identity selector notifies the user, who

can review the new privacy.

If CardSpace is used in the context of a web service, then the above policy

data is supplied as WS-SecurityPolicy data using WS-MetadataExchange

(see section 2.5.6) [143]. The RP security policy can also specify other re-

quirements for the requested security token (e.g. the maximum token age).

116

4.3 CARDSPACE

4.3.9 Operation

We now describe CardSpace operation when using a personal or a managed

card.

4.3.9.1 Personal Cards

When using personal cards, CardSpace adopts the following protocol. We

first detail the personal card protocol for the case where the RP does not

employ the optional STS, since this is the most important case in this thesis.

The parties involved are a CardSpace-enabled RP and a CardSpace-enabled

UA, e.g. a web browser capable of invoking the CardSpace identity selector

(often referred to below as simply the selector), such as those shipped as part

of Windows Vista and Windows 7.

1. UA → RP: HTTP/S Request. A user employs a UA to navigate to a

CardSpace-enabled RP.

2. RP→ UA: HTTP/S Response Including RP Policy. An RP login page

is returned containing the CardSpace-enabling tags in which the RP

security policy is embedded.

3. User→UA: Invoking the Selector. The UA offers the user the option to

use CardSpace, e.g. via a button on the RP web page; selection of this

option causes the UA to invoke the selector and pass it the RP policy.

Note that if this is the first time that this RP has been contacted, the

selector will display the identity of the RP, giving the user the option

either to proceed or to abort the protocol.

4. Selector→ InfoCards: Highlighting InfoCards. The selector, after eval-

uating the RP security policy, highlights the InfoCards that match the

policy, and greys out the rest. InfoCards previously used with this par-

ticular RP are displayed in the upper half of the selector screen.

117

4. IDENTITY MANAGEMENT SYSTEMS

5. User → Selector: Selecting an InfoCard. The user chooses a personal

card. Alternatively, the user could create and choose a new personal

card. The user can also preview a card (with its associated claims) to

review which claim values would be released if it was selected. Note

that the selected InfoCard may contain several claims, but only the

claims explicitly requested in the RP security policy will be passed to

the requesting RP.

6. Selector
 SIIP: RST-RSTR Exchange. The selector creates and sends a

SAML-based Request Security Token (RST) to the SIIP, which responds

with a SAML-based Request Security Token Response (RSTR).

7. Selector → UA: Passing RSTR. The RSTR is passed to the UA, which

forwards it to the RP.

8. RP → UA: Grant/Deny Access. The RP processes the received token

(see section 4.3.10), and, if satisfied, grants access to the user (with the

appropriate privileges).

If the RP employs an STS, then the protocol flow is similar to that given

above [142]. However, the security policy published by the RP website in

step 2 would only specify which RP-STS should be contacted to obtain the

RP’s WS-SecurityPolicy information. The identity selector then contacts the

specified RP-STS to retrieve the RP’s WS-SecurityPolicy information using

WS-MetadataExchange.

Once a security token is obtained from a SIIP in step 6 (or from a re-

mote IdP — see section 4.3.9.2), the selector sends the security token to the

RP-STS to authenticate the user; an RP site-specific authentication token is

returned to the selector. This token is then passed to the browser in step 7,

which posts it to the RP website using HTTPS/POST. Finally, in step 8 the

RP website verifies the received token, completing CardSpace-based user

authentication [142].

118

4.3 CARDSPACE

4.3.9.2 Managed Cards

The managed card operational protocol (see Fig. 4.2) is similar to that for

personal cards, except that the remote IdP specified in the selected InfoCard

is contacted instead of the SIIP.

The selector uses the standardised WS-* protocols (see section 2.5.6) to re-

trieve the IdP security policy. Depending on the IdP policy, the user may be

requested by the selector to provide credentials for authentication to the se-

lected IdP; these are then passed to the IdP. As stated previously, CardSpace

supports four user authentication methods (see section 4.3.2).

If user authentication is successful, the selector retrieves a security token

representing the selected digital identity from the STS of the remote IdP.

The selector then passes the received token to the UA, optionally after first

obtaining permission from the user. This may involve presenting the user

with a display token prepared by the remote IdP, listing the claim values

asserted in the real security token; the selector will only continue if the user

is willing to release such values.

Finally, as in the personal card operational protocol, the UA forwards

the token to the RP which processes it (see section 4.3.10) and, if satisfied,

grants access to the user [142, 185].

4.3.10 Token Processing

The processing performed by the RP on the received token typically in-

cludes the following [34].

1. Token Decryption. If the received token is encrypted using the RP’s

public key6, then the RP uses the corresponding private key in order

to retrieve the symmetric key used for token encryption, which the RP

then uses to recover the original plaintext version of the token.

6For performance reasons, the token issuer typically uses a freshly-generated symmetric key to
encrypt the token. It then uses the RP’s public key to encrypt the symmetric key.

119

4. IDENTITY MANAGEMENT SYSTEMS

Figure 4.2: CardSpace Operation (Using Managed Cards)

2. Token Integrity Check. The RP uses the token issuer’s public key to

verify the digital signature on the token. This provides assurance that

the token has not been tampered with and that its origin is as claimed.

The RP can also verify the embedded proof key (see section 4.3.12) to

verify the sender’s rightful possession of the token.

3. Token Validation. This involves verifying time-stamps and the nonce

in the token (see sections 2.4.2.5 and 2.4.2.6), and that the token was

intended for the specified site. This provides protection against replay

attacks.

4. Retrieval of Claim Values. The RP retrieves the IdP- or SIIP-asserted

claims contained within the received token, and uses them for authen-

tication and/or authorisation purposes. For example, the RP could use

the PPID claim (see section 4.3.11 below) to associate the user with a

particular account. In addition, the RP could use other claims to make

an informed authorisation decision, e.g. selling wine based on a claim

120

4.3 CARDSPACE

stating that the buyer is old enough to drink (OldEnoughToDrink =

true).

4.3.11 PPIDs and Digital Signatures

4.3.11.1 Overview

The private personal identifier (PPID) is a unique identifier that links a spe-

cific InfoCard to a particular RP [34, 35, 142]. It functions as an RP-specific

pseudonym for a user [143]. In the case of personal cards, each such PPID

has an associated signature key pair, the private key for which is held by

the SIIP. CardSpace-enabled RPs can use the PPID, along with a digital sig-

nature, created using the private key, to authenticate a user.

Since the PPID is RP-specific, it does not function as a global user iden-

tifier, helping to enhance user privacy. In addition, compromising the PPID

and key pair for one RP does not allow an adversary to impersonate the

user at other RPs. This conforms to the directed identity law (see section 3.8),

since the PPID cannot be used to correlate user accounts at different RPs.

We next describe how the PPID is generated in both personal and man-

aged cards.

4.3.11.2 Personal Cards

When a user creates a new personal card, the identity selector generates an

ID and a secret master key for this card and stores them with the card. The

card ID is a globally unique identifier (GUID), and the master key is 32 bytes

of random data. When a user employs a personal card at an RP for the first

time, the selector generates a site-specific:

• PPID by combining the card ID with data taken from the RP certificate;

and

• signature key pair by combining the card master key with data taken

from the RP public-key certificate.

121

4. IDENTITY MANAGEMENT SYSTEMS

In both cases, the domain name or IP address of the RP is used if no RP

certificate is available (see Fig. 4.3).

Figure 4.3: PPID and Signature Key Pair for Personal Cards

The selector only displays a shortened version of the PPID, referred to

as a user-friendly identifier [143], to protect against social engineering attacks

and to improve readability.

When a user first registers with an RP, the RP retrieves the PPID and the

public key from the received security token and stores them. If a personal

InfoCard is re-used at a site, the supplied token will contain the same PPID

and public key as used previously, signed using the corresponding private

key. The RP compares the received PPID and public key with its stored

values, and verifies the digital signature. If all the checks succeed it has

assurance that it is the same user.

The PPID could be used on its own as a shared secret to authenticate

a user to an RP. However, it is recommended that the associated (public)

signature verification key, as held by the RP, should also always be used to

verify the signed authentication token to provide a more robust authentica-

tion method [34].

4.3.11.3 Managed Cards

A PPID for a managed card is generated rather differently. When creating

a managed card, the IdP generates a card reference (i.e. the card ID) and

122

4.3 CARDSPACE

a card master key and stores them with the values of the claims about the

user. When the user retrieves this card from the IdP, the IdP returns a rep-

resentation of the card to the user containing the card ID, but not the claim

values or the card master key. When the user installs the card, the identity

selector generates a fresh salt value (a randomly generated n-bit value), and

stores it with the card [35].

The PPID of a managed card is computed in one of two possible ways

[35], depending on the scope of tokens to be provided to the corresponding

RP. If the IdP of a managed card issues:

1. scoped tokens, i.e. tokens are intended for a specific RP, the IdP com-

putes the PPID as a cryptographic hash of the card master key and the

RP’s certificate, possibly together with some additional entropy stored

with the card; and

2. unscoped tokens, the identity selector must first send the IdP a PPID

seed specific to the RP, computed as a hash of the card salt and the

RP’s certificate, and the IdP then uses this seed to compute the PPID

using the card master key.

4.3.12 Proof of Ownership

A SAML token can be coupled with cryptographic evidence to demonstrate

the sender’s rightful possession of the token. A proof key is a key associated

with a security token, and is used to generate such cryptographic evidence.

A data string called the proof-of-possession is sent with the token to demon-

strate the sender’s knowledge of the proof key, thus establishing rightful

possession of the token. This proof-of-possession includes either a digital

signature or a MAC computed using the proof key [142, 178].

As implied above, a security token can be associated with the following

two types of proof key.

123

4. IDENTITY MANAGEMENT SYSTEMS

1. Symmetric Proof Keys

If the RP requests a symmetric key token, a shared secret proof key is

established between the selector and the CardSpace-enabled IdP [142],

which is then revealed to the RP. This key is used to prove the subject’s

rightful possession of the security token. Whilst the use of such a key

may offer speed and efficiency advantages [170], it involves revealing

the identity of the RP to the IdP, which is not ideal from a privacy

perspective.

2. Asymmetric Proof Keys

If the RP requests an asymmetric key token, the selector generates an

ephemeral RSA key pair and sends the public key to the CardSpace-

enabled IdP. The selector also sends a supporting signature to prove

ownership of the corresponding private key [142]. If the IdP approves

the public key, it forwards it to the RP in the security token. The private

part of the RSA key pair is then used to prove the subject’s rightful

possession of the security token. Although the use of such a key may

not be as efficient as the symmetric approach, it helps to protect user

privacy since the identity of the RP does not need to be disclosed to

the IdP. Note that, if no explicit key type is specified by the RP, then

the selector should request an asymmetric proof key to maximise user

privacy and security [143].

The default behaviour of the selector is different in the case of browser-

based client interactions with an RP website, in which case bearer tokens (i.e.

tokens without a proof key [143]) are requested. Because a web browser is

only capable of submitting a token to a website passively over HTTP with-

out any proof-of-possession, bearer tokens are used [170].

124

4.3 CARDSPACE

4.3.13 IdPs and Auditing

CardSpace-enabled IdPs may or may not possess an auditing capability, and

their behaviour differs depending on their auditing capabilities [34]. We

summarise some of the main properties of these two categories of IdP.

4.3.13.1 Auditing IdPs

We list seven security and privacy relevant properties possessed by auditing

IdPs.

1. The RP address and certificate must be passed to the IdP.

2. Because it knows the RP address, the IdP could evaluate the trustwor-

thiness of the RP on behalf of the user, and could, for example, refuse

to issue a token for a known phishing site.

3. The IdP encrypts the token using the RP’s public key, and the selector

passes the token to the RP unmodified. That is, end-to-end encryption

is applied.

4. The IdP can issue a token for a specific RP, preventing its re-use with

other RPs.

5. The IdP is responsible for generating the display token. However,

since the token is encrypted using the RP’s public key, the selector can-

not verify whether the contents in the display token actually match

those of the real token.

6. The audit information retained by an IdP could be useful for law en-

forcement and for the provision of evidence in a legal case.

7. The IdP can track which RPs a user visits, which is a possible threat to

user privacy.

125

4. IDENTITY MANAGEMENT SYSTEMS

4.3.13.2 Non-auditing IdPs

We list seven security and privacy relevant properties possessed by non-

auditing IdPs, corresponding to the list previously given for auditing IdPs.

1. The RP address and certificate do not need to be passed to the IdP.

2. Because it does not know the RP address, the IdP cannot evaluate the

trustworthiness of the RP on behalf of the user.

3. The IdP encrypts the token using a cryptographic key associated with

the selector, which could then encrypt the token using the RP’s public

key (if the RP uses HTTPS). That is, token encryption is point-to-point

rather than end-to-end.

4. The IdP cannot issue a token for a specific RP; as a result there is a risk

of unauthorised reuse of a token with other RPs.

5. The IdP is responsible for generating the display token. We observe

that, since the token is not encrypted end-to-end (see above), the selec-

tor, if specially programmed7, can verify whether the contents in the

display token actually match those in the real token.

6. A non-auditing IdP is unlikely to have information that could be useful

for law enforcement or for the provision of evidence in a legal case.

7. The IdP cannot track which RPs a user visits, which is potentially

privacy-enhancing.

4.3.13.3 Comparison

Table 4.1 compares auditing and non-auditing CardSpace-enabled IdPs in

terms of the points listed above.

7Note that the current CardSpace identity selector does not perform such a task.

126

4.3 CARDSPACE

Table 4.1: Auditing IdPs versus Non-auditing IdPs

Auditing IdPs Non-auditing IdPs
Must pass RP iden-
tity (address and cer-
tificate) to the IdP

Yes No

Capable of verifying
the trustworthiness of
the RP

Yes No

Type of encryption End-to-end Point-to-point
Type of security tokens Scoped Unscoped
The selector is capa-
ble of verifying that the
contents of the display
token match those in
the real token

No Yes, if specially pro-
grammed

Legal and law-
enforcement cases

More useful Less useful

Capable of user track-
ing

Yes No

We conclude by observing that, while non-auditing IdPs offer potential

privacy advantages over auditing IdPs, the converse applies with respect to

security.

4.3.14 Possible Limitations of CardSpace

We next describe a number of possible security, privacy and usability short-

comings of CardSpace.

4.3.14.1 Unrestricted Access to the Selector

Anyone with access to a Windows user account can access the InfoCards

for that account. This is a particular threat for personal cards, since the PII

stored in them will also be available via the selector interface. CardSpace,

by default, does not impose any additional protection on use of the selector.

CardSpace does allow individual InfoCards to be PIN-protected. Also,

the entire Windows user account could be locked, e.g. using a password.

Whilst the use of passwords and PINs for InfoCard protection can help, it

127

4. IDENTITY MANAGEMENT SYSTEMS

does not completely solve the problem, not least because one of the funda-

mental design goals of CardSpace is to reduce reliance on password authen-

tication.

4.3.14.2 Lack of Support for Interoperability

CardSpace does not support interoperation with other identity management

systems in the way defined in section 1.2.1 (see also section 1.3).

4.3.14.3 Submission of only one InfoCard to an RP

During the user authentication process, a CardSpace user can only select

one InfoCard to support authentication to an RP. As pointed out by Chad-

wick et al. [65, 67], this is potentially limiting, since a real-world RP might

request attributes that cannot solely be provided by a single IdP. For ex-

ample, when a student (user) purchases a book from an online bookshop

(RP), the RP might request both credit card data for payment and a student

number to prove eligibility for a discount. It seems plausible that, in such a

case, no single IdP will be able to assert both these attributes, since they are

issued by very different types of entity (banks and educational institutions).

CardSpace would thus be unusable, since it only allows use of one IdP. An

attribute-aggregation technique [65, 67] could address this issue, whilst also

helping to preserve user privacy.

4.3.14.4 Limited Support for User Authentication Methods

As stated in section 4.3.2, the CardSpace system currently only supports

four authentication methods. This is potentially limiting since a CardSpace-

enabled IdP can only perform user authentication using one of these four

methods, whereas ideally an IdP should be allowed to perform user au-

thentication using any method it deems appropriate.

This limitation arises because, when using a managed card, the user

must provide the authentication credentials to the selector which in turns

128

4.3 CARDSPACE

delivers them to the managed card IdP. This is the result of a seemingly

deliberate design choice made to enable a consistent user experience. The

major disadvantage of this choice is that additional authentication methods

can only be supported as and when the functionality is added to updates of

CardSpace.

4.3.14.5 Limited Support for Roaming

CardSpace allows InfoCards to be exported to different user platforms to

support roaming. However, as discussed by Hoang et al. [112], this has us-

ability issues, since a user must import the InfoCards into every machine he

or she uses; it also gives rise to security concerns if it is necessary to import

InfoCards into an untrusted device. Ideally, it should be possible for a user

to access their InfoCards at any time and using any platform. A number

of approaches to addressing roaming have been proposed, including stor-

ing InfoCards in a trusted device, such as a mobile phone [112], and storing

them in the cloud [66].

4.3.14.6 Lack of Support for Password Management

Despite the introduction of CardSpace (and other similar systems), the vast

majority of websites still use username-password for authentication, and

this is likely to continue for at least the next few years (see section 1.2.2). One

major practical problem with CardSpace, and with other similar systems

providing more secure means of user authentication, is that the transition

from username-password is extremely difficult to achieve. RPs will not wish

to do the work necessary to support CardSpace if very few users employ it;

equally, users are hardly likely to use CardSpace if it is only supported by a

tiny minority of websites.

129

4. IDENTITY MANAGEMENT SYSTEMS

4.3.14.7 A Platform-specific Selector

The (closed-source) CardSpace identity selector can only currently operate

on relatively recent Windows operating systems, namely XP, Vista and 7.

This could limit its adoption.

4.4 Higgins

4.4.1 Introduction

According to its website8, Higgins, launched in 2003, is ‘an open-source In-

ternet identity framework designed to integrate identity, profile, and social

relationship information across multiple sites, applications, and devices’.

Like CardSpace, Higgins is InfoCard-based and involves an active client.

Higgins supports and extends the functionality provided by the CardSpace

system.

The Higgins project’s stated aims9 include to:

• provide a card-based consistent user experience for managing identity

data;

• give users a greater degree of control over personal data stored on third

party servers; and

• offer a single point of control for multiple identities, preferences and

relationships.

4.4.2 InfoCards

In addition to personal and managed InfoCards, as supported by Microsoft

CardSpace, Higgins introduces a third type of InfoCard, known as a relation-

ship card (or rCard), which can be either self-issued or managed. An rCard

includes a special claim type called a resource-UDR (where UDR stands for
8http://www.eclipse.org/higgins/faq.php
9http://www.eclipse.org/higgins/higgins-charter.php

130

4.4 HIGGINS

Uniform Data Reference), the value of which must be an Internet address. If

an RP policy requests an assertion for the resource-UDR claim, then the user

must select an rCard. The RP can use the value of the resource-UDR claim

to discover an entity holding the values of user attributes, so that the RP can

directly retrieve them. This is potentially useful if the IdP-STS has delegated

the storage of user attributes to a separate attribute service [21, 220].

4.4.3 Data Model

A major design goal of Higgins is to enable the integration of identity data

from multiple, heterogeneous sources using a common context data model.

Such heterogeneous sources include LDAP directories, SQL data bases, so-

cial networking sites, and email directories [21]. The context data model is

intended to provide a foundation for integration, unification, and sharing

of identity-related data10.

The Higgins context data model uses the concept of contexts, where per-

sonal data can be retrieved from a variety of sources, and then grouped

together to form a context. Such a context can have a special set of rules as-

sociated with it, governing information exchange, reputation measurement,

discovery, etc. For example, a context containing private medical data can

be established by collecting relevant data from multiple providers, such as

hospitals, clinics, pharmacies, practitioners, specialists, etc.; specific privacy

provisions can then be applied to the newly created medical context [71].

4.4.4 Architecture

Fig. 4.4, due to Clippinger [71], provides an overview of the Higgins archi-

tecture. This figure uses the terms context provider and digital subject, which

roughly map to identity provider and digital identity, respectively (see sec-

tions 2.2 and 3.4). In Higgins terminology, a digital subject only becomes a

digital identity if a context provider (i.e. an authoritative TTP) vouches for
10http://wiki.eclipse.org/Context_Data_Model_1.0

131

4. IDENTITY MANAGEMENT SYSTEMS

the claim(s) made by the subject. Examples of possible context providers

include credit card companies, banks, community associations, and gov-

ernment agencies. Clippinger [71] points out that the concept of context is ‘a

critical notion to Higgins as all identifying, profile, and relationship infor-

mation ‘’claims” made about the identities and attributes of people, events,

or things is contained in a context’ (see also section 4.4.3).

Figure 4.4: Higgins Architecture

The key components of the architecture are as follows.

Context Provider Interface This provides a common interface for context

providers to use to access the Higgins framework.

Identity Attribute Service This provides a uniform, abstract data model

(see section 4.4.3) that represents a set of contexts, including the digital

subjects they contain.

132

4.4 HIGGINS

Identity Selector Service This service, which operates in conjunction with

a browser extension, performs a number of functions, including: nego-

tiating between IdPs and RPs; displaying IdP and RP identities to the

user; and obtaining claim values and releasing them to the browser,

which submits them to the requesting RP. Note that the identity selec-

tor service is very similar to the CardSpace identity selector.

STS The STS (see section 4.3.2) is responsible for creating a security token

(typically digitally signed) containing the identity attributes requested

by an RP.

4.4.5 Categories

The components of a Higgins implementation can be divided into three

main categories11, namely active clients, personal data services, and iden-

tity services.

4.4.5.1 Active Clients

An active client is integrated with a web browser and runs on a PC or mobile

device; Higgins calls it a personal identity manager. Active clients have been

developed for a variety of platforms, including Windows, Mac OS, Linux,

Android and iPhone, and browsers, including Internet Explorer, Firefox,

Google Chrome and Safari. Two major versions have been released, namely

active client 1.* and active client 2.*.

1. Active Client 1.*

This version only supports the OASIS-standardised Information Card

protocol [143], and therefore functions very similarly to the CardSpace

identity selector. Two versions have been released, namely selector 1.0

and selector 1.1.

11http://wiki.eclipse.org/Exploring_Project

133

4. IDENTITY MANAGEMENT SYSTEMS

a) Selector 1.0

Three implementations of this version of the selector are as fol-

lows.

• The GTK and cocoa selector 1.012 is a stand-alone, cross-platform

identity selector application, written in C++, that interacts di-

rectly with a user to manage and select InfoCards. It uses the

GTK user interface (UI) toolkit on Linux and Windows, and

the Cocoa UI toolkit on Mac OS. It offers a very similar func-

tionality to the CardSpace identity selector.

• The RCP selector 1.013 is a stand-alone, Eclipse RCP-based ap-

plication, that is Windows- and Internet Explorer-specific. It

is written in Java, and can be installed on an end user desk-

top machine. Since it implements the complete Higgins infras-

tructure and the Eclipse form-based identity selector, it gives

the end user a secure and friendly way to manage and select

InfoCards.

• The Firefox-embedded selector 1.0 is a Firefox-specific and cross-

platform selector that operates on Windows, Linux, and Mac

OS. It is implemented as a Firefox add-on that relies on a

hosted, persistent web service, which manages the user’s In-

foCards.

b) Selector 1.1

Three implementations of this version are as follows.

• The AIR Selector 1.114 is an Adobe AIR-based identity selector

that runs locally on Mac OS and Windows. It requires two

ancillary components on the local machine, namely a Higgins

selector switch and a Higgins browser extension. It also re-

12http://wiki.eclipse.org/GTK_and_Cocoa_Selector_1.0
13http://wiki.eclipse.org/RCP_Selector_1.0
14http://wiki.eclipse.org/AIR_Selector_1.1

134

4.4 HIGGINS

quires a Higgins server that provides an InfoCard service.

• The iPhone Selector 1.115 is a stand-alone iPhone application

that can be launched both from the iPhone main menu and

from an RP site. It uses a remote service for retrieving and

managing the user’s InfoCards.

• The Android Selector 1.116 is a stand-alone Android application

that can be launched automatically from an RP site.

2. Active Client 2.*

This version is currently under development. Earlier plans for this ver-

sion include incorporating support for password management, Hig-

gins rCards, as well other systems such as OpenID.

Higgins 2.0 is also intended to act as a client for the personal data service

(PDS — see section 4.4.5.2 below); this could enable Higgins to provide

a dashboard for personal information, including providing a means of

managing who gets access to what personal data.

It is planned that version 2.* will support managed and personal In-

foCards, as well as managed and personal Higgins rCards. It is also

planned that version 2.* will be compatible with most modern web

browsers, including Firefox version 3 onwards, Internet Explorer ver-

sion 7 onwards, and Chrome. Supported platforms include Windows

XP, Windows Vista, Windows 7, and Mac OS.

4.4.5.2 Personal Data Services

The notion of a personal data service17 is currently under development. Its

main purpose is to provide the user with as much control as possible over

their personal data, where such personal data is typically scattered across

the Internet.
15http://wiki.eclipse.org/IPhone_Selector_1.1
16http://wiki.eclipse.org/Android_Selector_1.1
17http://wiki.eclipse.org/Personal_Data_Store_Overview

135

4. IDENTITY MANAGEMENT SYSTEMS

A personal data service would provide a user with a central point of con-

trol for personal information, including providing data management and

data discovery, allowing the user to be discoverable by others.

In addition, it enables the user to share selected subsets of their identity

attributes with other people and organisations that the user trusts.

Finally, a personal data service can store personal data locally, control ac-

cess to remotely hosted personal data, synchronise data with other devices

and computers, etc.

4.4.5.3 Identity Services

In order to test its products, Higgins provides code bases to enable experi-

mental websites to act as IdPs and/or RPs.

4.4.6 Possible Limitations of Higgins

Higgins shares some of the limitations of CardSpace, in particular those de-

scribed in sections 4.3.14.1–4.3.14.4.

4.5 OpenID

4.5.1 Introduction

OpenID18 [92, 203] is an open and decentralised identity management sys-

tem that supports web SSO to multiple sites using a single digital identity.

The term OpenID is also used to refer to a user ID (i.e. a username) used in

the OpenID protocol.

In addition to user authentication, certain extensions to OpenID (see sec-

tion 4.5.9) enable it to support attribute exchange between IdPs and RPs.

OpenID is a passive client system, relying on HTTP redirects (see section

3.7).

18http://openid.net/

136

4.5 OPENID

OpenID has been widely adopted, with more than one billion OpenIDs

on the Internet and approximately nine million sites enabling OpenID con-

sumer support19. OpenID-enabled IdPs20 include Google, Yahoo, Microsoft,

and MyOpenID. In the OpenID specifications, an OpenID IdP is referred to

as OpenID provider (OP). However, for consistency we use the term identity

provider (or IdP).

Two major versions have been released: OpenID 1.121 [203], and OpenID

2.0 [92]; fortunately v2.0 is backward compatible with v1.1.

OpenID 2.0 (together with some OpenID 1.1 implementations) uses two

types of identifier:

1. URLs, e.g. http://Alice.OpenID-Provider.org; and

2. XRIs22, e.g. xri://Alice.OpenID-Provider.com.

An OpenID user could adopt a self-owned URL, e.g. a personal page, or

register a new URL at an IdP.

4.5.2 IdP Discovery

An RP can discover the IdP by first processing the OpenID identifier, pro-

vided by the user when use of OpenID is initiated, to identify an online

document. The RP then requests this document and learns the IdP identity

from it. This latter process can occur in two different ways, as follows.

• HTML-based Discovery. This mechanism is supported by the two

major versions of OpenID. The RP uses the user-supplied OpenID

identifier to request an HTML document containing an HTML link tag;

this tag specifies the location of the OpenID-enabled IdP.

19http://openid.net/2009/12/16/openid-2009-year-in-review/
20http://en.wikipedia.org/wiki/List_of_OpenID_providers
21In fact, OpenID 1.0 preceded OpenID 1.1; however, the latter is only a minor revision of the

former.
22An XRI, which stands for eXtensible Resource Identifier, is an Internet identifier [205].

137

4. IDENTITY MANAGEMENT SYSTEMS

• XRDS-based Discovery. This mechanism is supported by OpenID 2.0.

In this approach, an XRDS document23 [225] (obtained as described be-

low) contains the necessary information to discover the required IdP.

If the user’s OpenID identifier is:

– an XRI, then the RP retrieves the XRDS document identified by

the user’s supplied XRI;

– a URL, then the RP uses the Yadis protocol [172] to retrieve the

XRDS document; if this fails, then the RP reverts to HTML-based

discovery.

Note that some OpenID implementations allow the user to tell the RP which

IdP to use [32].

4.5.3 IdP-RP Negotiation

Unlike Liberty and Shibboleth (see sections 4.7 and 4.8), OpenID does not

require pre-contractual agreements or a federation to be in place (see sec-

tion 4.5.4 below); instead it uses dynamic negotiation at run-time (much

like CardSpace). An OpenID RP can specify its (security) requirements in

its authentication request. The RP can also dynamically negotiate with the

IdP via a background channel to agree on algorithms to be used to exchange

a secret key (see section 4.5.8).

4.5.4 Identity Federation

OpenID does not support identity federation as defined in the Liberty, Shib-

boleth or SAML specifications. However, if an OpenID user already has an

RP-managed account, then the RP could locally link (or federate) this ac-

count with the user’s (remote) IdP-managed identity, e.g. using the user’s

OpenID, i.e. the IdP-issued global identifier.
23An XRDS (eXtensible Resource Descriptor Sequence) document is an XML-based file that can be

used to help discover the location of the required IdP.

138

4.5 OPENID

4.5.5 User Control and Consent

The IdP allows the user to review the contents of the token before it is re-

leased to the RP. However, the user cannot readily verify that the attribute

values in the IdP-issued token are actually as stated by the IdP.

4.5.6 Level of Assurance

An optional OpenID extension [204] enables an RP and IdP to negotiate the

level of assurance in the user authentication by the IdP (e.g. that it employs

two- or multi-factor user authentication). An RP can either ask the IdP to

specify what level it uses, or it can specify the minimum level it will accept.

The extension enables IdPs and RPs to define their own custom assur-

ance levels, as well as supporting the NIST assurance levels (see section

2.4.3.3). An IdP can inform the RP of the NIST assurance level correspond-

ing to the user authentication techniques and policies it employs when au-

thenticating the end user. Note that, although Level 0 is not an assurance

level defined by NIST, the OpenID documentation [204] states that it should

be used to indicate that the user authentication does not satisfy the require-

ments of level 1 (the lowest NIST-defined level).

4.5.7 Supporting OpenID

An OpenID-enabled RP would typically display an OpenID login form (see

Fig. 4.5) containing a text field allowing the user to enter an OpenID identi-

fier. In order to enable UAs (including browser extensions) to automatically

determine that this is an OpenID form, it is recommended that the name

attribute of the form’s field is set to:

1. openid url in OpenID 1.1; or

2. openid identifier in OpenID 2.0.

139

4. IDENTITY MANAGEMENT SYSTEMS

Figure 4.5: An OpenID Login Form (Taken From openid.net)

4.5.8 Operation

We next describe the operation of OpenID, covering the main differences

between the two major versions. Before the protocol run, a user will typi-

cally have previously registered an OpenID identifier with an IdP. Fig. 4.6

gives an overview of the operation of the scheme.

1. UA→ RP: HTTP/S Request. A user navigates to an OpenID-enabled

RP.

2. RP→ UA: HTTP/S Response. A login page is returned containing an

OpenID login form.

3. User→ UA: OpenID Entry. The user enters an OpenID identifier into

the OpenID form, and submits it.

4. RP: IdP Discovery. If necessary, the RP normalises the user-supplied

OpenID identifier24. The RP then performs IdP discovery (see sec-

tion 4.5.2) to establish which IdP it needs to contact in order to verify

the user identifier.

5. RP
 IdP: Agreeing on MAC Key (Optional). The RP and IdP agree a

shared secret MAC key (see section 2.4.2.1), typically established using

the Diffie-Hellman Key Exchange protocol (see section 2.4.4.2). This

shared key, referred to as an associate handle in the OpenID specifica-

tions, is used by the IdP and RP to MAC-protect and verify subsequent

protocol messages, respectively, in a specified period of time. Note that

24This typically involves transforming the identifier into a canonical URL.

140

4.5 OPENID

this request-response process, known as the association mode, is trans-

parent to the user (it takes place via a direct RP-IdP back-channel), and

requires the two parties to be able to store the secret.

6. RP-IdP Communication. The RP and IdP can communicate in one of

two modes:

• checkid immediate, which involves direct RP-IdP communications

without user interaction; and

• checkid setup, where the user is interactively involved in RP-IdP

communications.

Note that the checkid setup mode is more commonly used; indeed, if

checkid immediate mode fails, the OpenID protocol typically reverts

to checkid setup mode.

If checkid immediate mode is in use, the RP directly sends the IdP

an OpenID authentication request, and the IdP replies directly with an

OpenID authentication response; step 9 then takes place. However,

when using checkid setup mode, the RP redirects the UA to the IdP

with an OpenID authentication request25, and step 7 follows.

7. IdP
 UA: User Authentication. If necessary, the IdP authenticates

the user, using a method of its choice (outside the scope of OpenID).

If successful, the IdP constructs an OpenID assertion token, including

user attributes, a freshly-generated nonce26, a current time-stamp, and

a MAC computed on the token. If a shared key was agreed in step 5,

the IdP uses it to generate the MAC; otherwise the IdP employs an

internally-generated MAC key. The IdP requests user-permission to

send the assertion token to the requesting RP.
25OpenID requests and responses are typically sent embedded in URLs (alternatively they could

be sent in HTML forms). OpenID messages are comprised of sets of name-value pairs.
26Although mandatory in OpenID 2.0 (to prevent replay attacks), use of nonces is not mandatory

in OpenID 1.1.

141

4. IDENTITY MANAGEMENT SYSTEMS

8. IdP → UA → RP: OpenID Token. The IdP redirects the UA back to

the RP with a positive or negative OpenID authentication response,

depending on whether or not the user granted permission in step 7.

9. RP → UA: Grant/Deny Access. The RP verifies the MAC-protected

OpenID authentication response, and, if satisfied, grants access. The

verification process includes checking that the nonce has not been seen

before, the time-stamp is sufficiently current, and the MAC is valid.

If a shared secret was agreed previously (see step 5), the RP uses its

copy to verify the MAC. RPs capable of storing shared secrets between

sessions are called stateful.

However, stateless RPs cannot maintain secrets between sessions. If a

secret was not agreed, the RP must make an extra request to the IdP

to verify the MAC, typically via a TLS/SSL channel. This request-

response process is known as the check authentication mode. Note that,

in order to prevent replay attacks, OpenID-enabled IdPs will only re-

spond to the first verification request it receives for a specific nonce

value [92].

The use of SSL/TLS on the IdP-client and RP-client channels is strongly

recommended. For additional security, the RP can add a freshly-generated

nonce to its authentication request, which the IdP must include in the au-

thentication response.

4.5.9 Attribute Exchange

OpenID supports attribute exchange via a range of ways; we describe two

methods of particular importance to this thesis.

4.5.9.1 Simple Registration OpenID Extension (SREG)

SREG [116] is an extension to OpenID that allows a set of user attributes to

be passed from an IdP to an RP. SREG supports the exchange of nine types

142

4.5 OPENID

UA OpenID-enabled RP OpenID-enabled IdP

(1) HTTP request

(2) HTTP response (& login form)

(3) User: enter OpenID

(4) Discover IdP

(5) Agree on MAC key (optional)

[association mode]

(6) Redirect with OpenID authentication request

(7) User authentication

(8) Redirect with OpenID token

If step 5 did not occur, verify token

[check authentication mode]
(9) Grant or deny access

Figure 4.6: OpenID Operation in check setup Mode

of attribute, namely nickname, email, fullname, dob, gender, postcode, country,

language and timezone. The values of such attributes are held by an IdP,

and are only sent to an RP with the approval of the user. As is the case

with CardSpace and Shibboleth (see section 4.8), requesting attributes is op-

tional, i.e. OpenID could be used purely for user authentication. Also as in

CardSpace, an RP can mark requested attributes as mandatory or optional.

Requests are issued as part of an OpenID authentication request in either

checkid immediate or checkid setup mode. SREG operates with OpenID v1.1

and v2.0.

143

4. IDENTITY MANAGEMENT SYSTEMS

4.5.9.2 Attribute eXchange (AX)

AX [108] is an OpenID service extension that supports the exchange of user

attributes. Unlike SREG, AX can be used to transfer arbitrary data between

IdPs and RPs. AX defines the following operations:

• fetch, which enables an RP to retrieve user attributes from an IdP; and

• store, which allows an RP to save or update user attributes at an IdP.

AX supports a superset of the user attributes supported by SREG [32].

4.5.10 Proof of Ownership

At the time of writing, the OpenID specifications do not specify a means to

prove ownership of an OpenID token [21, 113].

4.5.11 Possible Limitations of OpenID

We conclude by outlining possible limitations of OpenID.

4.5.11.1 Phishing

As discussed by many authors, including Lee et al. [158] and van Delf et al.

[223], OpenID is vulnerable to phishing, since IdP discovery is performed

by the RP, which redirects the user to an IdP; this means that a malicious

RP could redirect a user to a fake IdP, which could then capture the user’s

credentials.

4.5.11.2 Threats to Privacy

Again as discussed by many authors, including Alrodhan [21], OpenID re-

lies on a global identifier, which gives rise to significant privacy concerns. In

OpenID, a user’s identifier (i.e. his/her OpenID) is unique and global and

must be released to requesting RPs. Malicious RPs could therefore collude

144

4.6 OAUTH

and use a user’s OpenID identifier to trace user activities on the Internet, in-

cluding discovering user preferences, interests and surfing behaviour, e.g.

for targeted advertising. IdPs could also masquerade a user at will.

4.5.11.3 Other Limitations

OpenID shares some of the limitations of CardSpace, in particular those de-

scribed in sections 4.3.14.2 and 4.3.14.6. Also like CardSpace, OpenID does

not support attribute-aggregation (i.e. only one IdP can be queried in a sin-

gle working session — see section 4.3.14.3).

Finally, as stated in section 4.5.10, currently OpenID does not support

any proof-of-rightful possession methods, increasing the risk of an adver-

sary illegitimately using a stolen OpenID token.

4.6 OAuth

4.6.1 Introduction

OAuth27 (derived from Open Authorisation) is an emerging, open, iden-

tity management standard. The OAuth specifications describe a system de-

signed to enable an end user to grant an Internet application controlled ac-

cess to personal information (e.g. user attributes, photos, contact lists, etc.)

stored at a third party site, without divulging long-term credentials such as

passwords. In the language of access control systems, OAuth supports del-

egation of access rights to stored personal data. In the absence of a system

like OAuth, applications must request user credentials in order to access

user information held by a third party, which is clearly undesirable.

The four entities involved in the OAuth protocol are the:

1. resource owner, typically an end user or, more specifically, a UA (for

consistency with the rest of the thesis, we use here the term user instead

of resource owner);
27http://oauth.net/

145

4. IDENTITY MANAGEMENT SYSTEMS

2. client, an application requesting access to user resources (i.e. the RP in

our terminology);

3. resource server, a server hosting user resources; and

4. authorisation server, a server that issues an access token (see below) to

a client after successfully authenticating the user and obtaining its au-

thorisation (i.e. the IdP in our terminology).

Note that the latter two roles are typically performed by a single entity,

which we refer to as an IdP for consistency with the rest of the thesis.

An access token is typically an opaque string that indicates permission to

access specific information for a limited time period; such a token can be

independently revoked. The access token must be kept confidential, and

should be issued with the minimum necessary scope and lifetime.

At the time of writing, the OAuth specifications do not specify a method

of communicating an authentication assurance level between IdPs and RPs

(i.e. clients — see immediately above). OAuth supports the transfer of arbi-

trary data, enabling arbitrary user attributes to be provided to an RP by an

IdP. OAuth does not support identity federation as defined in the Liberty,

Shibboleth and SAML specifications.

4.6.2 User Control and Consent

The OAuth-enabled IdP (authorisation server) asks the user to authorise a

request made by an identified third party application to access certain user

data. The user is made aware of the private data being requested by the

third party application, and must consent to its release. Given user autho-

risation, the OAuth IdP provides the third party application with an access

token that it can use to gain controlled access to a defined set of data for a

specified period of time. The user can revoke an access token at any time

via the IdP.

146

4.6 OAUTH

However, a user cannot independently verify whether or not the data

(user attributes) passed by an IdP to an RP actually match those that the

user has authorised; the user must therefore rely on the IdP to act honestly.

Of course, this is true more generally, since an IdP (authorisation server)

could give an application access to any user data it chooses at any time,

with or without user permission.

4.6.3 Operation

Two major (incompatible) versions of OAuth have been released: OAuth

1.0 [86] and 2.0 [107, 188]. We describe below the latest version, i.e. OAuth

2.0.

4.6.3.1 Overview of Operation

Fig. 4.7 [107] gives an overview of the operation of the OAuth protocol. It

enables a client to request authorisation from the user for access to specific

information held by a resource server, possibly via an intermediary autho-

risation server (which is the recommended option [107]). If necessary, the

authorisation server first authenticates the user and, if successful, asks the

user to authorise the client. If the user decides to grant the access request,

an authorisation token (known as an authorisation grant) is sent to the client

(four authorisation grant types are defined — see section 4.6.3.2). The client

then requests an access token from the authorisation server, where the re-

quest includes the authorisation grant. The authorisation server authenti-

cates the client and verifies the authorisation grant, and, if successful, issues

an access token. Next, the client requests access to the private resource(s)

from the resource server, presenting the access token. Finally, the resource

server verifies the access token, and, if it is valid, meets the request.

147

4. IDENTITY MANAGEMENT SYSTEMS

Client

Resource Owner (User)

Authorisation Server

Resource Server

(1) Authorisation Request

(2) Authorisation Grant

(3) Authorisation Grant

(4) Access Token

(5) Access Token

(6) Protected Resource

Figure 4.7: Overview of OAuth Operation

4.6.3.2 Authorisation Types

OAuth supports four authorisation types, i.e. means of supplying a client

with an access code. These are known as: authorisation code, implicit, user

password credentials, and client credentials, corresponding to four possible

protocol flows. The two types of most relevance here are discussed below.

1. Authorisation Code Grant Type

An authorisation code is typically a short-lived random string. Such a

value is supplied by an authorisation server to a client if a user autho-

rises a request made by the client to access specific user resources.

2. Implicit Grant Type

An authorisation grant is said to be implicit if the access token is issued

to the client as a direct result of user authorisation. This method re-

quires fewer round trips to provide a client with an access token than

the authorisation code type; hence, the implicit grant type improves

148

4.6 OAUTH

the responsiveness and efficiency of certain clients, including browser-

hosted client applications.

4.6.3.3 Registration

Before use of the OAuth operational protocol, the client must register with

the OAuth authorisation server. How this is achieved is beyond the scope

of the OAuth specifications [107], but it could involve the use of an HTML

registration form provided by the authorisation server. During registration,

the authorisation server must collect certain data about the client, including

the client type, its redirection URL, and any other server-required data, e.g.

the client name. The authorisation server issues the registered client with a

unique identifier and a secret used for client authentication when using the

authorisation code grant type (see section 4.6.3.2 above).

4.6.3.4 Operation of Implicit Grant Type

In the remainder of this thesis we restrict our attention to the OAuth 2.0

protocol when using the implicit grant type. In this case the OAuth protocol

operates as follows.

1. Client→UA→Authorisation Server: Access Request. The client redi-

rects the user to the authorisation server, requesting access to private

data. The redirect includes the client identifier, the scope of the re-

quested access, an optional state parameter, and a redirection URL to

which the authorisation server will redirect the user once access has

been granted (or denied). The optional (but recommended) state pa-

rameter is set equal to an unguessable value [107]. This value is used

by the client to match its initial redirection to the response from the

authorisation server.

2. Authorisation Server
 UA: Verification and Authorisation. The au-

thorisation server validates the received access request (see step 1), en-

149

4. IDENTITY MANAGEMENT SYSTEMS

suring that all the required parameters are present and valid. The au-

thorisation server verifies the client identity by comparing the redirec-

tion URL with the URL previously registered for this client. If the re-

quest is valid and the client identity is successfully verified, the autho-

risation server (if necessary) authenticates the user (via the UA) over a

TLS-protected channel; the authentication method used is outside the

scope of OAuth. It then asks the user whether the client’s access re-

quest is authorised, where this query includes the client identifier and

the scope of the requested access. If all the checks succeed, the protocol

continues.

3. Authorisation Server → UA → Client: Response. The authorisation

server redirects the UA back to the client using the redirection URL

provided earlier (see step 1). The redirection URL includes the access

token in a URL fragment. If the state parameter was present in step 1,

the authorisation server must return it unmodified (in the URL) to the

client to protect against attacks involving manipulated URLs and mali-

cious redirections, including in particular cross-site request forgery at-

tacks [94, 166]. The UA follows the redirection instructions by making

a request to the client that excludes the access token-bearing fragment,

although the UA retains the fragment information locally.

4. Client
 UA. The client returns a web page containing an embed-

ded script capable of accessing the full redirection URL, including the

fragment retained by the UA (see step 3). The UA executes the embed-

ded script, which extracts the access token from the URL fragment and

passes it to the client over a secure channel.

5. Client
 Resource Server. Finally, the client uses the access token to

retrieve the required resource(s) from the resource server via a TLS-

protected channel.

150

4.7 LIBERTY

4.6.4 Facebook Connect

Facebook Connect28 [171] implements the OAuth 2.0 standard, and uses it to

provide an SSO service. Facebook Connect allows users to sign-on to appli-

cations (e.g. Facebook-affiliated websites) using their Facebook account, and

also enables such applications to access Facebook-hosted user data, subject

to user authorisation.

4.6.5 Possible Limitations of OAuth

OAuth shares a number of the limitations of OpenID, including those de-

scribed in sections 4.5.11.1 and 4.5.11.3.

4.7 Liberty

4.7.1 Introduction

The Liberty Alliance is a large consortium, established in 2001 by approxi-

mately 30 organisations; it now has a global membership of more than 15029.

The Liberty Alliance Project30 (or simply Liberty) builds open, standards-

based specifications for federated identity, provides interoperability testing,

and helps to prevent identity theft. Liberty also aims to establish best prac-

tices and business guidelines for identity federation.

According to its website, Liberty has been widely adopted, and more

than one billion Liberty-enabled identities and devices exist31. The Liberty

standards have been adopted by leading identity product vendors, includ-

ing Sun32 and Ping Identity33. As of mid 2009, the work of the Liberty Al-

liance project has been contributed to the Kantara Initiative34.

28http://developers.facebook.com/docs/authentication/
29http://www.projectliberty.org/liberty/membership/current_members/
30http://www.projectliberty.org/
31http://www.projectliberty.org/liberty/adoption/
32http://www.sun.com/software/products/identity/standards/liberty.xml
33http://www.pingidentity.com
34http://kantarainitiative.org/

151

4. IDENTITY MANAGEMENT SYSTEMS

The Liberty specifications are divided into a number of frameworks, in-

cluding: the identity federation framework (ID-FF) [226], the identity web

services framework (ID-WSF) [219], and the identity service interface spec-

ifications (ID-SIS) [149]. In this thesis we focus on the ID-FF. Liberty ID-

FF provides approaches for implementing federation and SSO, including

supporting mechanisms such as session management and identity/account

linkage.

4.7.2 Supported Functionality

The Liberty architecture [226] supports the following activities.

Identity Federation This process enables a link to be established between a

user identity at an RP and an IdP, given user consent. At the time of

federation, two user pseudonyms (see below) are created for the IdP-

RP association, one for use by each party. De-federation is the reverse

process.

Figure 4.8: A Liberty Circle of Trust

Fig. 4.8 illustrates the Liberty notion of a circle of trust, i.e. a set of

entities (users and RPs) with a shared trust in the identity management

services provided by one or more IdPs (which also form part of the

circle). A principal (or a user) can federate its various identities to a

single identity issued by an IdP in a circle of trust, so that the user can

access services provided by RPs belonging to the same circle of trust

152

4.7 LIBERTY

by authenticating just once to the IdP (see also below). This relies on a

pre-established relationship between the IdP and every RP in the circle

of trust.

SSO This feature enables a Liberty user to log-in once to an IdP in a Liberty

circle of trust and subsequently access protected resources at RPs in

this circle without the need to log-in again. Global log out is the reverse

process.

Pseudonyms Use of pseudonyms must be supported in implementations

of Liberty. A pseudonym is an opaque (i.e. non-meaningful), unique

handle (identifier) for a user, enabling the user’s real identity to re-

main private, thereby potentially enhancing user privacy (see section

2.3.2.3). Pseudonyms can be temporary or persistent, and are included

in SAML tokens exchanged between a Liberty IdP and RP.

Anonymity A Liberty RP can request a Liberty IdP to supply a temporary

pseudonym that will help to preserve the anonymity of a user (see sec-

tion 2.3.2.2). This identifier can be used by an RP to obtain information

for or about the user, with the user’s consent, without requiring the

user to consent to a long-term relationship with the RP [226].

4.7.3 Attribute Exchange

Liberty ID-FF does not support the exchange of user attributes [22]; it only

supports user authentication. However, what can be regarded as the autho-

risation framework for Liberty, i.e. Liberty ID-WSF, does support attribute-

sharing [21]. Liberty ID-WSF builds upon the ID-FF to support identity-

based web services in a federated identity environment. For the purpose of

this thesis, we are only concerned with Liberty ID-FF and we therefore do

not describe the ID-WSF [219] any further.

153

4. IDENTITY MANAGEMENT SYSTEMS

4.7.4 User Control and Consent

The user is required to express consent to federation; however, the Liberty

specifications do not specify a means for a user to review the contents of a

Liberty token before it is released to an RP. However, this is unlikely to be

a serious issue because it only contains an authentication assertion rather

than user attributes.

4.7.5 IdP Discovery

The Liberty specifications do not mandate a means of IdP discovery; instead

the specifications state that discovery is implementation-dependent and up

to the RP, which may however choose to use the Liberty identity provider

introduction profile [58].

If there is more than one IdP in a circle of trust, RPs will need a means

of discovering which IdP a user is employing. This could involve using a

common domain cookie (see below) or a WAYF (Where Are You From —

see section 4.8.3) technique. Ideally, the IdP would write a cookie to the

user platform that an RP could read. However, because of the cookie same

domain policy (see section 2.3.4.1), an IdP in one DNS (Domain Name Sys-

tem) domain has no standardised way of writing a cookie that an RP in

another DNS domain can read (see section 2.3.4.1). Liberty’s solution to this

problem is to set up a common domain for a circle of trust so that it is acces-

sible to all members of the circle of trust. Entries within this DNS domain

will point to IP addresses specific to each member of the circle of trust. For

example, if the common domain is CommonDomain.com, the RP rp.com

might be allocated the domain rp.CommonDomain.com, pointing to an IP

address specified by rp.com; similarly the IdP idp.com might be allocated

the domain idp.CommonDomain.com.

We next briefly describe the operation of the Liberty identity provider

introduction profile [58].

154

4.7 LIBERTY

1. The user signs-on to an IdP, which redirects the user browser to the

IdP-specific instance of the common domain service.

2. The common domain service writes a cookie to the user platform indi-

cating that the user is using this particular IdP.

3. If and when the user later navigates to an RP site, the RP redirects

the user browser to its instance of the common domain service, re-

ceives the IdP cookie and reads the IdP list it contains, and redirects

the browser back to the RP site with the IdP identifiers embedded in

the URL, which are thereby available to the RP.

4. By analysing the URL, the RP learns the identities of one or more of the

user-supported IdPs, and can thus engage in further Liberty protocol

operations (see section 4.7.8 below). Note that the RP could prompt the

user to select an IdP from the retrieved IdP list, e.g. organised in the

order of most-recently used, or could simply display the most-recently

used IdP.

4.7.6 Negotiation

As noted above, Liberty is designed around the notion of a circle of trust,

where a circle of trust would typically involve several RPs and one or more

IdPs. Liberty requires pre-existing contractual agreements to be established

between the circle of trust members. User identities/accounts are also typi-

cally federated, with the consent of the user.

4.7.7 SSO and Federation Profiles

The Liberty ID-FF protocol specification [60] includes a specification of the

SSO and federation protocol. The ID-FF bindings and profile specification

[58] defines the notion of profiles35, i.e. mappings of ID-FF protocol mes-
35A Liberty ID-FF profile can also be defined as the combination of message content specifications

and message transport mechanisms for a single type of client (i.e. a UA) [21, 58].

155

4. IDENTITY MANAGEMENT SYSTEMS

sages to particular communication protocols (e.g. HTTP — see section 2.5.3).

The latter document also describes the common interactions and processing

rules for these profiles.

The SSO and federation protocol has three associated profiles36, which

we next briefly describe.

4.7.7.1 Liberty Artifact Profile

This profile is designed for use in the case where the only user platform-

supported communications channel available to the IdP and RP is by em-

bedding data in the URL exchanged between them via HTTP redirection.

Because of the limits on the amount of data that can be transferred in this

way (see section 2.5.3.8), it might not possible to transfer the SAML asser-

tion itself via this channel; instead, it is transferred in two stages. Firstly,

an identifier for the assertion, referred to as an artifact (a string with no

semantic content), is transferred from the IdP to the RP by embedding it

within the URL. Secondly, the RP uses the artifact to retrieve the full SAML

assertion from the IdP using direct (back-channel) communication. To pro-

tect against replay and guessing attacks, the artifact is an opaque, pseudo-

random nonce [226].

4.7.7.2 Liberty Browser-post Profile

In this profile, the entire SAML assertion is embedded in a POST-based

HTML form (see section 2.5.1.2). As a result, the artifact and back-channel

IdP-RP communications are not required. JavaScript-enabled browsers can

perform an HTTP redirect between IdPs and RPs by using JavaScript to au-

tomatically send a form containing the authentication data.

36While there are many ID-FF Liberty profiles, we are primarily concerned with the SSO and
federation profiles.

156

4.7 LIBERTY

4.7.7.3 Liberty-enabled Client and Proxy Profile (LECP)

Unlike the previous two profiles, the Liberty-enabled client (LEC) profile re-

quires an enabling software component to be installed on the user platform.

It supports interactions between Liberty-enabled clients (and/or proxies37),

RPs, and IdPs. A LEC is a UA that can directly communicate with IdPs;

the means by which IdP discovery is accomplished is unspecified. The LEC

profile involves sending Liberty messages in the body of HTTP requests

and responses using HTTP/S POST, rather than relying upon HTTP redi-

rects and encoding protocol parameters into URLs. As a result the LEC pro-

file does not impose any restrictions on the size of the protocol messages.

UA-IdP interactions are SOAP-based (see section 2.5.6), and the protocol

messages include either a Liberty-enabled header (preferred) or an entry in

the HTTP User-Agent header. The identifier http://projectliberty.

org/profiles/lecp must be used when referencing this profile.

4.7.8 Operation

For clarity we divide our description of Liberty operation into two cases, as

follows.

4.7.8.1 Liberty Artifact and Browser-post Profiles

We first describe the operation of the Liberty artifact and browser-post pro-

files, covering the main differences between them. As stated previously,

both these profiles are federation-based, redirect-reliant, and passive client-

dependent systems (see section 3.7). Fig. 4.9 gives an overview of their op-

eration, which involves the following main steps.

1. UA→ RP. The user navigates to a Liberty-protected RP page38.

37A Liberty-enabled proxy is an HTTP proxy [160] that emulates a Liberty client [58].
38It is recommended that the request is made over an SSL/TLS secure channel.

157

4. IDENTITY MANAGEMENT SYSTEMS

2. RP: IdP Discovery. The RP discovers the IdP by some unspecified

means.

3. RP→ UA→ IdP: Liberty Authentication Request. The RP generates a

Liberty authentication request and redirects the UA to the discovered

IdP.

4. IdP
UA: User Authentication. If necessary, the IdP authenticates the

user by some means outside the scope of Liberty.

5. IdP→UA→RP: Liberty Authentication Response. The IdP generates a

digitally-signed Liberty authentication response. If the browser-post

profile is used, this response is included in an HTML form that is sent

to the RP when the IdP redirects the UA to the RP; in this case the

next step is skipped. If the artifact profile is used, the IdP generates an

artifact (label) and embeds this in the URL before redirecting the UA

to the RP.

6. RP
IdP (Artifact Profile Only). The RP uses the artifact received in

the previous step to acquire the corresponding, signed authentication

assertion from the IdP (using SOAP — see section 2.5.6). This commu-

nication takes place via a mutually-authenticated back-channel.

7. RP→ UA: Grant/Deny Access. The RP verifies the received response,

and, if satisfied, grants access.

4.7.8.2 LECP

We next describe the operation of the LECP. As stated previously, this pro-

file is federation-based and involves an active client (see section 3.7). Fig.

4.10 gives an overview of the operation of LECP, where LibHeader stands for

Liberty-enabled Header.

158

4.7 LIBERTY

UA Liberty-enabled RP Liberty-enabled IdP

(1) Access request

(2) Discover IdP

(3) Redirect with Liberty authentication request

(4) User authentication

(5) Redirect: Liberty token or artifact

(6) Artifact profile only: artifact

(7) Artifact profile only: token

(8) Grant or deny access

Figure 4.9: Operation of Liberty Browser-post and Artifact Profiles

1. LECP→ RP: HTTP Request. The user navigates to a Liberty-protected

RP page, and either a Liberty-enabled header or a Liberty-enabled en-

try in the User-Agent header is included in the HTTP request.

2. RP → LECP: HTTP Response + Liberty Authentication Request. The

RP generates a Liberty authentication request and sends it to the LECP

in the body of the HTTP response. Note that the RP can include a list

of IdPs it recognises in the request.

3. LECP: IdP Discovery. The LECP discovers the required IdP by unspec-

ified means. The IdP list provided by the RP in the previous step can

be used by the LECP; for example, the LECP could compare the list

of the user’s IdPs against the list provided by the RP and then only

display the intersection, so that the user can select an IdP.

4. LECP → IdP: Liberty Authentication Request. The LECP issues an

159

4. IDENTITY MANAGEMENT SYSTEMS

HTTP POST containing a SOAP-based Liberty authentication request

message intended for the appropriate IdP. This request must contain

the same authentication request as received from the RP.

5. IdP
UA: User Authentication. If necessary, the IdP authenticates the

user by some means outside the scope of Liberty.

6. IdP→LECP: Liberty Authentication Response. The IdP generates a

SOAP-based, digitally-signed authentication response and sends it to

the LECP via an SSL/TLS channel.

7. LECP→RP: Authentication Response. The LECP forwards the IdP-

issued response to the RP, embedded in a (POST) HTML form, via an

SSL/TLS channel.

8. RP→ UA: Grant/Deny Access. The RP verifies the received response,

and, if satisfied, grants access.

LECP-enabled RP LECP-enabled UA LECP-enabled IdP

(1) Access request + LibHeader

(2) Authentication request + LibHeader

(3) Discover IdP

(4) Authentication request + LibHeader

(5) User authentication

(6) Authentication response + LibHeader

(7) Authentication response + LibHeader

(8) Grant or deny access + LibHeader

Figure 4.10: Overview of LECP Operation

160

4.7 LIBERTY

4.7.9 Proof of Ownership

Liberty enables a user to prove to an RP that it owns the assertion generated

by an IdP. The Liberty ID-FF supports SAML 2.0 assertions as a security to-

ken type. The SAML 2.0 specifications support three proof-of-possession

methods (also referred to as subject confirmation methods): Holder-of-Key

(HoK), Sender-Vouches, and bearer [59].

4.7.10 Possible Limitations of Liberty

Liberty shares a number of the limitations of OpenID, in particular some

of those described in sections 4.5.11.1 and 4.5.11.3. We next briefly describe

two possible limitations of Liberty that are of particular importance.

4.7.10.1 Phishing

As discussed by Alrodhan [21], in the Liberty ID-FF browser-post and arti-

fact profiles, IdP discovery is performed by the RP, which redirects the user

to an IdP; this means that a malicious RP might redirect a user to a fake IdP,

which could then capture the user’s credentials. However, such an attack

is mitigated if the LEC profile is used, since in this case IdP discovery is

performed at the user platform.

4.7.10.2 Threats to Privacy

In a Liberty circle of trust, an IdP is aware of all the RPs which the user tries

to access. The IdP can thus track user activities, which could be used to

create user profiles [21].

161

4. IDENTITY MANAGEMENT SYSTEMS

4.8 Shibboleth

4.8.1 Introduction

The Shibboleth39 specifications [61, 62, 173, 211] define a set of possible in-

teractions between an IdP and an RP, designed to support SSO and attribute

exchange [62]. It is estimated that over 4 million university students, staff,

and faculty are involved in Shibboleth federations40. In August 2008, Shib-

boleth superseded Athens41 as the JISC42-preferred federation identity man-

agement system for use by UK educational institutions43. Shibboleth is a

federation-based, redirect-reliant, and passive client-dependent system (see

section 3.7).

Two major versions of Shibboleth have been released: Shibboleth 1.3,

which builds on the SAML 1.1 specifications, and Shibboleth 2.0, which

builds on the SAML 2.0 standards. Fortunately, v2.0 is backward compatible

with v1.3. Whereas v1.3 supports SAML 1.1 assertions, v2.0 supports both

SAML 1.1 and SAML 2.0 assertions44. Shibboleth v2.0 offers a number of the

features of SAML 2.0. For example, it incorporates support for passive and

forced authentication requests. In addition, a v2.0-compliant RP can request

a specific method of authentication from the IdP. Shibboleth v2.0 also sup-

ports an additional encryption capacity, and sets a default session lifetime

of 30 minutes.

4.8.2 Attribute Exchange

Shibboleth uses the SAML attribute request protocol to support attribute

sharing between IdPs and RPs. Use of this attribute exchange is, however,

optional, since an RP may only require an authentication assertion. Approx-
39http://shibboleth.internet2.edu/
40http://en.wikipedia.org/wiki/Shibboleth_(Internet2)
41http://www.athens.ac.uk
42According to the JISC website (http://www.jisc.ac.uk/), the acronym historically stood for

Joint Information Systems Committee.
43http://www.jisc.ac.uk/whatwedo/programmes/amtransition/iamsp.aspx
44http://shibboleth.internet2.edu/shib-v2.0.html

162

4.8 SHIBBOLETH

imately 40 attribute types have been defined as common identity attributes,

including the six highly recommended attributes, namely givenName, sn (sur-

name), cn (common name), eduPersonScopedAffiliation, eduPersonuserName and

eduPersonTargetedID [211].

4.8.3 Architecture and IdP Discovery

The Shibboleth architecture includes the following primary components:

• an RP, which could consist of an assertion consumer service, an at-

tribute requester, etc.;

• a WAYF service, an optional component supporting IdP discovery (al-

ternatively, the role of this component can be taken by the RP); and

• an IdP, which can incorporate a range of functional components, such

as an authentication authority, attribute authority, SSO service, etc. The

authentication authority (or the authentication service) is an IdP com-

ponent responsible for user authentication and issuing user assertions

for use by RPs. It is also responsible for the generation of temporary

user IDs in the form of pseudonyms.

4.8.4 Identity Federation

Shibboleth supports identity federation, as part of which IdPs and RPs ex-

change public-key certificates. SAML profiles, and by extension Shibboleth

profiles, require agreements between system entities regarding identifiers,

certificates, keys, etc. A metadata specification can be used to describe such

information in a standardised way. During the federation process, a Shib-

boleth IdP and RP can use short-term random IDs to help preserve user

privacy and maintain anonymity [21, 57].

4.8.5 Shibboleth Profiles

Shibboleth supports the following profiles.

163

4. IDENTITY MANAGEMENT SYSTEMS

4.8.5.1 Browser-post Profile

In this profile the SAML messages sent between the IdP and RP are em-

bedded in (POST-based) HTML forms, which can be sent automatically by

JavaScript-enabled browsers. This profile is similar to the Liberty ID-FF and

SAML 2.0 SSO browser-post profiles (see section 4.7.7.2).

4.8.5.2 Artifact Profile

This profile involves embedding an artifact (i.e. an opaque reference) in a

URL, that is sent from the IdP to the RP as a result of HTTP redirection.

It also requires direct (back-channel) RP-IdP communication, by means of

which the RP uses the artifact to retrieve the full SAML assertion from the

IdP. This profile is similar to the Liberty ID-FF and SAML 2.0 SSO artifact

profiles (see section 4.7.7.1).

4.8.6 Operation

We next describe the operation of Shibboleth, covering the main differences

between the two profiles introduced above. Its operation is similar to that

of the Liberty ID-FF/SAML 2.0 browser-post and artifact SSO profiles. Fig.

4.11 gives an overview of the operation of Shibboleth.

1. UA→ RP. The user navigates to a Shibboleth-protected page.

2. RP → UA: Shibboleth Authentication Request. The RP generates an

authentication request, and embeds it in a redirection of the UA to

either a WAYF service or to an IdP. A WAYF service is typically used

if the RP wishes to delegate the task of IdP discovery.

3. UA
 WAYF: IdP Discovery (Optional). If a WAYF service is used,

it interacts (via unspecified means) with the UA to allow the user to

select an IdP. The WAYF service then redirects the UA to the user-

selected IdP, forwarding the RP’s authentication request. The WAYF

164

4.8 SHIBBOLETH

service can offer the user the option to store their choice of IdP for

subsequent logins.

4. IdP
 User: User Authentication. If necessary, the IdP authenticates

the user by some means outside the scope of Shibboleth.

5. IdP→UA→RP: Shibboleth Token. The IdP generates a digitally-signed

SAML assertion. Either the assertion itself (if the browser-post profile

is used) or a SAML artifact (if the artifact profile is used) is sent via a

redirection of the UA to the RP. Note that the SAML assertion may

assert attributes in addition to asserting that the user has been authen-

ticated. Note also that if the browser-post profile is used, the next step

is skipped.

6. RP
IdP (Artifact Profile Only). The RP uses the artifact received in

the previous step to issue an attribute query to the IdP, which directly

responds with a SAML response message. This communication takes

place via a mutually-authenticated back-channel.

7. RP→ UA: Grant/Deny Request. The RP verifies the SAML response,

and, if satisfied, grants access.

4.8.7 Proof of Ownership

Much like Liberty, Shibboleth enables the user to prove to an RP that it

owns the assertion generated by an IdP. As stated previously, Shibboleth 2.0

builds on SAML 2.0, which supports three proof-of-possession methods (see

section 4.7.9). However, implementing these methods is not mandatory

[21], i.e. the SAML assertion is not required to contain a proof-of-rightful-

possession field if the RP does not mandate it.

165

4. IDENTITY MANAGEMENT SYSTEMS

UA Shibboleth RP WAYF (optional) Shibboleth IdP

(1) Access request

(2) Redirect with Shibboleth authentication request (optional) or continue to IdP

(3) Discover IdP (optional)

(4) Redirect with Shibboleth authentication request (optional)

(5) User authentication

(6) Redirect: Shibboleth token or artifact

(7) Artifact profile only: artifact

(8) Artifact profile only: token

(9) Grant or deny access

Figure 4.11: Overview of Shibboleth Operation

4.8.8 Possible Limitations of Shibboleth

Like Liberty, Shibboleth shares a number of the limitations of OpenID, in

particular those described in sections 4.5.11.1 and 4.5.11.3. We next briefly

describe three possible limitations of Shibboleth of particular significance.

4.8.8.1 Phishing

In Shibboleth, IdP discovery is not performed by the user platform; instead

it is typically performed by the server. Therefore, a malicious RP or WAYF

server could redirect a user to a fake IdP, which could then capture the user’s

credentials.

166

4.9 ANONYMOUS CREDENTIAL SYSTEMS

4.8.8.2 Proof-of-possession

The use of proof-of-rightful-possession methods is optional in Shibboleth

[62]. As a result, an IdP might not provide a user with the means to prove

rightful possession of a security token to an RP, thereby increasing the risk

of an adversary illegitimately using a stolen Shibboleth token.

4.8.8.3 Single Sign Off

As discussed by Alrodhan [21], currently the Shibboleth specifications do

not support single sign off. Consequently, a Shibboleth user must sign-off

from the IdP and from every RP to which the user has signed-on in order to

terminate every logged-in session. This clearly adversely affects the usabil-

ity and security of Shibboleth.

4.9 Anonymous Credential Systems

4.9.1 Overview

Anonymous credential systems [40, 41, 55] enable users to anonymously

access RPs; this is achieved through the use of cryptographic constructs

known as anonymous credentials [68, 75]. Such a system involves the fol-

lowing roles: an issuer (an IdP), a prover (a specially extended UA acting

on behalf of the user), and a verifier (an RP). Issuers, UAs, and RPs interact

with each other in two main ways, as follows.

1. In an issuance protocol, the IdP and the prover interact to produce a

credential, held by the prover.

2. In a proving (or presentation) protocol, the prover proves properties of

the user encoded within the credential to an RP, without necessarily

disclosing the credential. Note that this protocol can typically be ex-

ecuted without real-time connectivity to the IdP. This contrasts with

167

4. IDENTITY MANAGEMENT SYSTEMS

other identity management systems, such as CardSpace in which use

of a managed card requires online access to the issuing IdP [35].

Privacy features provided by anonymous credential systems include the

unlinkability property (see section 2.3.2.4), which enables a user to visit an

RP multiple times without the RP being able to link these visits [117]. In ad-

dition, a user is enabled to selectively disclose to an RP attributes contained

in a given credential. An anonymous credential system may also offer ad-

ditional functionalities, such as revocation of credentials [42, 50, 52, 177],

anonymity revocation [51], and verifiable encryption of attributes under a

trusted third party’s encryption key [49, 54]. Examples of anonymous cre-

dential systems include U-Prove and IdeMix (described in sections 4.9.2 and

4.9.3, respectively).

Anonymous credential systems use a cryptographic technique known

as zero-knowledge proofs [103], which enables an RP to be convinced that

a user possesses a valid credential (issued by a trusted IdP), without dis-

closing the given credential. The zero-knowledge property ensures that no

further information is revealed to the RP. However, note that in practice

the use of an anonymous credential system does not necessarily guarantee

full anonymity, e.g. since IP addresses can be tracked; such tracking might

enable the communicating device to be identified, albeit not necessarily the

actual user. As stated in section 2.3.2.2, tracking of IP addresses can be ad-

dressed using anonymising services, such as I2P or TOR.

The PRIME project45 [53] used IdeMix for issuing and verifying creden-

tials. The work of PRIME is being continued by PrimeLife46, a follow-up

project. We next describe two widely-discussed examples of anonymous

credential systems, namely U-Prove and IdeMix.

45https://www.prime-project.eu/
46http://www.primelife.eu/

168

4.9 ANONYMOUS CREDENTIAL SYSTEMS

4.9.2 U-Prove

4.9.2.1 Overview

U-Prove [40, 41] is an anonymous credential system, that was originally de-

veloped by Credentica47. Following the acquisition of Credentica by Mi-

crosoft, support for U-Prove has been incorporated in CardSpace 2.0 [194].

At the heart of the scheme is the notion of a U-Prove token, a cryptograph-

ically protected container of user attribute information of any type. Such a

token is obtained by a prover as a result of executing the issuance proto-

col with an issuer (IdP), and is subsequently presented by the prover to a

verifier (RP) as part of the presentation protocol. Although the issuer helps

create the token, the final form of the token is known only to the prover, and

thus the issuer cannot link subsequent uses of the token to the instance of

the issuance protocol used to create the token. The prover can also use a

U-Prove token non-interactively to sign arbitrary data. The roles of issuer,

prover and verifier can be combined or split across multiple entities.

The U-Prove token is signed by the IdP using its private key; such a

signature provides assurance of the token’s origin and integrity. In addi-

tion, each U-Prove token includes a prover-generated public key that corre-

sponds to a private key generated by, and known only to, the prover. The

token private key can be used by the prover to digitally sign a message as

part of the creation of what is known as a presentation proof, which is sent

to the RP. Such a message may be provided by the RP or generated by the

prover; if generated by the prover, then it must include a unique identifier

of the target RP, such as its URL, as well as the presentation token creation

time.

The prover’s signature key pair is used to:

• demonstrate the prover’s rightful possession of the U-Prove token,

since the RP can establish that the presentation proof is signed by a
47http://www.credentica.com/

169

4. IDENTITY MANAGEMENT SYSTEMS

party possessing the private key corresponding to the public key in

the IdP-signed U-Prove token; and

• prevent replay attacks (including by legitimate RPs), since the presen-

tation proof can only be generated by a party possessing the private

key corresponding to the public key in the token.

A prover can generate arbitrarily many presentation proofs or signatures

using the same U-Prove token. A U-Prove token can therefore be issued in

long-lived form for use and reuse at any time and with any RP, until ex-

piry or revocation. The U-Prove token, the presentation proof, and the mes-

sage can be kept in an audit log for later verifications. The verification of

a U-Prove token and a corresponding presentation proof only requires an

authentic copy of the IdP parameters under which the U-Prove token was

issued; such parameters, also known as the issuer parameters [43, 191], are

generated by the IdP. The distribution and trust management of these pa-

rameters are outside the scope of the U-Prove specifications [190]; in prac-

tice, distribution of the issuer parameters could be achieved using an au-

thenticated IdP-RP channel. They could also be distributed in a certificate

signed by a trusted party [191].

A U-Prove token includes the following three fields.

1. The token information field contains IdP-encoded values which are al-

ways disclosed when presenting the U-Prove token to an RP. A typical

use of this field is to encode token metadata, such as its validity period.

2. The attribute fields contain IdP-encoded values for the user attributes as

asserted by the IdP; the prover can selectively hide or reveal the value

of each field when using the U-Prove token.

3. The prover information field contains a prover-encoded value; such a

value is invisible to the IdP, but is always revealed when presenting the

170

4.9 ANONYMOUS CREDENTIAL SYSTEMS

U-Prove token. A typical use of this field is for the prover-generated

public key.

U-Prove tokens can also be used to establish a relationship with a partic-

ular RP. A universally unique token identifier can be computed from each

U-Prove token. The IdP does not learn any information about this identifier

during the issuance protocol; as a result, such an identifier cannot be used

to correlate a presented U-Prove token to its issuance. In addition to identi-

fying repeat visits, token identifiers can also be used for token revocation.

A U-Prove token can be optionally bound to a trusted device such as

a smart card, mobile phone, or online server. If such a process, known as

device-binding [45], is performed, the prover cannot use the token without

the assistance of the associated device. The device can be used to protect

multiple tokens issued by any number of IdPs, and can dynamically (i.e.

at the time of use of the token) enforce policies on behalf of the IdPs, RPs,

or other third parties. Such added protection can be achieved without the

device needing to interact with the IdP and without compromising user pri-

vacy [192].

4.9.2.2 Distinctive Features of U-Prove Tokens

U-Prove tokens, which can be encoded in XML, are similar to SAML asser-

tions or X.509 certificates; however, there are two major differences [193], as

follows.

1. A U-Prove token is jointly generated by a prover and an IdP as a result

of engaging in the interactive issuance protocol. Such a token contains

no information identifiable by an IdP, apart from the certified claim

values. The prover public key and the IdP signature for a token are

randomised by the prover during the issuance protocol, and are hence

not known by the IdP. The prover, and hence the user, is therefore

171

4. IDENTITY MANAGEMENT SYSTEMS

protected against tracking when using the U-Prove token, even if the

issuer and the verifier collude.

2. When using a U-Prove token, the user can selectively conceal any of

the encoded claims, without invalidating the IdP’s signature. In par-

ticular, the user can hide all the claims, and hence only prove owner-

ship of a certain U-Prove token, or reveal all of them. The latter case

would be similar to presenting a signed SAML assertion or an X.509

certificate.

4.9.2.3 U-Prove-CardSpace Integration

We now describe the integration of U-Prove into CardSpace. Microsoft has

specified [190] how U-Prove is integrated into the OASIS-standardised ver-

sion of CardSpace (see section 4.3.1). This specification describes how U-

Prove tokens can be generated and used within the CardSpace framework.

The role of a prover can be played by the CardSpace identity selector, in

which case the managed InfoCard will be what is known as a U-Prove Info-

Card. In such a card, the U-Prove token type, identified by the URL: http:

//schemas.xmlsoap.org/ws/2010/03/u-prove/token, must be in-

cluded in the InfoCard’s list of supported token types (see section 4.3.2).

A U-Prove InfoCard can be provisioned like any other managed card.

When the card is used, the selector uses one or more U-Prove tokens ob-

tained from the relevant IdP to create a presentation token, and sends it to

an RP.

Since it is essentially a managed InfoCard, a U-Prove InfoCard can sup-

port any number of claims of any type. The PPID claim is treated differently;

it is defined as the base-64 encoding of the token identifier of the U-Prove

token used to generate the presentation proof [43]. Note that, to enhance

user privacy, the PPID value is never disclosed to the IdP.

172

4.9 ANONYMOUS CREDENTIAL SYSTEMS

Given that claim values might change over time and that PPID values

must remain persistent, two classes of U-Prove token are defined, namely:

• a claim token, which encodes the values of the claims (excluding the

PPID claim) supported by a given InfoCard; and

• a PPID token, which only supports the PPID claim, and is typically

reused in repeat visits to an RP.

U-Prove Issuance Protocol

The issuance protocol [43] involves four message exchanges between a

selector and an IdP. The protocol is performed over WS-Trust [175] (see sec-

tion 2.5.6). Multiple instances of the issuance protocol can be performed in

one protocol run; each instance can be used to obtain a batch of U-Prove

tokens of a particular type. Indeed, a prover typically obtains multiple U-

Prove tokens signing the same set of attributes in one instance of the is-

suance protocol; multiple tokens are obtained to preserve unlinkability.

A summary of the protocol is given below.

1. Selector → IdP: RST. The selector initiates the issuance process by

sending the IdP a token request; such a request can include a list of

requested claims, an InfoCard reference, and a request for a display

token.

2. IdP→ Selector: RSTR + First Issuing Messages. The IdP authenticates

the user (if necessary), validates the request, initiates the necessary in-

stances of the issuance protocol, and returns the first token response

containing the number and contents of the U-Prove tokens of both

classes (i.e. claim or PPID), and the corresponding first message of each

of the instances of the issuance protocol.

3. Selector → IdP: RSTR + Second Issuing Messages. The selector val-

idates the response, initiates the necessary instances of the issuance

173

4. IDENTITY MANAGEMENT SYSTEMS

protocol, and returns the second token response containing the second

message of each instance of the issuance protocol.

4. IdP→ Selector: Request Security Token Response Collection (RSTRC)

+ Third Issuing Messages. The IdP replies with the third and final

token response containing the third message of each instance of the

issuance protocol.

Finally, for each instance of the issuance protocol, the selector generates the

U-Prove tokens using the exchanged cryptographic material.

While U-Prove uses cryptography to guarantee the authenticity and in-

tegrity of the exchanged attribute values, how the confidentiality of such

values is protected is outside the scope of U-Prove [41]. The U-Prove proto-

cols should be performed over a confidentiality-protected channel to protect

the confidentiality of the claim values. Given that the exchange involves

multiple messages, the IdP must maintain the cryptographic state of each

issuance instance between message exchanges. This state must also be pro-

tected.

U-Prove Presentation

When using a U-Prove InfoCard, the selector generates a U-Prove pre-

sentation token and sends it to the RP. A U-Prove presentation token is a

WS-Trust security token generated by the selector, which contains presen-

tation proof(s) generated using corresponding U-Prove token(s), which can

be:

1. a claim U-Prove token and the corresponding claim values, if at least

one non-PPID claim is requested by the RP; and

2. a PPID U-Prove token if the PPID claim is requested.

Multiple long-lived tokens asserting the U-Prove InfoCard claim values

may be obtained before card presentation, e.g. when the InfoCard is pro-

visioned. IdPs can decide whether to issue long-lived tokens, on-demand

174

4.9 ANONYMOUS CREDENTIAL SYSTEMS

tokens, or both. Note that a U-Prove InfoCard can be presented to an RP

without requiring real-time connectivity to the issuing IdP.

We next outline the steps which must be followed to generate a U-Prove

presentation token [190]. The U-Prove presentation token is encoded in

XML.

1. The selector chooses one or more U-Prove tokens associated with the

U-Prove InfoCard.

If the PPID claim is requested, then a pair of claim and PPID U-Prove

tokens already associated with the requesting RP is selected. If no such

pair is available, then a fresh pair of tokens is selected and associated

with this RP.

However, if the PPID claim is not requested (or not supported by the

InfoCard), then a fresh claim U-Prove token is selected from amongst

those not previously associated with an RP.

In both cases, if a U-Prove token of a specific class is not available,

the selector must either obtain a fresh batch from the IdP using the

issuance protocol or fail.

2. The selector must specify the presentation token creation time and

must define the scope of the receiving RP.

3. The selector must generate a presentation proof for each selected U-

Prove token, where each proof is encoded in a separate presentation

XML element.

4. The selector can display to the user the disclosed claim values using

a display token provided by the IdP. However, given that the PPID

value is unknown to the IdP, the identity selector is responsible for pro-

viding a displayable PPID value. The selector can calculate the PPID

value by computing the base-64 encoding of the token identifier of the

PPID U-Prove token.

175

4. IDENTITY MANAGEMENT SYSTEMS

Finally, the selector sends the generated presentation token to the re-

questing RP, which must perform a range of verifications on the received

token, as given in the U-prove specifications [190]. These include checking

that the token creation time value is sufficiently close to the time the token

was received, and that the scope value is within the RP’s scope.

In addition, the RP must verify the token IdP and prover signatures (see

section 4.9.2.1 above). The RP must also verify the token’s freshness; it must

ensure that all time-stamps are acceptable, and that the token has not been

seen before. If all checks succeed, then the RP can extract and use the claim

values.

4.9.3 IdeMix

IdeMix [55], an acronym for Identity Mixer, is an anonymous credential sys-

tem. IdeMix’s core protocols have been publicly specified [51].

4.9.3.1 System Entities

Analogously to U-Prove, the main entities involved in the IdeMix system

are as follows.

1. An issuer (an IdP) issues credentials. The IdP must possess a public-

private key pair.

2. A verifier (an RP) verifies credentials. Like the IdP, the RP must possess

a public-private key pair.

3. A user (or a UA on behalf of the user) obtains a credential from an IdP

and shows it to an RP. The user must possess a master secret, which is

linked to all the pseudonyms and credentials issued to this user.

The user must register a pseudonym with an IdP; the IdP only knows

the user by this pseudonym, and all credentials issued by the IdP are bound

to this pseudonym. Pseudonym registration, credential issuance and cre-

dential verification involve interactive protocols between a user and an IdP,

176

4.9 ANONYMOUS CREDENTIAL SYSTEMS

or a user and an RP. A further system entity, known as a de-anonymising

organisation, can, if certain conditions hold, revoke user anonymity; such an

entity must possess an encryption-decryption key pair.

4.9.3.2 Operation

We now give an overview of the operation of IdeMix. We assume that the

user has already contacted an IdP and registered a pseudonym with it.

1. A user, possessing a particular pseudonym (N, say), requests a creden-

tial containing certain attributes from an IdP.

2. The IdP determines whether the user possessing the pseudonym N is

eligible to receive a credential with the requested attributes. If so, the

IdP uses its private key to generate a signed credential containing the

required attributes, and sends the credential to the UA. Note that the

issued credential is bound to the pseudonym N.

3. The UA now uses a zero-knowledge proof to prove to an RP that it:

a) possesses a valid signature, generated by a certain IdP, on a state-

ment containing specific attributes and the pseudonym N; and

b) owns the master secret key related to the pseudonym N.

Note that no other information is revealed by the UA to the RP; in particular,

the actual credential is not sent to the RP. As a result, multiple uses of the

same IdeMix credential cannot be linked together.

The user can use a credential with any RP any number of times, without

the credential uses becoming linkable to each other or to the pseudonym to

which the credential was originally issued (however, one-show credentials

are an exception48). Like U-Prove, the unlinkability property is maintained,

even if the IdP and RP collude. The IdeMix employs a special signature
48One-show credentials are specially designed to be used only once; if used more than once, then

user anonymity can be revoked.

177

4. IDENTITY MANAGEMENT SYSTEMS

scheme [51] which in addition to realising the system functionality, also al-

lows for efficient implementation.

All user credentials are linked to the user’s master secret; this implies

that if a user decides to share a credential, the user’s master secret must also

be shared. This can help to discourage users from sharing credentials.

To enforce accountability, e.g. to identify users abusing the service, an

optional anonymity revocation service can be supported. To enable this

to happen, a UA can encrypt a credential using the public key of the de-

anonymising organisation. This encryption is verifiable, i.e. so that an RP

has guarantees that, if necessary, the de-anonymising organisation can de-

crypt the credential and reveal the user identity. Note that anonymity re-

vocation requires user co-operation. The system allows the use of multi-

ple de-anonymisers, so that a user can choose one that they trust. A de-

anonymisation condition can also be included, specifying conditions under

which user anonymity will be revoked by the de-anonymiser.

4.10 Comparison

We conclude by providing a general comparison between the identity man-

agement systems described in this chapter. The comparison is given in Table

4.2, whereXrefers to supported and 7 to not supported.

178

4.10 COMPARISON

Table 4.2: General Comparison Between Identity Management Systems

Type IdP discovery Attribute
exchange

Ownership
proof

SAML
tokens

CardSpace client-based selector-based X X X
Higgins client-based selector-based X X X
OpenID redirect-based server-based X 7 7

OAuth redirect-based server-based X 7 7

Liberty redirect-based server-based 7 X X
Liberty
(LEC)

client-based client-based 7 X X

Shibboleth redirect-based server-based
(WAYF)

X X X

Passport redirect-based server-based X 7 7

U-Prove client-based selector-based X X X
IdeMix client-based scenario-

dependent
X X scenario-

dependent

179

Part II

Interoperability

181

Overview

Part II of the thesis, which contains a total of five chapters, describes a novel

approach to supporting interoperation between a wide range of identity

management systems. First, in chapter 5, we describe a general model for

interoperation between an Information Card-based identity management

system and almost any other existing identity management system. Using

this model, Information Card users are able to obtain a security token from

an identity provider not supporting Information Cards. After processing

at the client, an enhanced token is produced that can be processed by an

Information Card-enabled relying party.

Four specific instantiations of this model are described, that enable inter-

operation between an Information Card system and:

• Liberty (chapter 6);

• Shibboleth (chapter 7);

• OpenID (chapter 8); and

• OAuth (chapter 9).

183

Chapter 5

A General Interoperation Model

5.1 Introduction

5.1.1 Overview

As discussed in chapter 3, in order to simplify the management of identities

and help to mitigate identity-oriented attacks, a number of identity manage-

ment systems (e.g. CardSpace, Liberty, etc.) have been proposed. An IdP in

such a system supplies a UA with a security token that can be consumed by

an RP. However, in practice a fundamental problem arises because of the

multiplicity of such systems. That is, while one RP might solely support an

Information Card identity management system, another might only support

a different type of system. Therefore, to make these systems available to the

largest possible group of users, effective interoperability between identity

management systems is needed.

In this chapter we propose a general, client-based approach to support-

ing interoperation between an Information Card-based identity manage-

ment system (such as CardSpace or Higgins) and almost any other type

of system (including systems such as OpenID, OAuth, Liberty and Shib-

boleth). Following this approach, Information Card users are able to ob-

tain a security token from an arbitrary IdP, which, after processing at the

client, can be processed by an Information Card-enabled RP. Interopera-

tion is supported at the client in a way that is as transparent as possible to

IdPs and RPs, and requires minimal changes to the existing user platform

infrastructure. We specify the operation of our general model and also pro-

185

5. A GENERAL INTEROPERATION MODEL

vide security and operational analyses. Subsequent chapters describe spe-

cific schemes that conform to this model; such schemes enable interopera-

tion between an Information Card-enabled RP and one of a Liberty-enabled

IdP (chapter 6), a Shibboleth-enabled IdP (chapter 7), an OpenID-enabled

IdP (chapter 8), or an OAuth-enabled IdP (chapter 9).

The approach works with a variety of Information Card-based systems,

including CardSpace and Higgins. For simplicity of presentation, in this

chapter we describe its operation with CardSpace, a widely-discussed ex-

ample of an Information Card-based system.

5.1.2 Motivation

We have chosen to consider interoperation between Information Card sys-

tems such as CardSpace and other systems (including Liberty, Shibboleth,

OpenID, and OAuth), because of the wide adoption of these systems. For

example, Liberty has gained the acceptance of many technology-leading or-

ganisations; indeed, more than one billion Liberty-enabled identities and

devices exist (see section 4.7). Shibboleth has enjoyed widespread adoption,

particularly in the educational sector (see section 4.8). In addition, OpenID

has been widely adopted, with (as of 2009) more than one billion OpenIDs

on the Internet and approximately nine million sites enabling OpenID con-

sumer support (see section 4.5). Finally, OAuth 2.0 has had significant prac-

tical exposure, including deployment by Facebook (Facebook Connect) and

Twitter.

Complementing this, the wide use of Windows, recent versions of which

incorporate CardSpace, means that enabling interoperation of this type is

likely to be of significance for large numbers of identity management users

and RPs.

Another reason for supporting interoperation of this type is because of

the similarity between the message flows in such systems. These systems

also typically provide similar services, including user authentication and

186

5.2 THE INTEROPERATION MODEL

exchange of user attributes.

As discussed in section 1.2.4, each identity management system offers

somewhat a different user experience, and this is likely to lead to user con-

fusion and hence potentially give rise to security breaches. Our approach

could help to mitigate such problems by providing a consistent user experi-

ence using the concept of the card metaphor and identity selectors.

In addition, as stated in sections 1.2.3 and 3.5.2, many identity manage-

ment systems are susceptible to fake IdP attacks, in which a malicious RP

redirects a user browser to a false IdP. The user then reveals to the fake IdP

secrets that are shared with a genuine IdP. This arises because, in the ab-

sence of a system-aware client agent, many identity management systems

rely on browser redirects. Our approach also helps to mitigate attacks of

this type.

5.1.3 Organisation

The remainder of the chapter is organised as follows. Section 5.2 describes

the approach to supporting interoperation, and, in section 5.3, we give an

analysis of its operation. Section 5.4 discusses possible advantages of the ap-

proach, and section 5.5 considers its security properties. Section 5.6 outlines

a number of potential issues, and section 5.7 highlights possible extensions

of the model. Section 5.8 reviews related work, and, finally, section 5.9 con-

cludes the chapter.

5.2 The Interoperation Model

We now present our approach to interoperation. The model we propose

makes use of personal cards to store information regarding identity relation-

ships with specific remote (non-CardSpace) IdPs. Operation of CardSpace

in the normal way using managed cards is not affected by the operation of

schemes conforming to the general model.

187

5. A GENERAL INTEROPERATION MODEL

5.2.1 System Entities

The entities involved in the model are:

• a CardSpace-enabled RP;

• a CardSpace-enabled UA, e.g. a suitable web browser such as Internet

Explorer;

• a remote IdP that does not support CardSpace; and

• a software component installed on the user platform (referred to as

the adaptor) providing the functionality described below. The adaptor

could be implemented as a browser extension.

5.2.2 Overview of Operation

We now give a high-level overview of the interoperation model (a detailed,

step-by-step description is given in section 5.2.4).

Following a user visit to a CardSpace RP, the adaptor pre-processes the

RP-provided page, including determining whether the RP security policy

specifies use of managed cards. The identity selector is activated, and the

user selects a suitable (personal) InfoCard. The SIIP then generates an RSTR,

which the selector attempts to send to the RP; this attempt is intercepted

by the adaptor and the RSTR is temporarily stored at the user platform.

The adaptor then redirects the UA to the remote IdP corresponding to the

selected personal card, which, if it deems it necessary, authenticates the user.

If authentication is successful, the IdP returns a security token to the UA.

The adaptor now creates a new SAML token, referred to as the encapsulating

token, incorporating some combination of the IdP-issued token, the SIIP-

issued RSTR, and information extracted from these two tokens. The adaptor

formats this encapsulating token to be as similar as possible to a standard

CardSpace-complaint token. Finally, it forwards this encapsulating token to

the RP.

188

5.2 THE INTEROPERATION MODEL

A summary of the operation of the model is shown in Fig. 5.1. In this fig-

ure, steps 3, 6, 7, and 10 are performed by the adaptor, and this is indicated

in the figure by the adaptor symbol.

Figure 5.1: Interoperation Model Operation

5.2.3 Requirements

The following conditions must be met for use of the model.

1. The user must have an existing relationship with both an RP and an

IdP (and so the IdP will have a means of authenticating the user). The

RP must trust the IdP for the purposes of user authentication and for

the provision of user attributes. The user must also trust the IdP.

2. The user must install the adaptor, which must be capable of perform-

ing a variety of tasks. In particular, it must be able to:

• execute automatically;

• scan RP-provided web pages;

189

5. A GENERAL INTEROPERATION MODEL

• modify web pages, if certain conditions hold;

• intercept, inspect and modify messages exchanged via a browser

between an identity selector and an RP, and between an IdP and

an RP;

• automatically forward security tokens to IdPs and/or to RPs;

• engage in an interaction with an IdP, if necessary; and

• provide a means for the user to enter data, if required.

3. The implementer of the model must decide which information needs

to be stored in an IdP-specific personal card (as used to support the in-

teroperation functionality). This information will necessarily be iden-

tity management system-specific. Given that CardSpace only permits

a fixed set of fields to be stored in a personal card (see section 4.3.3.1),

specific predefined fields must be chosen to be (mis)used for the stor-

age of this information.

4. The user, either prior to, or during, operation, must create a special

personal card, referred to as an InterCard (Interoperation Card), which

will represent the IdP. This personal card must contain information

about the IdP, such as its URL, as well as a predefined sequence of

characters (e.g. the word interoperation) used to trigger the integration

software (see section 5.3.1).

5. As well as being able to verify the CardSpace standard-compliant dig-

ital signature, the RP must also be able to verify the IdP signature em-

bedded in the SAML token provided to the RP by the adaptor as part

of the interoperation functionality.

6. Where applicable, the RP must be willing to accept an encapsulating

CardSpace-like SAML token (which may be unsigned) generated by

the adaptor; this token will include both IdP-supplied user attributes

190

5.2 THE INTEROPERATION MODEL

and a digitally-signed, SIIP-issued RSTR containing the RP-specific

PPID for the InterCard.

7. Where applicable, the IdP must be prepared to provide SAML asser-

tions for RPs for which a federation agreement does not exist for the

user concerned1.

8. The identity management system in use must not require direct, back-

channel communication between the IdP and RP (see section 3.5.1).

That is, all IdP-RP communications must pass via the user platform.

This is because back-channel communication is inconsistent with In-

formation Card-based systems which require all communications to

pass via the identity selector on the user platform. Also, the adaptor is

clearly not capable of intercepting back-channel communications.

5.2.4 Operation

We now specify the operation of our general model for interoperation. We

specify its operation as a series of steps. Steps 1, 2, 4–7 and 13 of the model

are the same as steps 1, 2, 3–6 and 8, respectively, of the CardSpace personal

card protocol given in section 4.3.9.1, and hence are not described again

here. Note that certain details of the steps given below will vary depending

on the specific identity management system in use.

3. Adaptor→ UA. The adaptor performs the following steps.

a) It scans the login page to detect whether the RP website supports

CardSpace. If so, it proceeds; otherwise it terminates.

b) It examines the RP policy to check whether use of personal cards

is acceptable. If so, it proceeds; otherwise it terminates, giving

CardSpace the opportunity to operate normally.

1It is thus not necessary for the user to federate their RP account with the IdP, which is likely to
be relatively difficult to achieve.

191

5. A GENERAL INTEROPERATION MODEL

c) It temporarily keeps a local copy of any RP-requested claims2.

Note, however, that such a step is not necessary if the RP only

requires user authentication, or if the identity management sys-

tem in use only supports the assertion of user authentication and

does not support the exchange of user attributes.

d) It determines the communication protocol (HTTP or HTTPS) in

use with the RP. Note that, in order to avoid making any changes

to identity selectors, the model operates slightly differently de-

pending on whether the RP uses HTTP or HTTPS. This is because,

if HTTPS is used, the selector will encrypt the RSTR using the RP

site’s public key, and the adaptor does not have access to the corre-

sponding private key. Hence, it will not know whether to trigger

the interoperation functionality, and will be unable to obtain the

IdP URL; such issues do not occur if HTTP is used, since the se-

lector will not encrypt the RSTR.

e) If necessary, and if HTTP is in use, it modifies the RP policy to in-

clude all the types of claim supported by the InterCard in the iden-

tity management system-specific implementation of the model.

For example, if the particular implementation stores the URL of

the IdP in the web page field of the InterCard, then it must ensure

that the RP security policy includes the web page claim. Note that

adding the claim types to the RP policy ensures that the token sup-

plied by the SIIP contains the values of these claims, which can

then be processed by the adaptor; otherwise these values would

not be available to the adaptor.

f) It embeds a function into the login page to intercept the RSTR that

will later be returned by the identity selector.

2This is because the RP policy might be modified in step 3e, and the adaptor will use this stored
copy in step 8 to determine which user attributes should be requested from the IdP in the authenti-
cation request.

192

5.2 THE INTEROPERATION MODEL

8. Identity Selector → Adaptor/UA → IdP. Following selection by the

user of a suitable InterCard, the RSTR created by the SIIP is intercepted

by the adaptor (using the functionality added in step 3f), which pre-

vents it from being sent to the RP. The RSTR, a SAML authentication

response, is temporarily stored by the adaptor. If the RSTR contains the

implementation-specific trigger sequence (see section 5.2.3), the adap-

tor continues; otherwise, it terminates. The adaptor then performs one

of the following steps, depending on the communication protocol used

on the UA-RP channel (see step 3d).

• If the RP uses HTTP, the adaptor uses the contents of the RSTR to

construct an authentication request which it forwards to the ap-

propriate IdP, having discovered its address from the RSTR.

• If the RP uses HTTPS, the adaptor first asks the user whether use

of the interoperation model is required. If not, it terminates. If it

is, the adaptor prompts the user to enter the URL of the IdP. The

adaptor could also offer the user the option to store the supplied

value for future interactions with this RP. Precisely as in the HTTP

case, the adaptor then constructs an authentication request, and

sends it to the identified IdP URL.

Depending on the identity management system in use, it may be

possible to avoid the need for the user to enter the URL of the

IdP. In some cases (e.g. in Shibboleth), the adaptor could use a

WAYF-like component in order to perform IdP discovery. In other

cases (e.g. in OpenID), the user-supplied identifier will contain a

pointer to a web document, from which the required IdP URL

can be retrieved. However, such an approach, although it max-

imises user transparency, is susceptible to fake IdP attacks, where

the retrieved URL may point to a malicious IdP. It also involves

extra round trips, which could affect system performance (see sec-

193

5. A GENERAL INTEROPERATION MODEL

tion 8.3.1).

9. IdP
 User. If necessary, the IdP authenticates the user3. Depending

on the identity management system in use, the IdP may at this point

ask the user to authorise the release of a token to the requesting RP.

10. IdP→UA. The IdP issues a security response to the UA, which is read

by the adaptor.

11. UA/Adaptor
 IdP (Optional). Depending on the identity manage-

ment system in use, the adaptor may interact with the IdP. This might,

for example, be to perform security checks on the IdP-issued token (as

in OpenID), or to retrieve the user attributes requested by the RP (as in

some implementations of OAuth).

12. UA/Adaptor→ RP. The adaptor now has the security response from

the IdP (see the previous two steps), which we suppose contains some

kind of security token (e.g. a SAML token) intended for processing

by the RP. The adaptor also possesses the digitally-signed RSTR is-

sued by the SIIP. The adaptor can now create a new SAML token,

possibly incorporating both these tokens and/or information extracted

from them. This encapsulating token can be formatted to resemble a

standard CardSpace-complaint token, except of course for the fact that

it contains another token (or tokens) embedded within it. The adaptor

causes the UA to forward the newly created token to the RP, optionally

after first obtaining permission from the user.

If the RP is capable of processing SAML 2.0 tokens, then it can use the

SAML 2.0-supported holder-of-key method (see section 4.7.9), which can be

symmetric or asymmetric, to express its proof-of-possession requirements.

However, a symmetric proof key should only be used if the user is willing
3The authentication method used is typically outside the scope of the identity management sys-

tem in use.

194

5.3 OPERATIONAL ISSUES

to disclose the identity of the RP to the IdP, and if the RP holds a valid

certificate. For browser-based applications, or where no proof-of-possession

is needed, or if the identity management system in use does not support

proof-of-possession methods, the model allows the use of bearer tokens (see

section 4.3.12).

Finally observe that the additional steps listed above can be integrated

into the current CardSpace framework relatively easily, as the prototype im-

plementations of specific schemes show (see chapters 6 to 9).

5.3 Operational Issues

We now consider implementation and applicability issues.

5.3.1 Triggering the Adaptor

The means by which the adaptor is triggered should be chosen carefully.

The means specified in section 5.2.3 is to include a trigger sequence (e.g.

the word interoperation) in a specific field of an InterCard. However, other

approaches could be used, e.g. as follows.

• The adaptor could start whenever CardSpace is triggered. When a user

selects an InterCard, the adaptor could offer the user two options via

an HTML form: to continue to use CardSpace as usual, or to use the

interoperation functionality. This approach gives a greater degree of

user control, and hence implements Cameron’s first identity law (see

section 3.8). However, it is not particularly convenient, since it would

always require users to make an explicit choice, although the effect

could be reduced by storing the user preference.

• Alternatively, the adaptor could ask the user whether they wish to ac-

tivate the interoperation model (e.g. via a JavaScript pop-up box). This

has advantages and disadvantages similar to those of the first alter-

195

5. A GENERAL INTEROPERATION MODEL

native. This is the approach adopted in the case where the RP uses

HTTPS (see step 8 in section 5.2.4).

5.3.2 Attribute Handling

Different identity management systems use different sets of attribute types.

For example, CardSpace personal cards support fourteen editable attributes

(see section 4.3.3.1), whereas the OpenID SREG extension currently only

supports nine attribute types (see section 4.5.9.1). Shibboleth and Facebook

Connect support many more. Such differences in attribute types clearly

cause a problem in creating an attribute request message for an IdP sup-

porting one identity management system from a policy statement provided

by an RP using another system. We outline below two possible approaches

for dealing with this problem.

1. The RP could be restricted to requesting only attributes from the set

supported by personal cards. The adaptor would need to convert the

attributes requested by the RP into the form supported by the particu-

lar IdP, and include these converted attributes in the request message

sent to the IdP. The token provided by the IdP will contain attributes

in the IdP-supported format, and hence the RP will need to be able to

process them. To assist in this process, the encapsulating token gener-

ated by the adaptor could include information to help the RP interpret

the attributes.

2. Alternatively, the RP could be permitted to request any of the attribute

types supported by the IdP. However, if the RP requests an attribute

type not supported by personal cards, then clearly the selector will not

highlight any of the personal cards.

In order to avoid this problem, the adaptor must modify the RP policy

before it reaches the selector. In particular, as part of step 3, the adaptor

must (after storing them) remove the attributes that are outside the set

196

5.4 ADVANTAGES

supported by personal cards, and then insert them in the request sent

to the IdP as part of step 8.

To support the broadest range of user attributes, the adaptor could be

configured to support both of the approaches described above. Attribute

mapping is, of course, unnecessary when operating with identity manage-

ment systems that do not support the exchange of user attributes.

5.3.3 Implementing the Adaptor as a Browser Extension

If the integration adaptor is implemented as a browser extension, as is the

case in the instantiations of the model described in subsequent chapters,

then the RP must not employ an STS. Instead, the RP must express its

security policy using HTML/XHTML, and interactions between the iden-

tity selector and the RP must be based on HTTP/S via a web browser (a

simpler and probably more common scenario for selector-RP interactions4).

This is because a JavaScript-based browser extension is by itself incapable

of managing the necessary communications with an STS. Support for STS-

enhanced RPs remains a possible topic for future work.

5.4 Advantages

5.4.1 Defeating Fake IdP Attacks

The model mitigates the risk of a fake IdP attack, e.g. as resulting from a

phishing attack. This is because the redirect to the IdP is initiated by the

adaptor and not by the RP, i.e. the RP cannot redirect the user to an IdP

of its choosing. By contrast, in identity management systems using HTTP

redirects, (such as Liberty artifact and browser-post profiles, Shibboleth,

OpenID, and OAuth), a malicious RP could redirect a user to a fake IdP,

which might then be able to capture user credentials and/or sensitive at-

4http://msdn.microsoft.com/en-us/library/aa480189.aspx

197

5. A GENERAL INTEROPERATION MODEL

tributes. This is a particular threat for static credentials, such as usernames

and passwords.

5.4.2 Client Interoperation

IdPs and/or RPs may not be prepared to accept the burden of supporting

two identity management systems simultaneously, at least unless there is a

financial incentive to do so. Currently, major Internet players do not support

interoperation between identity management systems. As a result, a client-

side technique for supporting interoperation could be practically useful.

In addition, implementing the interoperation functionality on the client

means that the performance of the server is not affected, since the integra-

tion overhead is handled by the client.

5.4.3 Consistency

A major problem faced by end users is that the user experience of almost

every identity management system is different. It is widely acknowledged

that users fail to make good security decisions, even when confronted with

relatively simple decisions (see section 1.2.4). As a result, this lack of con-

sistency is likely to make the situation worse, and users are likely to have

difficulty understanding the complex privacy- and security-relevant deci-

sions that they are being asked to make. The client-based approach to in-

teroperation proposed here can help to address this issue by enabling the

user to interact with a single selector interface, regardless of which identity

management system is in use.

5.4.4 Unintentional Leakage

When using IdPs which provide assertions about user attributes, there is

a danger that an end user could damage their privacy by unintentionally

revealing attributes to an RP. In general, getting settings correct for sys-

tems handling PII is a non-trivial task [157]. The interoperation functional-

198

5.5 SECURITY CONSIDERATIONS

ity could help to improve user privacy by inspecting the IdP-issued security

token and displaying a summary of its contents to the user before releasing

it to the requesting RP. Note that such a function can only be provided if

the token is not encrypted in such a way that only the RP can read it, e.g. as

would be the case if it was encrypted using the RP’s public key.

5.5 Security Considerations

As described in step 12 of section 5.2.4, the adaptor produces and sends to

the RP a single SAML token (the encapsulating token) that combines infor-

mation provided by the SIIP and the remote IdP. Specifically the encapsu-

lating token contains a copy of the signed SAML token produced by the SIIP

(i.e. the RSTR), and may also contain a copy of a signed or MAC-protected

token generated by the IdP (depending on the specifics of the identity man-

agement system in use by this IdP). Thus the RP will potentially have two

independently generated tokens containing user attributes. Where relevant,

the RP can compare these two sets of attributes, potentially gaining greater

confidence in their correctness as a result.

More generally, use of this general approach will benefit from the secu-

rity features provided by CardSpace (see section 4.3).

Note that the interoperation model allows the user attributes to be stored

remotely at the IdP; this has potential security advantages over storing the

attributes locally on the user platform, as is currently the case with the per-

sonal card user attributes.

Even if the encapsulating token does not include a copy of an integrity-

protected token generated by the IdP, in some circumstances the RP may

still be able to gain additional assurance in the provided user attributes (and

user authenticity). If the RP trusts that the correct adaptor is running un-

modified on the user platform, then the RP will know that the user has been

authenticated by a specific IdP (and possibly when and how), and that the

199

5. A GENERAL INTEROPERATION MODEL

attributes have been provided by the IdP. In such a case, the RP would be

provided with two-factor user authentication, based on selection of the cor-

rect InfoCard and user authentication at the IdP. This would offer a security

advantage by comparison with the native CardSpace personal card protocol,

which only provides a single-factor user authentication.

However, requiring the RP to trust that the correct software is running

on the user platform is a significant trust assumption. We next consider two

ways in which this assumption might be met.

• The interoperation software could be installed in a managed environ-

ment in which a user is only granted limited privileges insufficient to

modify or replace the adaptor. However, in order for the RP to have as-

surance that the user platform is in such a controlled environment (and

to avoid making extra changes to the RP server), the RP itself would

probably need to belong to the managed environment.

• A more widely-applicable solution would be to make use of the func-

tionality of the trusted platform module (TPM) [97, 104, 218], present on

a large proportion of recently manufactured PCs. Using the remote at-

testation mechanism, an RP could be provided with guarantees about

the software state of the user platform, including the presence of the

expected integration software.

5.6 Potential Issues

If the web browser is compromised, then an adversary could steal the user

token and use it to impersonate the user. Indeed, if we assume that the

web browser is not a secure environment, it may be possible for a malicious

plug-in or other malware to get access to sensitive information present in

the (plaintext) RSTR5, the adaptor-generated SAML token (i.e. the encap-
5If the RP does not use HTTPS, then the SIIP-issued RSTR will not be encrypted.

200

5.7 POSSIBLE EXTENSIONS

sulating token), or the IdP-issued security token. However, the same risks

apply when manually entering credentials such as username and password

into a browser [109].

The integration adaptor must scan every browser-rendered web page to

detect whether it supports CardSpace, and this may affect system perfor-

mance. However, informal tests on the prototypes (described in chapters 6

to 9) suggest that this is not a serious issue. In addition, the adaptor can be

configured so that it only operates with certain RPs.

5.7 Possible Extensions

5.7.1 Scope

The model proposed here applies to users of Information Card-enabled RPs

such as CardSpace. While the CardSpace identity selector can only retrieve

security tokens from CardSpace-enabled IdPs, the model extends this capa-

bility to enable security tokens to be obtained from non-Information Card-

enabled IdPs, using the identity selector and the adaptor.

However, interoperation between a CardSpace-enabled IdP and non-

Information Card-enabled RPs (such as a Shibboleth-enabled RP) is not sup-

ported. Indeed, without technical co-operation from the bodies responsible

for developing the specifications governing these systems, it appears likely

to be difficult to implement bidirectional interoperation.

5.7.2 U-Prove Tokens

Given that CardSpace supports security tokens of any type, the model pre-

sented here can be extended to support U-Prove tokens (see section 4.9.2).

In addition to supporting a SAML-based RSTR, the protocol specified in sec-

tion 5.2.4 can also be configured to support a U-Prove-based RSTR, which

is also XML-encoded. Indeed, the user experience would be precisely the

same when using an InfoCard supporting U-Prove.

201

5. A GENERAL INTEROPERATION MODEL

Note that, in CardSpace version 2.0, U-Prove tokens can only be chosen

by selecting managed cards (as opposed to personal cards). This means that

U-Prove tokens cannot be supported by the current version of the model,

since it does not cover the case where the RP policy specifies use of a man-

aged card (see section 5.2). However, we believe that the model could rela-

tively easily be modified to support RP policies which request U-Prove to-

kens. The U-Prove token can be identified by the URL: http://schemas.

xmlsoap.org/ws/2010/03/uprove/token.

5.8 Related Work

We review prior work on identity system interoperation under the follow-

ing headings:

• specification and open-source development projects;

• general-purpose interoperation models;

• interoperation between specific systems; and

• business analysis of interoperation issues.

5.8.1 Specification and Open-source Development Projects

The Bandit6 and Concordia7 projects have developed open-source technolo-

gies in order to support interoperation between identity management sys-

tems. Whilst the model proposed here supports interoperation at the client,

Concordia and Bandit appear to offer integration services at the server.

Project Concordia8 is a global initiative aimed at promoting harmonisa-

tion and interoperability between identity standards and protocols. Concor-

6http://www.bandit-project.org
7http://kantarainitiative.org/confluence/display/concordia/Project+

Concordia+Historical+Works
8http://kantarainitiative.org/confluence/display/concordia/Home

202

5.8 RELATED WORK

dia9 has proposed a scheme supporting interoperation between Information

Card-based identity management systems and federated identity manage-

ment systems (specifically those built on SAML SSO profiles and those built

on WS-Federation). This scheme enables users of one system to obtain se-

curity tokens from IdPs supporting the other system (see section 6.5).

The Bandit project, sponsored by Novell10, has as its objective the devel-

opment of a common identity framework11 and integration techniques to

support interoperation between Information Card systems [21]. As the two

projects had similar objectives, the Bandit team have joined forces with the

Higgins project [168]. Higgins (see section 4.4) and Bandit have ensured that

the (Bandit-supported) DigitalMe identity selector is interoperable with the

Higgins identity selectors [21].

SWITCH12 has developed specifications for an integration framework

in order to support the exchange of WS-Trust messages in the Liberty ID-

WSF [85]. This could potentially be useful in supporting interoperation be-

tween CardSpace and Liberty, and also for mapping between the necessary

security tokens [21].

The Identity Commons working group13 aims to provide standardised

attribute types to support interoperability. This is important since each

identity management system has its own set of attribute types. For exam-

ple, the family name attribute might be known as last name in one system

and surname in another [210]. According to its website, the purpose14 of this

working group is to ‘support, facilitate, and promote the creation of an open

identity layer for the Internet, one that maximises control, convenience, and

privacy for the individual while encouraging the development of healthy,

interoperable communities’ [168].
9Concordia has joined the Kantara initiative (http://kantarainitiative.org/

confluence/display/concordia/Home).
10http://www.novell.com
11http://www.bandit-project.org
12http://www.switch.ch/
13http://www.idcommons.org/
14http://www.idcommons.org/purpose-and-principles/

203

5. A GENERAL INTEROPERATION MODEL

5.8.2 General-purpose Interoperation Models

Garcı́a and Oliva [98] seek to address identity management system inter-

operability at a pan-European level. They have analysed, and proposed

changes to, existing interoperation schemes [99], as well as practically test-

ing their viability. Problems encountered included trust issues, semantic

interoperability (i.e. translation between representation formats), as well as

identity delegation [100] and authorisation.

Bruegger et al. [46] outline their vision of global (electronic) identity in-

teroperability, and discuss challenges to their vision together with steps they

believe are necessary to tackle these challenges. They also consider the de-

ployment of electronic ID cards in Europe, paying particular attention to

interoperability issues for such cards. They have also proposed a scheme

they call TLS-Federation [47]. One objective is to provide a regulatory and

interoperable working framework for identity management, particularly at

a pan-European level. It uses the TLS handshake protocol and TLS client

authentication (the RP is assumed to configure the TLS server to request a

client certificate for user authentication).

Koshutanski et al. [152] propose an identity management interoperation

scheme using SAML 2.0 to act as a bridge between systems. The SAML

protocol is used to request and receive authentication assertions. An ab-

stract view is provided to a user of his or her identity information, such as

identity certificates, username-passwords, public-private keys, etc. To avoid

denial-of-service and to ensure availability, this user profile is replicated in

encrypted form on trusted peers. However, the user must (at least initially)

perform three authentication processes. Firstly, the user must authenticate

to the digital ecosystem [174], e.g. using a username-password pair. Sec-

ondly, the user must enter a master password to decrypt the user profile

retrieved from a trusted peer. Thirdly, the user must further authenticate

to an RP-trusted IdP. This is clearly a non-trivial procedure, although the

204

5.8 RELATED WORK

three authentication processes might only need to occur together at the start

of a session. Unlike the model described in this chapter, IdPs and RPs are

required to support SAML. The scheme has the advantage of supporting

user roaming at the cost of introducing trusted third parties.

Ates et al. [25, 26] propose a means of supporting interoperation between

heterogeneous federation architectures, specifically between SAML 2.0 and

WS-Federation 1.1. Unlike the model described here, which is based on

locally running client software, a dedicated third party is responsible for

implementing the interoperation functionality. The authors also argue that

if IdPs and RPs are directly connected through trust links, then interoper-

ation can be achieved by making an IdP or an RP responsible for the in-

teroperability processes. This third party must implement the SAML and

WS-Federation specifications, and it must also be trusted by IdPs and RPs.

In addition, it must be able to translate between SAML and WS-Trust re-

quest and response messages. This third party could potentially become a

single point of failure, and could also hinder performance if deployed on

a wide scale. Since no prototype appears to have been developed [25, 26],

issues which might arise during implementation and deployment have not

been explored.

Jo et al. [141] propose a scheme to support interoperation between iden-

tity management systems, specifically CardSpace and OpenID, whilst also

providing a degree of user anonymity. Unlike the model proposed here,

a third party online server is needed. The authors claim that compatibil-

ity with username-password systems is of vital importance to an identity

management system, and certain variants of their scheme are specifically

designed to be compatible with such systems.

5.8.3 Interoperation Between Specific Systems

A CardSpace-Liberty interoperation scheme [22] has been proposed. This

scheme has some properties in common with one of the specific schemes

205

5. A GENERAL INTEROPERATION MODEL

conforming to the model described here (see chapter 6), notably that both

schemes support interoperation at the client rather than at the server. How-

ever, there are a number of important differences, outlined in section 6.5.

Another scheme supporting interoperation between CardSpace and Lib-

erty has been proposed by Jørstad et al. [144]. In this scheme, the IdP is

responsible for supporting interoperation (see section 6.5).

In 2007, Internet2 announced15 plans to develop extensions to Shibboleth

to support CardSpace. This included collaboration with Microsoft in order

to add Information Card support to Shibboleth (see section 7.5).

Kim et al. [150] propose an OpenID authentication method using an

identity selector. This scheme is designed to reduce phishing and hacking

risks, and also to simplify user authentication (see section 8.5).

Microsoft and OpenID have announced plans16 to enable a level of in-

teroperation. A stated aim of this effort is to reduce the risk of phishing in

OpenID (see section 8.5).

5.8.4 Business Analysis of Interoperation Issues

Palfrey et al. [189] and Rundle et al. [210] analyse the interoperability issue,

including assessing its potential benefits and drawbacks. They also discuss

the role that the market and competition could play.

Building on a case study [189], Palfrey et al. conclude that currently there

is no single, clear path to the type of interoperability that would lead to fur-

ther innovation. However, they argue that a combination of industry efforts

with a light-touch role for governments could potentially lead to greater lev-

els of interoperability in the digital identity space. They also point out that

interoperability could create new markets and lead to further innovations.

15https://lists.internet2.edu/sympa/arc/i2-news/2007-05/msg00009.html
16http://www.guardian.co.uk/technology/blog/2007/feb/07/openidgetsab

206

5.9 CONCLUSIONS AND FUTURE WORK

5.9 Conclusions and Future Work

In this chapter we have proposed a general, client-based model to support

interoperation between an Information Card-based identity management

system, such as CardSpace or Higgins, and almost any other type of sys-

tem, including systems such as OpenID, OAuth, Liberty and Shibboleth.

Following this model, Information Card users are able to obtain a security

token from an arbitrary identity provider, which, after encapsulation at the

client, can be processed by an Information Card-enabled relying party.

The model uses the identity selector interface and personal cards to give

access to the interoperation functionality. Interoperation is supported at

the client in a way that is as transparent as possible to identity providers

and relying parties, and requires minimal changes to the existing user plat-

form infrastructure. The model takes advantage of the similarity in mes-

sage flows in identity management systems, and does not require technical

co-operation from the bodies governing those systems.

Planned future work includes exploring the possibility of building a sim-

ilar, client-based model to support interoperation between an Information

Card-based identity provider and relying parties conforming to other iden-

tity management systems.

207

Chapter 6

Interoperation Between an Information

Card System and Liberty

6.1 Introduction

In this chapter we describe the first instantiation of the interoperation model

given in chapter 5; it enables interoperation between an Information Card

system and Liberty. Information Card users are able to obtain a security

token from a Liberty-enabled IdP that is made usable by an Information

Card-enabled RP. The approach works as long as the Liberty-enabled IdP

supports either the browser-post or the Liberty-enabled client profile. In the

latter case, the adaptor provides the Liberty-enabled functionality normally

requiring a separate piece of client-installed software. Much of the material

in this chapter has been published [8].

For simplicity of presentation, in this chapter we assume that the Infor-

mation Card system is CardSpace, although an identical approach will work

with other Information Card systems such as Higgins.

As discussed in chapter 5, the wide adoption of Liberty and the inclusion

of CardSpace in recent versions of Windows means that enabling interop-

eration between the two systems could offer significant benefits. Another

motivation for supporting CardSpace-Liberty integration is the similarity

between the message flows of Liberty ID-FF and CardSpace. In addition,

both schemes support SAML tokens.

The remainder of the chapter is organised as follows. Section 6.2 de-

209

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

tails the interoperation process. In section 6.3, an operational analysis is

provided and, in section 6.4, we describe a prototype implementation. Sec-

tion 6.5 highlights possible areas for related work, and, finally, section 6.6

concludes the chapter.

6.2 Interoperating with Liberty

We now describe how interoperation with Liberty is achieved.

6.2.1 System Entities

As in chapter 5, the entities involved are:

1. a CardSpace-enabled RP;

2. a CardSpace-enabled UA, e.g. a suitable web browser such as Internet

Explorer;

3. a Liberty-enabled IdP; and

4. the integration software (the adaptor), which in this case we suppose

takes the form of a browser extension installed on the user platform.

Fig. 6.1 gives an overview of the high-level interactions between the sys-

tem components on the user platform. The components shown are: the

adaptor (a browser extension/plug-in), the UA (a browser), the identity se-

lector, and the SIIP. The arrows indicate information flows.

6.2.2 Requirements

The scheme described here has the same operational requirements as those

listed in section 5.2.3, where the IdP is a Liberty-enabled IdP and the Inter-

Card we refer to below as a LibCard.

In addition, the CardSpace-enabled RP must support SAML 2.0 (see sec-

tion 2.5.7), since, as stated in section 4.7.9, the Liberty-enabled IdP will gen-

210

6.2 INTEROPERATING WITH LIBERTY

Browser/Plug-in Identity Selector SIIP

(1) Plug-in: pre-process and prepare to
intercept RSTR

(2) Invoke Identity Selector

(3) Issue RST

(4) Generate RSTR

(5) Pass RSTR

(6) Plug-in: intercept RSTR, generate
and send a Liberty authentication re-
quest

Figure 6.1: Data Flows via Client Components

erate a token in this format. The RP must also be prepared to accept SAML

tokens in the format constructed by the adaptor.

Moreover, the Liberty-enabled IdP must support the Liberty browser-

post profile or the Liberty-enabled client profile. If the IdP uses the browser-

post profile then certain minor changes must be made to the way in which

it submits a response back to the UA (see section 6.2.4 below).

6.2.3 Operation

Fig. 6.2 gives an overview of the operation of the scheme, with the step

numbers shown. The sequence of steps is precisely as given in section 5.2.4.

We specify below only those steps in which Liberty-specific operations are

performed (observing that, as noted above, we use the term LibCard for the

Liberty-specific InterCard). The sequence of steps given below applies for

both the Liberty browser-post and Liberty-enabled client profiles.

3. In this case step 3c is null.

211

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

8. Identity Selector → Adaptor/UA → IdP. Following the selection by

the user of a suitable LibCard, the RSTR created by the SIIP is inter-

cepted by the adaptor, which temporarily stores it. The adaptor then

performs one of the following steps, depending on whether or not the

HTTP channel between the UA and the RP is SSL/TLS-protected.

• If the RP uses HTTP, the adaptor first examines the RSTR to dis-

cover whether or not it contains the LibCard-specific trigger se-

quence (e.g. the word Liberty — see section 5.2.3); if so, the adap-

tor proceeds; otherwise, it terminates. On proceeding, the adaptor

uses the contents of the RSTR to construct a Liberty authentication

request which it forwards to the appropriate Liberty IdP, having

discovered its address (and the profile it employs) from the RSTR.

The detailed format of the SAML authentication request will de-

pend on the Liberty profile being used (see section 6.2.4 below).

• If the RP uses HTTPS, the adaptor first asks the user whether use

of the integration scheme is required. If not, it terminates. If it is,

the adaptor prompts the user to enter the URL of the IdP as well

as the profile it employs. The adaptor could also offer the user the

option to store the supplied values for future interactions with this

RP. Precisely as in the HTTP case, the adaptor then constructs a

Liberty authentication request, the form of which depends on the

Liberty profile in use (see section 6.2.4 below), and sends it to the

Liberty-enabled IdP.

10. IdP→ UA. Following a successful user authentication in the previous

step, the IdP sends a digitally-signed SAML token to the UA. The IdP

response is Liberty profile-dependent (see section 6.2.4 below).

11. This step is null in this case.

212

6.2 INTEROPERATING WITH LIBERTY

12. Adaptor/UA→ RP. The adaptor generates an unsigned SAML token

that contains both the digitally-signed SIIP-issued RSTR as well as the

digitally-signed (Liberty) IdP-issued token. The UA then forwards the

token to the RP, optionally after first obtaining permission from the

user.

6.2.4 Liberty Profiles

The detailed operation of steps 8, 10, and 12 depends on whether the Lib-

erty browser-post profile or the Liberty-enabled client profile is in use. The

URL: http://projectliberty.org/profiles/brws-post must be

used when employing the browser-post profile, whereas the URL: http://

projectliberty.org/profiles/lecp must be used when employing

the LEC profile. In addition, when using the LEC profile, the authentication

request must be submitted to the IdP as a SOAP request (see section 2.5.6)

with a Liberty-enabled header; however, when using the browser-post pro-

file, the authentication request to the IdP can be embedded in an HTML

form containing a field called LAREQ carrying the <lib:AuthnRequest>

protocol message [58, 60]. In order to support both profiles, the adaptor

must therefore be capable of supporting both forms of communication with

the IdP (see also section 6.3.1).

When using the LEC profile, in step 10 the IdP returns the authentication

response to the client (which is responsible for forwarding it to the specified

RP). In normal operation of the Liberty browser-post profile, however, the

IdP sends the HTML form carrying the authentication response to the UA,

and redirects the user via the UA to the specified RP. Such a procedure

would deny the adaptor (i.e. the browser extension) the opportunity to in-

tercept the communication and give the user the choice whether or not to

allow the token to be sent to the RP (as is normally the case for CardSpace).

We therefore require a small modification to the way that the Liberty-

enabled IdP operates. The IdP must be modified to redirect the UA to a

213

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

web page at the IdP server, rather than at the RP, thereby giving control to

the adaptor. This could be achieved by requiring the IdP to set the action

attribute1 of the HTML form to an empty string or to hash (#)2. In step 12,

the browser extension resets the action attribute to the URL of the appro-

priate CardSpace RP, and, after obtaining user permission to release the au-

thentication token to the given RP, automatically submits the HTML form,

redirecting the UA to the RP website. This small change to the normal oper-

ation of the Liberty IdP helps to enhance user control (see also section 6.3.3),

hence implementing Cameron’s first identity law (see section 3.8).

Note that both the Liberty browser-post and LEC profiles require the RP

URL to be specified as the value of the <lib:AssertionConsumerServiceURL>

statement in the SAML authentication request [58]. To minimise the re-

quired changes to the operation of the IdP, the value of this field could be

set to hash (#), implicitly instructing the IdP to include this value instead of

the RP’s URL in the action attribute of the HTML form sent back to the UA.

6.3 Discussion and Analysis

We now consider implementation and applicability issues of the scheme.

6.3.1 Applicability

The scheme described above supports both the Liberty browser-post and

Liberty-enabled client profiles, introduced in section 4.7.7. However, the

prototype described in section 6.4 only implements the Liberty browser-

post profile. Adding support for the Liberty-enabled client profile is ex-

pected to be straightforward.

1Observe that, in the standard Liberty browser-post profile case, the action attribute of the HTML
form is set to the URL of the requesting RP, and the IdP redirects the UA to that RP.

2Note that whilst this has been shown to work successfully with Internet Explorer (versions 7 and
8), other browsers may not support an action attribute of an empty string or hash (#); hence setting
the action attribute to a relative URL for the IdP login page may be required for such browsers.

214

6.3 DISCUSSION AND ANALYSIS

Liberty-enabled IdP CardSpace-enabled UA [& Integration Plug-in] CardSpace-enabled RP

(3) Plug-in: pre-process and prepare to intercept RSTR

(4) User: invoke the selector and submit a LibCard

(5) Selector
 SIIP: exchange of RST and RSTR

(6) Plug-in: intercept RSTR, generate and
send a Liberty authentication request

(9) Plug-in: construct and forward
(CardSpace-like) SAML token [RSTR +
Liberty token]

(1) HTTP request

(2) HTTP response (& RP policy)

(7) User authentication

(8) Liberty token

(10) Grant or deny access

Figure 6.2: Exchanges Between the Principal Parties

Providing support for these two profiles is simplified by the many prop-

erties that the two profiles have in common. For example, both profiles

support SAML. In addition, in both profiles the HTML form containing the

authentication response must be sent to the UA using an HTTP POST; this

form must contain the field LARES with value equal to the authentication

response, as defined in the Liberty protocol schema [60]. Furthermore, in

both profiles, the value of the LARES field must be encoded using a base-64

transformation [95].

215

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

6.3.2 Differences in Scope

There is a key difference between the Liberty ID-FF and CardSpace frame-

works. CardSpace allows IdPs to assert a range of attributes about users, in-

cluding simple authentication assertions, whereas Liberty ID-FF only sup-

ports authentication assertions (see section 4.7.3). In CardSpace, the user

attributes are specified in a SAML attribute statement contained in a SAML

request that can be processed by the local SIIP or the remote CardSpace-

enabled IdP. However, an IdP conforming to Liberty ID-FF is only required

to generate SAML authentication statements, which gives rise to an inter-

operation problem.

Two possible solutions to this problem are as follows.

1. It could be assumed that the CardSpace-enabled RP is only concerned

with user authentication, which seems likely to be a common case. In

such a case a LibCard would contain the IdP URL and the trigger word,

and a LibCard would only be used (in HTTP mode) if the RP security

policy requests an assertion solely of the PPID attribute, i.e. via inclu-

sion of http://schemas.xmlsoap.org/ws/2005/05/identity/

claims/privatepersonalidentifier as an entry in the list of

mandatory claims. In such a case, the browser extension can modify

the RP policy to ensure it includes the fields used in LibCards. On se-

lection of a LibCard, the browser extension (as in step 8 in section 6.2.3)

intercepts the RSTR, and then creates and forwards a SAML authenti-

cation request to the user-selected IdP. While this is a straightforward

task, it limits the applicability of the scheme.

2. Alternatively, it could be assumed that a CardSpace-enabled RP might

be concerned with both user authentication and the assertion of user

attributes, and that the RP policy permits assertions (for user attributes

only) to be provided by the SIIP. In this case, along with requiring

the PPID, the RP security policy would also specify the attributes re-

216

6.3 DISCUSSION AND ANALYSIS

quired. This will cause the CardSpace identity selector to highlight

the user-created LibCards that satisfy the requirements. To ensure

that no additional changes are required at either the RP or the IdP,

the browser extension could store attribute assertions created by the

SIIP. The browser extension would then create a Liberty ID-FF confor-

mant SAML authentication request, and forward it to the specified IdP.

When the browser extension receives the response containing the au-

thentication assertion from the IdP, it would add appropriate attribute

assertion(s) from its local cache and then forward the entire SAML to-

ken to the RP. However, if the RP security policy dictates that security

tokens must be wholly signed by the issuing IdP, then this solution

would clearly fail.

The prototype implementation described in section 6.4 implements the first

approach.

6.3.3 Token Forwarding

The means by which the security token is forwarded to the RP needs to be

chosen carefully. In the discussion below, we refer to the numbered protocol

steps given in section 6.2.3.

The responsibility for delivering the security token could be given to

the Liberty IdP, as is normally the case when using the Liberty browser-

post profile. In this case the RP address could be added to the SAML au-

thentication request (as prepared in step 8) so that the IdP knows to which

RP it must forward the token (again as is normally the case for the Liberty

browser-post profile). Although this would avoid the need for changes to

the normal operation of the Liberty IdP and potentially also help auditing,

such an approach has privacy implications since the IdP would learn the

identity of the RP.

As a result, as specified in step 12 of the scheme, the responsibility for

217

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

sending the security token to the RP is given to the adaptor. Thus a means

is required for giving the adaptor (the browser extension) the address of the

RP, so that it can forward the token. We next consider a number of possible

ways in which the RP address might be made available.

• The RP address could be stored in the browser extension itself. Whilst

this puts the user in control, it is not user-friendly, as it would re-

quire users to manually add the address of each RP into the code of

the browser extension.

• After the security token has been returned from the Liberty-enabled

IdP, the browser extension could ask the user to enter the RP address,

e.g. using a JavaScript pop-up box or an HTML form. This has advan-

tages and disadvantages similar to those of the previous alternative.

• The RP address could be stored using recently-developed techniques,

such as HTML v5 localStorage3 [2]. The browser extension could store

the RP URL in an HTML v5 localStorage object as part of step 3, so that

the extension can retrieve the RP URL in step 12. However, at the time

of writing, HTML v5 is not yet an official standard, and only recent

versions of some modern browsers incorporate support for HTML v5;

indeed no browser provides full support for HTML v54.

• The browser extension could store the RP URL encrypted in a cookie5

as part of step 3, so that the browser extension can obtain the address

in step 12. However, a simple implementation of this approach will

not work, since the browser will be communicating with two different

domains, the RP and the IdP domain, at the relevant times. In order to

comply with the cookie’s same-origin principle, the browser must be-

3http://www.w3schools.com/html5/html5_webstorage.asp
4http://www.w3schools.com/html5/html5_intro.asp
5Note that creation of, and access to, the cookie can be handled by the browser extension, trans-

parently to RPs and IdPs.

218

6.3 DISCUSSION AND ANALYSIS

lieve that it is communicating with the same domain when the cookie

is set and when it is retrieved (see section 2.3.4.1).

This issue can be avoided in the following way. The browser extension

encrypts and stores the RP address in a cookie in step 3, before the

identity selector is invoked. As part of step 8, the browser extension

retrieves the encrypted value from the cookie and sends it to the IdP

as a hidden variable in an HTML form or as a query URL parameter

(see section 2.5.3). At the same time the intercepted RSTR is also en-

crypted and sent to the IdP as a hidden form variable or as a query

URL parameter. As part of step 10, the IdP returns the encrypted val-

ues of the RP address and the RSTR to the UA unchanged (again as a

hidden form variable or as a URL parameter). In step 12, the browser

extension retrieves and decrypts the enciphered values.

Note that the IdP is unable to read the RP address or the RSTR, since

they are encrypted using a key known only to the browser extension,

hence enhancing user privacy.

If the IdP, however, needs the RP address for auditing purposes (e.g.

for legal reasons), or the IdP policy requires the disclosure of the RP

identity (e.g. so it can encrypt the security token using the RP’s public

key), then the RP address could be sent to the IdP.

6.3.4 Possible Extensions

Although the instantiation of the general interoperation model we have

given in this chapter is presented as Liberty-specific, we suspect that a very

similar approach would also work with SAML-compliant IdPs; some minor

changes, however, would be required. For example, the technical differ-

ences6 between Liberty ID-FF 1.2 and SAML 2.0 would need to be carefully

6https://spaces.internet2.edu/display/SHIB/SAMLLibertyDiffs

219

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

examined. However, SAML 2.0 has many similarities to Liberty ID-FF 1.2

(see section 2.5.7), and so a mapping seems likely to be possible.

Reconfiguring the scheme to interoperate with SAML-aware IdPs poten-

tially significantly increases its applicability and practicality. For example,

the exchange of identity attributes, which is not supported by the current

scheme, would then be feasible. The reconfiguration of the scheme remains

possible future work. Note that the extensions discussed in section 5.7 are

also applicable here.

6.4 Prototype Realisation

This section provides technical details of a prototype implementation of the

scheme which operates with IdPs conforming to the Liberty browser-post

profile. Properties and possible limitations of the current prototype are also

described.

6.4.1 User Registration

Prior to use, the user must have accounts with a CardSpace-enabled RP and

a Liberty-enabled IdP. The user must also create a LibCard for the relevant

Liberty IdP (or it could be created at the time of use). This involves invoking

the selector and inserting the URL of the target Liberty IdP in the web page

field7 and the trigger word Liberty in the city field. An example of a LibCard

is shown in Fig. 6.3.

6.4.2 Implementation Details

The prototype is coded as a browser plug-in using JavaScript [180, 198], cho-

sen to maximise portability. Indeed, JavaScript8 currently appears to be the

most widely browser-supported and commonly used client-side scripting
7The web page field was chosen to contain the URL of the Liberty-enabled IdP since it seemed the

logical choice; however, this is an implementation option.
8Throughout the description the term JavaScript is, for simplicity, used to refer to all variants of

the language.

220

6.4 PROTOTYPE REALISATION

Figure 6.3: A LibCard

language [76]. Use of a browser-specific client-side scripting language, such

as VBScript [151], was ruled out to maximise portability.

The JavaScript code is executed using a C#-driven browser helper object

(BHO), a dynamic-link library (DLL) module designed as a plug-in for Inter-

net Explorer. Once installed, the BHO attaches itself to Internet Explorer,

thus gaining access to the current page’s DOM (see section 2.5.2). The pro-

totype can readily be enabled or disabled using the add-on manager in the

Internet Explorer Tools menu.

The prototype implementation uses the DOM to inspect and manipulate

HTML (see section 2.5.1) pages and XML (see section 2.5.6) documents.

The scheme operates with both the CardSpace and the Higgins9 identity

selectors without any modification. Finally observe that the prototype plug-

in does not require any changes to default Internet Explorer security set-

tings, thereby avoiding potential vulnerabilities arising from such changes.

6.4.3 Prototype Operation

In this section we consider specific operational aspects of the prototype. We

refer throughout to the numbered protocol steps given in section 6.2.3.

In step 3, before the HTML login page is displayed, the plug-in uses the

DOM to perform the following processes.
9http://wiki.eclipse.org/GTK_Selector_1.1-Win

221

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

3.1 The plug-in scans the web page in the following way10.

(a) It searches through the HTML elements of the web page to detect

whether any HTML forms are present. If so, it searches each form,

scanning through each of its child elements for an HTML object

tag.

(b) If an object tag is found, it retrieves and examines its type. If it is

of type application/x-informationCard (which indicates website sup-

port for CardSpace), it continues; otherwise it aborts.

(c) It searches through the param tags (child elements of the retrieved

CardSpace object tag) for the issuer tag and examines its value; if it

is http://schemas.xmlsoap.org/ws/2005/05/identity/

issuer/self, indicating that the use of personal (self-issued)

cards is acceptable, it continues11; otherwise it terminates.

(d) It also searches through the param tags for the requiredClaims tag,

which lists the claims required by the RP security policy.

(e) If the required claims include attributes other than the PPID claim,

then the plug-in terminates, giving CardSpace the opportunity to

operate normally. However, if only the PPID claim is requested,

then the plug-in adds the city and web page claims to the required-

Claims tag, marking them as mandatory.

3.2 The plug-in adds a JavaScript function to the head section of the HTML

page to intercept the XML-based authentication token (i.e. the RSTR)

before it is sent back to the RP (such a token will be sent by the identity

selector in step 8).

10The CardSpace documentation [142] specifies two HTML extension formats for invoking an
identity selector from a web page, both of which include placing the CardSpace object tag inside an
HTML form. This motivates the choice of the web page search method.

11The plug-in also continues if the value of the issuer tag is set to any, ∗ or if the issuer tag is absent,
since the use of personal cards is acceptable in these cases.

222

6.4 PROTOTYPE REALISATION

3.3 The plug-in obtains the action attribute of the CardSpace HTML form,

encrypts it using AES in CBC mode12 (see section 2.4.2.1) with a secret

key known only to the plug-in, and then stores it in a cookie. This at-

tribute specifies the URL of a web page at the CardSpace-enabled RP

to which the authentication token must be forwarded for processing. If

the obtained attribute is not a fully qualified domain name address, the

JavaScript inherent properties, e.g. document.location.protocol and docu-

ment.location.host, are used to help reconstruct the full URL.

3.4 The plug-in temporarily stores and then changes the current action at-

tribute of the (CardSpace) HTML form to point to the newly created

interception function.

3.5 The plug-in creates and appends an invisible HTML form to the HTML

page to be used later for sending the SAML token request to the IdP.

In step 8 the plug-in uses the DOM to perform the following steps.

8.1 It intercepts the RSTR sent by the selector using the added function.

8.2 It parses the intercepted token. It then operates slightly differently

depending on whether HTTP or HTTPS is in use. (The plug-in uses

the JavaScript property document.location.protocol to determine whether

HTTP or HTTPS is in use.)

• If HTTP is in use, the plug-in parses the RSTR and extracts the city

and web page fields. If the city field contains the word Liberty, the

plug-in proceeds; if not, it terminates. It also reads the web page

field to discover the URL of the IdP.

• If HTTPS is in use, the plug-in asks the user whether use of the in-

tegration scheme is required, using a JavaScript pop-up box. If so,

it proceeds; otherwise it terminates. On proceeding, it prompts
12Note that, ideally, an authenticated encryption mode should be used.

223

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

the user to enter the URL of the Liberty-enabled IdP. The plug-

in offers the user the option to store the input value in a persis-

tent cookie for future logins at this RP, using a plug-in-embedded

checkbox.

The plug-in uses an XML parser built into the browser to read and

manipulate the intercepted (XML-based) RSTR. The plug-in passes the

token to the parser, which reads it and converts it into an XML DOM

object that can be accessed and manipulated by JavaScript. The DOM

views the XML token as a tree-structure, thereby enabling JavaScript

to traverse the DOM tree to read (and possibly modify) the contents of

the token elements. New elements can also be created where necessary.

8.3 It encrypts the RSTR using AES in CBC mode with a secret key known

only to the plug-in.

8.4 It constructs a SAML authentication request, compatible with Liberty-

conformant IdPs supporting the browser-post profile.

8.5 It writes the entire SAML request message as a hidden variable into

the invisible HTML form created earlier.

8.6 It retrieves the encrypted RP URL from the appropriate cookie and

inserts it together with the encrypted version of the RSTR into the in-

visible form as another hidden form variable.

8.7 It writes the URL of the Liberty-enabled IdP into the action attribute of

the invisible form.

8.8 It auto-submits the HTML form (transparently to the user), using the

JavaScript method click() on the submit tag.

In step 12, the plug-in operates as follows.

224

6.4 PROTOTYPE REALISATION

12.1 It recovers the encrypted string from the received IdP response and

decrypts it using its internally stored secret key. The SIIP-issued RSTR

and the RP URL are then recovered from the decrypted data.

12.2 It generates a SAML token containing a unique ID, fresh nonce and

current time-stamp; the token is referred to here as the encapsulating

token. The plug-in embeds the signed SIIP-issued RSTR retrieved in

the previous step and the signed Liberty IdP-issued SAML token (af-

ter retrieving it from the appropriate HTML hidden variable) into the

(unsigned) encapsulating token.

12.3 It displays a summary of the token contents to the user and requests

consent to proceed. The summary indicates the types of attributes the

encapsulating token is carrying, as well as the RP URL to which the

token will be forwarded. The JavaScript confirm() pop-up box is used

to achieve this.

12.4 If the user agrees to submission of the token, it:

(a) inserts the RP URL (retrieved in step 12.1) into the action attribute

of the HTML form carrying the encapsulating SAML token; and

(b) submits the token to the RP seamlessly using the JavaScript click()

method.

The prototype has been successfully tested with experimental websites

(acting as a Liberty-enabled IdP and a CardSpace-enabled RP) as well as

with the current (unmodified) CardSpace and Higgins identity selectors.

6.4.4 Potential Features and Issues

The potential advantages and limitations described in the general interoper-

ation model (see sections 5.4 and 5.6) are also applicable here. In particular,

the scheme described here mitigates the risk of a fake IdP attack, e.g. as

resulting from a phishing attack (see section 5.4.1).

225

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

Some older browsers (or browsers with scripting disabled) may not be

able to run the integration plug-in, as it was built using JavaScript. How-

ever, most modern browsers support JavaScript (or ECMAscript), and hence

building the prototype in JavaScript is not a major usability obstacle.

6.5 Related Work

The scheme described in this chapter has some similarities to a previous

proposal for CardSpace-Liberty integration [22], referred to below as the

AM scheme. Whilst both approaches concentrate on supporting integration

at the client rather than at the server, there are a number of important dif-

ferences. We next describe some of the most significant of these.

Instead of focusing on CardSpace users only, as is the case with the

scheme described here, the AM scheme allows for interoperability in the

case where the RP is Liberty-enabled and the IdP is CardSpace-enabled as

well as vice versa. However, since, unlike the scheme described here, no

prototype of the system has been described, issues which might arise dur-

ing deployment have not been explored.

One important goal for any identity management system is ease of use.

However, user interface issues, notably the operation of the integration soft-

ware on the client platform, have not been explored for the AM scheme,

whereas the scheme described in this chapter addresses this through a com-

bination of a browser extension and the CardSpace identity selector inter-

face. Also, again unlike the scheme described here, the relationship between

the integration software and the web browser has not been specified for the

AM scheme.

Yet again unlike the scheme described here, the means by which the inte-

gration software is triggered is also not clear for the AM scheme. For exam-

ple, if the integration software is assumed to run at all times, then problems

arise if the user wishes to use CardSpace or Liberty in the normal way.

226

6.5 RELATED WORK

The AM scheme only supports integration of CardSpace with one Lib-

erty profile type, namely the Liberty-enabled client, and this is likely to re-

strict its applicability.

Finally, the AM scheme does not address how to handle the PPID, de-

scribed in section 4.3.11, when supporting interoperation between RPs and

Liberty-enabled IdPs. Additionally, it is not clear whether performing the

task of IdP discovery is the responsibility of the RP, the integration software,

or the user.

Another scheme supporting interoperation between CardSpace and Lib-

erty has been proposed by Jørstad et al. [144]. In this scheme, the IdP is

responsible for supporting interoperation. The IdP must therefore perform

the potentially onerous task of maintaining two different identity manage-

ment schemes. In addition, this scheme requires the user to possess a mo-

bile phone supporting the Short Message Service (SMS). Moreover, the IdP

must always perform the same user authentication technique, regardless of

the identity management system the user is attempting to use. The IdP sim-

ply sends an SMS to the user, and, in order to be authenticated, the user

must confirm receipt of the SMS. This confirmation is also an implicit user

approval for the IdP to send a security token to the RP. By contrast, the

scheme described in this chapter does not require use of a handheld device,

and does not enforce a specific authentication method.

Concordia, a Kantara memeber13, proposed an interoperation scheme

between CardSpace and SAML/WS-Federation. We next outline a variant

that is similar to the scheme described in this chapter.

Following a user visit, a SAML-conformant RP (e.g. a Liberty-enabled

RP [21]) generates a SAML authentication request14, and redirects the UA

to a Concordia-specific entity, referred to below as the interpreter. The in-

terpreter must act as a SAML-enabled IdP and as an Information Card-

13http://kantarainitiative.org/confluence/display/concordia/Home
14The SAML-enabled RP can specify a specific authentication method which must be employed

when authenticating the user.

227

6. INTEROPERATION BETWEEN AN INFORMATION CARD SYSTEM AND LIBERTY

enabled RP. The SAML-enabled IdP, a subcomponent at the interpreter

entity, converts the requirements of the SAML-enabled RP into the corre-

sponding CardSpace-compatible claim type(s) in order to enable a suitable

InfoCard to be selected. If a managed card is selected, the selector will send

an RST to the Information Card-enabled IdP, which, given a successful user

authentication, responds with an RSTR. The selector then sends the RSTR

to the CardSpace-enabled RP, a subcomponent at the interpreter entity. The

SAML-enabled IdP, a subcomponent at the interpreter entity, generates a

SAML (authentication) response, extracted from the RSTR; this IdP then

redirects the UA back to the SAML-enabled RP with the SAML response.

If satisfied, the RP grants the user access, with the appropriate privileges.

By contrast, the scheme described here does not require use of a server-

hosted interpreter entity, which must clearly be a TTP.

6.6 Conclusions and Future Work

In this chapter we have described a Liberty-based instantiation of the in-

teroperation model given in chapter 5. CardSpace users (indeed, users of

any Information Card system) are able to obtain a security token from a

Liberty-enabled identity provider that satisfies the security requirements of

a CardSpace-enabled relying party. The scheme uses a browser extension,

and requires no major changes to servers. It uses the selector interface to

enable interoperation between Liberty identity providers and CardSpace re-

lying parties. The scheme extends the use of personal cards to support this

process.

The scheme takes advantage of the similarity between the Liberty ID-FF

and the CardSpace frameworks, and this should help to reduce the effort

required for full system integration. Also, implementation of the scheme

does not require technical co-operation between Microsoft and Liberty.

Possible future work includes exploring the possibility of building a sim-

228

6.6 CONCLUSIONS AND FUTURE WORK

ilar, client-based scheme to support interoperation between a CardSpace-

enabled identity provider and a Liberty-enabled service provider.

229

Chapter 7

Enabling Interoperation Between

Shibboleth and Information Card

Systems

7.1 Introduction

In this chapter we describe a second instantiation of the integration model

given in chapter 5; it enables interoperation between an Information Card

system and Shibboleth. Information Card users are able to obtain a security

token from a Shibboleth-enabled IdP that is made usable by an Information

Card-enabled RP. Much of the material in this chapter has been previously

published [11, 16].

For simplicity of presentation, in this chapter we assume that the Infor-

mation Card system is CardSpace, although an identical approach will work

with other Information Card systems such as Higgins.

As discussed in chapter 5, the wide adoption of Shibboleth (notably by

educational institutions) and the inclusion of CardSpace in recent versions

of Windows means that enabling interoperation between the two systems

could offer significant benefits. CardSpace-Shibboleth interoperation is also

attractive since both schemes support:

• user authentication;

• the exchange of user attributes; and

231

7. ENABLING INTEROPERATION BETWEEN SHIBBOLETH AND INFORMATION

CARD SYSTEMS

• SAML tokens.

The remainder of the chapter is organised as follows. Section 7.2 details

the interoperation process, and, in section 7.3, we discuss implementation

issues. In section 7.4 we describe a prototype realisation, and section 7.5

highlights possible areas for related work. Finally, section 7.6 concludes the

chapter.

7.2 Interoperating with Shibboleth

We now describe how interoperation with Shibboleth is achieved. As in

chapter 5, the entities involved are: a CardSpace-enabled RP, a CardSpace-

enabled UA (e.g. a suitable web browser), a Shibboleth-enabled IdP, and the

integration software (the adaptor), which in this case we suppose takes the

form of a browser extension installed on the user platform.

7.2.1 Requirements

The scheme described in this chapter has the same operational requirements

as those listed in section 5.2.3 (excluding requirement 4), where the IdP is a

Shibboleth-enabled IdP.

In addition, in order to enable IdP-discovery, the adaptor must be able

to operate a WAYF-like component and should offer the user the option to

store their choice of IdP for future logins.

The RP must be prepared to accept SAML tokens in the format con-

structed by the adaptor. Furthermore, the IdP-issued security token must

conform to SAML 1.1 (since CardSpace supports this format); however, note

that this requirement is trivially easy to meet since, as stated in section 4.8.1,

an IdP conforming to Shibboleth 1.3 normally generates tokens in SAML 1.1

format, and an IdP conforming to Shibboleth 2.0 can generate tokens con-

forming to either SAML 1.1 or SAML 2.0.

232

7.2 INTEROPERATING WITH SHIBBOLETH

7.2.2 Operation

Fig. 7.1 gives an overview of the operation of the scheme, with the step

numbers shown. The sequence of steps is precisely as given in section 5.2.4.

We specify below only those steps where Shibboleth-specific operations are

performed.

3. In this case steps 3d and 3e are null.

8. Selector→ Adaptor/UA→ IdP. Unlike in the standard case, the SIIP-

issued RSTR is intercepted by the adaptor, which temporarily stores it.

The adaptor then performs the following steps.

a) It asks the user whether use of Shibboleth-based authentication

is required. If so, it proceeds; otherwise it terminates, allowing

CardSpace to operate normally. The adaptor could offer the user

the option to store their answer for subsequent logins at this RP.

b) It displays a WAYF-like component to allow the user to select an

appropriate IdP. The adaptor could offer the user the option to

store their selection for subsequent logins at this RP.

c) It constructs a SAML authentication request, and forwards it to

the user-selected IdP. Note that this request will also indicate the

RP-requested user attributes (if any) which are to be asserted by

the IdP. The adaptor will know what they are since they were

stored by it earlier.

10. IdP → UA. Following a successful user authentication in the previ-

ous step, the IdP generates and returns to the UA a digitally-signed

SAML token, containing an authentication statement and, possibly, an

attribute statement.

11. This step is null.

233

7. ENABLING INTEROPERATION BETWEEN SHIBBOLETH AND INFORMATION

CARD SYSTEMS

12. Adaptor/UA→ RP. The adaptor generates an unsigned SAML token

that contains both the digitally-signed SIIP-issued RSTR as well as the

digitally-signed (Shibboleth) IdP-issued token. The UA then forwards

the adaptor-generated SAML token to the RP, optionally after first ob-

taining permission from the user.

13. RP→ UA. The RP verifies the received SAML token (including verify-

ing the RSTR signature, PPID, the Shibboleth signature, nonces, time-

stamps, etc.), and, if satisfied, grants access.

If an attribute assertion was requested by the CardSpace-enabled RP,

then the RP could, in step 13, compare the (locally) SIIP-asserted attributes

with the (remotely) Shibboleth-asserted attributes. Such a procedure poten-

tially gives the RP added guarantees about the validity of these attributes.

7.3 Implementation Issues

We now consider implementation issues.

7.3.1 Token Storage and Forwarding

The means by which the security token is forwarded to the CardSpace-

enabled RP and how/where the RSTR token is stored should be chosen

carefully. We propose the use of similar techniques to those used for the

CardSpace-Liberty scheme, described in section 6.3.3.

In the scheme described here, the adaptor stores the RP address as well

as the RSTR in encrypted form in a cookie (or cookies) as part of step 3, so

that the adaptor is able to retrieve them in step 12.

As part of step 8, the adaptor retrieves the encrypted value from the

cookie and sends it to the IdP as a hidden variable in an HTML form or as

a query URL parameter. At the same time, the adaptor also encrypts the in-

tercepted RSTR and sends it to the IdP as a hidden form variable. As part of

step 10, the IdP must then return the RP address and the RSTR unchanged.

234

7.3 IMPLEMENTATION ISSUES

Shibboleth-enabled IdP CardSpace-enabled UA [& Integration Plug-in] CardSpace-enabled RP

(3) Plug-in: pre-process and prepare to intercept RSTR

(4) User: invoke the selector and submit a card

(5) Selector
 SIIP: exchange of RST and RSTR

(6) Plug-in: intercept RSTR, display WAYF,
generate and send a Shibboleth request

(9) Plug-in: construct and forward
(CardSpace-like) SAML token [RSTR +
Shibboleth token]

(1) HTTP request

(2) HTTP response (& RP policy)

(7) User authentication

(8) Shibboleth token

(10) Grant or deny access

Figure 7.1: Protocol Exchanges

As part of step 12, the adaptor retrieves and decrypt the (enciphered) RP

address and RSTR values.

Like the CardSpace-Liberty interoperation scheme (see section 6.3.3), the

IdP is unable to read the RP address or the RSTR, since they are encrypted

using a key known only to the browser extension, hence enhancing user

privacy. If the IdP, however, needs the RP address for auditing purposes

(e.g. for legal reasons), or the IdP policy requires the disclosure of the RP

identity (e.g. so that it can encrypt the security token using the RP’s public

key), then the RP address could be sent to the IdP.

Finally, we observe that the Shibboleth specification allows the RP to

use a hidden form variable called RelayState to maintain state in an RP-UA-

235

7. ENABLING INTEROPERATION BETWEEN SHIBBOLETH AND INFORMATION

CARD SYSTEMS

IdP session. A Shibboleth-compliant RP could insert data into this variable

and the IdP must return this data intact in the same hidden form variable.

We propose to use this RelayState variable in our scheme to contain the

encrypted versions of the RP address and the RSTR.

7.3.2 Attribute Handling

CardSpace and Shibboleth use two different sets of attribute types1; this

clearly causes a problem in creating a SAML (attribute) request message for

a Shibboleth-enabled IdP from a policy statement provided by a CardSpace-

conformant RP. We adopt the two approaches discussed in section 5.3.2 to

deal with the problem. For the first approach, an example mapping is given

in Table 7.1.

Table 7.1: CardSpace-Shibboleth Attribute Mapping

CardSpace personal cards Shibboleth
givenname givenName

surname sn
givenname + surname cn

emailaddress mail

7.3.3 Possible Extensions

Although the integration scheme is presented as Shibboleth-specific, we

suspect that a modified version of the scheme could also be applied to other

SAML-compliant IdPs. Given that SAML 2.0 builds on SAML 1.1, Liberty

ID-FF 1.2 and Shibboleth 1.3, a mapping seems likely to be possible. Re-

configuring the integration scheme to interoperate with any SAML-aware

IdP could potentially significantly increase its applicability (see also sec-

tion 6.3.4); such a reconfiguration remains possible future work. Note that

the possible extensions discussed in section 5.7 are also applicable here.

1As stated in section 4.3.3.1, CardSpace personal cards currently only support fourteen editable
attributes, whereas Shibboleth supports many more.

236

7.4 PROTOTYPE REALISATION

7.4 Prototype Realisation

We next give details of a prototype implementation of the scheme which

operates with the Shibboleth browser-post profile.

7.4.1 Implementation Details

As in the CardSpace-Liberty prototype described in section 6.4, the proto-

type described here is coded as a JavaScript browser plug-in, executed using

a C#-driven BHO (see section 6.4.2). It can readily be enabled or disabled

using the add-on manager in the Internet Explorer Tools menu. The integra-

tion plug-in does not require any changes to default Internet Explorer secu-

rity settings, thereby avoiding potential vulnerabilities arising from such

changes. The scheme operates with both the CardSpace and the Higgins

identity selectors without any modification (see section 6.4.2).

7.4.2 Prototype Operation

We now consider operational aspects of the prototype. Prior to use, the

user must have accounts with a CardSpace-enabled RP and a Shibboleth-

enabled IdP. We refer throughout to the numbered protocol steps given in

section 7.2.2.

The implementation of step 3 is precisely the same as that of step 3 of the

CardSpace-Liberty integration prototype described in section 6.4.3, except

that step 3.1 (e) is excluded, and step 3.1 (d) is replaced with the following.

3.1 (d) The plug-in retrieves the requiredClaims and optionalClaims tags

from the param tags. It obtains and temporarily stores in a cookie

the mandatory and optional claim types listed in these tags.

In step 8 the plug-in uses the DOM (see section 2.5.2) to perform the

following steps.

8.1 It intercepts the RSTR sent by the selector.

237

7. ENABLING INTEROPERATION BETWEEN SHIBBOLETH AND INFORMATION

CARD SYSTEMS

8.2 Using a JavaScript pop-up box, it asks the user whether use of the in-

teroperation scheme is required. If so, it proceeds; otherwise it ter-

minates, giving CardSpace the opportunity to operate normally. On

proceeding, the plug-in offers to store the user’s answer using a plug-

in-embedded checkbox; if checked, the plug-in stores the user answer

in a persistent cookie (see section 2.3.4.1).

8.3 It encrypts the RSTR using AES in CBC mode (see section 2.4.2.1) with

a secret key known only to the plug-in.

8.4 It prompts the user to select an IdP using a WAYF-like component,

implemented as a plug-in-embedded HTML form containing a drop-

down list.

8.5 It offers to store the user’s choice of IdP using a plug-in-embedded

checkbox; if checked, the plug-in stores the user selection in a persis-

tent cookie.

8.6 It constructs a SAML 1.1 request which conforms to Shibboleth stan-

dards. Note that this request will also indicate the RP-requested user

attributes (if any) that are to be asserted by the IdP. The plug-in will

know what they are since they were stored by it earlier.

The plug-in performs a mapping between the CardSpace-enabled RP-

requested user attributes and the Shibboleth-supported attributes as

in Table 7.1. The mapping is performed using JavaScript regular ex-

pressions, specifically using the match method with its global (g) and

case-insensitive (i) parameters.

8.7 It writes the entire (base 64-encoded) SAML request message as a hid-

den variable (SAMLRequest) into the invisible HTML form created

earlier.

238

7.5 RELATED WORK

8.8 It retrieves the encrypted URL of the RP from the appropriate cookie

and inserts it, together with the encrypted version of the RSTR, into

the invisible form as the hidden form variable RelayState.

8.9 It writes the URL of the IdP into the action attribute of the form.

8.10 It auto-submits the HTML form (transparently to the user), using the

JavaScript method click() on the submit tag, thus redirecting the user

to the IdP.

The implementation of step 12 is precisely the same as that of step 12 of

the CardSpace-Liberty integration prototype described in section 6.4.3.

The prototype has been successfully tested with experimental websites

acting as the Shibboleth-enabled IdP and the CardSpace-enabled RP, as well

as with the current (unmodified) CardSpace and Higgins identity selectors.

7.4.3 Potential Features and Issues

The potential advantages and limitations described in the integration model

chapter (see sections 5.4 and 5.6) are also applicable here, as are the issues

and features listed in section 6.4.4.

7.5 Related Work

In 2007, Internet2 announced2 plans to develop extensions to Shibboleth to

support CardSpace. This included collaboration with Microsoft in order to

add Information Card support to Shibboleth. However, unlike the scheme

described in this chapter, such work does not seem to be based on a browser

extension running on the user platform. Instead, it appears3 that the inter-

operation functionality is performed by Shibboleth IdPs and RPs, which is

likely to require significant changes to the servers.
2https://lists.internet2.edu/sympa/arc/i2-news/2007-05/msg00009.html
3https://lists.internet2.edu/sympa/arc/shibboleth-dev/2007-05/

msg00021.html

239

7. ENABLING INTEROPERATION BETWEEN SHIBBOLETH AND INFORMATION

CARD SYSTEMS

7.6 Conclusions and Future Work

In this chapter we have described a Shibboleth-based instantiation of the

interoperation model given in chapter 5. CardSpace users (indeed, users

of any Information Card system) are able to obtain a security token from a

Shibboleth-enabled identity provider that can be processed by a CardSpace-

enabled relying party. The scheme uses a browser extension, requires no

major changes to identity providers and relying parties, and does not re-

quire any changes to the deployed CardSpace identity selector.

The interoperation scheme takes advantage of the similarity between the

Shibboleth and the CardSpace frameworks, and this should help to reduce

the effort required for full system integration. Enabling interoperation be-

tween CardSpace and Shibboleth may be attractive since both schemes sup-

port user authentication as well as the exchange of user attributes. In ad-

dition, both schemes support SAML tokens. Moreover, implementation of

the scheme does not require technical co-operation between Microsoft and

Internet2.

Future work may explore the possibility of building a similar, client-

based scheme to support interoperation between a CardSpace-enabled iden-

tity provider and a Shibboleth-enabled service provider.

240

Chapter 8

Client-based Interoperation Between

OpenID and Information Card Systems

8.1 Introduction

In this chapter we describe a third instantiation of the interoperation model

given in chapter 5; it enables interoperation between an Information Card

system and OpenID. Information Card users are able to obtain a security

token from an OpenID-enabled IdP, the contents of which can be processed

by an Information Card-enabled RP. The scheme uses a browser extension,

is transparent to OpenID IdPs and to identity selectors, and only requires

minor changes to the operation of an Information Card-enabled RP. Much

of the material in this chapter has been published [12].

As in chapters 6 and 7, for simplicity of presentation we assume that the

Information Card system is CardSpace, although an identical approach will

work with other Information Card systems such as Higgins.

As discussed in chapter 5, the wide adoption of OpenID (see section

4.5.1) and the inclusion of CardSpace in recent versions of Windows means

that enabling interoperation between the two systems could offer signifi-

cant benefits. CardSpace-OpenID interoperation is also attractive since both

schemes support user authentication as well as the exchange of user at-

tributes.

The remainder of the chapter is organised as follows. Section 8.2 details

the interoperation process. In section 8.3 an operational analysis is provided

241

8. CLIENT-BASED INTEROPERATION BETWEEN OPENID AND INFORMATION

CARD SYSTEMS

and, in section 8.4, we describe a prototype implementation. Section 8.5

reviews related work, and, finally, section 8.6 concludes the chapter.

8.2 Interoperating with OpenID

We now describe how interoperation with OpenID is achieved. As in chap-

ter 5, the entities involved are: a CardSpace-enabled UA (e.g. a suitable web

browser such as Internet Explorer), a CardSpace-enabled RP, an OpenID-

enabled IdP, and the integration software (the adaptor), which in this case

we suppose takes the form of a browser extension installed on the user plat-

form.

8.2.1 Requirements

The scheme described here has the same operational requirements as those

listed in section 5.2.3 (excluding requirements 5 and 7), where the IdP is an

OpenID-enabled IdP and the InterCard we refer to below as an IDcard.

8.2.2 Operation

Fig. 8.1 gives an overview of the operation of the scheme. The sequence of

steps is precisely as given in section 5.2.4. We specify below only those steps

where OpenID-specific operations are performed (observing that, as noted

above, we use the term IDcard for the OpenID-specific InterCard).

8. Selector→ Adaptor/UA→ IdP. Following the user selection of a suit-

able IDcard, the SIIP-issued RSTR is intercepted by the adaptor, which

temporarily stores the RSTR. The adaptor then performs one of the fol-

lowing steps, depending on whether or not SSL/TLS is used to protect

the UA-RP channel.

• If the RP uses HTTP, the adaptor uses the contents of the RSTR to

construct an OpenID authentication request, which it forwards to

the appropriate IdP, having discovered its address from the RSTR.

242

8.2 INTEROPERATING WITH OPENID

Note that this request will indicate which RP-requested user at-

tributes (if any) are to be asserted by the IdP. The adaptor will

know what they are since they were stored by it earlier.

• If the RP uses HTTPS, the adaptor performs the following tasks.

a) It asks the user to discover whether the use of the integration

scheme is required. If it is, it proceeds; otherwise it terminates.

The adaptor could also offer the user the option to store their

answer for future interactions with this RP.

b) It asks the user to enter their OpenID identifier. The adaptor

can then use this identifier to perform IdP discovery (see sec-

tion 4.5.2). If this fails (e.g. because of network failure, unpaid

hosting costs, etc.), the adaptor can ask the user to enter the

URL of the IdP (other possibilities exist — see section 8.3.1).

The adaptor could also offer the user the option to store their

selection for subsequent logins at this RP.

c) It constructs an OpenID authentication request (precisely as in

the HTTP case), which it forwards to the discovered IdP.

The following details of step 8 apply regardless of whether HTTP or

HTTPS is in use.

• The format of the IdP authentication request is dependent on the

version of OpenID being used (see the discussion below), which

the adaptor will know from the IdP discovery process.

• The OpenID authentication request includes a designated return-

page, so that the IdP will know to which URL the authentication

response must be returned. This return-page is computed by the

adaptor, which sets the URL of the visited RP page to be the value

of the designated return-page.

243

8. CLIENT-BASED INTEROPERATION BETWEEN OPENID AND INFORMATION

CARD SYSTEMS

• The more commonly used checkid setup mode is adopted; the

checkid immediate mode is not supported as it requires direct,

back-channel RP-IdP communication without any user interac-

tion.

9. IdP
 User: User Authentication + OpenID Token Generation. If nec-

essary, the IdP authenticates the user. If successful, the IdP requests

permission to send the MAC-protected OpenID assertion token (see

step 7 of the OpenID protocol given in section 4.5.8) to the designated

RP return-page (see step 8 above).

10. IdP → UA → RP: OpenID Token. The IdP redirects the UA back to

the RP return-page with a positive or negative OpenID authentication

response, depending on whether or not the user granted permission in

step 9. The RP will receive the IdP-issued token unchanged (embed-

ded in the URL); however, the RP will ignore it because a CardSpace-

enabled RP will not be equipped with the means to process such a

token. Note that this should not change the appearance of the RP page

as displayed by the UA (see sections 2.5.3.7 and 2.5.3.8).

11. Adaptor
 IdP: Token Verification. The adaptor verifies the MAC-

protected OpenID authentication response by interacting with the IdP

using the check authentication mode via a TLS/SSL channel. If the

verification succeeds, it moves to the next step (step 12); if it fails, the

adaptor informs the user and terminates.

12. Adaptor/UA → RP: Token Forwarding (conditional — see previous

step). The adaptor constructs a CardSpace-compatible SAML token,

and forwards it to the RP. This encapsulating SAML token includes

the IdP-provided user attributes and the digitally-signed SIIP-issued

RSTR which contains the PPID (see also sections 8.3.2 and 8.3.3).

244

8.3 DISCUSSION AND ANALYSIS

13. RP → UA: Grant/Deny Access. The RP verifies the SAML token (in-

cluding verifying the RSTR signature, PPID, nonce, time-stamps, etc.),

and, if satisfied, grants access.

The detailed operation of steps 8 and 11 is dependent on the OpenID ver-

sion in use. The authentication request name-space field (openid.ns) must

be set to http://specs.openid.net/auth/2.0 for OpenID 2.0, and

one of absent, http://openid.net/signon/1.1, or http://openid.

net/signon/1.0 for OpenID 1.1. Similarly, the field openid.ns.sreg=

http://openid.net/extensions/sreg/1.1 [116] is added to the au-

thentication request when requesting identity attributes using the SREG ex-

tension in OpenID 2.0.

8.3 Discussion and Analysis

8.3.1 IDcard Contents

A native OpenID authentication request to an OpenID-enabled IdP typically

includes the user-supplied OpenID identifier, an RP return-page to which

the IdP must send the authentication response, and a list of requested at-

tributes. The RP must, of course, also know the IdP address. In the protocol

described in section 8.2.2 the user’s OpenID identifier and the URL of the

IdP are specified in the IDcard1 in the case where the RP uses HTTP2. The

following alternative approaches avoid the need to store this data in the

IDcard.

• The adaptor (implemented as a browser extension) could prompt the

user to enter the OpenID identifier that they wish to use, after they

have submitted an IDcard, e.g. as part of step 8 in section 8.2.2. This

approach could be inconvenient, since the user would have to enter
1The RP return-page is computed by the browser extension itself.
2As specified in section 8.2.2, if the RP uses HTTPS, then the browser extension uses the user’s

OpenID identifier to perform IdP discovery; if this fails, the extension prompts the user to enter the
URL of the IdP.

245

8. CLIENT-BASED INTEROPERATION BETWEEN OPENID AND INFORMATION

CARD SYSTEMS

OpenID-enabled IdP CardSpace-enabled UA [& Integration Plug-in] CardSpace-enabled RP

(3) Plug-in: pre-process and prepare to intercept RSTR

(4) User: invoke the selector and select an IDcard

(5) Selector
 SIIP: exchange of RST and RSTR

(6) Plug-in: intercept RSTR, generate and send an OpenID request

(10) Plug-in: construct and forward
(CardSpace-like) SAML token [RSTR +
OpenID-supplied attributes]

(1) HTTP request

(2) HTTP response (& RP policy)

(7) User authentication

(8) OpenID token

(9) Plug-in: verify the OpenID token

(check-authentication mode)

(11) Grant or deny access

Figure 8.1: Protocol Exchanges

the identifier every time; however, the impact could be significantly

reduced if the user entry is stored for subsequent logins.

• The browser extension could maintain a list of the service URLs of

widely used IdPs, enabling it to deduce which IdP it needs to contact

from the user’s OpenID identifier. This would potentially maximise

user transparency, but could give rise to storage issues and operational

problems, e.g. in the case where an IdP is not in the list. The latter issue

could be addressed by prompting the user to enter the URL of an un-

known IdP, which the browser extension could then add to its internal

list for future use.

246

8.3 DISCUSSION AND ANALYSIS

• The browser extension could discover the IdP from the user-supplied

OpenID identifier, e.g. by fetching an HTML document from the URL

associated with this identifier. However, such an approach is vulnera-

ble to phishing attacks and requires extra round trips.

8.3.2 IdP User Authentication

The SAML token created by the browser extension in step 12 of section 8.2.2

could be extended to contain an additional field to indicate that the user has

been authenticated by a specified IdP, as well as when and how. Of course,

the RP would need to be modified to be able to process such an extra field,

although this is likely to be relatively straightforward.

This authentication statement could also include the original token gen-

erated by the IdP. Since this is a MAC-protected token, verifying it would

give the RP added guarantees about the user authenticity. If such an ap-

proach is implemented, then the extension must skip the token verification

process and send the token unchanged3 to the RP, since an OpenID-enabled

IdP will only verify a token once (see section 4.5.8).

8.3.3 Security Considerations

The unsigned encapsulating token generated by the browser extension in

step 12 of section 8.2.2 includes the IdP-supplied user attributes, the signed

SIIP-issued RSTR containing the PPID, and (optionally) the MAC-protected

IdP-issued token. The RP compares the SIIP-asserted PPID (and the public

key) in the encapsulating token with its stored values and verifies the digital

signature (see section 4.3.11). The RP can thus authenticate the user, link the

user to his/her account, and consume the IdP-supplied attributes, e.g. for

authorisation purposes.

3The OpenID token should be sent in an authentication statement contained within the SAML
token, to allow RPs to choose whether or not to process it.

247

8. CLIENT-BASED INTEROPERATION BETWEEN OPENID AND INFORMATION

CARD SYSTEMS

If the RSTR also contains self-issued attributes, the RP could compare

them with the IdP-provided attributes; such a procedure could give the RP

added guarantees about the accuracy of these attributes.

In addition, an RP could optionally also verify the MAC in the IdP-

issued token, which can be embedded unchanged in the encapsulating to-

ken. However, for the RP to be able to verify the MAC, the extension must

skip the verification process (see section 8.3.2) and the RP must initiate on-

line interaction with the IdP using the check authentication mode.

Unless it has compromised the user platform, a malicious entity will be

unable to create an acceptable encapsulating token to masquerade as a le-

gitimate party since it will not have access to three key token components:

• the PPID;

• the SIIP-signed RSTR, which is only issued if the appropriate InfoCard

is selected on the correct user platform; and

• the MAC-protected OpenID token, which is only issued if the genuine

user has been authenticated by the OpenID-enabled IdP. As stated

previously, this token can be sent to the RP unchanged.

In addition, nonces and time-stamps are used to prevent replay attacks, and

RPs can also employ IP address validation. As stated in section 4.5, the use

of SSL/TLS is strongly recommended when using OpenID.

Note that, in protocol step 4, the selector identifies the RP to the user

and indicates whether or not they have visited that particular RP before; if

the user is visiting this RP for the first time, CardSpace requests the user’s

permission to proceed4 (see section 4.3.9.1). This helps to increase security,

since the user and the RP are both identified to each other.

The scheme also strengthens OpenID against fake IdP attacks, e.g. as re-

sulting from a phishing attack (see section 5.4.1). This is because the redirect
4Note that this gives a security advantage by comparison with native OpenID, which does not

identify the RP to the user.

248

8.3 DISCUSSION AND ANALYSIS

to the IdP is initiated by the browser extension and not by the RP; i.e. the RP

cannot redirect the user to an IdP of its choosing. By contrast, in normal op-

eration of OpenID a malicious RP could redirect a user to a fake IdP, which

might capture the user credentials (see section 4.5.11.1).

Finally note that the scheme allows the user attributes to be remotely

stored at the IdP; this has potential security advantages over storing the at-

tributes locally on the user platform, as is currently the case with CardSpace

SIIP-issued attributes.

8.3.4 Attribute Mapping

As stated in section 4.3.3.1, CardSpace personal cards support fourteen ed-

itable attributes, whereas the OpenID SREG extension only supports nine

attribute types. The prototype described in section 8.4 uses the mapping in

Table 8.1 to convert between attribute types.

Table 8.1: CardSpace-OpenID Attribute Mapping

CardSpace personal cards OpenID SREG extension
givenname nickname

surname fullname
emailaddress email
dateofbirth dob

gender gender
postalcode postcode

country country

The OpenID SREG extension also supports language and timezone at-

tributes, which have no corresponding attribute types in CardSpace per-

sonal cards.

The protocol specified in section 8.2.2 could also be used to support the

transfer of arbitrary data between IdPs and RPs using the (OpenID) AX ex-

tension (see section 4.5.9.2); however, this has not yet been prototyped.

249

8. CLIENT-BASED INTEROPERATION BETWEEN OPENID AND INFORMATION

CARD SYSTEMS

8.4 Prototype Realisation

We next give details of a prototype implementation of the scheme. The de-

scription applies to both OpenID 1.1 and OpenID 2.0. The prototype uses

the OpenID checkid setup mode, operating with the SREG extension.

As in the CardSpace-Liberty and CardSpace-Shibboleth prototypes (de-

scribed in sections 6.4 and 7.4, respectively), the prototype described here is

coded as a JavaScript browser plug-in, executed using a C#-driven BHO (see

section 6.4.2). It can readily be enabled or disabled using the add-on man-

ager in the Internet Explorer Tools menu. The integration plug-in does not

require any changes to default Internet Explorer security settings, thereby

avoiding potential vulnerabilities arising from such changes. The scheme

operates with both the CardSpace and the Higgins identity selectors with-

out any modification (see section 6.4.2).

8.4.1 User Registration

Prior to use, the user must have accounts with a CardSpace-enabled RP

and an OpenID-enabled IdP. The user must also create an IDcard for the

relevant IdP. This involves invoking the selector and inserting the user’s

OpenID identifier at the target IdP in the web page field, the URL of the

IdP in the street field, and the trigger word OpenID1.1 or OpenID2.0 in the

city field. For ease of identification, the user can give the personal card a

meaningful name, e.g. of the target IdP site. The user can also upload an

image for the card, e.g. containing the logo of the intended IdP or just of

OpenID. When a user wishes to use a particular IdP, the user simply chooses

the corresponding IDcard.

8.4.2 Prototype Operation

In this section we consider specific operational aspects of the prototype. We

refer throughout to the numbered protocol steps given in section 8.2.2.

250

8.4 PROTOTYPE REALISATION

The implementation of step 3 is precisely the same as that of step 3 of

the CardSpace-Shibboleth integration prototype described in section 7.4.2,

except that steps 3.1 (e) and 3.3 are replaced as specified below, and step 3.5

is skipped.

3.1 (e) If necessary, and after keeping track of the original policy settings,

the plug-in modifies the RP policy so that the city, street and web

page claim types are specified in the requiredClaims tag.

3.3 The plug-in obtains the action attribute of the CardSpace HTML form

and stores it in a cookie. This attribute specifies the URL of a web

page at the CardSpace RP to which the security token must be for-

warded for processing. If the obtained attribute is not a fully quali-

fied domain name address, the JavaScript inherent properties, i.e. doc-

ument.location.protocol and/or document.location.host, are used to help

reconstruct the full URL.

In step 8 the plug-in uses the DOM (see section 2.5.2) to perform the

following steps.

8.1 It intercepts the RSTR sent by the selector.

8.2 It uses the JavaScript property document.location.protocol to determine

whether HTTP or HTTPS is in use. As stated previously, it operates

slightly differently in these two cases.

• If HTTP is being used, the plug-in parses the RSTR and extracts

the city, web page and street fields. If the city field contains the

word OpenID1.1 or OpenID2.0, the plug-in proceeds; if not, it ter-

minates. It then reads the web page field to discover the user’s

OpenID identifier, and obtains the URL of the IdP from the street

field.

• If HTTPS is being used, the plug-in uses a JavaScript pop-up box

to ask the user whether use of the integration scheme is required.

251

8. CLIENT-BASED INTEROPERATION BETWEEN OPENID AND INFORMATION

CARD SYSTEMS

If so, it proceeds; otherwise it terminates. On proceeding, the

plug-in uses a JavaScript pop-up box to prompt the user to en-

ter their OpenID identifier, the URL of the IdP, and the version

of OpenID to be used (i.e. 1.1 or 2.0). The plug-in uses a plug-

in-embedded checkbox to offer the user the option to store these

values in a persistent cookie (see section 2.3.4.1) for future logins

at this RP.

8.3 It constructs an OpenID authentication request, compatible with the

OpenID version in use (see step 8.2 above). The plug-in defaults to cre-

ating an OpenID 1.1-compatible authentication request if no version is

specified. This involves generating a nonce and time-stamp, and also

determining the required and optional attribute types to be sent to the

IdP. The plug-in retrieves all the CardSpace-supported claims it stored

earlier. It then maps between their types and the SREG-supported at-

tribute types, using Table 8.1. As in the CardSpace-Shibboleth pro-

totype (see section 7.4.2), the mapping is performed using JavaScript

regular expressions.

As stated in section 8.2.2, the plug-in uses the OpenID checkid setup

mode, and skips the optional initiation phase in which the RP and IdP

exchange a shared secret. It also sets the return page (to which the IdP

sends the authentication response) to equal the currently-visited RP

page.

8.4 It redirects the user to the IdP along with the OpenID authentication

request, using the JavaScript inherent property window.location.

In step 11 the plug-in performs the following steps.

11.1 It parses the (OpenID) IdP-issued authentication response that is em-

bedded in the URL.

252

8.4 PROTOTYPE REALISATION

11.2 It verifies the authentication response, including verifying that the re-

turn URL (openid.return to) is the same as the current page, checking

the nonce and time-stamp, and requesting the IdP to verify the IdP-

provided MAC on the authentication assertion.

The plug-in uses the OpenID check authentication mode, so the MAC

verification is performed by the IdP in the following way; it issues an

HTTPS request to the IdP with exact copies of all fields from the au-

thentication response except for the openid.mode field whose value

the plug-in changes from id res to check authentication. The IdP re-

sponds with a boolean value (true or false). If all of the checks suc-

ceed, the plug-in continues to the next step; otherwise it terminates,

informing the user that the process can no longer continue.

In step 12 the plug-in performs the following steps.

12.1 It constructs a CardSpace-compatible encapsulating token, inserting

the user attributes received from the IdP into the token. It also embeds

the signed SIIP-issued RSTR into this token.

12.2 It creates and appends an invisible HTML form, (with the method at-

tribute set to POST), to the current page.

12.3 It writes the encapsulating token as a hidden variable into the HTML

form, with the name attribute of this variable set to the name of the

CardSpace object tag.

12.4 It writes the end-point URL of the RP into the action attribute of the

invisible form.

12.5 Finally, it auto-submits the HTML form to the RP (transparently to the

user), using the JavaScript inherent method submit.

253

8. CLIENT-BASED INTEROPERATION BETWEEN OPENID AND INFORMATION

CARD SYSTEMS

The prototype has been successfully tested with the MyOpenID5 IdP and

with an experimental implementation of a CardSpace-enabled RP, as well

as with the current (unmodified) CardSpace and Higgins identity selectors.

8.4.3 Potential Features and Issues

The potential advantages and limitations described in the interoperation

model chapter (see sections 5.4 and 5.6) are also applicable here, as are the

issues and features listed in section 6.4.4.

8.5 Related Work

Kim et al. [150] have proposed an OpenID authentication method using an

identity selector. This scheme is designed to reduce phishing and hacking

risks, and also simplify user authentication by automatically performing

the OpenID-based login process without the need to manually input the

OpenID URL. The scheme uses a specially modified identity selector to

enable OpenID authentication, unlike the scheme proposed here which uses

an unmodified selector.

Microsoft and OpenID have announced plans6 to enable a level of inter-

operation. A stated aim of this effort is to reduce the risk of phishing in

OpenID by enabling an OpenID user to employ CardSpace when authenti-

cating to an IdP. The scheme proposed here inherently provides a level of

protection against phishing since the redirect step to the IdP is initiated by

the adaptor (and not by the RP), and also supports the use of CardSpace to

authenticate to IdPs.

5https://www.myopenid.com/
6http://www.guardian.co.uk/technology/blog/2007/feb/07/openidgetsab

254

8.6 CONCLUSIONS AND FUTURE WORK

8.6 Conclusions and Future Work

In this chapter we have described an OpenID-based instantiation of the in-

teroperation model given in chapter 5. CardSpace users (indeed, users of

any Information Card system) are able to obtain a security token from an

OpenID identity provider, which, after encapsulation at the client, can be

processed by a CardSpace-enabled relying party. The scheme is transparent

to OpenID providers and identity selectors, uses a browser extension, and

requires only minor changes to a relying party. It uses the identity selector

interface and personal cards to enable interoperation.

The integration scheme takes advantage of the similarity between the

OpenID and the CardSpace frameworks, and this should help to reduce

the effort required for full system integration. Also, implementation of the

scheme does not require technical co-operation between Microsoft and the

OpenID Foundation.

Possible future work includes exploring the possibility of building a sim-

ilar, client-based scheme to support interoperability between a CardSpace-

enabled identity provider and an OpenID-enabled relying party.

255

Chapter 9

Integrating OAuth with Information

Card Systems

9.1 Introduction

In this chapter we describe a fourth and final instantiation of the interoper-

ation model given in chapter 5; it enables interoperation between an Infor-

mation Card system and OAuth. Information Card users are able to obtain

a security token from an OAuth-enabled system, which, after encapsulation

on the client platform, can be processed by an Information Card-enabled RP.

The scheme uses a browser extension, is transparent to OAuth providers

and identity selectors, and only requires minor changes to the operation of

an Information Card-enabled RP. Much of the material in this chapter has

been published [6, 7].

As in chapters 6 to 8, for simplicity of presentation we assume that the

Information Card system is CardSpace, although an identical approach will

work with other Information Card systems such as Higgins.

As discussed in chapter 5, we consider CardSpace-OAuth interoperation

because of OAuth’s fast-growing adoption by widely used Internet service

providers, such as Facebook and Twitter. Complementing this, the wide use

of Windows, recent versions of which incorporate CardSpace, means that

enabling interoperation between the two systems is likely to be of signifi-

cance for large numbers of identity management users and RPs. CardSpace-

OAuth interoperation is also attractive since both the schemes support the

257

9. INTEGRATING OAUTH WITH INFORMATION CARD SYSTEMS

exchange of user attributes.

The remainder of the chapter is organised as follows. Section 9.2 details

the interoperation process. In section 9.3 an operational analysis is provided

and, in section 9.4, we describe a prototype implementation. Finally, sec-

tion 9.5 concludes the chapter.

9.2 Interoperating with OAuth

We now describe how interoperation with OAuth is achieved. As in chap-

ter 5, the entities involved are:

• a CardSpace-enabled RP;

• a CardSpace-enabled UA (e.g. a suitable web browser);

• the integration software (the adaptor), which as in previous chapters

we suppose takes the form of a browser extension installed on the user

platform; and

• an OAuth resource and authorisation server — for simplicity, we as-

sume that the roles of both the resource and the authorisation servers

are performed by a single entity, which we refer to throughout as the

OAuth-enabled IdP.

The adaptor performs the functions of an OAuth client. It obtains an

access token from the authorisation server and uses this token to obtain user

attributes from the resource server (see section 4.6.1).

9.2.1 Requirements

The scheme described here has the same operational requirements as those

listed in section 5.2.3 (excluding requirements 5 and 7), where the IdP is an

OAuth-enabled IdP and the InterCard is referred to below as an OAuthCard.

In addition, the user must register the RP with the IdP. This involves

the user interacting (via the UA) with an HTML registration page hosted by

258

9.2 INTEROPERATING WITH OAUTH

the IdP, and using this page to send the IdP the RP’s name, its URL, and

(optionally) its locale. The IdP then issues an identifier for this RP, to be

used by the adaptor to identify the RP to the IdP.

9.2.2 Operation

Fig. 9.1 gives an overview of the operation of the scheme. The sequence

of steps is precisely as given in section 5.2.4. We specify below only those

steps where OAuth-specific operations are performed (observing that, as

noted above, we use the term OAuthCard for the OAuth-specific InterCard).

8. Selector→ Adaptor/UA→ IdP. After the user has selected a suitable

OAuthCard, the SIIP-issued RSTR is intercepted by the adaptor, which

temporarily stores the RSTR. The adaptor then performs one of the fol-

lowing steps, depending on whether or not SSL/TLS is used to protect

the UA-RP channel.

• If the RP uses HTTP, the adaptor uses the contents of the RSTR to

construct an OAuth request, which it then forwards to the appro-

priate IdP, having discovered the IdP’s URL from the RSTR.

• If the RP uses HTTPS, the adaptor first asks the user whether use

of the integration scheme is required. If not, it terminates. If it

is, the adaptor prompts the user to enter the URL of the IdP and

the IdP-specific identifier for the RP. The adaptor could also offer

the user the option to store the supplied values for future interac-

tions with this RP. Precisely as in the HTTP case, the adaptor then

constructs an OAuth request and sends it to the URL of the IdP.

Note that, in both cases, the implicit grant type (see section 4.6.3.2) is

adopted. Again in both cases the OAuth request includes: the redi-

rect uri parameter, to which the IdP must later redirect the UA; the

259

9. INTEGRATING OAUTH WITH INFORMATION CARD SYSTEMS

scope parameter, showing the scope requested1; and the state parame-

ter.

9. IdP
 User. This step is the same as step 2 of the OAuth 2.0 protocol

(implicit grant type) given in section 4.6.3.4.

10. IdP → Adaptor/UA. The IdP redirects the UA back to the RP URL

provided by the adaptor, including the access token (embedded in the

URL fragment) and the state parameter. The adaptor checks that the

value in the state parameter is the same as it generated in step 8, is suf-

ficiently current, and that a response to this parameter has not already

been received. The adaptor then adds the received value to a list of

acknowledged requests.

11. IdP
Adaptor/UA. The adaptor uses the contents of the access token

received in the previous step to construct a request to the IdP for the

values of the user attributes requested by the RP. The request is sent

to the IdP via a TLS-protected channel. The IdP validates the request,

including verifying the accuracy of the provided access token, and, if

successful, meets the request.

12. Adaptor/UA → RP. On receipt of the user attribute values from the

IdP, the adaptor uses them to construct a CardSpace-like encapsulating

token and submits it to the RP. This token includes the IdP-supplied

user attributes and the digitally-signed, SIIP-issued RSTR containing

the PPID (see also section 9.3.1).

13. RP → UA. The RP verifies the received encapsulating token (includ-

ing verifying the RSTR signature, PPID, nonces, time-stamps, and any

other standard CardSpace checks), and, if satisfied, grants access.

1This scope parameter specifies the RP-requested user attribute types (if any), the values for
which are to be provided by the IdP. The adaptor will know what they are since they were stored
by it earlier. The scope parameter helps the IdP determine the scope of the access request; the IdP
requires the user to authorise the release of the requested attribute values.

260

9.3 DISCUSSION AND ANALYSIS

OAuth-enabled IdP CardSpace-enabled UA [& Integration Plug-in] CardSpace-enabled RP

(3) Plug-in: pre-process and prepare to intercept RSTR

(4) User: invoke the selector and select an OAuthCard

(5) Selector
 SIIP: exchange of RST and RSTR

(6) Plug-in: intercept RSTR, generate and send an OAuth request

(10) Plug-in: retrieve (RP-requested) user attributes using access token

(11) Plug-in: construct and forward
(CardSpace-like) SAML token [RSTR +
OAuth-supplied attributes]

(1) HTTP request

(2) HTTP response (& RP policy)

(7) User authentication

(8) User authorisation

(9) Access token

(12) Grant or deny access

Figure 9.1: Protocol Exchanges

9.3 Discussion and Analysis

9.3.1 Security Considerations

The unsigned encapsulating token generated by the browser extension in

step 12 of section 9.2.2 includes the PPID, the user attributes as provided by

the IdP, and the digitally-signed, SIIP-issued, RSTR. Just as in standard use

of CardSpace, the RP can compare the SIIP-asserted PPID and the public

key in the encapsulating token with its stored values and can also verify the

digital signature (see section 4.3.11).

261

9. INTEGRATING OAUTH WITH INFORMATION CARD SYSTEMS

In addition, if the RSTR contains self-issued attribute values, the RP can

compare them with the IdP-provided attributes; such a procedure poten-

tially gives the RP greater confidence in the accuracy of these attributes.

Unless it has compromised the user platform, a malicious entity will be

unable to fabricate an encapsulating token to masquerade as a legitimate

party since it will not have access to the PPID and the private key neces-

sary to sign the RSTR, both of which are only available if the appropriate

InfoCard is selected on the correct user platform.

Note that, in protocol step 4, the selector identifies the RP to the user

and indicates whether or not they have visited that particular RP before; if

the user is visiting this RP for the first time, CardSpace requests the user’s

permission to proceed (see section 4.3.9.1). This helps to increase security

since the user and the RP are both identified to each other.

The scheme allows the user attributes to be stored remotely at the IdP;

this has potential security advantages over storing the attributes locally on

the user platform, as is currently the case with CardSpace SIIP-issued at-

tributes.

The adaptor-generated SAML token could be extended to contain an ad-

ditional field to indicate that the user has been authenticated by a specified

IdP, as well as when and how. Of course, the RP would need to be mod-

ified to be able to process such an extra field, although this is likely to be

relatively straightforward.

As discussed in section 5.5, even if the encapsulating token does not in-

clude a copy of an integrity-protected token generated by the IdP, the RP

may still be able to gain additional assurance in the user attribute values in

the encapsulating token and in the authenticity of the user.

262

9.4 PROTOTYPE REALISATION

9.3.2 Attribute Mapping

CardSpace and OAuth (e.g. as instantiated by Facebook Connect) use two

different sets of attribute types2, which gives rise to a compatibility issue.

We adopt the two approaches discussed in section 5.3.2 to deal with this

problem. An example attribute type mapping, as required to support the

first approach, is given in Table 9.1.

Table 9.1: CardSpace-Facebook Connect Attribute Mapping

CardSpace (Personal Cards) OAuth (Facebook Connect)
givenname first name

surname last name
emailaddress email
dateofbirth birthday

gender gender
country locale

city location
web page website

9.4 Prototype Realisation

We next give details of a prototype implementation of the scheme. The de-

scription applies to Facebook Connect, an implementation of OAuth 2.0.

The prototype uses Facebook Connect’s client-side flow3 (i.e. the implicit

grant type).

As in the previous prototypes, the prototype described here is coded as

a JavaScript browser plug-in, executed using a C#-driven BHO (see sec-

tion 6.4.2). It can readily be enabled or disabled using the add-on man-

ager in the Internet Explorer Tools menu. The plug-in does not require any

changes to default Internet Explorer security settings, thereby avoiding po-

tential vulnerabilities arising from such changes. The scheme operates with

2As stated in section 4.3.3.1, CardSpace personal cards only support fourteen editable attributes,
whereas Facebook Connect supports many more.

3http://developers.facebook.com/docs/authentication/

263

9. INTEGRATING OAUTH WITH INFORMATION CARD SYSTEMS

both the CardSpace and the Higgins identity selectors without any modifi-

cation (see section 6.4.2).

9.4.1 Registration

Prior to use, the user must have accounts with a CardSpace-enabled RP

and with Facebook. The user must register the RP with Facebook4 (see

section 9.2.1). The user must also create an OAuthCard in which the IdP-

specific RP identifier is inserted in the first name field, and the trigger word

OAuth in the last name field. The Facebook URL is contained in the source

code of the browser extension, and thus does not need to be included in the

OAuthCard. For ease of identification, the user can give the OAuthCard a

meaningful name and an image.

9.4.2 Prototype Operation

We next consider specific operational aspects of the prototype. We refer

throughout to the numbered protocol steps given in section 9.2.2.

The implementation of step 3 is precisely the same as that of step 3 of the

CardSpace-OpenID integration prototype described in section 8.4.2, except

that step 3.1 (e) there is replaced by the following.

3.1 (e) If necessary, and after keeping track of the original policy settings,

the plug-in modifies the RP policy so that the first name and last

name claim types are specified in the requiredClaims tag.

In step 8 the plug-in uses the DOM (see section 2.5.2) to perform the

following steps.

8.1 It intercepts the RSTR sent by the selector using the added function.

8.2 It uses the JavaScript property document.location.protocol to discover if

HTTP or HTTPS is in use. As stated previously, it operates slightly

differently in these two cases (see step 8).
4https://developers.facebook.com/setup/

264

9.4 PROTOTYPE REALISATION

• If HTTP is in use, the plug-in parses the RSTR to obtain the first

name and last name fields. If the last name field contains the word

OAuth, the plug-in continues; if not, it terminates. The identifier

of the RP is recovered from the first name field.

• If HTTPS is in use, the plug-in uses a JavaScript pop-up box to ask

the user whether use of the integration scheme is required. If so,

it proceeds; otherwise it terminates. On proceeding, it prompts

the user to enter the identifier of the RP, as issued by Facebook.

The plug-in offers the user the option to store the input value in

a persistent cookie (see section 2.3.4.1) for future logins at this RP,

using a plug-in-embedded checkbox.

8.3 It constructs an OAuth request, compatible with Facebook Connect.

This involves generating a nonce and time-stamp (used to build the

state parameter), and also determining the required and optional at-

tribute types to be requested from Facebook. The plug-in retrieves all

the CardSpace-supported claim types it stored earlier. It then maps

between them and the Facebook-supported attribute types, using Ta-

ble 9.1. As in the CardSpace-Shibboleth prototype (see section 7.4.2),

the mapping is performed using JavaScript regular expressions. The

plug-in sets the value of the redirect uri parameter (to which Facebook

will send the response) to the URL of the currently-visited RP page.

In addition, it sets the value of the response type parameter to token,

signifying use of the implicit grant type.

8.4 It encrypts the RSTR and the value of the state parameter using AES in

CBC mode, with a secret key known only to the plug-in. The encrypted

values are temporarily stored in a cookie.

8.5 It redirects the user to Facebook along with the OAuth request, using

the JavaScript inherent property window.location.

265

9. INTEGRATING OAUTH WITH INFORMATION CARD SYSTEMS

In step 10 the plug-in performs the following steps.

10.1 It parses the Facebook-issued response, embedded in the URL.

10.2 It verifies the response, as specified in step 10.

In step 11, the plug-in uses the provided access token to request and

retrieve the RP-requested user attribute values from Facebook open graph5

using a TLS-protected channel. The Facebook open graph6 holds structured

attributes about the user.

In step 12 the plug-in performs the following steps.

12.1 It generates an encapsulating token, which includes the user attribute

values received from Facebook. It also embeds the signed SIIP-issued

RSTR within the token, after retrieving the RSTR from the appropriate

cookie and decrypting it.

12.2 It creates and appends an invisible HTML form (with the method at-

tribute set to POST) to the current page.

12.3 It inserts the entire encapsulating token into the form as a hidden vari-

able, with the name attribute of this variable set to the name of the

CardSpace object tag.

12.4 It inserts the URL of the RP into the action attribute of the invisible

form.

12.5 Finally, it auto-submits the HTML form (transparently to the user), us-

ing the JavaScript inherent method submit.

The prototype has been successfully tested with Facebook and an ex-

perimental implementation of a CardSpace-enabled RP, as well as with the

current (unmodified) CardSpace and Higgins identity selectors.
5http://developers.facebook.com/docs/reference/api/user/
6http://en.wikipedia.org/wiki/Social_graph#Open_Graph

266

9.5 CONCLUSIONS AND FUTURE WORK

9.4.3 Potential Features and Issues

The potential advantages and limitations described in sections 5.4 and 5.6

are applicable here, as are the issues and features listed in section 6.4.4.

9.5 Conclusions and Future Work

In this chapter we have described an OAuth-based instantiation of the inter-

operation model given in chapter 5. CardSpace users (indeed, users of any

Information Card system) are able to obtain a security token from an OAuth

provider, the contents of which can be processed by a CardSpace-enabled

relying party. The scheme is transparent to OAuth providers and to iden-

tity selectors, uses a browser extension, and requires only minor changes

to a CardSpace-enabled relying party. It uses the identity selector inter-

face and CardSpace personal cards to enable interoperation between OAuth

providers and CardSpace relying parties.

Planned future work includes investigating the possibility of extending

the CardSpace identity selector to simultaneously support security tokens

from a variety of identity providers, such as OpenID, Liberty, Shibboleth, as

well as CardSpace remote and self-issued identity providers.

267

Part III

Practicality and Security

269

Overview

Part III of this thesis describes three novel schemes designed to enhance the

practicality and security of identity management systems. It contains three

chapters, as follows.

1. Chapter 10 describes a scheme that allows an Information Card system

to be used as a password manager.

2. Chapter 11 is concerned with a scheme that allows an Information Card

system to be used as a password-based single sign on system.

3. Chapter 12 specifies a scheme that uses a mobile device to enhance user

authentication in an Information Card system.

271

Chapter 10

Using an Information Card System as a

Password Manager

10.1 Introduction

The most widely used means of user authentication remains the use of pass-

words, despite their well-known shortcomings. Moreover, as the number of

on-line services requiring authentication continues to grow, users increas-

ingly re-use passwords, write them down in insecure ways, and/or employ

passwords which can readily be guessed. The result is an ever-increasing

risk of exposure of passwords to malicious parties. Passwords could also be

stolen [72, 110] through key logging, phishing, sniffing, shoulder surfing,

etc.

An approach that enables the use of site-unique strong passwords whilst

also maintaining user security and privacy would thus be highly benefi-

cial. Password managers of various types have been proposed to meet this

need. A password manager stores usernames and passwords and makes

them available when required. Typically, users are not required to remem-

ber any passwords apart from a single master password which can be used

to lock/un-lock the password manager [79]. Password managers can be

particularly helpful when a relatively large number of passwords are re-

quired to access multiple on-line services. Password managers can be seen

as potential alternatives to SSO systems such as Windows Live ID, formally

known as Passport (see section 4.2), OpenID (see section 4.5), and Liberty

273

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

(see section 4.7).

Despite the introduction of Information Card-based systems (such as

CardSpace and Higgins), the vast majority of websites still use username

and password for authentication, and this is likely to continue for at least

the next few years (see sections 1.2.2 and 4.3.14.6). One major problem with

Information Card systems, and with other similar systems providing more

secure means of user authentication, is that the transition from username-

password authentication is extremely difficult to achieve. RPs will not wish

to do the work necessary to support Information Card systems if very few

users employ them; equally, users are hardly likely to use an Information

Card system if it is only supported by a tiny minority of websites. In this

chapter we propose PassCard, a novel scheme designed to help overcome

this barrier to change by allowing an evolutionary deployment of an In-

formation Card system, initially as a password manager and subsequently,

once users are familiar with its operation, as a more sophisticated means of

user authentication.

PassCard operates with a variety of Information Card-based systems,

including CardSpace and Higgins (see sections 4.3 and 4.4, respectively).

However, for simplicity of presentation, in this chapter we describe its op-

eration with CardSpace.

The goal is to develop a simple and intuitive approach to password man-

agement, transparent to identity selectors and RPs. PassCard is designed to

operate with existing websites without any modification, and, in particular,

RPs are not required to support CardSpace. Usernames and passwords are

stored in personal cards, and these cards can be used to sign-on transpar-

ently to corresponding websites. Much of the material in this chapter has

been published [10, 14].

The remainder of the chapter is organised as follows. In section 10.2,

we introduce PassCard. We describe a prototype implementation in sec-

tion 10.3, and, in section 10.4, we outline a number of PassCard features

274

10.2 PASSCARD

and limitations. Section 10.5 reviews related work, and, finally, section 10.6

concludes the chapter.

10.2 PassCard

We now present PassCard. The parties involved are:

• an RP, i.e. a website that the user is currently visiting;

• a CardSpace-enabled UA (e.g. a web browser capable of invoking the

identity selector, such as Internet Explorer);

• a browser extension implementing the protocol described in section

10.2.2; and

• a user-selectable HTTP server (HS), which is used in a passive man-

ner (indeed, the HS can be any HTTP-based website). The HS is in-

volved solely to enable PassCard to support HTTPS-enhanced web-

sites. It is necessary because, if the visited website uses HTTPS, then

the SIIP-issued RSTR, which contains the username-password pair for

the visited site, will be encrypted using the public key of the visited

site; therefore, the RSTR will not be available to the PassCard browser

extension. The introduction of the HS addresses this issue, as we de-

scribe below.

10.2.1 Prerequisites

The scheme has the following operational requirements.

• Either prior to, or during, use of the scheme, the user must create a

special personal card for each RP with which the scheme is to be used,

referred to here as a PassCard. A PassCard contains the RP-specific

username and password in specified card fields, the choice of which is

implementation-specific. Basic protection against phishing can be pro-

vided if the URL of the target website is also included in a field of the

275

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

PassCard. However, this is optional, as users may wish to use a single

PassCard with multiple websites sharing the same user credentials.

• The user must install the PassCard browser extension, which, amongst

other things (see section 5.2.3), must be able to add a clickable Pass-

Card icon to the RP web page (see Fig. 10.4). This enables the user to

invoke the selector and to subsequently select (or create) a PassCard.

10.2.2 Operation

We now specify the operation of PassCard, which differs depending on

whether the RP uses HTTP or HTTPS. We therefore divide the description

into two cases. Steps 1–3b are the same for both cases, and are described

first.

1. UA→ RP: HTTP Request. The user employs a UA to visit an RP login

page.

2. RP→ UA: HTTP Response. The login page is returned.

3. Browser Extension→ UA. The extension performs the following pro-

cesses.

a) It scans the RP page for a form containing a username field, a pass-

word field, and a submit button. If all of these are found, it con-

tinues; otherwise it terminates.

b) It determines the protocol (i.e. HTTP or HTTPS) in use with the

RP.

Execution continues as described in sections 10.2.2.1 and 10.2.2.2, depend-

ing on whether the RP is using HTTP or HTTPS.

10.2.2.1 HTTP-based PassCard

Steps 3c–8 (below) apply for RPs using HTTP. Fig. 10.1 gives an overview

of the operation of the scheme in this case.

276

10.2 PASSCARD

3. Browser Extension → UA. Following step 3b in section 10.2.2, the

browser extension continues as follows.

c) It adds CardSpace-enabling tags to the login page, setting the em-

bedded security policy to require a token asserting claims of the

types in which the user credentials are stored.

d) It adds a function to the login page to intercept the RSTR that will

be returned by the selector.

e) It embeds a PassCard icon in the page, causing it to appear above

the submit button (see Fig. 10.4).

4. User→ UA. The user clicks on the added icon and the selector lights

up.

5. The user selects (or creates) and submits a PassCard. The selector cre-

ates and sends an RST to the SIIP, which responds with an RSTR.

6. Selector→ UA. The selector passes the RSTR to the UA.

7. Browser Extension→UA. The browser extension performs the follow-

ing tasks.

a) It intercepts and parses the RSTR.

b) If the token contains the URL of the target site, the extension com-

pares it with the URL of the visited site, and only proceeds if they

match.

c) It extracts the username and password from the specified fields of

the RSTR.

d) It auto-populates and submits the login form.

8. RP→ UA. The RP verifies the provided values and, if satisfied, grants

access.

277

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

10.2.2.2 HTTPS-based PassCard

Steps 3c–8b (below) apply for HTTPS-enabled RPs.

3. Browser Extension → UA. Following step 3b in section 10.2.2, the

browser extension continues as follows.

c) It obtains the web page’s URL, referred to throughout as the target

URL.

d) It causes the PassCard icon to appear above the submit field, in

such a way that clicking it results in an HTTP redirect to the HS.

4. User→ UA. If the user clicks the icon, the browser is redirected to the

HS, and the target URL is also transmitted as a URL query parameter.

5. Browser Extension → UA. While interacting with the HS page, the

browser extension:

a) adds an invisible password login form to the returned HS page,

if it does not already have one, at which point steps 3c–3e of sec-

tion 10.2.2.1 are executed;

b) recovers and temporarily stores the target URL; and

c) transparently invokes the selector, at which point steps 5–7c of

section 10.2.2.1 are executed.

7. Browser Extension→UA. The browser extension continues as follows.

d) It encrypts the username and password values with a secret key

known only to the browser extension (see section 10.2.3.3).

e) It transparently redirects the user to the target URL, and the en-

crypted username-password values are transmitted as URL query

parameters.

8. Browser Extension→ UA. While interacting with the target URL site,

the extension:

278

10.2 PASSCARD

a) recovers and decrypts the username and password values; and

b) auto-populates and submits the login form, after which step 8 of

section 10.2.2.1 is executed.

Selector + SIIP CardSpace-enabled UA + Plug-in RP

(1) HTTP request.

(2) HTTP response.

(3) Plug-in: pre-process RP page, including
scanning for username-password submission
form, and if found:

– add CardSpace support; and
– embed a function to intercept RSTR.

(4) User: click PassCard logo and the selector pops up.

(5) User: select a PassCard.

(6.1) Selector
 SIIP: exchange of RST and RSTR.

(6.2) Selector: pass RSTR.

(7) Plug-in: intercept RSTR, extract user-
name and password values, auto-populate
and auto-submit password form.

(8) Grant or deny access.

Figure 10.1: PassCard Operation in HTTP mode

10.2.3 Discussion

10.2.3.1 User Experience

The PassCard user experience when operating in HTTP mode is precisely

the same as with conventional password-based authentication except that,

instead of manually entering and submitting a username and password,

the PassCard user selects and submits a PassCard. The user experience in

HTTPS mode is similar to that of HTTP mode, except that users (depending

279

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

on their Internet speed, machine speed, etc.) may or may not experience a

redirect from the target HTTPS site to the HS and vice versa, resulting in

the temporary display of the HS web page. Note that, in both PassCard

modes, users are not required to click the PassCard icon more than once or

to remember any passwords.

10.2.3.2 CardSpace-enabled RPs

Regardless of whether or not an RP already supports CardSpace, the plug-in

will always add the PassCard icon to the RP web page, as long as it detects

username-password prompts on the page. This means that, if an RP sup-

ports CardSpace and simultaneously supports username-password authen-

tication, as is the case for the myOpenID website1 (sampled on 23/04/2012),

the browser extension will still insert the PassCard icon above the sub-

mit button of the password-based login form. Informal tests on the pro-

totype implementation suggest that this will not disrupt normal operation

of CardSpace.

The RP page will thus display both the CardSpace and the PassCard lo-

gos (see Fig. 10.3). In such a case, users will have (at least) the following

three login options:

1. to populate the username and password fields and submit the login

form manually;

2. to use PassCard to auto-populate and auto-submit the login form; or

3. to click the CardSpace logo to use CardSpace-based authentication.

10.2.3.3 Use of Cryptography

The encryption of the username and password in step 7d of section 10.2.2.2

is not necessary to prevent channel eavesdropping, because an SST/TLS

channel is already established between the browser and the target HTTPS
1https://www.myopenid.com/

280

10.3 PROTOTYPE REALISATION

site. However, if the username and password are sent in plaintext as part of

the URL (as is the case in the PassCard prototype described in section 10.3

below), then they will be vulnerable to shoulder-surfing attacks since they

will be shown in the browser address bar (and possibly also in the browser

status bar). The prototype implementation uses a simple symmetric encryp-

tion scheme for username-password encryption to minimise the overhead.

10.3 Prototype Realisation

We next describe a prototype implementation of the PassCard scheme. The

prototype is coded as a browser plug-in in JavaScript, executed using a C#-

driven BHO (see section 6.4.2). PassCard can be enabled or disabled using

the add-on manager in the Internet Explorer Tools menu.

As is the case with the integration prototypes (chapters 6 to 9), the Pass-

Card prototype operates with both the CardSpace and the Higgins identity

selectors without any modification. It has been disseminated as an open-

source research project2.

10.3.1 Registration

Prior to, or during, use of PassCard, the user must create a PassCard, in-

serting their username in the first name field and password in the last name

field. The user also has the option to insert the URL of the target website in

the web page field3. For ease of identification, the user can give the PassCard

a meaningful name, e.g. of the corresponding website. The user can also

upload an image for the PassCard, e.g. containing the icon of the intended

site. Example PassCards are shown in Fig. 10.2.

2http://iescripts.org/view-scripts-808p1.htm and/or http://sourceforge.
net/projects/passcard/

3The web page field was chosen to contain the URL of the target website since it seemed the logical
choice; however, like the use of the first name and last name fields, this is an implementation option.

281

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

Figure 10.2: PassCards

10.3.2 Operation

The prototype implements the protocol steps specified in section 10.2.2.

• In step 3a, the plug-in processes the RP web page in the following way.

1. It scans the web page for a form tag.

2. If a form tag is found, it searches the form for three input tags

referring to username, password, and submit, using the following

procedure:

a) it searches for an input tag of type text;

b) if found, it searches for another input tag of type password; and

c) if found, it searches for another input tag of type submit. If no

input tag of type submit is found, the plug-in searches for an

input tag of type image and, if unsuccessful, searches for an

event-based input tag of type button.

3. If all the three fields are detected, then the plug-in highlights the

username and password fields in green for ease of identification.

A potential advantage of this step is that if the wrong fields are

highlighted, then the user will know that the PassCard scheme

should not be used.

The above process involves the following detailed processing.

282

10.3 PROTOTYPE REALISATION

– Highlighting does not take place unless a username field, a pass-

word field and a submit button have all been detected in a single

form, as a web page could potentially contain more than one input

tag of type text, such as those used for searching.

– To differentiate between registration and login pages, the plug-in

terminates if it detects more than one password field between the

username and submit fields. Whereas it appears common for a

login page to only have a single password field before the submit

button, registration pages typically have two password fields (be-

fore the submit button): the first for the user to enter their pass-

word, and the second to confirm their password. Examples in-

clude the registration and login pages hosted by major websites

such as Google, Yahoo, Microsoft Research, and SpringerLink4.

– When searching for the form submission button, if no submitting

input tag is found then the plug-in searches for an image tag. This

is because, instead of a submit button, some websites display a

clickable image5 with similar functionality.

– Whereas it appears common for a username field to be immedi-

ately followed by a password field, a submit button may not al-

ways immediately follow a password field. For example, some

major sites (including Google, Yahoo, Facebook, and Springer-

Link) add a Stay signed in or Remember me check box between the

password field and the submit button6. The plug-in addresses this

issue by skipping all tags between the password field and the sub-

mit button, including those of type checkbox.

• In step 3b, the plug-in uses document.location.protocol, a JavaScript in-

herent property, to discover whether HTTP or HTTPS is in use.
4Websites most recently checked on 23/04/2012.
5This includes an image tag embedded in a hyperlink (anchor) tag, an image tag on its own, an

image tag embedded inside a button tag, or an event-based button tag.
6Websites most recently checked on 23/04/2012.

283

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

10.3.2.1 HTTP-specific Implementation Details

We refer to the step numbers given in section 10.2.2.1.

• Following step 3b in section 10.2.2, the plug-in performs the following

processes using the login page provided by the RP.

3.c) It adds an HTML object tag that allows the user to invoke the se-

lector. Within the object tag, it sets the param tags to indicate that

the RP security policy requires PassCards to contain two fields:

the first name and the last name fields, (or three fields if protection

against phishing is required, in which case the third field would

be the web page field). Alternatively, the security policy could be

configured so that the web page field is optional.

3.d) It adds a function to the head section of the RP login page to in-

tercept the (XML-based) RSTR returned by the selector.

3.e) It inserts the PassCard logo, causing it to appear just before the

login button in the RP page, as illustrated in Fig. 10.4. The logo

is associated with an on-click event, so that, if clicked, the selector

is invoked (after calling the added function). To cater for users

with sight difficulties or web browsers configured not to display

images, a text field can replace the logo. This text is also displayed

when the mouse is held over the PassCard logo, indicating that

PassCard can be used to sign-on (see Fig. 10.3).

• In step 7, the plug-in performs the following steps.

7.a) It intercepts the RSTR using the added function.

7.b) It parses the intercepted token and extracts the values of the first

name and last name fields.

284

10.3 PROTOTYPE REALISATION

Figure 10.3: PassCard Co-operating with a CardSpace-enabled RP

7.c) It checks whether the HTTPS-mode-signalling cookie is set (see

section 10.3.3.1); if so, it moves to step 7d of section 10.2.2.2. If not,

it continues.

7.d) If a URL is present in the web page field of the RSTR, it compares

it with the URL of the visited website, and only proceeds if they

match.

7.e) It automatically fills in the username and password fields with the

first name and last name values, respectively.

7.f) It auto-submits the login form using the JavaScript click() method.

10.3.2.2 HTTPS-specific Implementation Details

We refer to the step numbers given in section 10.2.2.2.

• In steps 3c and 3d, the plug-in:

285

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

Figure 10.4: PassCard Logo

1. obtains the HTTPS site’s (full) URL, i.e. the target URL (see sec-

tion 10.2.2.2), using the JavaScript property document.location.href,

removing any query parameters that may be attached to the URL;

and

2. creates an HTML hyperlink (a) tag, and sets its href attribute to

point to the HS. It also embeds an HTML image (img) tag, point-

ing to the PassCard logo, inside the hyperlink tag. In addition,

it creates a title and alternative text, so that if the mouse is held

over the PassCard logo, or if the image is not displayed, text is

displayed indicating that PassCard can be used to sign-on.

• In step 4, if the PassCard logo is clicked, the plug-in redirects the user

to the HS. The target URL and the PassCard namespace (e.g. used to

differentiate different PassCard versions) are sent as query parameters,

as in the example shown in Fig. 10.5.

Figure 10.5: Redirect URL (target URL→ HS)

• In step 5, the plug-in processes the HS web page in the following way.

286

10.3 PROTOTYPE REALISATION

5.1 If no password-based login form is served by the HS web page,

it creates a div section and inserts an HTML form. The form in-

cludes username (input tag of type text), password (input tag of

type password) and submit (input tag of type submit) elements.

The div section is then embedded in the HS page.

To keep the changes to the HS page transparent to the user, the

browser plug-in hides this form by setting the style of the div sec-

tion, which contains the added form, to visibility: hidden. Note that

embedding a form in the HS page enables the re-use of code that

was previously developed to handle HTTP mode.

5.2 It parses the URL query parameters to obtain the target URL, and

stores it in a cookie.

5.3 It creates the HTTPS-mode-signalling cookie (see section 10.3.3.1).

5.4 It auto-invokes the selector using the JavaScript click() method.

• In steps 7d and 7e, the plug-in:

1. encrypts the username and password values using AES in CBC

mode (see section 2.4.2.1) with a secret key known only to the

plug-in; and

2. redirects the user to the target URL, using the JavaScript property

window.location. The encrypted username and password values

and the PassCard namespace are sent as query parameters, as in

the example shown in Fig. 10.6.

Figure 10.6: Redirect URL (HS→ target URL)

287

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

• In step 8, the plug-in processes the target URL web page in the follow-

ing way.

8.1 It parses the URL query parameters to obtain the encrypted val-

ues of the username and password, and decrypts them using its

internally stored secret key.

8.2 It locates the username, password, and submit fields.

8.3 It auto-populates the username and password fields with the de-

crypted username and password values.

8.4 It creates a cookie with a three-second lifetime to ensure that it

does not re-submit the username-password values within a three-

second interval (see section 10.3.3.3).

8.5 It auto-submits the login form using the JavaScript click method.

10.3.3 Discussion

We next outline certain issues that arose during prototype development.

10.3.3.1 HTTP/HTTPS Modes

Since the same program code is used to handle both the HTTP and HTTPS

cases (to keep development efforts to a minimum and maximise code ef-

ficiency), a cookie is used to signal to the browser extension that HTTPS

mode has been activated. This instructs the browser extension to perform

step 7d of section 10.2.2.2 instead of step 7d of section 10.2.2.1. More specif-

ically, the HTTPS-mode-signalling cookie is created between steps 5b and

5c of section 10.2.2.2, and this cookie is checked between steps 7c and 7d of

section 10.2.2.1. If it is set, HTTPS mode is activated; otherwise HTTP mode

continues.

288

10.3 PROTOTYPE REALISATION

10.3.3.2 HTTP Server

We now consider the role of the HS in the PassCard system. The HS can be

any HTTP site, and is not actively involved in the protocol except to serve

a web page when requested. It simply acts as a convenient way to avoid

the problems arising when an RP uses HTTPS. The choice of HS is not

particularly security-sensitive in that it does not learn any sensitive data; it

simply learns that a client at a particular IP address is using PassCard. The

choice of HS is a configuration option in the prototype, so if the default site

is regarded as privacy-threatening then a user can change it to any trusted

address, e.g. that of a personal web page. Alternatively, a user could use a

local web server. Setting up a local web server is typically straightforward,

e.g. by installing XAMPP7.

The use of a personal web page has other advantages, including min-

imising the load on the default HS and avoiding problems arising if the

default HS is unavailable. Use of a personal page is also likely to avoid any

possible user concerns about the involvement of a third party server.

The HS could also be implemented as a proxy server. This would max-

imise user transparency in the sense that users would not experience a redi-

rect from the target HTTPS site to another HS and vice versa. However,

such a change would deny users the opportunity to use their own site. In

addition, the proxy site will need to be trusted by the user, since username-

password values will need to be given to the proxy server so that it can de-

liver them transparently to the target HTTPS site. Furthermore, if an HTTP

proxy [160] is used, the user must force the browser to use the proxy. This is

potentially inconvenient and may not always be possible; for example the

user may not have sufficient privileges to make the necessary change to the

browser settings, e.g. when using a device in an Internet café [93]. Finally,

PassCard would stop working if the proxy site was unavailable for any rea-

7http://www.apachefriends.org/en/xampp.html

289

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

son.

10.3.3.3 Failed Authentication Attempts

When some websites, e.g. that of the RHUL’s network authentication page8,

have incorrect credentials submitted to them, they do not change the URL

(e.g. by redirecting the user to an error page). Instead they inform the user

of the failure of their authentication attempt on the same login page, main-

taining the same URL in the browser’s address bar.

When the PassCard plug-in is executing in HTTPS mode, such an event

will cause it to run again, because the page has been refreshed but the URL is

unchanged. When it runs, the plug-in will see the same URL with the same

query parameters (as were redirected/sent by the PassCard plug-in when

running on the HS’s page), and will thus attempt to automatically sign-on

the user again with the same (wrong) credentials, because it believes the

user has just been redirected from the HS. The website will deny access

once again, and the same process will repeat indefinitely, resulting in either

the user being locked out after a certain number of failed authentication

attempts or the browser becoming stuck in an (infinite) loop.

To address this issue, the plug-in creates a short-lived cookie just before

attempting to automatically sign-on the user for the first time, to ensure

that it does not attempt to log-in the user again before a certain period of

time (e.g. 3 seconds) has elapsed. If the plug-in discovers that the user has

been denied access following an attempt to automatically sign-on, it informs

the user and terminates. It also attempts to close the visited page, after

first obtaining permission from the user. This termination is based on the

assumption that the user has either inserted the wrong credentials in the

current PassCard or has simply selected the wrong PassCard.

Other possible means of addressing this particular issue were tested, but

were found not to work. For example, it is tempting to try to use the HTTP
8https://nac.rhul.ac.uk/authentication/, most recently checked on 23/04/2012.

290

10.3 PROTOTYPE REALISATION

referrer9 field, which identifies the web page that the user was visiting be-

fore they arrived at the current page. Indeed, JavaScript provides its own

built-in property for HTTP referrer, namely document.referrer. Thus, it would

appear that the PassCard plug-in could use this to sign-on the user only if

the user was redirected from the HS; if not, the plug-in could simply ter-

minate on the assumption that the user has already attempted to sign-on

but has been denied access. However, informal tests suggest that this tech-

nique does not work for the PassCard plug-in, probably because the redi-

rect from the HS to the target site is initiated by the plug-in itself (using the

windlow.location property) and not by the HS server. In any case, the use of

the HTTP referrer field should be avoided because if the HS and the target

URL fall under the same domain, the HTTP referrer field would prevent the

plug-in from automatically signing in the user.

10.3.3.4 CardSpace-enabled RPs

We next discuss two approaches for dealing with RPs which are CardSpace-

enabled, and which provide alternatives to the approach described in sec-

tion 10.2.3.2.

1. After identifying that an RP supports username-password authentica-

tion, the browser extension could be configured to detect whether the

RP already supports CardSpace; if so, the browser extension would

deactivate PassCard. However, since the RP offers passwords as a lo-

gin option, offering PassCard may help password users and does not

prevent users employing CardSpace-based authentication.

2. Instead of automatically de-activating PassCard if the RP already sup-

ports CardSpace, as suggested above, the plug-in could ask the user

(e.g. via a JavaScript pop-up box) whether to activate PassCard. Al-

though this would provide a greater degree of user control, repeated
9http://tools.ietf.org/html/rfc2616#section-14.36

291

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

user prompting could become very intrusive. Nevertheless, this effect

could be mitigated if the user’s answer was stored for use in future

interactions with this RP.

10.4 PassCard Properties

We now consider certain features and limitations of PassCard.

10.4.1 Security

PassCard uses the functionality of the CardSpace identity selector, and is

supported by its built-in security features. For example, the selector runs in

a separate private desktop session, mitigating the risk of other applications,

e.g. malware, from interacting or interfering with it. In addition, all values

inserted in the fields of a PassCard are stored in encrypted form on the user

platform.

The selector identifies the RP to the user and indicates whether or not

they have visited that particular RP before; if the user is visiting this RP for

the first time, CardSpace requests the user’s permission to proceed. This en-

hances security by comparison with conventional password-based authen-

tication, where an HTTP-based RP is not identified to the user.

As with any local password manager, PassCard (when running in HTTP

mode) avoids the need for trusted third parties. In addition, the automatic

form-filling feature reduces exposure to shoulder-surfing attacks and also

helps to thwart key loggers.

Depending on how it is used, PassCard can help to reduce the threat

of phishing attacks involving impersonation of legitimate websites. This is

achieved by comparing the URL included in a PassCard (if present) with

that of the visited website. PassCard also supports the use of strong per-site

passwords, since users no longer need to memorise or write down pass-

words.

292

10.4 PASSCARD PROPERTIES

Finally, note that the PassCard browser extension does not require any

changes to default browser security settings, thereby avoiding potential vul-

nerabilities resulting from making such changes.

10.4.2 Usability

PassCard provides a simple, intuitive user experience through its use of the

selector interface. At the same time, it familiarises users with CardSpace,

thereby potentially facilitating future adoption of more secure means of au-

thentication. Unlike other password managers which represent credentials

in text form, PassCard credentials are stored in PassCards which can be

equipped with a readily recognisable image, e.g. an RP logo.

PassCard operates transparently to external parties, and hence does not

require any changes to RPs, identity selectors or to default browser security

settings. PassCard is also flexible, since users can choose whether or not to

use it simply by electing to click the PassCard icon (or not).

Finally, by making use of CardSpace features, PassCard supports a de-

gree of roaming. A user can transfer PassCards from one PC to another

using the CardSpace backup facilities. Indeed, if the CardSpace backup file,

which holds data in encrypted form, is stored on a portable storage medium,

e.g. a USB drive, then full mobility is provided, as well as robustness in the

form of protection against loss of credential data.

10.4.3 Limitations

Perhaps the most obvious limitation of PassCard is that anyone with access

to a Windows user account can access the PassCards and use the stored cre-

dentials. This is a fundamental limitation of CardSpace which, by default,

does not impose any additional password protection on the use of the selec-

tor (see section 4.3.14.1). To address this issue, we observe that CardSpace

allows individual InfoCards to be PIN-protected, which should be consid-

ered for PassCards stored on machines accessible to other users. In addition,

293

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

it may be possible to cause CardSpace to run under User Account Control10

(UAC), so that running CardSpace causes Windows to prompt the user for

an administrator password. This possibility remains an issue for future re-

search.

The browser plug-in must scan every browser-rendered web page to de-

tect whether it supports username-password authentication, and this may

affect system performance. However, informal tests on the PassCard proto-

type suggest that this is not a serious issue. In addition, the browser exten-

sion can be configured so that it only operates with certain websites, thereby

reducing any performance impact.

If the web browser is compromised, then an adversary could steal the

RSTR (and thus the embedded username-password pair). Nonetheless, as

stated in section 5.6, the same risks apply when manually entering creden-

tials (e.g. username and password) into a browser.

Like OpenID (see section 4.5), we use URL query parameters in the Pass-

Card prototype to exchange data between the HS site and the target HTTPS

site. This could give rise to issues arising from URL size limitations (see

section 2.5.3.8). However, modern web browsers can support URLs of con-

siderable length. For example, as stated in section 2.5.3.8, Internet Explorer

supports a maximum URL length of 2083 characters, which is much larger

than the length of a typical PassCard-generated URL (approximately 300

characters), as informal prototype testing suggests. Therefore, URL size lim-

itations are not likely to be a major usability barrier.

Finally, some older browsers may not be able to run PassCard, as it was

built using JavaScript. However, as stated in section 6.4.4, most modern

browsers support JavaScript, and so this seems unlikely to be a major us-

ability obstacle.

10http://technet.microsoft.com/en-us/library/cc709691(WS.10).aspx#BKMK_
S1

294

10.5 RELATED WORK

10.5 Related Work

Password managers, which store passwords in a (secure) location either on

the user PC or remotely, are widely available. They typically store pass-

words in encrypted form and, unlike PassCard, require users to use a sin-

gle master password to access the password store. Some are also capa-

ble of masking passwords, and others, much like PassCard, provide au-

tomatic password entry. Examples of password managers include open-

source schemes such as Password Safe11, KeePass12, Qubliette13, Password

Gorilla14, and PINs15 as well as commercial products such as RoboForm16,

Any Password17, and Turbopasswords18.

Perhaps the most distinctive feature of PassCard is its dependence on

CardSpace, whereas most of the other password managers are independent

applications. PassCard can therefore benefit from the CardSpace security

features, which may give users greater confidence in its use. Most impor-

tantly, it is hoped that its introduction, with immediate practical benefits to

the end user, will help encourage the adoption of more sophisticated iden-

tity management schemes like CardSpace. Such schemes offer the potential

for a step forward in the practice of user authentication and authorisation,

with potential benefits for all legitimate parties operating via the Internet.

Indeed, without simple paths to adoption for schemes like CardSpace, there

is a danger that it and all the other identity initiatives will fail.

11http://passwordsafe.sourceforge.net/
12http://KeePass.info/
13http://tranglos.com/free/oubliette.html
14http://fpx.de/fp/Software/Gorilla/
15http://mirekw.com/winfreeware/pins.html
16http://roboform.com/
17http://anypassword.com/
18http://chapura.com/passwordmanager.php

295

10. USING AN INFORMATION CARD SYSTEM AS A PASSWORD MANAGER

10.6 Conclusions and Future Work

In this chapter we have proposed a novel scheme that enables CardSpace

(or indeed a wide variety of Information Card systems) to be used as a

password manager. Users store their usernames and passwords in personal

cards, and use such cards to transparently sign-on to corresponding web-

sites. PassCard is based on a browser extension, and requires no changes

to login servers; in particular, it does not require websites to support an In-

formation Card-based system, such as CardSpace or Higgins. Neither does

PassCard require any changes to the current CardSpace identity selector, or

to default browser security settings.

PassCard uses the identity selector interface to seamlessly authenticate

users to websites. It extends the use of personal cards to allow for trans-

parent password management. Such an approach could help to extend the

applicability of Information Card systems, such as CardSpace.

Planned future work includes building a scheme that enables the use of

PassCard in smart phones, such as Apple’s iPhone, Samsung’s Galaxy, or

HTC desire. A further possible topic for future work would be to investi-

gate the possibility of building a portable version of PassCard to support

users who do not have installation privileges or are forced to use untrusted

machines, e.g. when travelling.

296

Chapter 11

Using an Information Card System as a

Password-based SSO System

11.1 Introduction

In this chapter we propose SingleSigner, a simple scheme that allows an In-

formation Card system (such as CardSpace and Higgins) to be used as a

password-based SSO system. It is intended to improve the usability and se-

curity of password use as well as potentially encouraging adoption of Infor-

mation Card systems. We describe three alternative approaches to imple-

menting the SingleSigner functionality, all of which take advantage of the

identity selector interface to offer SSO functionality. The goal is to develop

a visual approach to SSO that is transparent to both the identity selectors

and the RPs. The techniques we discuss work with existing (unmodified)

web servers, and, in particular, RPs are not required to support CardSpace

or Higgins.

SingleSigner is an extension to the PassCard scheme presented in the

previous chapter. The main novel feature of SingleSigner is the storage and

subsequent use of multiple sets of credentials in a single InfoCard, allowing

the provision of SSO functionality. An example use-case involves a user

storing the login credentials of their favourite (or most frequently-visited)

websites, e.g. a university portal, G-mail/Hotmail, Facebook, YouTube and

Twitter, in a single personal card; selection of such a card automatically logs-

in the user to all the relevant sites.

297

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

Like PassCard, SingleSigner operates with a variety of Information Card

systems, including CardSpace and Higgins (see sections 4.3 and 4.4, respec-

tively). However, for simplicity of presentation, in this chapter we only

describe its operation with CardSpace.

The remainder of the chapter is organised as follows. Section 11.2 de-

scribes SingleSigner. In section 11.3 we present three prototype implemen-

tations using different approaches to implementing the SSO functionality,

and in section 11.4 we compare them. Section 11.5 considers potential fea-

tures and issues as well as possible enhancements. Section 11.6 highlights

possible areas for related work, and, finally, section 11.7 concludes the chap-

ter.

11.2 SingleSigner

We now describe SingleSigner. The idea behind SingleSigner is to store a set

of user credentials in a special personal card, which, if selected, will trans-

parently and automatically sign-on the user to a pre-defined set of websites.

The parties involved are a set of RPs, a CardSpace-enabled UA (e.g. a web

browser such as Internet Explorer), and a browser extension installed on the

user platform implementing the protocol described in section 11.2.2.

Whenever a user visits a website requiring username-password authen-

tication, the SingleSigner functionality can be invoked by clicking on a spe-

cial icon added to the site’s web page by SingleSigner. This causes the se-

lector to run, at which point the user must select a special personal card

containing the credentials for the visited site (encoded in a SingleSigner-

specific format). The user will be automatically logged-on to the visited site

and also to all the other sites whose credentials are stored in the selected

card.

The version of the system described in section 11.2.2 and the prototypes

298

11.2 SINGLESIGNER

described in section 11.3 only work if the visited site does not use HTTPS1.

However, this limitation can be removed by following the approach em-

ployed in PassCard as described in section 10.2.2.2, i.e. via the introduction

of an HS (see sections 10.2 and 10.3.3.2).

11.2.1 Prerequisites

The scheme has the following operational requirements.

• Either prior to or during use of the scheme, the user must create a

special personal card, referred to as an SSOcard, containing the (URL,

username, password) triples for the websites supported by this card.

These triples must be stored using a specific encoding in pre-defined

card fields2. For ease of identification, the user can give the SSOcard a

meaningful name, e.g. some representation of the corresponding web-

sites. The user can also upload an image for the SSOcard, e.g. contain-

ing the logos of the sites whose credentials it contains.

• A special browser extension must be installed on the user platform.

This must be able to implement the protocol described in section 11.2.2,

including reading and modifying browser-rendered web pages, read-

ing RSTR messages, and adding a special icon to RP web pages to en-

able the user to invoke the scheme.

As in PassCard (see sections 10.2.3.2 and 10.3.3.4), the browser exten-

sion, as long as it detects username-password prompts on the RP login

page, will always add the special icon; this is regardless of whether or

not the RP already supports CardSpace. Informal tests on the proto-

type implementations suggest that this will not disrupt normal opera-

tion of CardSpace.

1Note that only the visited site must not use HTTPS; other sites included on the same card can
use either HTTPS or HTTP (see section 11.5.2).

2The credential sets could alternatively be stored in a single card field, separated using a special
character. However, this could make using the scheme more difficult.

299

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

11.2.2 Operation

SingleSigner operates as described below; a summary of the operation of

the scheme is shown in Fig. 11.1. Steps 1, 2, 3a, 3c and 4 of the SingleSigner

scheme are the same as steps 1, 2, 3a, 3d and 4, respectively, of the (HTTP-

based) PassCard scheme given in sections 10.2.2 and 10.2.2.1, and hence are

not described again here.

3. Browser extension→ UA: Pre-processing. The browser extension per-

forms the following processes using the login page provided by the

RP.

b) It adds CardSpace-enabling tags to the login page, including em-

bedding a security policy. The embedded policy must request all

the card fields used by the implementation of SingleSigner, where

the fields must be marked as optional. If all fields were marked

as mandatory then only those cards containing data in every SSO-

card field would be highlighted by the selector.

d) It causes a special icon to appear above the submit button, in such

a way that clicking it invokes the selector.

5. User→ Selector: Card Selection. The user selects and submits an SSO-

card. Alternatively, the user could create and choose a new SSOcard.

The selector creates and sends an RST to the SIIP, which responds with

an RSTR.

6. Selector→ UA: RSTR. The selector passes the RSTR to the UA.

7. Browser Extension [Intercepts] RSTR. The browser extension performs

the following tasks.

a) It intercepts and parses the RSTR.

300

11.2 SINGLESIGNER

b) It extracts the URL for the visited site together with the username

and password associated with this URL from one of the specified

fields.

c) It auto-populates and auto-submits the login form using the ex-

tracted username and password.

d) The website server verifies the credentials it receives, and, if satis-

fied, grants access.

8. Browser Extension [Performs] SSO. The browser extension repeats

steps 7b–7d for every other website included in the user-selected SSO-

card, invoking a new browser window for each site3. Note that the

detailed operation of this step will vary depending on the method be-

ing used (see below).

There are a variety of ways in which the user credentials could be sent to a

website in step 8. We next discuss three possible approaches to achieving

this, namely: URL query parameters, cookies, and hidden form variables

(see sections 2.5.3.7, 2.3.4.1, and 2.5.3.5, respectively). Note that the choice

of approach only affects step 8. The three approaches are compared in sec-

tion 11.4.

11.2.2.1 URL Query Parameters

For each site listed in the SSOcard, the browser extension creates a URL

containing the site’s address and the user credentials for this site, as taken

from the SSOcard. The browser extension then invokes a browser window

for each site, redirecting each window to the corresponding site URL. Fi-

nally, the browser extension reads the credentials from the URL, and auto-

populates and submits the login form.
3A new browser window is invoked in order to maintain the established authenticated session

with each of the websites. Following a successful authentication process, most websites typically
create a short-lived cookie (a session cookie — see section 2.3.4.1) which will be deleted if the browser
window is closed or if a certain period of inactivity elapses.

301

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

11.2.2.2 Cookies

From a user perspective this approach is similar to the URL query param-

eters approach, except that the user must append a flag word to each cre-

dential triple when the SSOcard is created; this word must be manually

removed once the SSOcard has been used.

The browser extension first examines the RSTR to detect if the flag word

is present at the end of each set of credentials; if so, it runs in exactly the

same way as the URL query parameters protocol, except that, before the

browser extension automatically populates and submits the login form, it

sets a persistent cookie (see section 2.3.4.1) in order to store the username

and password values for future logins. A cookie is thus created for each

website whose credentials are stored in the SSOcard. If the flag word is not

present, then the extension invokes a browser window for each site whose

credentials are included in the SSOcard. It then recovers the user credentials

from the appropriate cookie4, and uses them to auto-populate the site login

form, which it auto-submits.

Note that, unlike the other approaches, here the user credentials are not

retrieved from a hidden form variable or from a URL, thereby avoiding the

display of username and password values in the browser address bar. This

provides protection against shoulder-surfing attacks.

11.2.2.3 Hidden Form Variables

In this approach the browser extension creates a separate invisible HTML

form (containing hidden variables) for each site listed in the SSOcard. Each

form is auto-filled using the user credentials and then auto-submitted. The

extension opens a new browser window for each site contained in the SSO-

card.

4If the cookie expires or is removed, the browser extension will fail to find an appropriate cookie
and will then prompt the user to add the flag word to the end of each set of credentials in the relevant
SSOcard.

302

11.3 IMPLEMENTATION

To make this approach work, certain RP-specific information, notably

the URL of the login server and the names given to the username and pass-

word fields, must be available to the browser extension independently of

the SSOcard. This means that every time a new SSOcard is created, or an

existing SSOcard is modified to include a new credential set, the browser

extension must be modified to incorporate this information.

11.3 Implementation

We now describe three proof-of-concept prototypes implementing the Sin-

gleSigner scheme presented in section 11.2.2, one for each of the three de-

scribed approaches to realising step 8. As is the case with the PassCard pro-

totype (see section 10.3), the prototypes operate with both the CardSpace

and the Higgins identity selectors without any modification.

11.3.1 Shared Properties

Each prototype is coded as a browser plug-in in JavaScript, executed using

a C#-driven BHO (see section 6.4.2). In each case, SingleSigner can readily

be enabled or disabled using the add-on manager in the Internet Explorer

Tools menu.

11.3.1.1 SSOcard Format

The prototype permits credential sets to be stored in any of the 14 personal

card fields with the exception of the birthday and gender fields (which cannot

contain arbitrary strings). Credential sets must be stored in the format:

<URL> <username> <password>

where the fields are separated by a single space character.

303

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

Selector + SIIP Browser + Plug-in RP-1 RP-2 RP-n

(1) HTTP request.

(2) HTTP response.

(3) Plug-in: pre-process RP page, includ-
ing scanning for username-password
submission form, and if found:

– add CardSpace support; and
– embed a function to intercept

RSTR.

(4) User: click SingleSigner logo and the
selector pops up.

(5) User: select an SSOcard.

(6.1) Selector
 SIIP: exchange of RST and RSTR.

(6.2) Selector: pass RSTR.

(7.1) Plug-in: intercept RSTR, and extract
username and password values.

(7.2) Plug-in: auto-populate and auto-
submit password form.

(7.3) Plug-in: auto-populate and auto-
submit password form.

(7.n) Plug-in: auto-populate and auto-
submit password form.

(8.1) Grant or deny access.

(8.2) Grant or deny access.

(8.n) Grant or deny access.

Figure 11.1: SingleSigner Operation

11.3.1.2 Operation

In step 3 of the protocol (see section 11.2.2) the plug-in processes the RP web

page in the following way. The implementation of steps 3.1, 3.3, and 7.1 of

304

11.3 IMPLEMENTATION

the SingleSigner prototype is precisely the same as steps 3a, 3.d, and 7.a,

respectively, of the PassCard prototype given in section 10.3.2, and hence

are not described again here.

3.2 It adds an HTML object tag that allows the user to invoke the selec-

tor. Within the object tag, it sets the param tags to indicate that the

RP security policy requires SSOcards to contain at least one (compul-

sory) field, namely the first name field, and to also include 11 (optional)

fields, namely last name, email address, street, city, state, postal code, coun-

try/region, home phone, other phone, mobile phone, and web page.

From a user side, marking at least one field as mandatory means less

computation (as explained below) and, ultimately, a faster authentica-

tion process, hence helping user acceptability. In the SSOcard selection

step, if the SSOcard only contains one credential set in a mandatory

field then the user only needs to choose the SSOcard and click the send

button. If the field was optional, then the user would first need to tick

the optional field before clicking the send button. From an operational

perspective, an RP security policy must contain at least one mandatory

claim; of course this claim could be the PPID claim (see section 4.3.11).

3.4 It inserts the SingleSigner logo (see Fig. 11.2) in the login page, in such

a way that it appears just before the submit button. The logo is asso-

ciated with an on-click event, so that, if clicked, the selector is invoked

(after calling the added function). As in PassCard, to cater for users

with sight difficulties or web browsers configured not to display im-

ages, a text field can replace the SingleSigner logo.

In step 7, the plug-in performs the following steps.

7.2 It parses the intercepted RSTR message and extracts the value of the

first name field as well as the values of any other optional fields present,

thus learning the set of websites supported by the SSOcard.

305

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

Figure 11.2: SingleSigner Logo

7.3 It auto-fills the username and password fields and auto-submits the

login form of the currently visited website using the JavaScript click()

method. It detects the correct username-password values for the vis-

ited site by comparing its domain name with the URLs contained in

the specified fields of the RSTR.

11.3.2 The URL Query Parameters Prototype

11.3.2.1 Operation

Steps 3.1–7.3 are precisely the same as those described in section 11.3.1.2.

7.4 For each other site included in the SSOcard:

(a) the plug-in invokes a new browser window using the JavaScript

built-in method open.window(), that retrieves the site’s login-page

(using the URL provided in the SSOcard). Note that it sends the

username-password values embedded in the URL (i.e. URL query

parameters) as part of this HTTP request; and

(b) using the login-page returned in the previous step, the plug-in:

(i) parses the URL query parameters to obtain the values of the

username and password;

(ii) locates the username, password, and submit fields;

306

11.3 IMPLEMENTATION

(iii) auto-populates the username and password fields with the

username and password values; and

(iv) auto-submits the form using the JavaScript click method.

11.3.2.2 Protecting Credentials

This approach involves embedding the username and password in the URL.

Thus, if they are embedded in clear text, they will be vulnerable to shoulder-

surfing attacks. To address this potential problem, in step 7.4a the prototype

encrypts these values using AES in CBC mode (see section 2.4.2.1), and de-

crypts them in step 7.4b.

The AES key used for username-password encryption is stored in the

plug-in. This would be a security issue if the same key was used by every

copy of the plug-in, but a unique random key can be generated at the time

the plug-in is installed. The presence of the key on the user platform does

not significantly increase the risks to credential secrecy, since the credentials

must in any event be stored on the user platform.

Embedding the credential values in a URL could also cause problems

because of URL size limitations (see section 2.5.3.8); however, this is not

likely to be a major problem here since, much like PassCard, the amount of

data involved is relatively small (see section 10.4.3). The use of encryption

also results in a slight performance delay.

11.3.3 The Cookies Prototype

11.3.3.1 SSOcard Format

In this case the format of the SSOcard is identical to that described in sec-

tion 11.3.1.1, except that, at the time of card creation, a flag word must be

appended to each credential triple (see also section 11.2.2.2). The prototype

expects to find a string of the form cookie9, where 9 indicates the lifetime (in

days) of the persistent cookie created by the plug-in. After first use, this flag

307

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

word must be removed by the user (and added back if the credential cookie

expires).

11.3.3.2 Operation

Steps 3.1–7.3 are precisely the same as those described in section 11.3.1.2.

This is followed by step 7.4, which is precisely as in section 11.3.2.1, except

that the following step is added between steps 7.4.b.iii and 7.4.b.iv:

• the plug-in (as described in section 11.2.2.2) first examines the RSTR

for the flag word; if present it creates a persistent cookie containing

the username and password. If it is not present then it recovers the

username and password from the cookie.

11.3.3.3 Protecting Credentials

This approach involves storing the username and password in a cookie.

Thus, if they are stored in clear text, they will be readable by anyone with

temporary access to the user platform. As in section 11.3.2.2, this threat can

be mitigated by encrypting the data in the cookie using a key known only

to the browser plug-in.

11.3.4 The Hidden Form Fields Prototype

11.3.4.1 Initialisation

In this approach, the user must make certain modifications to the plug-in

source code. The user must first obtain the URL of the login server for each

website included in an SSOcard; this can be found by viewing the HTML

source of the login web page and retrieving the action URL of the login

form. The user must also obtain the names given to the username and pass-

word input fields5, which can also be found from the HTML source of the

login web page. The user must then insert the URL and the names of the
5This is important since the site’s login server will use these names to retrieve username-

password values from the HTTP POST array.

308

11.4 COMPARISON

username and password fields into the plug-in source code, in the specified

way.

11.3.4.2 Operation

Steps 3.1–7.3 are precisely the same as those described in section 11.3.1.2.

7.4 For each other site included in the SSOcard, it:

(a) creates an invisible HTML form containing at least two hidden

input variables, and then auto-fills each variable with the corre-

sponding username or password;

(b) creates a new browser window using open.window(), a JavaScript

built-in method; and

(c) auto-submits the invisible HTML form.

11.3.4.3 Operational Issues

Prototype testing reveals that some website login servers impose restrictions

on externally posted/submitted forms for security reasons. That is, if a user

is currently visiting site a.com and the browser plug-in submits/posts a

login form to site b.com, then access to a protected resource in domain b.

com will not be granted even if the user credentials are correct.

11.4 Comparison

We next compare the three approaches in terms of usability and perfor-

mance.

• Usability. The URL query parameters approach only requires entry of

(username, password, URL) triples into SSOcards, and hence is clearly

the most usable. The other two methods either require manual modi-

fications to the plug-in source code (likely to be beyond most users) or

309

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

the additional overhead of adding flag words to SSOcard entries (and

subsequently removing them).

• Performance. The hidden forms approach has the advantage that,

once the browser windows are opened, no further processing is re-

quired. Less processing is required for the URL query parameters ap-

proach than the cookies approach.

11.5 Discussions

We now consider certain properties of SingleSigner.

11.5.1 Features

SingleSigner shares the security and usability properties of PassCard, as de-

scribed in sections 10.4.1 and 10.4.2.

In addition, SingleSigner possesses the property that the compromise of

any one password does not threaten the confidentiality of other passwords,

or compromise user authentication at other sites (as would be the case, for

example, if a password for an OpenID/Liberty IdP was compromised). That

is, the only single point of failure for SingleSigner is the user platform itself.

Failing to access a site whose credentials are included in an SSOcard will

not impede access to other sites covered by the same card.

Like PassCard (see section 10.4.2), SingleSigner is flexible, since users can

choose whether or not to use it simply by electing to click the SingleSigner

logo (or not).

11.5.2 Limitations

SingleSigner shares the PassCard limitations, as described in section 10.4.3.

As noted in section 11.2, SingleSigner as described in this chapter does not

work as intended if the website at which the initial authentication takes

place uses HTTPS. This is because, if such a website has a certificate, then

310

11.5 DISCUSSIONS

the selector will, by default, encrypt the RSTR using the public key of the re-

questing site. The plug-in does not have access to the site’s private key, and

hence will be unable to decrypt the token to obtain the username-password

values. However, if the site at which the initial authentication takes place

uses HTTP, then SingleSigner will work as intended even if all other sites

included on the same SSOcard use HTTPS. As stated in section 11.2, this

shortcoming can be avoided by adopting the approach described in sec-

tion 10.2.2.2. That is, if the target site uses HTTPS, the user browser can

be redirected to an arbitrary site using HTTP (the HS — see sections 10.2.3.2

and 10.3.3.4). The solution for SingleSigner works precisely as for PassCard.

Use of SSO systems in general, including SingleSigner, could be a threat

to user privacy. As stated in section 3.6, user interactions on the web could

be linked to build a unique user profile. For example, the HTTP referrer

field and cookies could be employed to help build such a profile.

11.5.3 Enhancements

The fact that SingleSigner automatically creates a browser window for each

site included in an SSOcard (as described in section 11.2.2.1) could be some-

what intrusive for the user, although whether or not this is a problem in

practice depends partly on the number of sets of credentials included in a

single SSOcard. We therefore propose an alternative method of operation.

This alternative method operates as in step 8, except that, after invoking a

new browser window for each site in the SSOcard, the browser extension

stores (e.g. in a cookie) the URL of the page to which the user is granted ac-

cess following a successful authentication. The browser extension then at-

tempts to close (but not sign-out) each page it has invoked; the user-visited

page will, of course, remain open since it was not invoked by the extension.

When a user later visits a website included in the submitted SSOcard, the

browser extension will auto-redirect the user to the logged-in page that the

311

11. USING AN INFORMATION CARD SYSTEM AS A PASSWORD-BASED SSO
SYSTEM

extension stored earlier6 and then terminate. As long as the main browser

session is still live, the user logged-in session at each site included in the

SSOcard should still be valid; however, the session may be invalid if the

main browser session is closed or if a certain period of inactivity, as deter-

mined by the site server, has elapsed. This method has been successfully

tested with the URL query parameters approach.

11.6 Related Work

A very wide range of Internet SSO schemes7 have been proposed [78, 195].

We observe that, using the taxonomy of [195], SingleSigner is a local pseudo-

SSO scheme in that the credentials are stored locally and the RPs are not

aware of the operation of the scheme. Other examples of such schemes

include Novell’s SecureLogin8, Passlogix V-GO9 and Protocom’s SecureLo-

gin10. Automatic form-fillers, e.g. the automatic form completion functions

of popular web browsers such as Internet Explorer and Firefox, can also be

regarded as local pseudo-SSO schemes [195].

Like PassCard, perhaps the most distinctive feature of SingleSigner is

its dependence on CardSpace, whereas other SSO systems are independent

applications. SingleSigner can thus benefit from the CardSpace security fea-

tures, which may give users greater confidence in its use.

6If such a page was not stored, then some website servers would prompt the user to re-
authenticate.

7Examples include Passport, OpenID, Liberty Alliance (Kantara), Shibboleth, Facebook Connect
(see sections 4.2, 4.5, 4.7, 4.8, and 4.6.4, respectively), Athens, Kerberos, AccessMatrix USO, Cen-
tral Authentication Service (CAS), COMA, CoSign, Distributed Access Control System (DACS), En-
terprise Sign On Engine, Evidian Enterprise SSO, FreeIPA, Global Login System, Imprivata One-
Sign, JBoss SSO, Open Source Single Sign On Server (JOSSO), myOneLogin, OneLogin, OpenAM,
OpenASelect, Passlogix, Secure Network Communications, Smart card, Tiger OneConnect, and
Ubuntu Single Sign On (see http://en.wikipedia.org/wiki/List_of_single_sign-on_
implementations).

8http://www.novell.com/products/securelogin/
9http://www.passlogix.com/sso

10http://www.protocom.cc

312

11.7 CONCLUSIONS AND FUTURE WORK

11.7 Conclusions and Future Work

In this chapter we have proposed SingleSigner, a simple scheme that allows

an Information Card system (such as CardSpace and Higgins) to be used

as a password-based single sign on system. Three related approaches to

achieving the single sign on functionality using CardSpace/Higgins were

discussed. In each case users are able to store their credentials for a set of

websites in a personal card, and use it to seamlessly sign-on to the rele-

vant sites. The approaches do not require any changes to login servers or to

identity selectors and, in particular, they do not require websites to support

CardSpace or Higgins.

The schemes use the identity selector interface to seamlessly sign-on

users to password-protected websites. It extends the use of personal cards

to allow for such functionality, thereby both improving the usability and se-

curity of passwords as well as encouraging CardSpace/Higgins adoption.

Planned future work includes building a portable version of the Single-

Signer scheme to help roaming users who might not have installation priv-

ileges or might not be able to use their personal machines, e.g. in Internet

cafes, airport lounges, etc. In addition, we plan to investigate the possibility

of extending SingleSigner to support single sign off.

313

Chapter 12

Enhancing User Authentication in

Information Card Systems

12.1 Introduction

This chapter describes a scheme designed to address a potential security

limitation in Information Card-based identity management systems. It op-

erates with a variety of such systems, including CardSpace and Higgins

(see sections 4.3 and 4.4, respectively). For simplicity of presentation, in this

chapter we describe its operation with CardSpace.

As discussed in section 4.3.14.1, one major limitation of CardSpace (and

many other Information Card systems) is that anyone with access to a user

account on the user platform can also access and use the InfoCards. That

is, by default, CardSpace does not provide access protection for the identity

selector. To address this issue, CardSpace allows individual InfoCards to

be PIN-protected. The entire user account can also be password-protected.

Whilst the use of passwords and PINs for InfoCard protection can help, it

does not completely solve the problem, not least because one of the funda-

mental design goals of CardSpace is to reduce reliance on password authen-

tication.

We address this limitation through the introduction of a second authenti-

cation factor to be used in conjunction with CardSpace authentication. This

additional means of user authentication involves an OTP supplied to the

user by a standard mobile device capable of receiving SMS messages. Such

315

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

devices are ubiquitous, making the system almost universally applicable.

The system also provides two-factor authentication (see section 2.4.3.2), the

first factor being possession of the PC containing the InfoCard and the sec-

ond factor being possession of the appropriate mobile phone. Two factor

authentication is typically considered a strong form of authentication [154].

In the scheme we propose, during the process of user authentication on

a PC using an Information Card system, a random and short-lived OTP

is sent to the user’s mobile device; this must then be entered into the PC

by the user when prompted. The scheme does not require any changes to

login servers, identity selectors, or to the mobile device itself. Note that this

scheme, if correctly implemented, would enhance the security of PassCard

and SingleSigner, described in chapters 10 and 11, respectively.

The wide use of Windows, recent versions of which incorporate Card-

Space, means that any enhancement to CardSpace security is likely to be of

significance for large numbers of identity management users and RPs. In

addition, the use of a mobile phone to enhance CardSpace-based authen-

tication is attractive since users are neither required to remember any new

passwords nor obliged to use any additional hardware. Furthermore, many

RPs may not accept the burden of supporting a second authentication factor

(e.g. SMS-based authentication), unless there is a significant financial incen-

tive or if forced to do so for legal or regulatory reasons. As a result, a client-

side technique for supporting SMS authentication for CardSpace-enabled

RPs could be practically useful. Such a technique avoids any impact on the

performance of the server since the additional overhead is handled by the

client.

The remainder of the chapter is organised as follows. Section 12.2 de-

scribes the scheme. In section 12.3 we discuss implementation issues, and

in section 12.4 we provide a security analysis. In section 12.5 we present a

prototype realisation, and section 12.6 highlights possible areas for related

work. Finally, section 12.7 concludes the chapter. Much of the material in

316

12.2 THE SCHEME

this chapter has been published [13].

12.2 The Scheme

We next describe the novel scheme, covering relevant operational aspects.

12.2.1 System Entities

The entities involved in the scheme are:

• a CardSpace-enabled RP;

• a CardSpace-enabled UA (e.g. a web browser capable of invoking the

identity selector, such as Internet Explorer);

• software installed on the user platform (referred to throughout as the

adaptor) implementing the scheme described in section 12.2.2 below;

and

• a handheld device capable of receiving SMS messages (e.g. a mobile

phone).

The SMS allows mobile phones and other cellular network devices to

exchange short messages of at most 160 or 70 characters, depending on

whether a Latin or non-Latin alphabet is used [106, 156]. SMS is supported

by all GSM and 3G handsets, and it is very widely used.

The adaptor could be implemented as a browser extension, capable of

scanning and modifying browser-rendered pages, and intercepting RSTR

messages. In addition, it must be able to generate and send a random, short-

lived OTP to the user’s mobile phone, and provide a means for the user to

enter the OTP. Prior to use of the protocol, the browser extension must be

installed on the client PC and provided with the phone number of the user’s

mobile phone. Implementing the scheme as a browser extension means that

the RP cannot employ the optional STS (see section 5.3.3).

317

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

12.2.2 Operation

The system operates as follows; a summary of the protocol is shown in

Figs. 12.1 and 12.2. Steps 1, 2, 4–7, and 10 are the same as steps 1, 2, 3–6,

and 8, respectively, of the CardSpace personal card protocol given in sec-

tion 4.3.9.1.

3. Adaptor → UA. The adaptor scans the login page to detect whether

the RP website supports CardSpace. If so, it proceeds; otherwise it

terminates. On proceeding, the adapter processes the RP login page,

including embedding a function to intercept the SIIP-issued RSTR.

8. Unlike in the standard case, the RSTR does not reach the RP; instead

the adaptor performs the following steps.

a) Selector→ Adaptor: RSTR. The adaptor intercepts the RSTR and

temporarily stores it.

b) Adaptor: generates OTP. The adaptor computes (and temporarily

stores) a random, short-lived OTP.

c) Adaptor → Mobile Phone: OTP. The adaptor sends the OTP to

the user’s mobile phone in an SMS message, sent via an HTTPS-

protected connection to the SMS centre or SMS gateway of a wire-

less carrier or SMS service provider. This method is adopted be-

cause it does not require a special application to be installed on

the user’s mobile phone, which may not be possible in non-smart

phones. In addition such an approach has a better transmission

rate than other methods such as Bluetooth or infrared (see sec-

tion 12.3.2.1).

9. User
 UA → RP. The adaptor prompts the user to enter the OTP,

which the user reads from the phone display1. The adaptor verifies
1Note that if the mobile phone and/or the SIM card are PIN-protected, then the user must first

enter the correct PIN(s); this constitutes a third authentication factor.

318

12.2 THE SCHEME

that the entered OTP matches the one it just generated. The OTP must

be entered within a defined interval, e.g. of 10 minutes, after its gen-

eration, or else the adaptor will delete the RSTR and provide an error

message to the user. If all the checks succeed, the protocol continues

and the adaptor submits the RSTR to the RP.

(3) A→ UA: pre-process RP page, where A is the adapter, and UA is the user agent.
(8) S→ [A: generate OTP]→M, where S is the selector and M is the mobile device.

More specifically:
(8.1) S→ A: RSTR;
(8.2) A: generate OTP; and
(8.3) A→M: OTP.

(9) U→ UA: OTP, where U is the user.

Figure 12.1: Summary of the Protocol

Mobile Phone CardSpace-enabled UA + Plug-in CardSpace RP

(1) HTTP request

(2) HTTP response (including RP policy)

(3) Plug-in: pre-process and prepare to intercept RSTR

(4) User: invoke the selector and select an InfoCard

(5) Selector
 SIIP: exchange of RST and RSTR

(6) Plug-in: intercept RSTR, generate and send OTP (e.g. via SMS)

(7) User: unlock phone (if necessary)

(8) User: retrieve OTP

(9) Plug-in: prompt the user to enter the OTP,
and, if correct, proceed and submit the RSTR

(10) Grant or deny access

Figure 12.2: Protocol Exchanges

319

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

12.3 Discussion

We now consider implementation issues, possible variants and potential ad-

vantages of the scheme.

12.3.1 Implementation Issues

The length of the OTP must be carefully chosen to achieve an acceptable

balance between security and usability. To maximise usability, we propose

the use of a 4-character OTP made up of lower case letters and digits (ex-

cluding 0, i, j and o). This gives a total of 324 possible OTPs (i.e. just over

a million), which is roughly 100 times the number of possible 4-digit PINs

commonly used for bank cards.

12.3.2 Variants of the Scheme

12.3.2.1 OTP Transmission

In the scheme described above, the OTP is sent from the client to the mo-

bile device in an SMS message. Whilst convenient, this has cost implications

and may also involve a delay of a few seconds. Possible alternatives include

sending it via Bluetooth, infrared or a USB/serial cable. Such approaches

have the advantage of avoiding the SMS messaging costs but require both

devices to support the relevant technologies. The main disadvantage of

such approaches is the need to install a special application on the phone;

this will rule out non-smart phones, and significantly increase the complex-

ity of setting up the scheme.

A further alternative would be to use a messaging service other than

SMS for the OTP transfer (e.g. instant messaging or email); like the use of the

SMS service, such an approach would avoid the need to install additional

applications on the phone, provided that the phone supports the relevant

service.

320

12.3 DISCUSSION

12.3.2.2 OTP Entry

In the scheme as described above, the user manually enters the OTP, which

is potentially inconvenient and time-consuming (although the use of a 4-

digit OTP, as described in section 12.3.1, should minimise inconvenience).

An alternative approach would be to send the OTP back automatically, e.g.

via an SMS message sent to the SMS gateway, from where the adaptor could

retrieve it. Whilst convenient, such a process could be costly, since use of the

SMS gateway would incur additional messaging costs.

12.3.2.3 SAML Extension

As part of step 9 of section 12.2.2 the adaptor could create a new SAML

token containing the SIIP-issued RSTR and an additional SAML field indi-

cating that the user has been authenticated using an SMS-transmitted OTP.

Of course, the RP would need to be modified to be able to process such

a token, although this is likely to be straightforward. If the RP trusts that

the correct adaptor is running unmodified on the user platform, then this

authentication statement could potentially give the RP added assurance of

user authenticity. However, this is a significant trust assumption (see sec-

tion 5.5).

12.3.3 Advantages

Like other OTP-based authentication systems, the scheme reduces exposure

to shoulder-surfing attacks and also helps to thwart key loggers.

The scheme does not require users to remember new passwords for each

new account; this could reduce the risks arising from password re-use, writ-

ing passwords down in insecure ways, and use of easily-guessable pass-

words.

In addition to strengthening user authentication, the scheme could also

serve as an intrusion detector. If the user receives an unexpected OTP, then

321

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

it could be deduced that there is a security breach.

Finally, the scheme operates transparently to external parties, and hence

does not require any changes to RPs or identity selectors.

12.4 Security Analysis

12.4.1 Threats to the Mobile Device

If a mobile phone or SIM (Subscriber Identity Module) is lost, stolen or

borrowed, then it might be possible to access an OTP from the SMS in-

box. However, this will be of no value without access to the correspond-

ing PC, and the OTP will expire a short time after generation. Moreover, a

lost phone or SIM is likely to be reported by its owner, causing the SIM to

be deactivated, which means that the usefulness of such a stolen device for

impersonating a user will be very limited.

12.4.2 Threats to the Supporting Infrastructure

An attacker with temporary access to the PC, but without the mobile phone,

could attempt to intercept the OTP whilst it is being transmitted from the

PC to the phone. However, the communication link between the SMS gate-

way and the PC is protected using HTTPS, and the connection between the

visited mobile network and the mobile phone is protected by the air inter-

face encryption mechanism of the mobile network [106, 156]. This leaves

the SMS gateway and the SMS network itself as the only sources of such a

threat, and routinely compromising either the gateway or the SMS network

for such a purpose seems unlikely to pose a significant threat in practice.

12.4.3 Threats to the PC

12.4.3.1 Exhausting the User’s SMS Credit

An adversary who has access to the user’s PC but does not possess the

user’s mobile phone could cause the system to repeatedly send SMS mes-

322

12.4 SECURITY ANALYSIS

sages, resulting in exhaustion of the user’s credit at the SMS gateway. This

risk can be mitigated in the following ways.

1. If a user receives an unexpected SMS containing an OTP, then the user

should immediately change their password at the SMS gateway. This

will deny the adversary the ability to send any further SMS messages

from the user’s PC.

2. The browser extension could implement a simple, client-based, lock-

out mechanism using cookies. That is, if the correct OTP is not entered

within three attempts, the browser extension could write a persistent

cookie (see section 2.3.4.1) to the client PC which will cause the current

attempt to log-in to the RP to be terminated. The browser extension

would then generate a special lock-out OTP and send it to the user’s

mobile phone. The next time that the user attempts to log-in to the

same RP, the browser extension (before invoking the selector) would

prompt the user to enter the lock-out OTP, and would only proceed

if the correct OTP is entered. Although this solution may help to dis-

courage an attacker, it is not foolproof, since cookies could be manually

deleted on the user platform, and an attacker could arrange for OTP-

bearing SMSs to be sent to a large number of different domains.

12.4.3.2 Disabling the Browser Extension

If the system is configured so that it is possible to disable the OTP adap-

tor, then a knowledgeable intruder could defeat the protection provided by

the scheme. Therefore, a robust implementation of the scheme proposed in

section 12.2.2 must not allow an adversary to disable it. That is, the system

must be configured to oblige CardSpace users to use the OTP adaptor.

However, browser extensions can be enabled or disabled at will by any-

one who has access to a Windows user account. So an adversary with access

to the appropriate account on the PC could simply disable the browser ex-

323

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

tension and thereby cause CardSpace to operate without the OTP enhance-

ment.

It may be possible to remove this threat, at least partially, by installing the

browser extension so that administrator privileges are required to disable

it, and also persuading the PC owner to log-in using a non-administrator

account. It may also be possible to make use of UAC (see section 10.4.3), so

that disabling a browser extension causes Windows to prompt the user for

an administrator password.

Ultimately, it would be desirable to implement the scheme described in

section 12.2.2 as an integral part of CardSpace, thereby negating this threat.

In such a scenario, each InfoCard might be given a selectable field to indicate

whether SMS-based authentication is required. A user could thus choose

to SMS-protect an important InfoCard by simply selecting the appropriate

field.

12.4.3.3 Exploiting CardSpace Backup Facilities

The CardSpace backup facilities could be exploited to allow an InfoCard to

be exported from one PC to another, thereby avoiding the protection pro-

vided by the scheme proposed here. An attacker could, for example, export

a personal card to a USB memory stick, and then reload the card onto his

or her own PC in order to impersonate the card owner. An exported card

could also be transferred as an email attachment. This risk could be miti-

gated using countermeasures similar to those discussed above.

12.5 Prototype Realisation

The prototype is coded as a browser plug-in in JavaScript, executed using

a C#-driven BHO (see section 6.4.2). The prototype operates with both the

CardSpace and the Higgins identity selectors without any modification.

324

12.5 PROTOTYPE REALISATION

12.5.1 User Registration

Prior to use, the prototype user must have accounts with a CardSpace-

enabled RP and an SMS gateway service provider, e.g. Clickatell (http://

clickatell.com). The prototype plug-in provides step-by-step instruc-

tions to assist the user to enter their mobile phone number and SMS account

login details (e.g. username and password).

12.5.2 Prototype Operation

In this section we consider specific operational aspects of the prototype. We

refer throughout to the numbered protocol steps given in section 12.2.2.

The implementation of step 3 is precisely the same as that of step 3 of the

CardSpace-OpenID integration prototype described in section 8.4.2, except

that steps 3.1 (c) to 3.1 (e) are skipped.

In step 8 the plug-in uses the DOM to perform the following steps.

8.1 It intercepts the RSTR sent by the selector using the interception func-

tion added by the plug-in.

8.2 It generates a 4-character, random OTP (see section 12.3.1). It also starts

a 10-minute time counter.

8.3 It builds an HTTPS-based URL, bearing the user’s mobile phone num-

ber, the user’s account login details, and the OTP.

8.4 It automatically invokes the URL in a new, small browser window.

This process will cause the OTP to be sent to the SMS gateway via

a secure TLS/SSL channel. On receipt of the OTP, the SMS gateway

delivers it to the user’s mobile phone in an SMS message.

In step 9 the plug-in performs the following steps.

9.1 It prompts the user to enter the OTP, using a JavaScript pop-up box.

325

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

9.2 It verifies the user-entered OTP by comparing it with the version it pre-

viously generated (in step 8.2), ensuring that the OTP has been entered

within the 10-minute time window. If the verification succeeds it pro-

ceeds to the next step. If the verification fails, the user is allowed to try

again. However, if verification fails on three successive occasions, the

plug-in terminates the login process and writes a persistent cookie to

prevent the user from logging into this RP using the same browser for

a defined time period, e.g. 24 hours. This process operates as follows.

On the first occasion that the system is used with a particular RP, or if

the previously written cookie has expired and been deleted, the plug-

in writes a persistent cookie containing the number of failed OTP entry

attempts for this RP (i.e. either zero if the attempt is successful or one

if the attempt fails) and with a lifetime of 24 hours. Whenever the

system is used subsequently the presence of this cookie is checked; if

it is present then the current number of failed OTP entry attempts it

records is checked — if it is equal to three then no SMS is sent and the

RSTR is blocked, i.e. the system is locked out and can only be unlocked

if the user enters the special lockout OTP. If it is less than three then

the system proceeds. If the OTP entry attempt succeeds then a new

cookie is written containing the value zero; if the OTP entry attempt

fails, then a new cookie is written containing a value one larger than

the previous value.

9.3 It creates an invisible HTML form with method attribute set to POST.

9.4 It writes the entire RSTR into the invisible HTML form as a hidden

variable, with the name attribute of this variable set to the name of the

CardSpace object tag.

9.5 It writes the URL of the CardSpace-enabled RP into the action attribute

of the invisible form.

326

12.6 RELATED WORK

9.6 Finally, it auto-submits the HTML form (transparently to the user), us-

ing the JavaScript inherent method submit.

The prototype has been successfully tested with Clickatell (see section

12.5.1), an experimental implementation of a CardSpace-enabled RP, the

current (unmodified) CardSpace and Higgins identity selectors, and with

a standard mobile phone.

12.5.3 Practical Issues

The plug-in must scan every HTML web page to check whether it supports

CardSpace, and this may affect system performance. However, informal

tests on the prototype suggest that this is not a serious issue. In addition,

the plug-in can be configured so that it only operates with certain websites.

If the web browser is compromised, then an adversary could steal the

RSTR and the OTP and use them to impersonate the user. However, as

stated in section 5.6, the same risks apply when manually entering creden-

tials (e.g. username and password) into a browser.

Finally, some older browsers may not be able to run the prototype plug-

in, as it was built using JavaScript. However, as stated in section 6.4.4, most

modern browsers support JavaScript, and so this seems unlikely to be a

major usability obstacle.

12.6 Related Work

Using a mobile device as a means of user authentication is attractive be-

cause of the ubiquity of mobile phones, and many such schemes have been

proposed. Examples of schemes in which a mobile phone is used to authen-

ticate a user to a remote server include the following.

• Hart et al. [109] proposed a scheme in which user credentials (i.e. user-

name and password) are stored in a Java-enabled SIM card. When the

327

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

user visits a website, the browser extension requests the user creden-

tials for this site from an SMS gateway, which then sends a specially

formatted SMS message to the appropriate SIM card. The SIM card

responds with another SMS message containing the requested creden-

tials, and the SMS gateway forwards them to the browser extension via

an HTTPS channel. The browser extension then auto-submits them to

the visited site. The scheme requires the user to possess a SIM capable

of hosting an application, and for the user to load an appropriate ap-

plication into it. It also has an SMS messaging cost at least twice that

of the scheme described in this chapter.

• Wu et al. [230] and Jammalamadaka et al. [140] proposed schemes in-

volving a combination of a third party proxy, which stores the user

credentials, and a mobile phone. The schemes are designed for use in

cases where an untrusted PC, e.g. in an Internet kiosk, is used to ac-

cess a remote website, and they avoid the need for the user to enter

long-term secret credentials into such a PC (see also [196]). The phone

is used to explicitly authorise the proxy to release the credentials to the

remote website. Unfortunately, not only is the use of a proxy a poten-

tial security and reliability threat, but the PC must be configured to use

the proxy. This latter requirement is not only potentially inconvenient,

but in some cases may be impossible to meet since the user may not

have the necessary permissions to change the browser settings.

• Florêncio and Herley proposed URRSA (Universal Replay-resistant Se-

cure Authentication) [93], an OTP-enhanced service (based on a re-

verse proxy [160]) that allows users to access password-protected web-

sites. The URRSA service does not require changes to login servers. A

list of 10 different encrypted copies of a long-term user password (ef-

fectively functioning as OTPs) is generated and sent to the user’s mo-

bile phone using SMS; the corresponding decryption keys are stored

328

12.6 RELATED WORK

at the URRSA server. A user wishing to access a protected site first

navigates to the URRSA site and enters the URL and user ID of the ac-

count to be accessed. The user then enters the appropriate OTP from

the current list, allowing the URRSA server to decrypt and temporarily

store the real password. The URRSA server then fetches the previously

registered login page and prompts the user to click the submit button;

the login process then proceeds. The user process for this scheme is

relatively complex, and new lists will need to be downloaded fairly

frequently, increasing the burden on the user.

• Aloul et al. [18] proposed a system that involves using a PIN-protected

mobile phone as a token for OTP generation. Additionally, an SMS-

based mechanism is implemented as both a backup mechanism for re-

trieving the OTP and as a possible means of client-server synchronisa-

tion. This method requires both the client and server to pay to send

SMS messages. Unlike the scheme described here, the mobile phone

must support J2ME (Java 2 Platform, Micro Edition) [159], and, prior

to use, the user must install a special application into the phone.

• Mannan et al. [163] and Alqattan et al. [20] proposed similar schemes in

which the entry of user authentication credentials is accomplished us-

ing a trusted handheld device, e.g. a PIN-protected mobile phone. For

example, in the MP-Auth (Mobile Password Authentication) scheme

[163], the mobile device encrypts the password using the end server’s

public key before passing it via an untrusted machine to the remote

server. However, unlike the scheme described in this chapter, these

schemes require changes to login servers and also require users to pos-

sess J2ME-enabled mobile phones.

• Schuba et al. [212] proposed the Internet ID approach, in which a mo-

bile phone is used to provide user authentication to a Liberty-enabled

IdP. We outline the variant most similar to the scheme described in

329

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

this chapter. A Liberty IdP generates a random sequence of symbols,

and sends them to the user’s mobile phone in an SMS message. Simul-

taneously, these symbols are shown on the PC browser, and the user is

required to confirm to the phone that the browser-displayed symbols

are the same as those in the SMS message, e.g. by clicking a link on the

WAP (Wireless Application Protocol) page on the mobile phone. Al-

though this system does not require the user to type anything, it does

require changes to the operation of Liberty IdPs.

• Jørstad et al. [144] proposed a scheme which supports interoperation

between CardSpace and Liberty. It uses a mobile phone for user au-

thentication to the IdP; the IdP sends an SMS message to the user, and,

in order to be authenticated, the user must confirm receipt of the mes-

sage (see also section 6.5). Much like the Internet ID approach [212],

this method requires changes to the operation of the IdP.

Examples of schemes in which a mobile phone is used to authenticate a

user to a local PC include the following.

• Lach [154] proposed MOTH (derived from Mobile Authentication), a

scheme in which a workstation and a mobile device communicate us-

ing Bluetooth, and authentication is realised using digital signatures.

Unlike in our scheme, the mobile device in the MOTH system must be

able to run Java midlets. To avoid an attacker bypassing the scheme, a

MOTH-conformant PC must be configured to only use the MOTH ser-

vice for authentication, and not to fall back to password authentication.

Analogously, the scheme described in this chapter must be configured

to oblige the use of the adaptor with CardSpace (see section 12.4.3.2).

In MOTH, binding a user to a public key remains a challenge.

• Abdulhameed et al. [1] proposed a method which uses a Bluetooth-

enabled mobile phone. The user’s PC communicates with the phone

330

12.7 CONCLUSIONS AND FUTURE WORK

via a Bluetooth link, and public-key cryptographic techniques are used

to provide mutual authentication between the PC and the phone. The

PC periodically senses the phone to ensure that the user is still present;

if the mobile phone moves out of range, the PC is configured to take

certain measures to raise the security level. It is unclear from the de-

scription provided [1] whether this form of authentication could be

disabled by an attacker so that the PC reverts to password-based user

authentication, a possible means of circumventing the scheme. Not

only must the mobile phone be Bluetooth-enabled, but it must also

support Java to provide certain cryptographic and authentication ser-

vices.

Finally note that the scheme proposed in this chapter falls somewhere in

between the two classes described above, in that it provides authentication

to a local PC in such a way that it enables authentication to a remote site to

continue in a more secure way.

12.7 Conclusions and Future Work

In this chapter we have proposed a simple scheme for using a mobile device

to enhance user authentication in Information Card-based systems, such as

CardSpace and Higgins. During the process of user authentication on a

PC using an Information Card system, a random and short-lived one-time

password is sent to the mobile device; this must then be entered into the

PC by the user. The scheme does not require any changes to login servers,

identity selectors, or to the mobile device itself.

Planned future work includes exploring the possibility of extending the

scheme to operate with other client-enabled identity management systems,

including password managers. We also plan to develop the prototype in

various ways, including:

• preventing it being disabled by an unauthorised PC user;

331

12. ENHANCING USER AUTHENTICATION IN INFORMATION CARD SYSTEMS

• providing support for OTP transfer to the mobile via Bluetooth and/or

infrared; and

• supporting automated OTP entry from the mobile device.

332

Part IV

Universality

333

Overview

Part IV of the thesis introduces a client-based identity management tool that

can support a wide range of identity management systems using a single

user interface. It consists of a single chapter, chapter 13, which describes the

client-based tool. The tool is designed to provide a consistent user experi-

ence, whilst supporting a range of existing identity management technolo-

gies.

335

Chapter 13

A Universal Client-based Identity

Management Tool

13.1 Introduction

13.1.1 The Need for Authentication

Authentication of human users is a fundamental security requirement; in-

deed, it could be argued that it is the fundamental requirement [15]. Despite

its importance, it is almost universally acknowledged that providing user

authentication remains a huge practical problem. In practice, as many ob-

servers have noted (see, for example, Herley et al. [110]), we are still using

passwords almost universally. Again as widely acknowledged, the use of

passwords has many shortcomings, not least because users today have so

many Internet relationships, all requiring authentication. In such a context,

password re-use and use of weak passwords are almost inevitable.

A common approach to addressing this problem is to propose yet an-

other new way of achieving user authentication, possibly involving a PKI

(see section 2.4.4.1). However, there are already many good technological

solutions. Perhaps the real problem is the insufficiently broad adoption of

the solutions we already have. If so, this is partly a business and socio-

logical issue, but perhaps it is also a problem which requires new technical

thinking.

It is easy for those of us providing technological solutions to claim that

this is not our problem. We provide the technology, and the business and

337

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

commercial world should just get on with adopting it. However, real life is

not so simple. We, in the academic world, should be thinking about how

to devise technological solutions which are easier to adopt. As always, key

issues for adoption are transparency, ease of use, and backward compatibil-

ity, and these factors have played a large part in the design of the system we

describe here.

13.1.2 Identity Management

As stated in chapters 3 and 4, identity management systems have been de-

signed to simplify user authentication. An identity management system

enables an IdP to support authentication of a user (and assertion of user

attributes) to an RP. As discussed in chapter 4, recent years have seen the

emergence of a wide range of such systems. Each system has its own set

of protocols governing communications between the main parties. As well

as its own protocols, each system may also have a unique supporting in-

frastructure, including public-key certificates, shared keys, passwords, etc.

Some systems have gained traction recently, e.g. the use of OpenID in some

sectors and Facebook’s adoption of OAuth (in the form of Facebook Con-

nect). However, the systems that have been most widely used also possess

the most significant security issues (e.g. phishing vulnerabilities), and no

system has broad penetration into the user community.

As discussed in sections 1.2.3, 3.5.2 and 5.1.2, many identity management

systems are susceptible to phishing attacks, in which a malicious (or fake)

RP redirects a user browser to a fake IdP. The user then reveals to the fake

IdP secrets that are shared with a genuine IdP. This arises because, in the

absence of a system-aware client agent, schemes rely on browser redirects.

A further problem faced by an end user, as stated in sections 1.2.4, 5.1.2

and 5.4.3, is that the user experience of every identity management system

is different. It is widely acknowledged that users fail to make good security

decisions, even when confronted with relatively simple decisions. The lack

338

13.1 INTRODUCTION

of consistency is likely to make the situation much worse, with users sim-

ply not understanding the complex privacy- and security-relevant decisions

that they are being asked to make.

Finally, as stated in section 5.4.4, when using third party IdPs which pro-

vide assertions about user attributes, there is a danger that a user will dam-

age their privacy by revealing attributes unintentionally to an RP. In gen-

eral, getting settings correct for systems handling PII is a non-trivial task.

13.1.3 A New Approach

It is tempting to try to devise another new scheme which has the practi-

cal advantages of OpenID and OAuth, but yet provides robust protection

against phishing and privacy loss. That is, we might wish to devise a client-

based scheme with the user convenience of other systems, but which some-

how avoids the fate of CardSpace (as discussed in section 4.3.1). However,

it seems that a new solution is highly unlikely to succeed when others have

failed, especially given that systems such as CardSpace have had the sup-

port of a large corporation and incorporate very attractive features. More-

over, a new system is likely to create yet another different user experience,

increasing the likelihood of serious mistakes by end users. This suggests

that devising yet another new system may not be the right approach.

The goal of this chapter is to propose a new approach to the user au-

thentication problem. It does not involve proposing any new protocols or

infrastructures. The goal is to try to make it easier to use existing systems,

and also to make their use more secure (including resistance to phishing)

and privacy-enhancing, not least through the provision of a consistent user

interface and an explicit user consent procedure.

The scheme we propose (which we call IDSpace) involves a client-based

user agent. This is a single tool which supports a wide range of identity

management systems yet provides a single interface to the user. The consis-

tent user interface should maximise user understanding of what is happen-

339

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

ing and thereby reduce the risk of errors and increase user confidence. It

also avoids the need for passive browser redirects, hence mitigating phish-

ing attacks. Much of the material in this chapter has been published [9, 15].

13.1.4 CardSpace

One motivation for introducing the scheme arises from consideration of

CardSpace (see section 4.3) and other Information Card systems such as

Higgins (see section 4.4). We make the following observations.

• The user interface of CardSpace and the underlying communication

protocols are not inherently tied together (see also [112]). It is thus pos-

sible in principle to keep the simple, intuitive user interface, and use

it as the front end for a tool which manages user credentials in a con-

sistent way regardless of the underlying identity management system.

Credential sets can then identify with which identity management sys-

tem(s) they should be used. For example, each credential set could be

stored as a self-describing XML document. Indeed, these credential

sets could include username-password pairs.

• Before issuing a security token, a CardSpace-enabled IdP will typically

need to authenticate the user. This user authentication takes place via

the local CardSpace software. There are two key advantages of such

an approach: it provides a consistent user experience, and it helps to

limit the possibility of phishing attacks.

These two observations provide the main motivation for the design of the

IDSpace scheme.

13.1.5 Organisation

The remainder of the chapter is organised as follows. Section 13.2 intro-

duces IDSpace, and, in section 13.3, we give a high-level architecture of

340

13.2 IDSPACE

IDSpace. Section 13.4 discusses a number of functions that an IDSpace-

conformant system must provide. Section 13.5 describes IDSpace operation,

and section 13.6 shows how IDSpace operates with certain existing identity

management systems. Section 13.7 outlines a possible implementation, and,

finally, section 13.8 concludes the chapter, including highlighting possible

areas for related work and listing future research directions.

13.2 IDSpace

We now describe IDSpace, the name of which pays homage to CardSpace.

IDSpace is an architecture for a client-based identity management tool that

operates in conjunction with a client web browser. A tool conforming to the

architecture provides a user-intuitive and consistent means of managing a

wide range of types of digital identities and credentials for web activities.

The IDSpace architecture is designed to support a wide range of existing

identity management protocols, and can be used to replace existing iden-

tity management client software, including the CardSpace/Higgins agents,

Liberty-enabled client software, and client-based password managers.

It is important to note that IDSpace is not an identity management sys-

tem, at least not in the normal sense of the term. Instead it is an architecture

for a client system which enables the use of a multiplicity of identity man-

agement protocols with maximal transparency to the user (and avoiding the

need to install multiple identity management clients). The IDSpace archi-

tecture is designed so that conformant tools are able to work with existing

Internet RPs and IdPs without any changes to their current operation. That

is, the system is transparent to third parties.

The IDSpace architecture is designed to be platform-independent, and a

partial prototype implementation has been developed (described in section

13.7). Implementations should be capable of being deployed on Windows,

Unix, Mac OS, and smart phone-based platforms with minimal changes.

341

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

Key parts of the IDSpace system can be instantiated as browser add-ons,

e.g. written in C++ and/or JavaScript, thereby maximising portability.

As with any identity management tool, the primary purpose is to enable

an end user to access a protected resource. Once installed on a user plat-

form, IDSpace will execute whenever a user wishes to access a protected

service using a web browser. It allows the user to select a particular iden-

tity management system from amongst those supported by the RP. It also

allows the user to choose which set of credentials is to be used with this

RP, where the network interactions with the RP and IdP will conform to the

chosen identity management system.

IDSpace interacts with the user via a key component known as the card

selector. This provides a visual representation of user credential sets in the

form of virtual cards, referred to here as credential cards (cCards). The op-

eration of this component is motivated by the CardSpace identity selector,

whose virtual cards are known as InfoCards or iCards. Higgins, which orig-

inated as an open-source implementation of a CardSpace-like system (see

section 4.4), also uses the term InfoCards.

A cCard can represent any of a wide range of types of user credential,

including:

• ready-to-use tokens including password manager tokens containing a

username-password pair, referred to as local cCards; and

• a pointer to a remote, credential-issuing party (an IdP), referred to as

remote cCards.

Whilst IDSpace has a similar user interface to CardSpace and Higgins, it

is important to note certain fundamental differences. Both CardSpace and

Higgins support just one set of protocols for web interactions between the

user platform and third party systems. If future versions of these systems

support additional protocols, then this is likely to require corresponding

modifications to RPs and/or IdPs. IDSpace, by contrast, is designed to work

342

13.3 HIGH-LEVEL ARCHITECTURE

with almost any conceivable identity management protocol suite, and its

adoption does not require any changes to third party systems (including

IdPs and RPs).

IDSpace is made up of a set of self-contained components interacting

with each other in a pre-defined way, thus enabling modular implementa-

tion. Such an architectural design enables new identity management proto-

cols to be supported in a simple way by adding new software modules to

an existing implementation.

13.3 High-level Architecture

13.3.1 Context of Use

As stated above, IDSpace provides a user-intuitive means for managing dig-

ital identities and credentials for web activities, consistent across underly-

ing identity management systems. The intended context of use is shown in

Fig. 13.1.

Figure 13.1: IDSpace Context

The parties involved, as shown in Fig. 13.1, include the following.

343

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

1. The user interacts with a user platform or hardware platform (e.g. a PC or

mobile device) in order to access services provided across the Internet.

This user platform is equipped with an operating system (OS) on which

applications execute.

2. The IdP provides identity services to the user. This typically involves

issuing a user-specific security token for use by an RP (where, although

the token is intended for use by a specific user, the user’s identity will

not necessarily be revealed to the RP). This token will provide the

RP with assurance regarding certain attributes of the user. The IdP

is located either remotely or locally on the user platform; in the latter

case the IdP is referred to as a local identity provider (LIP). Examples of

possible IdPs include Facebook and Google.

3. The RP provides services which the user wishes to access. In order

to allow the user to access a protected resource, the RP will wish to

be provided with verifiable statements regarding certain attributes of

the user. This is typically achieved by supplying the RP with a user-

specific credential or security token issued by a local or remote IdP.

Examples of possible RPs include YouTube, Amazon, Facebook and

Google (some parties may act as both IdPs and RPs).

4. The UA is a software component employed by a user to manage in-

teractions between the user/user platform and remote entities (IdPs

and RPs). This will typically be instantiated as a web browser, such

as Internet Explorer or Firefox; indeed, for the sake of simplicity, in

some subsequent discussions we refer to a web browser rather than a

UA. The UA processes protocol messages on behalf of the user, and

prompts the user to make decisions, provide secrets, etc.

5. The IDSpace client software, implementing part of the IDSpace architec-

ture, interacts with the user via a graphical user interface (GUI). This

344

13.3 HIGH-LEVEL ARCHITECTURE

GUI allows the user to select a particular credential set (represented as

a cCard) for use in a specific transaction with an RP. The application

also interacts with a web browser, and, where necessary, with remote

entities.

6. The IDSpace extension (or the IDSpace browser extension), implement-

ing part of the IDSpace architecture, supplements the functionality

of the UA. It is made up of a set of modules performing specific

tasks, e.g. scanning a web page for a username-password login form.

The IDSpace extension exchanges data with the client software via the

browser, and, where necessary, interacts with the user.

13.3.2 IDSpace Components

Fig. 13.2 shows the relationships between the main components of IDSpace,

including the primary information flows. The dotted line shows the lim-

its of the browser extension. Note that, although shown as part of the

browser extension, the activator could also be implemented as an indepen-

dent component. This is because, in certain identity management systems

e.g. CardSpace, the RP web page must implement certain X/HTML tags to

enable this component to perform its task (see section 4.3.7). However, it is

also possible for a browser extension to add such tags.

The remaining components, apart from the web browser and remote IdP,

represent the IDSpace client software. Note that the boxes marked other . . .

refer to IDSpace components, which, although covered in the text, are not

shown in Fig. 13.2.

The two primary elements of the IDSpace architecture, i.e. the IDSpace

client software and the IDSpace extension (as introduced in section 13.3.1),

are now discussed in greater detail.

345

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

Figure 13.2: IDSpace Components

13.3.2.1 Client Software

The client software, a stand-alone application, is made up of the following

components.

cCards A cCard is a relatively non-sensitive XML document corresponding

to a set of user credentials (or, more generally, to a set of user private

information). A cCard indicates the types of personal information in

the set, and also the type (or types) of identity management system

with which the cCard can be used. However, it does not contain the

personal information itself. cCards can be local, in which case they are

generated by the LIP, or remote, in which case they are generated by a

remote IdP.

cCard Store This is a protected local store for cCards. The nature of the pro-

tection provided for stored cCards will depend on the implementation

environment. For example, protection could involve the use of cryp-

tography, physical protection and/or logical protection (as provided

by the OS).

346

13.3 HIGH-LEVEL ARCHITECTURE

Credential Store This is a protected local store for sensitive data, such as

personal information, certificates, user passwords, etc., associated with

local cCards. It is used by the LIP. In practice, the credential store

and the cCard store could be combined. As is the case for the cCard

store, the nature of the protection provided will be implementation-

dependent, and could involve the use of cryptography, physical pro-

tection and/or logical protection.

Settings Store This is a local store for relatively non-sensitive data such as

system state, system/user settings, user preferences, etc.

IDSpace Kernel This is the central component of IDSpace, which runs lo-

cally on the user platform, handling communications with and be-

tween other components of IDSpace. In particular, it performs the fol-

lowing functions.

• It receives and processes the security policy provided by the acti-

vator.

• It retrieves the cCards from the cCard store, and checks which of

them meet the requirements of the RP security policy.

• It invokes the IDSpace user interface (see below) in a private desk-

top window, and displays the cCards that meet the requirements

of the RP policy.

• If a remote cCard is chosen, it retrieves the policy of the relevant

remote IdP by initiating a connection with it.

• It communicates with the user-selected IdP to obtain a security

token, where necessary using the IdP authentication module (see

below).

User Interface This component, which incorporates the card selector, is the

main means by which an end user interacts with the IDSpace client

software. Its tasks include the following.

347

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

• It displays the identity of the RP to the user, and indicates whether

the RP has been visited previously. If the RP is being visited for the

first time then it allows the user to either continue or terminate.

• It displays the available cCards (it might display all the cCards

and highlight those that meet the RP policy, or it might only dis-

play those meeting the policy). Note that the cCards are displayed

in the card selector.

• It allows the user to review the contents of a cCard.

• It allows the user to generate and modify local cCards — in doing

so it provides an interface to some of the functions of the LIP.

• It allows the user to import a cCard provided by a remote IdP that

supports InfoCards.

• It allows the user to create a cCard for a remote IdP which does

not support InfoCards.

• It asks a user for explicit consent before providing potentially sen-

sitive information to an RP.

• It allows the user to set preferences for future operation of the

system. These preferences are stored in the settings store.

LIP This provides the functionality of an IdP, but is resident on the user

platform. Like any IdP, the LIP can generate security tokens. These

tokens can be retrieved by the IDSpace kernel. The LIP stores user-

attribute values and other sensitive user data in the credential store.

IdP Authentication This authenticates the user to a remote IdP, if a remote

cCard is selected. It uses the user interface to prompt the user to enter

the required credentials, e.g. username and password, and then sub-

mits them to the IdP. By doing so it enables a consistent and simple

user authentication interface to be provided to the user, even when a

range of different identity protocols are being used. It also supports

348

13.3 HIGH-LEVEL ARCHITECTURE

IdP-specific protocol interactions, e.g. to create requests for specific

types of token.

Networker This initiates a direct online connection between the client soft-

ware and a remote server (i.e. not involving the browser).

13.3.2.2 Browser Extension

The IDSpace extension, typically implemented as a browser add-on, in-

cludes the following modules.

Page Scanner This browser extension module scans the RP login page in

order to discover which identity system(s) the RP supports. It passes

the results of the scan to the identity system selector (see below).

Activator This is a (logical) bridge between the browser and the IDSpace

kernel. Its tasks include the following.

• It informs the user that IDSpace can be used.

• It enables the user to activate the card selector.

Identity System Selector This browser extension module enables the user

to select the identity management system to be used from amongst

those supported by the RP website. The precise operation of this com-

ponent will depend on the implementation of the IDSpace architecture.

If more than one identity system is available, the identity system selec-

tor could ask the user to either choose an identity system immediately

or defer the selection until the point at which a cCard is selected (us-

ing the card selector). It might also provide a means to store the user

answer (in the settings store) for future authentication attempts.

It passes the user response to the data transporter (see below).

349

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

Data Transporter This browser extension module provides the means to ex-

change data between components of the IDSpace architecture, includ-

ing the following.

• It is responsible for the transfer of metadata regarding the RP (e.g.

the discovered and selected identity system(s), the identity of the

RP, the RP policy requirements, etc.) to the IDSpace kernel. For

example, if the user indicates that IDSpace is to be used, it passes

the security policy of the RP website to the IDSpace kernel.

• It transfers data from the IDSpace kernel to the browser. For ex-

ample, if IDSpace obtains or generates a security token during the

authentication process, it gives the token to the browser which

dispatches it to the RP.

Token Displayer This browser extension module displays an indication of

the contents of an IdP-generated security token to the user. This helps

the user to decide whether or not to allow the token to be passed to the

RP. This function can only be provided if the token is not:

• encrypted in such a way that only the RP can read it (e.g. using an

RP’s public key); and

• transmitted via a (direct) IdP-RP back-channel, i.e. the token must

pass via the client platform.

13.4 Supporting Functionality

We next discuss a number of key functions that an IDSpace-conformant sys-

tem must provide. For many of these functions we outline multiple ap-

proaches to implementation.

350

13.4 SUPPORTING FUNCTIONALITY

13.4.1 Identity System Discovery

IDSpace must be able to determine which identity management systems

are supported by an RP website. This can be accomplished in a number of

different ways, including the following.

1. IDSpace could scan the visited page for HTML/XHTML tags that are

associated with specific identity management systems. For example,

the string:

• application/x-informationCard indicates support for CardSpace; and

• openid url or openid identifier indicates support for OpenID.

The benefits of such an approach include complete transparency, albeit

at the cost of performance (because IDSpace must scan every browser-

rendered web page).

2. IDSpace could ask the user which identity management systems the

page currently supports. The benefits of such an approach include ac-

curacy and higher performance, at the cost of transparency and user

convenience although the user’s choice could be stored in the settings

store for future logins.

3. IDSpace could employ a hybrid approach based on a combination of

the above two options, e.g. so that if the first option fails then it resorts

to the second option.

13.4.2 Identity System Selection

Having learnt which identity management system(s) an RP website sup-

ports, IDSpace must allow the user to select which system to use for the

current transaction. Such a process could take place before or after invoca-

tion of the card selector. We next consider these options in greater detail.

351

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

1. Prior to Selector Invocation. IDSpace could allow the user to choose

the identity management system in one of the following ways.

• IDSpace could embed a descriptive icon (logo, image, link or but-

ton) in the web page for each available system, and require the

user to select one (e.g. by clicking the selected icon). Whilst this

approach is intuitive and transparent, it could damage the appear-

ance of the page, particularly if there are many logos to embed.

• IDSpace could ask the user which system they wish to use by em-

bedding forms in the page or by triggering pop-up boxes. The

benefits of such an approach would include accuracy and higher

performance, at the cost of minor user convenience.

• IDSpace could add an identity management system selection op-

tion to the in-page context menu (i.e. the menu that appears as a

result of right-clicking on the mouse). Once such an option is se-

lected, a list of identity management systems would be displayed,

allowing the user to select one. Whilst this might be transparent,

it might not be so intuitive to end users.

• IDSpace could enhance the browser frame1, including adding a

browser icon, bar or menu. Once the added icon (or bar or menu)

has been selected, the user could choose one of the systems cur-

rently supported by the RP. Whilst this may be transparent, mod-

ifying the browser frame could be somewhat intrusive to the end

user.

2. After Selector Invocation. The IDSpace card selector could display

the currently supported identity management systems, allowing the

user to select one. This choice could be combined with a display of the
1Both the browser frame and the browser-displayed web page could be extended. Browser ex-

tensions could, for example, create lightweight buttons, menu extensions, and in-process BHOs. The
browser frame could be extended using band objects, and the web page content could be enhanced
with, for example, ActiveX Controls or similar technologies [74].

352

13.4 SUPPORTING FUNCTIONALITY

available cCards (if any) associated with each of the systems. In the

latter case, the selector window could be partitioned so that each sec-

tion displays an identity management system along with a previously

used cCard for that system; a clickable option could be used to request

the display of other available cCards. This approach would be trans-

parent, convenient and would avoid making changes to web browsers

or web pages. However, it would require more processing, and hence

could adversely affect user platform performance.

13.4.3 Card Selector Invocation

In response to a user action, IDSpace must be able to invoke the card selec-

tor. This involves embedding IDSpace support in the RP web page using a

browser extension (see above).

13.4.4 cCard Storage

The format of cCards must be sufficiently flexible and self-contained to al-

low cCard storage in a variety of locations, and to support portability. We

assume that cCards will be protected while stored where, as stated previ-

ously, the nature of this protection will be implementation-dependent.

cCards could be stored on various media, including:

• local file systems, which would give good performance and allow fast

retrieval;

• remote web servers (the cloud), which would give a roaming capabil-

ity; and

• portable user platforms such as mobile phones or smart cards, which

would also provide a roaming capability.

353

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

13.4.5 cCard Format

Each cCard will contain an identifier indicating the identity management

system with which it can be used; in principle a cCard could have many

such identifiers. We suppose here that cCards are encoded using XML, as is

the case for CardSpace InfoCards. A single XML schema could be devised

encompassing all supported identity management systems. This would

have the advantage that the identity system identifier (discussed immedi-

ately above) could form part of the encoding of a cCard. Other methods of

encoding could also be used, such as JSON2 [73].

13.4.6 cCard Contents

The content of a cCard will vary depending on the identity management

system with which it is to be used. However, the types of content listed be-

low are likely to be contained in almost all cCards. Note that such contents

are similar to the contents of the CardSpace InfoCards listed in section 4.3.2.

1. A list of supported attribute types, e.g. age, password, first name, last

name, the values of which are known by the IdP, and for which the

IdP will be prepared to generate a security token. The actual claim

values are not stored by the card selector; they are either stored by the

remote IdP or by the LIP. The LIP will store the values in the protected

credential store. Protection could, for example, involve implementing

the credential store on a separate device such as a smart card, or using

a TPM [97, 104, 218] to provide encrypted storage.

2. A list of supported token type(s), indicating which type(s) of security

token (e.g. SAML, username-password) the IdP associated with the

cCard is capable of issuing.

3. IdP location, including the URL(s) of the remote or local IdP(s).
2http://www.json.org/

354

13.4 SUPPORTING FUNCTIONALITY

4. IdP authentication method(s), specifying the method(s) employed by the

IdP to authenticate the user.

5. Display information, e.g. an image and/or a name for the cCard.

13.4.7 Process Isolation

Where possible, the IDSpace processes should be isolated from other pro-

cesses to maximise the security and privacy of data handled by IDSpace.

For example, on a Windows platform the IDSpace card selector could be

invoked in a private desktop session.

13.4.8 Authentication Methods

The IDSpace architecture allows the user to be authenticated to an IdP us-

ing a wide range of different authentication methods. The ease with which

additional methods can be supported depends on precisely how user au-

thentication to a remote IdP is supported by IDSpace. We consider three

main possibilities.

1. IDSpace could control all communications between the user and the

remote IdP. That is, all requests for authenticating information by the

IdP could be made to the user by IDSpace (specifically by the IdP au-

thentication component, as described in section 13.3.2.1), and the sup-

plied information could then be forwarded by IDSpace to the remote

IdP. Adding a new authentication method would require adding func-

tionality to the implementation of IDSpace executing on the user plat-

form. This is the approach adopted by CardSpace, currently deployed

versions of which support four authentication methods (see section

4.3.2).

New user authentication techniques could be added in a modular fash-

ion, as and when they are required. Whilst this would clearly add to

the cost of deploying and maintaining an IDSpace implementation, for

355

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

a widely deployed system this does not seem such an unreasonable

approach (given that the number of authentication methods seems un-

likely to grow very rapidly). Such an approach would have the ad-

vantage of user transparency and would enable the provision of a con-

sistent user interface for the authentication process, and is hence the

preferred option.

2. IDSpace could cause the task of user authentication to be performed at

the IdP rather than via the IDSpace user interface (i.e. using the IdP au-

thentication component). That is, whenever a remote IdP requires user

authentication, e.g. prior to issuing a security token, IDSpace would

redirect the UA (the web browser) to the IdP, allowing the IdP to di-

rectly authenticate the user using a method of the IdP’s choice. Al-

though such an approach would minimise the maintenance cost for

IDSpace, the user would lose the consistent experience provided by

the IDSpace user interface.

3. IDSpace could employ a hybrid approach. The default would be the

first approach outlined above. IDSpace could support a set of widely-

adopted (possibly standardised) authentication methods; new meth-

ods could be added as and when it is deemed appropriate. However,

if an IdP wishes to use a technique not supported by IDSpace, then

IDSpace could redirect the UA (web browser) to the IdP for direct au-

thentication.

13.5 IDSpace Operation

13.5.1 Initialisation

Prior to use of IDSpace, the following preparatory steps must be performed.

• The IDSpace components, including the browser extension and the

client software, must be installed on the user platform.

356

13.5 IDSPACE OPERATION

• The user must install cCards in the cCard store on the user platform.

As noted above, these cCards can be created by either a local or a re-

mote IdP. We briefly consider the two cases.

– Local cCards are created using the LIP. Once it has created a

cCard, the LIP will insert it in the cCard store, and the correspond-

ing user data will be added to the credential store. A user could

also choose to create a local cCard during use of IDSpace.

– Remote cCards correspond to remote IdPs. The source of such

cCards will depend on the IdP. In the case of IdPs supporting

InfoCards, the creation of such a cCard will typically occur via

an out-of-band process, i.e. a process completely independent of

the operation of IDSpace, perhaps involving the user completing

a registration process using the IdP website. The resulting cCard

will be generated by the IdP and provided to the user, and the

user can then arrange for it to be imported into IDSpace using the

IDSpace user interface. Note that the creation of remote cCards by

remote IdPs will only be possible if either the:

1. IdP is aware of IDSpace; or

2. identity management system in use already supports the no-

tion of remote InfoCards (e.g. CardSpace).

In all other cases, a remote cCard will need to be created by the

local IDSpace software, perhaps using a series of menus designed

specifically for the purpose.

• For ease of identification, the user can personalise a cCard, e.g. by giv-

ing the cCard a meaningful name, and/or uploading an image repre-

senting the cCard to be displayed by the user interface.

357

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

13.5.2 Protocol Flows

We now describe the operation of IDSpace. It is important to note that some

parts of the operation of IDSpace will vary depending on the specific iden-

tity management system in use. The operation of IDSpace in the case of two

widely discussed identity management systems is described in section 13.6.

1. UA → RP: HTTP/S Request. A user employs a UA to navigate to an

RP login page.

2. RP→ UA: HTTP/S Response. A login page is returned to the UA.

3. IDSpace Browser Extension→ UA: Page Processing. Certain IDSpace

browser extension modules (as described below) perform the follow-

ing processes on the login page provided by the RP.

a) Page Scanner → UA: Page Scanning. The page scanner module

scans the login page to discover which identity management sys-

tem(s) are supported by the RP (from amongst those supported

by IDSpace). It passes the identifiers of the supported systems

to the identity system selector. If no identity management sys-

tem is identified, the page scanner could embed an icon in the

browser frame to allow the user to inform IDSpace if there is an

RP-supported identity system available that has been missed.

b) Identity System Selector→UA. The identity system selector mod-

ule uses the results passed to it by the page scanner. If more

than one identity management system has been discovered, then

(depending on the implementation) the identity system selector

could ask the user to select one. Alternatively, the decision could

be deferred and made using the card selector. The advantages

and disadvantages of the two approaches are discussed in sec-

tion 13.4.2. A further alternative approach would involve the user

deciding at which stage to make a choice.

358

13.5 IDSPACE OPERATION

The module might also offer to store any choices made by the

user (in the settings store) for managing future authentication at-

tempts. The module finally reports all the results to the data trans-

porter module (see below).

c) Activator
 UA: Card Selector Activation. The activator module

provides a means for the user to activate the card selector. How

this is achieved is implementation-specific (options are discussed

in sections 13.4.2 and 13.4.3). This involves embedding IDSpace-

enabling tags and an IDSpace security policy in the login page.

The embedded policy is subsequently used by the IDSpace user

interface to help it decide which cCards should be displayed for

possible use.

4. User → UA: Card Selector Invocation. The user performs an action

which invokes the card selector. The precise way in which this occurs

is implementation-specific (options are discussed in section 13.4.2).

5. Data Transporter → Kernel: Passing Metadata. The data transporter

module passes the necessary metadata (including the identified/se-

lected identity system(s), the RP identity, and the RP policy require-

ments) to the IDSpace kernel.

6. IDSpace Kernel
 Card Selector: RP Identity. The IDSpace kernel ex-

amines the RP identity (as received from the data transporter mod-

ule in the previous step), including noting whether or not the RP uses

HTTPS and whether or not the user has visited this particular RP be-

fore. The IDSpace kernel uses the card selector to:

a) identify the RP to the user; and

b) ask the user whether to continue or terminate the protocol.

Depending on the user answer, IDSpace either continues or terminates.

To assist in user decision-making, the card selector could indicate sig-

359

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

nificant security-relevant features of the RP to the user, e.g. using vi-

sual cues. In particular, it could indicate whether or not the RP:

• uses HTTPS (see section 2.5.5);

• possesses an EV certificate (see section 2.4.4.1);

• has been visited before; and/or

• requires a large number of, or particularly sensitive, types of user

attributes.

The card selector could also offer the user a recommendation as to

whether or not to continue, based on user policy settings and the RP’s

security properties.

7. IDSpace Kernel
 IDSpace Components. The IDSpace kernel evalu-

ates the received metadata in order to learn which actions to take. If

the user has already chosen an identity management system, then the

following processes take place.

a) IDSpace Kernel
 cCard Store: cCards Retrieval. The IDSpace

kernel retrieves the appropriate cCards (possibly none) by com-

paring the received metadata with the available cCards. Note that

the retrieved cCards are specific to the user-selected identity man-

agement system.

b) IDSpace Kernel→ Selector: Displaying cCards. The IDSpace ker-

nel passes the retrieved cCards to the card selector so that they can

be displayed to the user. cCards previously used with this RP (if

any) could be displayed more prominently than the others.

If the user has not yet chosen an identity management system, then the

following processes take place.

a) IDSpace Kernel
 cCard Store: cCards Retrieval. The IDSpace

kernel retrieves the appropriate cCard(s) by comparing the re-

360

13.5 IDSPACE OPERATION

ceived metadata with the available cCards. Note that cCards will

be retrieved for all RP-supported identity management systems.

b) IDSpace Kernel→ Card Selector: Displaying RP-supported Iden-

tity Management Systems + cCards. The kernel passes the RP-

supported identity management systems, along with the match-

ing cCards (if any), to the card selector to be displayed to the

user. The card selector displays the list of supported identity man-

agement systems, together with the available cCards, indicating

which cCards have been used previously with this RP. It could

also indicate which identity management systems have been pre-

viously used with this RP.

Depending on the implementation and the number of systems and

cCards to be displayed, the card selector might only display the

cCards previously used. In such a case it would need to indicate

that other cCards are also available, and would need to provide a

means to retrieve them.

In both cases, the card selector should also allow the user to create a

new local cCard, if the relevant identity management system supports

such cCards.

8. User→ Card Selector: Selecting/Creating cCards. The user selects (or

creates) a cCard.

9. Card Selector→ IDSpace Kernel: User Action Results. The card selec-

tor reports the results of the user actions back to the IDSpace kernel.

10. IDSpace Kernel
 IDSpace Components. The IDSpace kernel evalu-

ates the results received from the card selector, and takes the appropri-

ate steps.

If the user has chosen to select an existing cCard, then the following

processes take place.

361

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

a) The IDSpace kernel determines whether an IdP (local or remote)

needs to be contacted. If not, control is passed to step 13. If so, the

protocol continues.

b) The IDSpace kernel determines the IdP (local or remote) that must

be contacted in order to enable the user to obtain the security to-

ken required by the RP. This also includes determining the nature

of the information regarding the user (e.g. login credentials) that

must be supplied to this IdP.

c) IDSpace Kernel
 Card Selector: Displaying IdP Identity. If this

IdP has not previously been used, or if it does not use HTTPS, the

IDSpace kernel uses the card selector to obtain user consent before

sending the IdP any information. This step is designed to mitigate

the risks of phishing attacks. In such a case the card selector re-

ports the user response back to the kernel.

d) If user consent has been obtained, the kernel now passes a token

request to the IdP (see step 11). Depending on the identity man-

agement system in use, this token request will have been either

received from the RP or created by the IDSpace kernel.

If the user has chosen to create a local cCard, the following processes

take place.

a) IDSpace Kernel
 Selector GUI. The kernel invokes a special card

selector window to allow the user to enter the necessary data.

This would typically include allowing the user to personalise the

cCard, e.g. by uploading a cCard image, entering a cCard name,

etc. Such steps would enable the cCard to be readily recognisable.

b) IDSpace Kernel
 cCard Creation Module (in the LIP): cCard Cre-

ation. The kernel instructs the cCard creation module to create an

XML-based cCard using the user-inserted data. The cCard cre-

ation module returns the newly-created cCard to the kernel.

362

13.5 IDSPACE OPERATION

c) IDSpace Kernel
 cCard Store: cCard Storage. The kernel sends

the cCard to the cCard store for permanent storage; the cCard

store reports back to the kernel whether or not the operation has

been successful.

d) IDSpace Kernel
 Card Selector. The kernel treats the newly-

created cCard as a user-selected cCard and step 10a repeats.

11. IDSpace Kernel
 IdP. One of the following processes takes place,

depending on whether the selected IdP is local or remote.

• If a remote IdP is selected, and if such information is required by

the IdP (and is not already stored by IDSpace), then the IDSpace

kernel prompts the user to enter the relevant IdP credentials us-

ing a special credential screen. If this fails, e.g. if the kernel does

not support the IdP authentication method, or if the user-selected

identity management system dictates that the UA must be redi-

rected to the IdP, then the kernel redirects the UA (web browser)

to the remote IdP along with an authentication request. In the

latter case the IdP can authenticate the user directly using an au-

thentication method of its choice.

If user authentication is successful, the IdP issues a security token.

• If a local IdP is selected, then the kernel constructs a token request

and sends it to the LIP. The LIP responds with an appropriate

security token.

12. Token Displayer Module
 User. If an identity management system

other than an Information Card system such as CardSpace is in use,

then the token displayer module intercepts, analyses, and displays in-

formation about the security token before releasing it to the RP, and

seeks user consent for release. If consent is denied, then the protocol is

terminated. As stated in section 13.3.2.2, this assumes that the token is

363

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

not end-to-end encrypted to the RP and that it is not sent via a direct

IdP-RP channel.

If CardSpace is in use, then, as stated in section 4.3.6, the CardSpace

IdP will send back a display token along with the real token, which

the kernel can instruct the card selector to display to the user, prior to

obtaining user consent.

13. IDSpace Kernel → UA → RP: Passing Security Token. The security

token is passed to the UA, which forwards it to the RP.

14. RP→ UA: Grant/Deny Access. The RP verifies the token, and, if sat-

isfied, grants access to the user.

13.6 Mapping Specific Protocol Architectures onto IDSpace

As discussed in sections 3.5.1 and 3.7.3, identity management systems can

be classified according to how the RP communicates via the client with the

IdP. There are two main ways in which this can be achieved, namely by

using an HTTP redirect or involving an active client.

We now describe how two specific examples of identity management

systems can be mapped onto the IDSpace architecture. We consider OpenID

(see section 4.5) and Liberty (using a LEC) (see section 4.7) since they are

widely discussed examples of a redirect-based and an active client-based

system, respectively. We also briefly look at CardSpace support. These de-

scriptions are intended as examples; it is important to note that this is not

the only way in which the systems concerned could be supported using

IDSpace.

364

13.6 MAPPING SPECIFIC PROTOCOL ARCHITECTURES ONTO IDSPACE

13.6.1 IDSpace and OpenID

13.6.1.1 cCards

Either prior to, or during, use of IDSpace, the user must create an OpenID-

specific cCard. This cCard must contain one required field, and may also

contain an optional field, as follows.

1. The single required field must contain the user’s OpenID identifier.

2. The optional field contains the URL of the user’s (OpenID-enabled) IdP.

This field is optional since it is not strictly necessary for IDSpace opera-

tion, as an OpenID-enabled RP will specify the URL of the IdP it needs

to use. However, since this leaves open the possibility of a fake IdP

attack by a malicious or fake RP, the use of the optional field, which

enables cross-verification of the URL provided by the RP, is strongly

recommended.

The cCard contains a unique, OpenID-specific identifier, and is stored in the

secure cCard store, possibly in an OpenID-specific location (e.g. to allow

faster retrieval).

13.6.1.2 Protocol

We now describe one way in which IDSpace could support OpenID. Steps

3b, 4–9, 10a–d (second series), 13 and 14 of the IDSpace-OpenID-specific

protocol are the same as the corresponding steps of the generic IDSpace

protocol given in section 13.5.2, and hence are not described here. Whenever

prompted to select, create, or import a cCard, it is assumed that the user

will select, create, or import an OpenID-specific cCard (an IDcard — see

Fig. 13.7).

1. UA→ RP: HTTP/S Request. The user navigates to an OpenID-enabled

RP.

365

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

2. RP→ UA: HTTP/S Response. A login page is returned containing an

OpenID form.

3. IDSpace Browser Extension→ UA: Page Processing. The browser ex-

tension performs the following processes on the login page provided

by the RP.

a) Page Scanner Module → UA: Page Scanning. The page scanner

module searches the login page for an OpenID login form; such

a form can be identified by searching for an input field named

openid url or openid identifier. The page scanner module also scans

the page for triggers for other identity management systems sup-

ported by IDSpace. Finally, the module passes the search results

to the identity system selection module.

c) Activator
 UA: Card Selector Activation. The activator module

performs the following processes.

i. It embeds IDSpace-enabling tags in the RP login page, includ-

ing a security policy in the format required by IDSpace. This

policy must request OpenID-specific cCards.

ii. It adds a special function to the RP-provided login page to

receive the security token that will later be returned by the

IDSpace kernel.

iii. It employs implementation-dependent means to enable the

user to activate the IDSpace card selector (see sections 13.4.2

and 13.4.3); for example, it might cause a special icon to ap-

pear above the submit button with the property that clicking

this icon invokes the selector.

10. IDSpace Kernel
 IDSpace Components. The IDSpace kernel evalu-

ates the results provided by the card selector and takes appropriate

366

13.6 MAPPING SPECIFIC PROTOCOL ARCHITECTURES ONTO IDSPACE

actions. If the user has chosen to select an existing OpenID-specific

cCard, then the following steps are performed.

a) The kernel retrieves the cCard and passes it to the browser.

b) The IDSpace browser extension parses the received cCard, retriev-

ing the value of the user’s OpenID and (if present) the OpenID

IdP.

c) The browser extension temporarily stores the OpenID IdP value.

d) The browser extension inserts the user’s OpenID identifier in the

OpenID form, and submits the form back to the RP.

e) The RP performs an IdP discovery process (see section 4.5.2). As

soon as the OpenID IdP has been discovered, the RP generates an

OpenID authentication request and attempts to redirect the user’s

browser to the IdP.

f) The browser extension intercepts the RP-initiated OpenID authen-

tication request, and compares the value of the OpenID IdP in this

request with the OpenID IdP value it stored in step 10c. If they

match, the process continues (with redirection of the browser to

the IdP). If not, the browser extension could either terminate or

warn the user of a possible phishing threat and ask whether or

not to continue.

g) From this point on, OpenID operates as it would do in the ab-

sence of IDSpace, except for the final check in step 12 (see also the

discussion below). In particular the user experience is OpenID-

specific, and the user will see the OpenID IdP’s authentication

page.

11. OpenID IdP
 User. If necessary, the OpenID IdP authenticates the

user. If successful, the OpenID IdP requests permission from the user

to send the OpenID assertion token to the RP.

367

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

12. Token Displayer
 User. When the OpenID IdP attempts to redirect

the UA back to the RP, the token displayer module intercepts, analyses,

and displays a summary of the contents of the OpenID security token

to the user before releasing it to the RP. If user consent to proceed

is given, then the protocol continues; otherwise it terminates. Note

that this is possible since the OpenID token provided by the IdP is not

encrypted.

The above example describes only a partial integration of OpenID with

IDSpace. We believe that it is possible to replace direct authentication of the

user by the OpenID IdP with a process mediated by IDSpace using the IdP

authentication module. This would enhance the user experience by making

the user authentication process consistent across different identity manage-

ment systems. However, whilst the system described above has been pro-

totyped, the latter enhancement has not been implemented, and hence its

practicality remains untested.

13.6.2 IDSpace and LEC

13.6.2.1 LECcards

Either prior to, or during, use of IDSpace, the user must create a Liberty-

specific cCard. This cCard must contain one required field, and may also

contain one or more optional fields, as follows.

1. The single required field must contain the URL of the user’s LEC IdP.

2. The optional field(s), could contain other alternative backup LEC IdPs.

The cCard contains a unique, LEC-specific identifier, and is stored in the

secure cCard store, possibly in a LEC-specific location (e.g. to allow faster

retrieval).

368

13.6 MAPPING SPECIFIC PROTOCOL ARCHITECTURES ONTO IDSPACE

13.6.2.2 IdP Authentication Functionality

The IdP authentication module is part of the IDSpace client software. When

supporting Liberty (LEC profile) its functionality includes the ability to han-

dle token requests in Liberty format (received from Liberty RPs and sent to

Liberty IdPs) and also the means to parse and process token messages re-

ceived from a Liberty IdP. It makes use of the networker module to com-

municate with the IdP and the RP.

13.6.2.3 Protocol

We now describe one way in which IDSpace could act as a LEC. Steps 3(b,c),

4–9, 10a–d (second series), 13 and 14 of the IDSpace-LEC-specific protocol

are the same as the corresponding steps of the generic IDSpace protocol

given in section 13.5.2, and hence are not described again here. Whenever

prompted to select, create, or import a cCard, we assume that the user will

select, create, or import a Liberty-specific cCard.

1. UA→ RP: HTTP/S Request. A user navigates to a LEC-enabled RP.

2. RP→ UA: HTTP/S Response. A login page is returned containing an

option (e.g. a button, link, or image) to use Liberty (we use Liberty here

and below to mean Liberty using the LEC profile).

3. IDSpace Browser Extension→ UA: Page Processing. The browser ex-

tension performs the following processes on the login page provided

by the RP.

a) Page Scanner Module → UA: Page Scanning. The page scanner

module searches the page for a distinguishing feature that indi-

cates support for Liberty. The page scanner module also scans

the page for triggers for other identity management systems sup-

ported by IDSpace. Finally, the module passes the search results

to the identity system selection module.

369

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

10. IDSpace Kernel
 IDSpace Components. The IDSpace kernel evalu-

ates the results provided by the card selector and takes appropriate ac-

tions. If the user has chosen to select an existing Liberty-specific cCard,

then the following steps are performed.

a) The IDSpace kernel retrieves the cCard, and passes it to the IdP

authentication module.

b) The IdP authentication module parses the received cCard, retriev-

ing the values of the LEC IdP(s) and temporarily stores them.

c) IdP Authentication Module → RP: HTTP Request. The IdP au-

thentication module issues an HTTP request to the RP containing

a Liberty-enabled header (or with a Liberty-enabled entry in the

User-Agent header).

d) RP→ IdP Authentication Module: HTTP Response + Authentica-

tion Request. The RP generates a Liberty authentication request

and sends it to the IdP authentication module in the body of the

HTTP response. The RP could choose to include a list of IdPs it

knows about in the request.

e) The IdP authentication module compares the received list of IdPs

(if present) with the LEC IdP(s) retrieved from the selected cCard.

If there is a non-empty intersection, then a cCard-specified IdP is

contacted (this should be the primary IdP if possible); if not, then

either the protocol terminates or the user could be asked to choose

an IdP from amongst those in the RP list. The user could also be

offered the choice to store the selected IdP in the settings store for

future authentication attempts. If the RP does not specify a list of

IdPs, then the cCard-associated IdP is contacted.

f) IdP Authentication Module → Liberty IdP: Authentication Re-

quest. The IdP authentication module issues an HTTP POST to

send a SOAP-based Liberty authentication request message to the

370

13.7 IMPLEMENTATION

appropriate IdP. Note that this request must contain the authenti-

cation request as received from the RP.

11. Liberty IdP
 User. If necessary, the IdP authenticates the user. Ide-

ally this process would be mediated by IDSpace using the IdP authen-

tication module to provide a user experience that is consistent across

identity management systems. If successful, the IdP generates a SOAP-

based, signed Liberty authentication response message and sends it to

the IdP authentication module via an SSL/TLS channel.

12. Token Displayer
 User. If the token is not end-to-end encrypted, the

token displayer module displays a summary of the token and requests

user consent to proceed. If consent is granted, the protocol continues;

otherwise it terminates.

13.6.3 IDSpace and CardSpace

During or prior to use of IDSpace, the user must create a CardSpace-specific

cCard (using the LIP) and/or import a CardSpace-managed InfoCard. The

IDSpace generic protocol given in section 13.5.2, excluding step 12, could

then be used to provide the functionality of CardSpace (see section 4.3).

13.7 Implementation

We now briefly describe a (Windows-based) partial implementation of the

IDSpace architecture. This implementation employs ActiveX controls to act

as a gateway between the web page the IDSpace browser extension is pro-

cessing and the IDSpace client software. ActiveX controls allow the IDSpace

browser extension to access properties, call functions, or, more generally, to

communicate with the IDSpace client software.

Technically speaking, ActiveX controls3 [74] are simple OLE (Object Link-

ing and Embedding) objects — i.e. in-process servers that must support the
3http://msdn.microsoft.com/en-us/library/aa751972(VS.85).aspx

371

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

IUnknown interface. Such controls expose their functionality to the COM

(Component Object Model), and host applications such as Internet Explorer

can call on functional elements using QueryInterface. Although ActiveX con-

trols are a Microsoft-specific technology, similar technologies can be used

on other platforms. For example, Netscape, Mozilla Firefox and some other

browsers use the Netscape plug-in application programming interface (NPAPI),

which provides similar functionality [74].

As in the prototypes described in previous chapters of this thesis, the

IDSpace browser extension is coded as a JavaScript browser plug-in, exe-

cuted using a C#-driven BHO (see section 6.4.2).

Once an identity management system such as OpenID, CardSpace, or

even a username-password form is discovered by the page scanner mod-

ule of the IDSpace plug-in (see section 13.4.1), the plug-in’s activator mod-

ule embeds an HTML object tag specifying the classid (i.e. a GUID) of the

IDSpace-specific ActiveX control. This instructs Internet Explorer to auto-

matically download and install the control, and also exposes the control’s

public methods to the JavaScript-based plug-in.

The IDSpace user interface, including the card selector (see Fig. 13.3), is

implemented using C#. cCards are implemented using XML, and are stored

in encrypted form (see Fig. 13.4).

The prototype implementation of IDSpace could readily be adapted to

provide the PassCard functionality (see chapter 10). An IDSpace-based Pass-

Card would work in exactly the same way as the CardSpace-based Pass-

Card, except that the:

• HS is not required, since the IDSpace browser plug-in will have ac-

cess to the appropriate username and password regardless of whether

HTTP or HTTPS is in use (see section 10.2); and

• username-password values can be stored in IDSpace cCard fields de-

fined specifically for the purpose (see Fig 13.5).

372

13.7 IMPLEMENTATION

Figure 13.3: The IDSpace Card Selector

Figure 13.4: Resized Screenshot of an XML-based, Encrypted cCard

Similarly, IDSpace could just as straightforwardly be configured to provide

the SingleSigner functionality (see chapter 11).

If the page scanner module of the IDSpace plug-in discovers that an RP

page supports OpenID, which is achieved by detecting the strings openid url

373

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

Figure 13.5: An IDSpace PassCard

or openid identifier (see section 13.4.1), the IDSpace card selector lights up.

This allows the user to select an IDcard (see Fig 13.6). As shown in Fig 13.7,

Figure 13.6: IDSpace IDcards

the IDcard requires the user to enter their OpenID identifier and, optionally,

the URL of their OpenID-enabled IdP. Once the user selects and submits an

374

13.8 CONCLUDING REMARKS

IDcard, IDSpace fills the OpenID form with the value of the user’s OpenID

identifier, and, from this point on, the OpenID native protocol continues in

the normal way.

Figure 13.7: An IDSpace IDcard

13.8 Concluding Remarks

We have described an architecture for a client-based, platform-independent,

protocol-agnostic identity management tool that operates in conjunction

with a client web browser. A tool conforming to the architecture provides

a user-intuitive means of managing digital identities and credentials for all

web activities. A (partial) implementation of the architecture has been de-

scribed.

375

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

13.8.1 Relationship to the Prior Art

13.8.1.1 CardSpace and Higgins

CardSpace (see section 4.3) shares certain features in common with IDSpace.

In particular, it too is client-based and operates in conjunction with a web

browser. However, CardSpace requires the IdPs and RPs to implement a

specific set of protocols for inter-communication; we refer to these as the

CardSpace protocols, although many are based on WS-* standards (see sec-

tion 2.5.6). Although CardSpace supports a wide range of security token

formats, these tokens must be sent using a very specific protocol suite.

This gives rise to a classic chicken and egg problem — without an estab-

lished identity infrastructure of IdPs, there is little incentive for RPs to make

the changes necessary to support CardSpace. Similarly, without any cus-

tomer RPs, there is little incentive to set up a CardSpace-specific IdP infras-

tructure.

By contrast, IDSpace gives the convenience and intuitive user experi-

ence of CardSpace, without requiring RPs and IdPs to change the way they

work. That is, IDSpace enables convenient and more secure operation by

end users, without any changes to the existing identity infrastructures or

service providers. Moreover, once deployed, IDSpace will enable much

simpler deployment of more sophisticated systems such as the CardSpace

protocols (and the many other systems currently emerging).

Higgins, which originated with the goal of providing CardSpace-like

functionality on non-Windows platforms (see section 4.4), has somewhat

similar objectives to IDSpace.

13.8.1.2 Other Schemes

In chapters 10 and 11 we described how to build browser extensions which

enable CardSpace/Higgins identity selectors to support password manage-

ment and password-based SSO without requiring any changes to RPs or to

376

13.8 CONCLUDING REMARKS

identity selectors. Operational, open-source prototypes were also described.

These prototypes demonstrate the workability of certain aspects of IDSpace.

13.8.2 Novel Features

The main novel feature of IDSpace, as intimated above, is the proposal of

an architecture for a client-based system which supports multiple identity

management systems transparently to RPs and IdPs. That is, it combines the

convenience and intuitiveness of the CardSpace user interface with support

for multiple systems, without requiring any changes to existing RPs and

IdPs. To our knowledge, the only previous work permitting client-based

support for multiple identity management systems requires the RPs and

IdPs to adopt new protocols. The IDSpace architecture incorporates novel

components, including the page scanner, activator, identity system selector and

token displayer, which are not found in the CardSpace or Higgins architec-

tures.

13.8.3 Future Work

Our main initial goal is to complete an operational prototype of IDSpace,

which we plan to make available for public scrutiny and testing. We intend

that the initial version should support all the identity management systems

discussed in this chapter.

A variety of future directions for this research present themselves, a few

of which we briefly mention.

• Apart from the identity management systems mentioned previously, it

would also be desirable if IDSpace could provide support for protocols

providing a high degree of privacy protection for end users, notably

U-Prove and IdeMix (see sections 4.9.2 and 4.9.3, respectively). This

remains a topic of ongoing research.

377

13. A UNIVERSAL CLIENT-BASED IDENTITY MANAGEMENT TOOL

• In chapters 6 to 9 we investigated using a client-based tool to sup-

port interoperation between different identity management systems.

It would be attractive (and straightforward) to build this functionality

into an IDSpace implementation.

• We would like to investigate the possibility of configuring IDSpace to

support user reputation. Instead of user reputation being managed by

IdPs, as proposed by Agudo et al. [4], it appears likely to be possi-

ble to extend the IDSpace client software to support the management

of user reputation; this would enable IDSpace to provide interested

RPs with user reputation values. IDSpace could be set to retrieve user

reputation values from multiple sources, including social networking

sites, blog entries, specialised websites, financial institutions, or gov-

ernmental agencies. This would remove the need to make changes to

IdP servers. Of course, such a change would raise significant trust is-

sues, since the consumer of reputation values would need to trust that

the client software has not been manipulated to report incorrectly high

reputation values; however, it may be possible to address this concern

through the use of trusted execution environments on the user plat-

form, e.g. through the use of the TPM (see section 5.5).

• Finally, in future work we intend to study variants of the architecture

presented here to further enhance the security and privacy of user au-

thorisation, whilst maintaining transparency to third parties.

378

Part V

Conclusions

379

Overview

Part V concludes the thesis by summarising the main contributions as well

as highlighting possible areas for future work. This part of the thesis con-

sists of a single chapter, chapter 14.

381

Chapter 14

Conclusions and Future Work

14.1 Summary and Conclusions

Including this part, the thesis is divided into five parts, as follows.

The first part of the thesis contains background material and a review of

relevant literature. It contains three chapters. Chapter 2 gave an introduc-

tion to, and definitions of, the concepts of identity, privacy, and security, as

well as outlining associated protocols. Chapter 3 provided an introduction

to identity management, covering related topics such as single sign on and

Cameron’s identity laws. It also gave an abstract model for identity man-

agement, and considered a range of properties which may be possessed by

an identity management system. Chapter 4 provided a detailed description

of those identity management systems of greatest relevance to this thesis,

namely CardSpace, Higgins, OpenID, OAuth, Liberty, and Shibboleth. The

chapter also gave an overview of certain other systems of background im-

portance, namely Microsoft Passport, U-Prove, and IdeMix.

In the second part of the thesis, we described a novel approach to sup-

porting interoperation between a wide range of identity management sys-

tems. This part contains a total of five chapters. First, in chapter 5, we

described a general model for interoperation between an Information Card-

based identity management system and almost any other existing identity

management system. Using this model, Information Card users are able to

obtain a security token from an identity provider not supporting Informa-

tion Cards; the contents of such a token can be processed by an Information

Card-enabled relying party. We then went on to describe four specific in-

383

14. CONCLUSIONS AND FUTURE WORK

stantiations of this model, that enable interoperation between an Informa-

tion Card system and:

• Liberty (chapter 6);

• Shibboleth (chapter 7);

• OpenID (chapter 8); and

• OAuth (chapter 9).

In the third part of the thesis, we introduced three novel schemes de-

signed to enhance the practicality and security of identity management sys-

tems. This part contains three chapters, as follows.

• Chapter 10 described PassCard, a novel scheme enabling an Informa-

tion Card system to be used as a password manager. Usernames and

passwords are stored in personal cards, and these cards can be used

to sign-on transparently to corresponding websites. The scheme does

not require any changes to login servers, default browser security set-

tings, or to identity selectors; in particular, it does not require websites

to support an Information Card system. The chapter also gave details

of a proof-of-concept prototype, together with security and usability

analyses.

• Chapter 11 introduced SingleSigner, a related scheme that allows an

Information Card system to be used as a password-based single sign

on system. The chapter described three approaches to implementing

SingleSigner. In each case users are able to store credentials for a set of

websites in a single personal card, and use it to seamlessly sign-on to

all these websites. The approaches do not require any changes to login

servers or to identity selectors and, in particular, they do not require

websites to support Information Cards. The chapter also described

384

14.1 SUMMARY AND CONCLUSIONS

three proof-of-concept prototypes and gave usability, security and per-

formance analyses. Chapters 10 and 11 are concerned with techniques

intended to help improve the usability and security of password use,

as well as potentially encouraging adoption of Information Card sys-

tems.

• Chapter 12 described a scheme that uses a mobile device to enhance

user authentication in Information Card systems. During the process

of user authentication on a computer using an Information Card sys-

tem, a random and short-lived one-time password is sent to the user’s

mobile device; this must then be entered into the computer by the user

when prompted. The scheme does not require any changes to login

servers, identity selectors, or to the mobile device itself. Details of

a proof-of-concept prototype, together with security and operational

analyses, were also provided.

In the fourth part of the thesis, we introduced IDSpace, a universal iden-

tity management tool designed to support a wide range of identity man-

agement systems using a single user interface. IDSpace is intended both

to enhance user privacy and to address a range of security issues, notably

phishing attacks. This part consists of a single chapter, chapter 13, which

described IDSpace in detail. The goal of IDSpace is to simplify the use of

a wide range of existing identity technologies, helping to encourage their

use whilst imposing no additional burden on relying parties and identity

providers. The chapter also described examples of the operation of the

scheme with certain existing identity management systems.

In order to maximise the practicality and applicability of the schemes

proposed in this thesis, we have endeavoured to ensure that the schemes

are either completely transparent, and hence immediately deployable, or

require only minimal changes to the existing identity management infras-

tructure. Application of the proposed schemes would enable interoperation

385

14. CONCLUSIONS AND FUTURE WORK

between identity management systems, increase the rate of their adoption,

improve user security (particularly in enhancing user authentication and

defeating phishing attacks), and provide a consistent user experience. The

research results documented in this thesis have been published in a series

of 11 research papers, articles and patents (see section 1.5).

14.2 Possible Future Work

We conclude the thesis by highlighting possible areas for future work.

We plan to explore the possibility of designing a client-based interop-

eration model similar to that described in chapter 5 to support interoper-

ation between an Information Card identity provider and relying parties

conforming to other identity management systems.

Future work also includes building a scheme that enables the use of the

PassCard and SingleSigner systems (described in chapters 10 and 11) in

smart phones, such as Apple’s iPhone, Samsung’s Galaxy, or HTC desire.

A further possible topic for future work would be to investigate the possi-

bility of building a portable version of PassCard and SingleSigner to support

users who do not have installation privileges or are forced to use untrusted

machines, e.g. when travelling. In addition, we plan to investigate the pos-

sibility of extending SingleSigner to support single sign off.

Further possible future work includes exploring the possibility of ex-

tending the CardSpace-mobile scheme described in chapter 12 to operate

with client-based identity management systems other than CardSpace, in-

cluding password managers. We also plan to extend the prototype de-

scribed in chapter 12 in various ways, including:

• preventing it being disabled by an unauthorised computer user;

• providing support for one-time password transfer to the mobile via

Bluetooth and/or infrared; and

386

14.2 POSSIBLE FUTURE WORK

• supporting automated one-time password entry from the mobile de-

vice.

The main initial goal for the IDSpace system described in chapter 13 is to

complete a fully functional prototype, which we plan to make available for

public scrutiny and testing. A variety of future directions for this research

present themselves, including the following.

• Apart from the identity management systems discussed in chapter 13,

it would also be desirable if IDSpace could provide support for proto-

cols providing a high degree of privacy protection for end users, no-

tably U-Prove and IdeMix (see sections 4.9.2 and 4.9.3).

• In chapters 6 to 9 we investigated using a client-based tool to sup-

port interoperation between different identity management systems.

It would be attractive (and apparently straightforward) to build this

functionality into an IDSpace implementation.

• Finally, we could study variants of the IDSpace architecture to further

enhance the security and privacy of user authorisation whilst main-

taining transparency to third parties.

387

Bibliography

[1] Rania Abdelhameed, Sabira Khatun, Borhanuddin Mohd Ali, and Ab-

dulRahman Ramli. Authentication model based Bluetooth-enabled

mobile phone. Journal of Computer Science, 1(2):200–203, 2005. 330, 331

[2] Renato Accornero, Daniele Rispoli, and Francesco Bergadano.

Privacy-enhanced identity via browser extensions and linking ser-

vices. In Pierangela Samarati, Sara Foresti, Jiankun Hu, and Giovanni

Livraga, editors, Proceedings of NSS ’11 — the 5th International Confer-

ence on Network and System Security, September 6–8, 2011, Milan, Italy,

pages 89–96. IEEE, New York, 2011. 218

[3] Carlisle Adams and Steve Lloyd. Understanding PKI: Concepts, Stan-

dards, and Deployment Considerations. Addison Wesley, Reading, Mas-

sachusetts, 2nd edition, 2002. 76

[4] Isaac Agudo, M. Carmen Fernández Gago, and Javier Lopez. A mul-

tidimensional reputation scheme for identity federations. In Fabio

Martinelli and Bart Preneel, editors, Proceedings of EuroPKI ’09 — the

6th European Workshop on Public Key Infrastructures, Services and Appli-

cations, September 10–11, 2009 Pisa, Italy. Revised Selected Papers, volume

6391 of LNCS, pages 225–238. Springer, 2009. 378

[5] Gail-Joon Ahn, Moonam Ko, and Mohamed Shehab. Portable user-

centric identity management. In Sushil Jajodia, Pierangela Samarati,

and Stelvio Cimato, editors, Proceedings of IFIP SEC ’08 — the IFIP TC-

11 23rd International Information Security Conference, IFIP 20th World

389

BIBLIOGRAPHY

Computer Congress, September 7–10, 2008, Milano, Italy, volume 278 of

IFIP, pages 573–587. Springer, Berlin, Heidelberg, 2008. 95

[6] Haitham S. Al-Sinani. Integrating OAuth with Information Card sys-

tems. In Ajith Abraham, Daniel Zeng, Dharma Agrawal, Mohd Faizal

Abdollah, Emilio Corchado, Valentina Casola, and Choo Yun Huoy,

editors, Proceedings of IAS ’11 — the 7th International Conference on

Information, Assurance, and Security, December 5–8, 2011, Malacca,

Malaysia, pages 198–203. IEEE, New York, 2011. [Full version avail-

able at: http://www.ma.rhul.ac.uk/static/techrep/2011/

RHUL-MA-2011-15.pdf]. 257

[7] Haitham S. Al-Sinani. Supporting interworking between OAuth and

Information Card systems. Journal of Information Assurance and Security

(to appear), 7, 2012. 257

[8] Haitham S. Al-Sinani, Waleed A. Alrodhan, and Chris J. Mitchell.

CardSpace-Liberty integration for CardSpace users. In Ken Klingen-

stein and Carl M. Ellison, editors, Proceedings of IDtrust ’10 — the

9th Symposium on Identity and Trust on the Internet, April 13–15, 2010,

Gaithersburg, Maryland, pages 12–25. ACM, New York, 2010. 209

[9] Haitham S. Al-Sinani and Chris J. Mitchell. Method and apparatus for

enabling authorised users to access computer resources. UK patent appli-

cation GB1115866.4, filed 14th September 2011. 340

[10] Haitham S. Al-Sinani and Chris J. Mitchell. Using CardSpace as a

password manager. In Elisabeth de Leeuw, Simone Fischer-Hübner,

and Lothar Fritsch, editors, Proceedings of IFIP IDMAN ’10 — the 2nd

IFIP WG 11.6 Working Conference on Policies and Research in Identity

Management, November 18–19, 2010, Oslo, Norway, volume 343 of IFIP

Advances in Information and Communication Technology, pages 18–30.

Springer, Boston, 2010. 274

390

BIBLIOGRAPHY

[11] Haitham S. Al-Sinani and Chris J. Mitchell. CardSpace-Shibboleth

integration for CardSpace users. In ACNS ’11 [industrial track pro-

ceedings], the 9th International Conference on Applied Cryptography and

Network Security, June 7–10, 2011, Nerja, Malaga, Spain, pages 49–66,

2011. [Full version available at: http://www.isg.rhul.ac.uk/

cjm/Papers/cssifc.pdf]. 231

[12] Haitham S. Al-Sinani and Chris J. Mitchell. Client-based CardSpace-

OpenID interoperation. In Erol Gelenbe, Ricardo Lent, and Geor-

gia Sakellari, editors, Proceedings of ISCIS ’11 — the 26th Inter-

national Symposium on Computer and Information Sciences, Septem-

ber 26–28, 2011, London, UK, Lecture Notes in Electrical Engineer-

ing (LNEE), pages 387–393. Springer, London, 2011. [Full ver-

sion available at: http://www.ma.rhul.ac.uk/techreports/

2011/RHUL-MA-2011-12.pdf]. 241

[13] Haitham S. Al-Sinani and Chris J. Mitchell. Enhancing CardSpace au-

thentication using a mobile device. In Yingjiu Li, editor, Proceedings of

DBSEC ’11 — the 25th IFIP WG 11.3 Conference on Data and Applications

Security and Privacy, July 11–13, 2011, Richmond, Virginia, volume 6818

of LNCS, pages 201–216. Springer-Verlag, Berlin, 2011. 317

[14] Haitham S. Al-Sinani and Chris J. Mitchell. Extending the scope of

CardSpace. In Mehmet A. Orgun, Atilla Elçi, Oleg B. Makarevich,

Sorin A. Huss, Josef Pieprzyk, Lyudmila K. Babenko, Alexander G.

Chefranov, and Rajan Shankaran, editors, Proceedings of SIN ’11 —

the 4th International Conference on Security of Information and Networks,

November 14–19, 2011, Sydney, Australia, pages 235–238. ACM, New

York, 2011. [Full version available at: http://www.ma.rhul.ac.

uk/techreports/2011/RHUL-MA-2011-15.pdf]. 274

391

BIBLIOGRAPHY

[15] Haitham S. Al-Sinani and Chris J. Mitchell. A universal client-based

identity management tool. In Proceedings of EuroPKI ’11 — the 8th Eu-

ropean Workshop on Public Key Infrastructures, Services and Applications,

September 15–16, 2011, Leuven, Belgium (to appear), LNCS. Springer-

Verlag, Berlin, 2011. 337, 340

[16] Haitham S. Al-Sinani and Chris J. Mitchell. Enabling interoperation

between Shibboleth and Information Card systems. Security and Com-

munication Networks (to appear), 2012. 231

[17] Haitham S. Al-Sinani, Chi Nguyen, and Branislav Vuksanovic. H-

IBAS-H — Authentication system for university student portal us-

ing images. In Proceedings of ICCCP ’09 — the International Con-

ference on Communication, Computer and Power, February 15–18, 2009,

Muscat, Oman. Sultan Qaboos University and IEEE-Oman Sec-

tion, 2009. http://icccp.net/proceedings/2009/Papers/

ICCCP09-045.pdf. 73

[18] Fadi Aloul, Syed Zahidi, and Wassim El-Hajj. Two factor authen-

tication using mobile phones. In Proceedings of AICCSA ’09 — the

IEEE/ACS International Conference on Computer Systems and Applica-

tions, pages 641–644. IEEE, New York, 2009. 329

[19] Gergely Alpár, Jaap-Henk Hoepman, and Johanneke Siljee. The iden-

tity crisis — security, privacy and usability issues in identity manage-

ment. CoRR, abs/1101.0427, 2011. 47, 49

[20] Abdullah Alqattan, Nima Kaviani, Patrick Lewis, and Nicholas Pear-

son. A Two-factor Authentication System Using Mobile Devices to Protect

against Untrusted Public Computers. University of British Columbia,

Canada, 2007. 329

[21] Waleed A. Alrodhan. Privacy and practicality of identity man-

agement systems. Technical Report RHUL-MA–2010–14, Depart-

392

BIBLIOGRAPHY

ment of Mathematics, Royal Holloway, University of London,

2010. http://www.ma.rhul.ac.uk/static/techrep/2010/

RHUL-MA-2010-14.pdf. 47, 60, 74, 92, 94, 95, 99, 105, 131, 144, 153,

155, 161, 163, 165, 167, 203, 227

[22] Waleed A. Alrodhan and Chris J. Mitchell. A client-side CardSpace-

Liberty integration architecture. In Kent E. Seamons, Neal McBur-

nett, and Tim Polk, editors, Proceedings of IDtrust ’08 — the 7th Sympo-

sium on Identity and Trust on the Internet, March 4–6, 2008, Gaithersburg,

Maryland, volume 283 of ACM International Conference Proceeding Se-

ries, pages 1–7. ACM, New York, 2008. 153, 205, 226

[23] Murray Altheim and Shane McCarron (editors). XHTML 1.1 —

Module-based XHTML. W3C Recommendation, 2010. http://www.

w3.org/TR/xhtml11/. 90

[24] Steve Anderson et al. Web Services Trust Language (WS-

Trust), 2005. http://download.boulder.ibm.com/ibmdl/

pub/software/dw/specs/ws-trust/ws-trust.pdf. 91

[25] Mikaël Ates, Christophe Gravier, Jérémy Lardon, Jacques Fayolle, and

Bruno Sauviac. Interoperability between heterogeneous federation

architectures: Illustration with SAML and WS-Federation. In Pro-

ceedings of SITIS ’07 — the 3rd International Conference on Signal-Image

Technologies and Internet-based Systems, December 16–18, 2007, Shanghai,

China, pages 1063–1070. IEEE, New York, 2007. 98, 205

[26] Mikaël Ates, Christophe Gravier, Jérémy Lardon, Jacques Fayolle,

and Bruno Sauviac. Interoperability between heterogeneous federa-

tion architectures: Illustration with SAML and WS-Federation. CoRR,

abs/0812.2094, 2008. 98, 205

[27] Siddharth Bajaj et al. Web Services Policy Framework (WS-Policy),

2006. http://download.boulder.ibm.com/ibmdl/pub/

393

BIBLIOGRAPHY

software/dw/specs/ws-polfram/ws-policy-2006-03-01.

pdf. 90

[28] Keith Ballinger et al. Web Services Metadata Exchange (WS-

MetadataExchange), 2006. http://download.boulder.

ibm.com/ibmdl/pub/software/dw/specs/ws-mex/

metadataexchange.pdf. 91

[29] Adam Barth. HTTP State Management Mechanism. IETF: RFC 6265,

2011. http://tools.ietf.org/html/rfc6265#section-3. 85

[30] Messaoud Benantar. Access Control Systems: Security, Identity Man-

agement and Trust Models. Springer, New York, Softcover reprint of

hardcover 1st ed. 2006 edition (2010). 47

[31] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Re-

source Identifier (URI): Generic Syntax. IETF: RFC 3986, 2005. http:

//ietf.org/rfc/rfc3986.txt. 85, 86

[32] Elisa Bertino and Kenji Takahashi. Identity Management: Concepts,

Technologies, and Systems. Artech House Publishers, Norwood, Mas-

sachusetts, 2011. 47, 74, 75, 100, 138, 144

[33] Vittorio Bertocci. Programming Windows Identity Foundation. Microsoft

Press, Redmond, Washington, 2010. 101

[34] Vittorio Bertocci, Garrett Serack, and Caleb Baker. Understanding Win-

dows CardSpace: An Introduction to the Concepts and Challenges of Digital

Identities. Addison-Wesley, Reading, Massachusetts, 2008. 77, 92, 95,

110, 111, 115, 119, 121, 122, 125

[35] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and

Nikhil Swamy. Verified implementations of the Information Card fed-

erated identity-management protocol. In Proceedings of ASIACCS ’08

394

BIBLIOGRAPHY

— the ACM symposium on Information, Computer and Communications

Security, pages 123–135. ACM, New York, 2008. 121, 123, 168

[36] Matt Bishop. Computer Security: Art and Science. Addison-Wesley Pro-

fessional, Boston, Massachusetts, 2002. 47, 64, 65

[37] Joshua B. Bolten. E-Authentication Guidance for Federal Agencies — M–

04–04. Office of Management and Budget (OMB), Executive Office of

the President, the White House, Washington DC, 2003. 74

[38] David Booth and Canyang Kevin (editors). Web Services Description

Language (WSDL) Version 2.0 Part 0: Primer. W3C Recommendation,

2007. http://www.w3.org/TR/wsdl20-primer/. 89

[39] Pete Bramhall, Marit Hansen, Kai Rannenberg, and Thomas Roessler.

User-centric identity management: New trends in standardisation

and regulation. IEEE Security & Privacy, 5(4):84–87, 2007. 95

[40] Stefan Brands. Rethinking Public Key Infrastructures and Digital Certifi-

cates: Building in Privacy. MIT Press, Cambridge, Massachusetts, 2000.

167, 169

[41] Stefan Brands. U-Prove Technology Overview. Microsoft, 2010. 167, 169,

174

[42] Stefan Brands, Liesje Demuynck, and Bart De Decker. A practical sys-

tem for globally revoking the unlinkable pseudonyms of unknown

users. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors,

Proceedings of ACISP ’07 — the 12th Australasian Conference on Informa-

tion Security and Privacy, July 2–4, 2007, Townsville, Australia, volume

4586 of LNCS, pages 400–415. Springer, Berlin, Heidelberg, 2007. 168

[43] Stefan Brands and Christian Paquin. U-Prove Cryptographic Specifica-

tion V1.0. Microsoft, 2010. 170, 172, 173

395

BIBLIOGRAPHY

[44] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and

François Yergeau (editors). eXtensible Markup Language (XML) 1.0.

W3C Recommendation, 5th edition, 2008. http://www.w3.org/

TR/2008/REC-xml-20081126/. 89

[45] James Brown, Phil Stradling, and Craig H. Wittenberg. U-Prove CTP

R2 White Paper — Revision 17. Microsoft, 2011. 171

[46] Bud P. Bruegger, Detlef Hühnlein, and Michael Kreutzer. Towards

global eID-interoperability. In Arslan Brömme, Christoph Busch, and

Detlef Hühnlein, editors, Proceedings of BIOSIG ’07 — Biometrics and

Electronic Signatures, Special Interest Group on Biometrics and Electronic

Signatures, July 12–13, 2007, Darmstadt, Germany, volume 108 of LNI,

pages 127–140. GI, 2007. 204

[47] Bud P. Bruegger, Detlef Hühnlein, and Jörg Schwenk. TLS-Federation

— a secure and relying party-friendly approach for federated identity

management. In Arslan Brömme, Christoph Busch, and Detlef Hühn-

lein, editors, Proceedings of BIOSIG ’08 — Biometrics and Electronic Sig-

natures, Special Interest Group on Biometrics and Electronic Signatures,

September 11–12, 2008, Darmstadt, Germany, volume 137 of LNI, pages

93–106. GI, 2008. 204

[48] William E. Burr, Donna F. Dodson, and W. Timothy Polk. Electronic

Authentication Guideline — Special Publication 800–63 — Version 1.0.2.

Recommendations of NIST, 2006. 74, 75

[49] Jan Camenisch and Ivan Damgård. Verifiable encryption, group en-

cryption, and their applications to separable group signatures and sig-

nature sharing schemes. In Tatsuaki Okamoto, editor, Proceedings of

ASIACRYPT 2000 — the 6th International Conference on the Theory and

Application of Cryptology and Information Security, December 3–7, 2000,

396

BIBLIOGRAPHY

Kyoto, Japan, volume 1976 of LNCS, pages 331–345. Springer, Berlin,

Heidelberg, 2000. 168

[50] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accu-

mulator based on bilinear maps and efficient revocation for anony-

mous credentials. In Stanislaw Jarecki and Gene Tsudik, editors, Pro-

ceedings of PKC ’09 — the 12th International Conference on Practice and

Theory in Public Key Cryptography, March 18–20, 2009, Irvine, California,

volume 5443 of LNCS, pages 481–500. Springer, Berlin, Heidelberg,

2009. 168

[51] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-

transferable anonymous credentials with optional anonymity revoca-

tion. In Birgit Pfitzmann, editor, Advances in Cryptology — EuroCrypt

2001, International Conference on the Theory and Application of Crypto-

graphic Techniques, Innsbruck, Austria, May 6–10, 2001, Proceeding, vol-

ume 2045 of LNCS, pages 93–118. Springer, Berlin, Heidelberg, 2001.

168, 176, 178

[52] Jan Camenisch and Anna Lysyanskaya. Signature schemes and

anonymous credentials from bilinear maps. In Matthew K. Franklin,

editor, Advances in Cryptology — CRYPTO ’04, the 24th Annual Inter-

national Cryptology Conference, Santa Barbara, California, August 15–19,

2004, Proceedings, volume 3152 of LNCS, pages 56–72. Springer, Berlin,

Heidelberg, 2004. 168

[53] Jan Camenisch, Abhi Shelat, Dieter Sommer, Simone Fischer-Hübner,

Marit Hansen, Henry Krasemann, Gérard Lacoste, Ronald Leenes,

and Jimmy Tseng. Privacy and identity management for everyone.

In Proceedings of DIM ’05 — the 2005 workshop on Digital identity man-

agement, Fairfax, Virginia, pages 20–27. ACM, New York, 2005. 168

397

BIBLIOGRAPHY

[54] Jan Camenisch and Victor Shoup. Practical verifiable encryption and

decryption of discrete logarithms. In Dan Boneh, editor, Advances

in Cryptology — CRYPTO ’03, the 23rd Annual International Cryptology

Conference, Santa Barbara, California, August 17–21, 2003, Proceedings,

volume 2729 of LNCS, pages 126–144. Springer, Berlin, Heidelberg,

2003. 168

[55] Jan Camenisch and Els Van Herreweghen. Design and implemen-

tation of the IdeMix anonymous credential system. In Vijayalakshmi

Atluri, editor, Proceedings of CCS ’02 — the 9th ACM Conference on Com-

puter and Communications Security, November 18–22, 2002, Washington

DC, pages 21–30. ACM, New York, 2002. 167, 176

[56] Kim Cameron. The laws of Identity. Microsoft, 2005.

http://www.identityblog.com/stories/2005/05/13/

TheLawsOfIdentity.pdf. 104, 109

[57] Scott Cantor. User Authentication and Subject Identifiers in Shib-

boleth, 2008. https://wiki.shibboleth.net/confluence/

display/SHIB/IdPUserAuthnConfig. 163

[58] Scott Cantor, John Kemp, and Darryl Champagne (ed-

itors). Liberty ID-FF bindings and profiles specifica-

tion. Liberty Alliance Project, 2004. http://www.

projectliberty.org/liberty/content/download/319/

2369/file/draft-liberty-idff-bindings-profiles-1.

2-errata-v2.0.pdf. 154, 155, 157, 213, 214

[59] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler (editors). As-

sertions and Protocols for the OASIS Security Assertion Markup Language

(SAML) V2.0. OASIS, 2005. http://docs.oasis-open.org/

security/saml/v2.0/saml-core-2.0-os.pdf. 92, 161

398

BIBLIOGRAPHY

[60] Scott Cantor and John Kemp (editors). Liberty ID-FF protocols and

schema specification. Liberty Alliance Project, 2005. http://www.

projectliberty.org/resource_center/specifications/

liberty_alliance_id_ff_1_2_specifications. 155, 213,

215

[61] Scott Cantor (editor). Shibboleth Architecture — Conformance Require-

ments. Internet2, 2005. 162

[62] Scott Cantor (editor). Shibboleth Architecture — Protocols and Pro-

files. Internet2, 2005. http://shibboleth.internet2.edu/

shibboleth-documents.html. 162, 167

[63] David Chadwick. FileSpace: an alternative to CardSpace that sup-

ports multiple token authorisation and portability between devices.

In Kent Seamons, Neal McBurnett, and Tim Polk, editors, Proceedings

of IDtrust ’09 — the 8th Symposium on Identity and Trust on the Internet,

April 14–16, 2009, Gaithersburg, Maryland, pages 94–102. ACM, New

York, 2009. 111

[64] David W. Chadwick. Federated identity management. In Alessan-

dro Aldini, Gilles Barthe, and Roberto Gorrieri, editors, Foundations

of Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lec-

tures, volume 5705 of LNCS, pages 96–120. Springer, Berlin, Heidel-

berg, 2009. 47, 74, 107, 109

[65] David W. Chadwick and George Inman. Attribute aggregation in fed-

erated identity management. IEEE Computer, 42(5):33–40, 2009. 128

[66] David W. Chadwick, George Inman, and Paul Coxwell. CardSpace

in the cloud. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly

Shmatikov, editors, Proceedings of CCS ’10 — the 17th ACM Conference

on Computer and Communications Security, October 4–8, 2010, Chicago,

Illinois, pages 657–659. ACM, New York, 2010. 129

399

BIBLIOGRAPHY

[67] David W. Chadwick, George Inman, and Nate Klingenstein. A con-

ceptual model for attribute aggregation. Future Generation Computer

Systems, 26(7):1043–1052, 2010. 128

[68] David Chaum. Security without identification: Transaction systems

to make big brother obsolete. Communications of the ACM, 28(10):1030–

1044, 1985. 167

[69] Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau,

David Orchard, and Sanjiva Weerawarana (editors). Web Services De-

scription Language (WSDL) Version 2.0 Part 2: Adjuncts. W3C Recom-

mendation, 2007. http://www.w3.org/TR/wsdl20-adjuncts/.

89

[70] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva

Weerawarana (editors). Web Services Description Language (WSDL) Ver-

sion 2.0 Part 1: Core Language. W3C Recommendation, 2007. http:

//www.w3.org/TR/wsdl20/. 89

[71] John H. Clippinger. Higgins Towards a Foundation Layer for the

Social Web. Higgins — working draft, 2011. http://www.

socialphysics.org/images/Higgins6.04.06.doc. 131, 132

[72] Art Conklin, Glenn Dietrich, and Diane Walz. Password-based au-

thentication: a system perspective. In Proceedings of HICSS ’04 — the

37th Annual Hawaii International Conference on System Sciences — Track

7. IEEE Computer Society, Los Alamitos, California, 70170b, 2004. 273

[73] Douglas Crockford. The application/json Media Type for JavaScript Object

Notation (JSON). IETF: RFC 4627, 2006. http://tools.ietf.org/

html/rfc4627. 354

400

BIBLIOGRAPHY

[74] Matthew Crowley. Pro Internet Explorer 8 & 9 Development: Developing

Powerful Applications for the Next Generation of IE. Apress, New York,

2010. 352, 371, 372

[75] Ivan Damgård. Payment systems and credential mechanisms with

provable security against abuse by individuals. In Shafi Goldwasser,

editor, Proceedings on Advances in cryptology, Santa Barbara, California,

CRYPTO ’88, pages 328–335. Springer-Verlag, New York, 1990. 167

[76] Neil Daswani, Christoph Kern, and Anita Kesavan. Foundations of

Security: What Every Programmer Needs to Know. Apress, Berkeley, Cal-

ifornia, 2007. 66, 81, 86, 221

[77] Joshua Davies. Implementing SSL/TLS Using Cryptography and PKI.

John Wiley & Sons, New York, 2011. 88

[78] Jan De Clercq. Single sign-on architectures. In George I. Davida, Yair

Frankel, and Owen Rees, editors, Proceedings of InfraSec’02 — the Inter-

national Conference on Infrastructure Security, October 1–3, 2002, Bristol,

UK, volume 2437 of LNCS, pages 40–58. Springer-Verlag, Berlin, Hei-

delberg, 2002. 100, 312

[79] Marco De Luca. Password Management for Distributed Environments.

VDM Verlag, Saarbrücken, 2008. 273

[80] Giovanni Della-Libera et al. Web Services Security Policy Language (WS-

Security Policy), 2005. http://download.boulder.ibm.com/

ibmdl/pub/software/dw/specs/ws-secpol/ws-secpol.

pdf. 90

[81] Alexander W. Dent and Chris J. Mitchell. User’s Guide To Cryptography

And Standards. Artech House, New York, 2004. 66

401

BIBLIOGRAPHY

[82] Tim Dierks and Christopher Allen. The TLS Protocol — Version 1.0.

IETF: RFC 2246, 1999. http://www.ietf.org/rfc/rfc2246.

txt. 88

[83] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Proto-

col — Version 1.2. IETF: RFC 5246, 2008. http://tools.ietf.org/

html/rfc5246. 88

[84] Donald E. Eastlake and Paul E. Jones. US Secure Hash Algorithm

1 (SHA1). IETF: RFC 3174, 2001. http://www.ietf.org/rfc/

rfc3174.txt. 70

[85] Chad La Joie (editor). WS-Trust 1.3 Interoperability Profile — Work-

ing Draft 01. SWITCH, 2008. http://www.switch.ch/grid/

support/documents/wst-interop-wd01.pdf. 203

[86] Eran Hammer-Lahav (editor). The OAuth 1.0 Protocol. IETF: RFC 5849,

2010. http://tools.ietf.org/html/rfc5849. 147

[87] Ian Hickson (editor). HTML5 — A vocabulary and associated APIs for

HTML and XHTML. W3C Working Draft, 2011. http://www.w3.

org/TR/html5/. 79

[88] Tim Moses (editor). eXtensible Access Control Markup Lan-

guage (XACML) — Version 2.0. OASIS standard, 2005.

http://docs.oasis-open.org/xacml/2.0/access_

control-xacml-2.0-core-spec-os.pdf. 63

[89] Taher El Gamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. In Advances in Cryptology: Proceedings

of CRYPTO ’84, Santa Barbara, California, volume 196 of LNCS, pages

10–18. Springer-Verlag, Berlin, 1984. 69

[90] Ahmed El-Rabbany. Introduction to GPS: The Global Positioning System.

Artech House, New York, 2nd edition, 2006. 56

402

BIBLIOGRAPHY

[91] Roy T. Fielding, James Getty, Jeffrey Mogul, Henrik Frystyk, Larry

Masinter, Paul Leach, and Tim Berners-Lee. Hypertext Transfer Protocol

— HTTP/1.1. IETF: RFC 2616, 1999. http://tools.ietf.org/

html/rfc2616. 82, 83, 87

[92] Brad Fitzpatrick, David Recordon, Johnny Bufu, and Josh Hoyt.

OpenID Authentication 2.0 — Final, 2007. http://openid.net/

specs/openid-authentication-2_0.html. 136, 137, 142

[93] Dinei Florêncio and Cormac Herley. One-time password access to any

server without changing the server. In Tzong-Chen Wu, Chin-Laung

Lei, Vincent Rijmen, and Der-Tsai Lee, editors, Proceedings of ISC ’08

— the 11th International Conference on Information Security, September

15–18, 2008, Taipei, Taiwan, volume 5222 of LNCS, pages 401–420.

Springer-Verlag, Berlin, Heidelberg, 2008. 289, 328

[94] Seth Fogie, Jeremiah Grossman, Robert Hansen, Anton Rager, and

Petko D. Petkov. XSS Attacks: Cross Site Scripting Exploits and Defence.

Syngress, Waltham, Massachusetts, 2007. 58, 150

[95] Ned Freed and Nathaniel S. Borenstein. Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message Bodies. IETF:

RFC 2045, 1996. http://www.ietf.org/rfc/rfc2045.txt. 215

[96] Sebastian Gajek, Jörg Schwenk, Michael Steiner, and Chen Xuan.

Risks of the CardSpace protocol. In Pierangela Samarati, Moti Yung,

Fabio Martinelli, and Claudio Agostino Ardagna, editors, Proceedings

of ISC ’09 — the 12th International Conference on Information Security,

September 7–9, 2009, Pisa, Italy, volume 5735 of LNCS, pages 278–293.

Springer-Verlag, Berlin, Heidelberg, 2009. 111

[97] Eimear Gallery. An overview of trusted computing technology. In

C. J. Mitchell, editor, Trusted Computing, chapter 3, pages 29–114. IEE

Press, London, 2005. 200, 354

403

BIBLIOGRAPHY

[98] Sergio Sánchez Garcı́a and Ana Gómez Oliva. Solving identity man-

agement and interoperability problems at pan-European level. In

Robert Meersman, Pilar Herrero, and Tharam S. Dillon, editors, Pro-

ceedings of OTM ’09 — On the Move to Meaningful Internet Systems, Con-

federated International Workshops and Posters, November 1–6, 2009, Vilam-

oura, Portugal, volume 5872 of LNCS, pages 805–809. Springer-Verlag,

Berlin, Heidelberg, 2009. 204

[99] Sergio Sánchez Garcı́a and Ana Gómez Oliva. Improvements of pan-

European IDM architecture to enable identity delegation based on

X.509 proxy certificates and SAML. In Pierangela Samarati, Michael

Tunstall, Joachim Posegga, Konstantinos Markantonakis, and Damien

Sauveron, editors, Proceedings of WISTP ’10 — the 4th IFIP WG 11.2

International Workshop on Information Security Theory and Practices. Se-

curity and Privacy of Pervasive Systems and Smart Devices, April 12–14,

2010, Passau, Germany, volume 6033 of LNCS, pages 183–198. Springer,

2010. 204

[100] Sergio Sánchez Garcı́a, Ana Gómez Oliva, Emilia Pérez Belleboni, and

Iván Pau de la Cruz. Solving identity delegation problem in the e-

government environment. International Journal of Information Security,

10(6):351–372, 2011. 204

[101] Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly Media, Se-

bastopol, California, 1994. 69

[102] Britta Glade (editor). Identity Assurance Framework: Assurance Levels.

Kantara Initiative, 2009. http://kantarainitiative.org/

confluence/download/attachments/38371432/Kantara+

IAF-1200-Levels+of+Assurance.pdf. 73, 74, 75

[103] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-

edge complexity of interactive proof-systems (Extended Abstract). In

404

BIBLIOGRAPHY

Robert Sedgewick, editor, Proceedings of STOC ’85 — the 17th annual

ACM symposium on Theory of computing, May 6–8, 1985, Providence,

Rhode Island, pages 291–304. ACM, New York, 1985. 168

[104] David Grawrock. Dynamics of a Trusted Platform: A Building Block Ap-

proach. Intel Press, Hillsboro, Oregon, 2009. 70, 200, 354

[105] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques

Moreau, Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon

(editors). SOAP Version 1.2 Part 1: Messaging Framework. W3C Rec-

ommendation, 2007. http://www.w3.org/TR/soap12-part1/.

89

[106] Scott B. Guthery and Mary J. Cronin. Mobile Application Development

with SMS and SIM Toolkit. McGraw-Hill, New York, 2002. 317, 322

[107] Eran Hammer-Lahav, David Recordon, and Dick Hardt (editors). The

OAuth 2.0 Authorization Protocol — draft-ietf-oauth-v2-20, 2011. http:

//tools.ietf.org/html/draft-ietf-oauth-v2-20. 147, 149

[108] Dick Hardt, Johnny Bufu, and Josh Hoyt. OpenID Attribute Exchange

1.0 — Final. Sxip Identity and JanRain, 2007. http://openid.net/

specs/openid-attribute-exchange-1_0.html. 144

[109] Jonathan Hart, Konstantinos Markantonakis, and Keith Mayes. Web-

site credential storage and two-factor web authentication with a Java

SIM. In Pierangela Samarati, Michael Tunstall, Joachim Posegga, Kon-

stantinos Markantonakis, and Damien Sauveron, editors, Proceedings

of WISTP ’10 — the 4th IFIP WG 11.2 International Workshop on Infor-

mation Security Theory and Practices. Security and Privacy of Pervasive

Systems and Smart Devices, April 12–14, 2010, Passau, Germany, volume

6033 of LNCS, pages 229–236. Springer, Berlin, Heidelberg, 2010. 201,

327

405

BIBLIOGRAPHY

[110] Cormac Herley, Paul C. van Oorschot, and Andrew S. Patrick. Pass-

words: If we’re so smart, why are we still using them? In Roger

Dingledine and Philippe Golle, editors, Proceedings of FC ’9 — the

13th International Conference on Financial Cryptography and Data Secu-

rity, February 23–26, 2009, Accra Beach, Barbados. Revised Selected Papers,

volume 5628 of LNCS. Springer-Verlag, Berlin, Heidelberg, 230–237,

2009. 34, 273, 337

[111] Kipp E. B. Hickman. The SSL protocol. Netscape, 1995. http://

tools.ietf.org/pdf/draft-hickman-netscape-ssl-00.

pdf. 88

[112] Long Nguyen Hoang, Pekka Laitinen, and N. Asokan. Secure roam-

ing with identity metasystems. In Kent E. Seamons, Neal McBur-

nett, and Tim Polk, editors, Proceedings of IDtrust ’08 — the 7th Sympo-

sium on Identity and Trust on the Internet, March 4–6, 2008, Gaithersburg,

Maryland, volume 283 of ACM International Conference Proceeding Se-

ries, pages 36–47. ACM, New York, 2008. 129, 340

[113] Jeff Hodges. Technical Comparison: OpenID and SAML —

Draft 07a (Whitepaper), 2009. http://identitymeme.org/doc/

draft-hodges-saml-openid-compare.html. 144

[114] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from

weakened key encapsulation. In Alfred Menezes, editor, Proceedings of

CRYPTO ’07 — the 27th Annual International Cryptology Conference on

Advances in Cryptology, August 19–23, 2007, Santa Barbara, California,

volume 4622 of LNCS, pages 553–571. Springer, Berlin, Heidelberg,

2007. 70

[115] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol,

Jonathan Robie, Mike Champion, and Steve Byrne (editors). Document

406

BIBLIOGRAPHY

Object Model (DOM) Level 2 Core Specification. W3C Recommendation,

2000. http://www.w3.org/TR/DOM-Level-2-Core/. 81

[116] Josh Hoyt, Jonathan Daugherty, and David Recor-

don. OpenID Simple Registration Extension 1.0. Jan-

Rain and VeriSign, 2006. http://openid.net/specs/

openid-simple-registration-extension-1_0.html. 142,

245

[117] Mohammed Hussain. The Design and Applications of a Privacy-

Preserving Identity and Trust-Management System. PhD the-

sis, Queen’s University, Kingston, Ontario, Canada, 2010.

http://qspace.library.queensu.ca/bitstream/1974/

5520/1/Hussain_Mohammed_201004_PhD.pdf. 47, 104, 168

[118] International Organization for Standardisation, Genève, Switzerland.

ISO/IEC Second CD 24760 — Information technology — Security tech-

niques — A framework for identity management, 2010. 99

[119] International Telecommunication Union — Telecommunication Stan-

dardisation Sector (ITU-T). Baseline capabilities for enhanced global iden-

tity management trust and interoperability — Draft Recommendation —

ITU-T X.1250 (X.idmreq), 2009. 47

[120] International Telecommunication Union — Telecommunication

Standardisation Sector (ITU-T). Baseline identity management

terms and definitions — Recommendation — ITU-T X.1252, 2010.

http://kantarainitiative.org/confluence/download/

attachments/45059055/T-REC-X.1252-201004-I!!PDF-E.

pdf. 47, 48

[121] International Telecommunication Union — Telecommunication Stan-

dardisation Sector (ITU-T). Y.2720 (Y.ngnIdMframework). NGN Iden-

tity management framework — Draft Recommendation, 2008. 47, 93

407

BIBLIOGRAPHY

[122] ISO/IEC 10118–1:2000. Information technology — Secu-

rity techniques — Hash-functions — Part 1: General, 2000.

http://www.iso.org/iso/iso_catalogue/catalogue_

tc/catalogue_detail.htm?csnumber=31143. 70

[123] ISO/IEC 10118–2:2010. Information technology — Security tech-

niques — Hash-functions — Part 2: Hash-functions using an n-bit

block cipher, 2010. http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=44737. 70

[124] ISO/IEC 10118–3:2004. Information technology — Security tech-

niques — Hash-functions — Part 3: Dedicated hash-functions, 2004.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=39876. 70

[125] ISO/IEC 10118–4:1998. Information technology — Security tech-

niques — Hash-functions — Part 2: Hash-functions using modular

arithmetic, 1998. http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=25429. 70

[126] ISO/IEC 14888–1:2008. Information technology — Security tech-

niques — Digital signatures with appendix — Part 1: General, 2008.

http://www.iso.org/iso/iso_catalogue/catalogue_

ics/catalogue_detail_ics.htm?csnumber=44226. 69

[127] ISO/IEC 14888–2:2008. Information technology — Security techniques

— Digital signatures with appendix — Part 2: Integer factorisation based

mechanisms, 2008. http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=44227. 69

[128] ISO/IEC 14888–3:2006. Information technology — Security techniques

— Digital signatures with appendix — Part 3: Discrete logarithm based

mechanisms, 2006. http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=43656. 69

408

BIBLIOGRAPHY

[129] ISO/IEC 18033–2:2006. Information technology — Security tech-

niques — Encryption algorithms — Part 2: Asymmetric ciphers,

2006. http://www.iso.org/iso/catalogue_detail.htm?

csnumber=37971. 69

[130] ISO/IEC 18033–3:2010. Information technology — Security tech-

niques — Encryption algorithms — Part 3: Block ciphers, 2010.

http://www.iso.org/iso/iso_catalogue/catalogue_

tc/catalogue_detail.htm?csnumber=54531. 67

[131] ISO/IEC 18033–4:2011. Information technology — Security tech-

niques — Encryption algorithms — Part 4: Stream ciphers, 2011.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=54532. 67

[132] ISO/IEC 24760-1:2011(E). Information technology — Security techniques

— A framework for identity management — Part 1: Terminology and con-

cepts, 2012. 47, 48, 53, 54, 61, 94

[133] ISO/IEC 27000:2009(E). Information technology — Security techniques

— Information security management systems — Overview and vocab-

ulary, 2009. http://www.iso.org/iso/catalogue_detail?

csnumber=41933. 64, 65, 72

[134] ISO/IEC 27001:2005(E). Information technology — Security tech-

niques — Information security management systems — Require-

ments, 2005. http://www.iso.org/iso/catalogue_detail?

csnumber=42103. 64

[135] ISO/IEC 9796–2:2010. Information technology — Security

techniques — Digital signature schemes giving message recov-

ery — Part 2: Integer factorisation based mechanisms, 2010.

http://www.iso.org/iso/iso_catalogue/catalogue_

tc/catalogue_detail.htm?csnumber=54788. 69

409

BIBLIOGRAPHY

[136] ISO/IEC 9796–3:2006. Information technology — Security

techniques — Digital signature schemes giving message recov-

ery — Part 3: Discrete logarithm based mechanisms, 2006.

http://www.iso.org/iso/iso_catalogue/catalogue_

tc/catalogue_detail.htm?csnumber=42228. 69

[137] ISO/IEC 9797–1:2011. Information technology — Security techniques —

Message Authentication Codes (MACs) — Part 1: Mechanisms using a

block cipher, 2011. http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=50375. 67

[138] ISO/IEC 9797–2:2011. Information technology — Security techniques

— Message Authentication Codes (MACs) — Part 2: Mechanisms us-

ing a dedicated hash-function, 2011. http://www.iso.org/iso/

iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=51618. 67

[139] ITU-T Recommendation X.509. Information technology — Open sys-

tems interconnection — The Directory: Public-key and attribute cer-

tificate frameworks, 2008. http://www.itu.int/rec/T-REC-X.

509-200811-I/en. 76

[140] Ravi Chandra Jammalamadaka, Timothy W. van der Horst, Sharad

Mehrotra, Kent E. Seamons, and Nalini Venkasubramanian. Dele-

gate: A proxy based architecture for secure website access from an

untrusted machine. In Proceedings of ACSAC ’06 — the 22nd Annual

Computer Security Applications Conference, December 11–15, 2006, Miami

Beach, Florida, pages 57–66. IEEE Computer Society, Washington DC,

2006. 328

[141] Hosung Jo, Hwanjin Lee, Kilsoo Chun, and Heejin Park. Interoper-

ability and anonymity for ID management systems. In Proceedings of

ICACT ’09 — the 11th International Conference on Advanced Communi-

410

BIBLIOGRAPHY

cation Technology, February 15–18, 2009, Phoenix Park, Dublin, Ireland,

volume 2, pages 1257–1260. IEEE, New York, 2009. 205

[142] Michael B. Jones. A Guide to Using the Identity Selector Interoperability

Profile V1.5 within Web Applications and Browsers. Microsoft, 2008. 111,

112, 118, 119, 121, 123, 124, 222

[143] Michael B. Jones and Michael McIntosh (editors). Identity Meta-

system Interoperability Version 1.0 (IMI 1.0). OASIS Standard,

2009. http://docs.oasis-open.org/imi/identity/v1.0/

identity.html. 101, 110, 111, 115, 116, 121, 122, 124, 133

[144] Ivar Jørstad, Do Van Thuan, Tore Jønvik, and Do Van Thanh. Bridging

CardSpace and Liberty Alliance with SIM authentication. In Proceed-

ings of ICIN ’07 — the 10th International Conference on Intelligence in Next

Generation Networks, pages 8–13. Adera, Pessac, 2007. 206, 227, 330

[145] Audun Jøsang and Simon Pope. User Centric Identity Management.

Proceedings of AusCERT ’05 — the Australian Computer Emergency

Response Team Conference, 2005. http://persons.unik.no/

josang/papers/JP2005-AusCERT.pdf. 95

[146] Audun Jøsang, Mohammed Al Zomai, and Suriadi Suriadi. Us-

ability and privacy in identity management architectures. In Ljil-

jana Brankovic, Paul D. Coddington, John F. Roddick, Chris Steketee,

James R. Warren, and Andrew L. Wendelborn, editors, ACSW Fron-

tiers 2007, proceedings of the 5th Australasian Symposium on Grid Com-

puting and e-Research (AusGrid 2007), the Fifth Australasian Information

Security Workshop (Privacy Enhancing Technologies) (AISW ’07), and the

Australasian Workshop on Health Knowledge Management and Discovery

(HKMD ’07). Proceedings, January 30 to February 2, 2007, Ballarat, Vic-

toria, Australia, volume 68 of CRPIT, pages 143–152. Australian Com-

puter Society, 2007. 103

411

BIBLIOGRAPHY

[147] Phil Karn, Perry Metzger, and William Allen Simpson. The ESP Triple

DES Transform, 1995. http://tools.ietf.org/html/rfc1851.

67

[148] Kalle Kaukonen and Rodney Thayer. A Stream Cipher Encryption Al-

gorithm Arcfour. IETF: RFC 1851, 1997. http://tools.ietf.org/

html/draft-kaukonen-cipher-arcfour-01. 67

[149] Sampo Kellomäki and Rob Lockhart (editors). Liberty ID-SIS em-

ployee profile service specification. Liberty Alliance Project, 2005.

http://www.projectliberty.org/liberty/content/

download/1031/7155/file/liberty-idsis-ep-v1.1.pdf.

152

[150] Seung Hyun Kim et al. OpenID Authentication Method Using Identity

Selector. United States, Patent Application Publication, Pub. No. US

2009/0249078 A1, 2009. 206, 254

[151] Adrian Kingsley-Hughes, Kathie Kingsley-Hughes, and Daniel Read.

VBScript Programmer’s Reference. Wrox, 3rd edition, 2007. 221

[152] Hristo Koshutanski, Michaela Ion, and Luigi Telesca. Towards user-

centric identity interoperability for digital ecosystems. International

Journal on Advances in Security, 1(1):26–38, 2009. 96, 204

[153] David Kristol. HTTP State Management Mechanism. IETF: RFC 2045,

2000. http://tools.ietf.org/html/rfc2965. 57

[154] Jacek Lach. Using mobile devices for user authentication. In Andrzej

Kwiecien, Piotr Gaj, and Piotr Stera, editors, Proceedings of CN ’10

— the 17th Conference on Computer Networks, June 15–19, 2010, Ustrón,

Poland, volume 79 of Communications in Computer and Information Sci-

ence, pages 263–268. Springer, Berlin, Heidelberg, 2010. 316, 330

412

BIBLIOGRAPHY

[155] Marc Langheinrich (editor). A P3P Preference Exchange Lan-

guage 1.0 (APPEL1.0). W3C, 2002. http://www.w3.org/TR/

P3P-preferences/. 62

[156] Gwenaël Le Bodic. Mobile Messaging Technologies and Services SMS,

EMS and MMS. Wiley, Chichester, 2003. 317, 322

[157] John Leach. Improving user security behaviour. Computers & Security,

22:685–692, 2003. 35, 198

[158] HwanJin Lee, InKyung Jeun, Kilsoo Chun, and Junghwan Song. A

new anti-phishing method in OpenID. In Proceedings of SECURWARE

— the 2nd International Conference on Emerging Security Information, Sys-

tems and Technologies, August 25–31, 2008, Cap Esterel, France, pages

243–247. IEEE, New York, 2008. 144

[159] Sing Li and Jonathan Knudsen. Beginning J2ME From Novice to Profes-

sional. Apress, New York, 3rd edition, 2005. 329

[160] Ari Luotonen. Web Proxy Servers. Prentice Hall PTR, New Jersey, 1997.

157, 289, 328

[161] Eve Maler, Prateek Mishra, and Rob Philpott (editors). Assertions

and Protocol for the OASIS Security Assertion Markup Language (SAML)

V1.1. OASIS, 2003. http://www.oasis-open.org/committees/

download.php/3406/oasis-sstc-saml-core-1.1.pdf. 92

[162] Nazir A Malik and Allan Tomlinson. Web-services architecture

for pervasive computing environment. Pakistan Journal of Science,

61(3):153–157, 2009. 90

[163] Mohammad Mannan and P. C. Van Oorschot. Using a personal device

to strengthen password authentication from an untrusted computer.

In Sven Dietrich and Rachna Dhamija, editors, Financial Cryptography

and Data Security, the 11th International Conference, FC ’07, and the 1st

413

BIBLIOGRAPHY

International Workshop on Usable Security, USEC ’07, February 12–16,

2007, Scarborough, Trinidad and Tobago. Revised Selected Papers, volume

4886 of LNCS, pages 88–103. Springer, Berlin, Heidelberg, 2007. 329

[164] Erika McCallister, Tim Grance, and Karen Scarfone. Guide

to Protecting the Confidentiality of Personally Identifiable Informa-

tion (PII) — NIST Special Publication 800–122. Recommenda-

tions of NIST, 2010. http://csrc.nist.gov/publications/

nistpubs/800-122/sp800-122.pdf. 52

[165] Aleecia M. McDonald and Lorrie Faith Cranor. A survey of the use

of Adobe flash local shared objects to respawn HTTP cookies. Tech-

nical Report CMU-CyLab–11–001, Carnegie Mellon, CyLab, Carnegie

Mellon University, Pittsburgh, 2011. http://www.casos.cs.cmu.

edu/publications/papers/CMUCyLab11001.pdf. 58

[166] Mark McGloin and Phil Hunt. OAuth 2.0 Threat

Model and Security Considerations — draft-ietf-oauth-v2-

threatmodel-00, 2011. http://tools.ietf.org/html/

draft-ietf-oauth-v2-threatmodel-00. 150

[167] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-

book of Applied Cryptography. CRC Press, Boca Raton, Florida, 1996. 66,

68

[168] Marc Mercuri. Beginning Information Cards and CardSpace: From Novice

to Professional. Apress, New York, 2007. 109, 110, 111, 115, 203

[169] Microsoft. Microsoft’s Vision for an Identity Metasystem, 2005. http://

msdn.microsoft.com/en-us/library/ms996422.aspx. 104,

109, 111

414

BIBLIOGRAPHY

[170] Microsoft and Ping Identity. An Implementer’s Guide to the Identity Se-

lector Interoperability Profile V1.5., 2008. http://msdn.microsoft.

com/en-us/windows/aa663320.aspx. 124

[171] Marino Miculan and Caterina Urban. Formal analysis of Facebook

Connect single sign-on authentication protocol. In SOFSEM ’11 (Soft-

ware Seminar): Theory and Practice of Computer Science — the 37th Con-

ference on Current Trends in Theory and Practice of Computer Science, Jan-

uary 22–28, 2011, Slovakia. Proceedings of Student Research Forum, pages

99–116, 2011. 151

[172] Joaquin Miller (editor). Yadis Specification — Version 1.0, 2006. http:

//yadis.org/wiki/. 138

[173] R. L. ‘Bob’ Morgan, Scott Cantor, Steven Carmody, Walter Hoehn, and

Ken Klingenstein. Federated Security : The Shibboleth Approach. ED-

UCAUSE Quarterly, 27(4):12–17, 2004. 162

[174] F Nachira, P Dini, A Nicolai, M Le Louarn, and L Rivera Lèon

(editors). Digital Business Ecosystems. European Commis-

sion, 2007. http://www.digital-ecosystems.org/book/

de-book2007.html. 204

[175] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir,

and Hans Granqvist (editors). WS-Trust 1.4, 2009. http://docs.

oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html.

173

[176] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip

Hallam-Baker (editors). Web Services Security: SOAP Mes-

sage Security 1.1 (WS-Security 2004). OASIS Standard Specifica-

tion, 2006. http://docs.oasis-open.org/wss/v1.1/wss-v1.

1-spec-os-SOAPMessageSecurity.pdf. 91

415

BIBLIOGRAPHY

[177] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Re-

vocable group signature schemes with constant costs for signing and

verifying. In Stanislaw Jarecki and Gene Tsudik, editors, Proceedings

of PKC ’09 — the 12th International Conference on Practice and Theory in

Public Key Cryptography, March 18–20, 2009, Irvine, California, volume

5443 of LNCS, pages 463–480. Springer, Berlin, Heidelberg, 2009. 168

[178] Arun Nanda and Michael B. Jones. Identity Selector Interoperability Pro-

file V1.5. Microsoft, 2008. 123

[179] National Institute of Standards and Technology (NIST). An-

nouncing the Advanced Encryption Standard (AES), FIPS 197, 2001.

http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf. 67

[180] Tom Negrino and Dori Smith. JavaScript and Ajax for the Web: Vi-

sual QuickStart Guide. Peachpit Press, Berkeley, California, 7th edition,

2008. 58, 78, 81, 220

[181] Eric Newcomer. Understanding Web Services: XML, WSDL, SOAP and

UDDI. Addison Wesley, Reading, Massachusetts, 2002. 89, 90

[182] NIST. FIPS PUB 180–2: Secure Hash Standard, 2002. http://csrc.

nist.gov/publications/fips/fips180-2/fips180-2.pdf.

70

[183] NIST. FIPS PUB 198: The Keyed-Hash Message Authentication Code

(HMAC), 2002. http://csrc.nist.gov/publications/fips/

fips198/fips-198a.pdf. 67, 70

[184] Information Sciences Institute, University of Southern California. In-

ternet Protocol. IETF: RFC 791, 1981. http://tools.ietf.org/

html/rfc791. 95

416

BIBLIOGRAPHY

[185] Rolf Oppliger, Sebastian Gajek, and Ralf Hauser. Security of Mi-

crosoft’s identity metasystem and CardSpace. In Proceedings of KiVS

’07 — the Kommunikation in Verteilten Systemen. VDE Publishing

House, Berlin, 63–74, 2007. 119

[186] Organisation for Economic Co-operation and Development (OECD).

OECD guidelines on the protection of privacy and transborder flows

of personal data, 1980. http://www.oecd.org/document/18/

0,3746,en_2649_34255_1815186_1_1_1_1,00&&en-USS_

01DBC.html. 60

[187] Organisation for Economic Co-operation and Development (OECD).

At a Crossroads: ‘personhood’ and Digital Identity in the Information Soci-

ety, 2008. http://www.oecd.org/dataoecd/31/6/40204773.

doc. 49

[188] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M. Pai, and Sanjay

Singh. Formal verification of OAuth 2.0 using Alloy framework. In

Proceedings of CSNT ’11 — the International Conference on Communica-

tion Systems and Network Technologies, June 3–5, 2011, Katra, Jammu, In-

dia, pages 655–659. IEEE Computer Society, Los Alamitos, California,

2011. 147

[189] John Palfrey and Urs Gasser. Digital Identity Interoperability and eIn-

novation. Berkman Publication Series, 2007. http://cyber.law.

harvard.edu/interop/pdfs/interop-digital-id.pdf. 73,

206

[190] Christian Paquin. U-Prove Technology Integration into the Identity Meta-

system V1.0. Microsoft, 2010. 170, 172, 175, 176

[191] Christian Paquin. U-Prove Cryptographic Specification V1.1 — Draft Re-

vision 1. Microsoft, 2011. 170

417

BIBLIOGRAPHY

[192] Christian Paquin. U-Prove Technology Overview V1.1 — Draft Revision

1. Microsoft, 2011. 171

[193] Christian Paquin. U-Prove WS-Trust Profile V1.0 — Draft Revision 1.

Microsoft, 2011. 171

[194] Christian Paquin and Greg Thompson. U-Prove CTP White Paper. Mi-

crosoft, 2010. 169

[195] Andreas Pashalidis and Chris J. Mitchell. A taxonomy of single sign-

on systems. In Rei Safavi-Naini and Jennifer Seberry, editors, Proceed-

ings of ACISP ’03 — the 8th Australasian conference on Information secu-

rity and privacy, July 9–11, 2003, Wollongong, Australia, volume 2727 of

LNCS, pages 249–264. Springer-Verlag, Berlin, Heidelberg, 2003. 100,

108, 312

[196] Andreas Pashalidis and Chris J. Mitchell. Impostor: A single sign-on

system for use from untrusted devices. In Proceedings of IEEE Globecom

’04 — the Global Telecommunications Conference, November 29 to Decem-

ber 3, 2004, Dallas, Texas, volume 4, pages 2191–2195. IEEE Press, 2004.

328

[197] Andreas Pfitzmann and Marit Hansen. A terminology for talking

about privacy by data minimization: Anonymity, Unlinkability, Un-

detectability, Unobservability, Pseudonymity, and Identity Management

(v0.34), 2010. http://dud.inf.tu-dresden.de/literatur/

Anon_Terminology_v0.34.pdf. 47, 53, 54

[198] Thomas A. Powell and Fritz Schneider. Javascript: The Complete Refer-

ence. McGraw-Hill Osborne Media, Berkeley, California, 2nd edition,

2004. 220

[199] Calvin Powers and Matthias Schunter (editors). Enterprise Privacy

Authorization Language (EPAL 1.2). W3C Member Submission 10

418

BIBLIOGRAPHY

November 2003, 2003. http://www.w3.org/Submission/2003/

SUBM-EPAL-20031110/. 63

[200] Bart Priem, Ronald Leenes, Eleni Kosta, and Aleksandra Kuczerawy.

The identity landscape. In Jan Camenisch, Ronald Leenes, and Di-

eter Sommer, editors, Digital Privacy — PRIME (Privacy and Identity

Management for Europe), volume 6545 of LNCS, pages 33–51. Springer,

Berlin, Heidelberg, 2011. 47

[201] Dave Raggett. HTML 3.2 Reference Specification. W3C Recommenda-

tion, 1997. http://www.w3.org/TR/REC-html32.html. 79, 87

[202] Dave Raggett, Arnaud Le Hors, and Ian Jacobs (editors). HTML 4.01

Specification. W3C Recommendation, 1999. http://www.w3.org/

TR/html401/. 78, 79, 87

[203] David Recordon and Brad Fitzpatrick. OpenID Au-

thentication 1.1, 2006. http://openid.net/specs/

openid-authentication-1_1.html. 136, 137

[204] David Recordon, Michael B. Jones, and Nat

Sakimura. OpenID Provider Authentication Policy Ex-

tension 1.0, 2008. http://openid.net/specs/

openid-provider-authentication-policy-extension-1_

0.html. 139

[205] Drummond Reed and Dave McAlpin (editors). eXtensible Re-

source Identifier (XRI) Syntax V2.0. OASIS, 2005. http://www.

oasis-open.org/committees/download.php/15377. 137

[206] Eric Rescorla. Diffie-Hellman Key Agreement Method. IETF: RFC 2631,

1999. http://www.ietf.org/rfc/rfc2631.txt. 77

[207] Eric Rescorla. HTTP Over TLS. IETF: RFC 2818, 2000. http://www.

ietf.org/rfc/rfc2818.txt. 88

419

BIBLIOGRAPHY

[208] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method

for obtaining digital signatures and public-key cryptosystems. Com-

munications of the ACM, 21(2):120–126, 1978. 69

[209] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan

Johnston, Jon Peterson, Robert Sparks, Mark Handley, and Eve

Schooler. SIP: Session Initiation Protocol. IETF: RFC 3261, 2002. http:

//www.ietf.org/rfc/rfc3261.txt. 111

[210] Mary C. Rundle and Paul Trevithick. Interoperability in the new digi-

tal identity infrastructure. SSRN eLibrary, 2007. http://ssrn.com/

paper=962701. 111, 203, 206

[211] Tom Scavo and Scott Cantor (editors). Shibbo-

leth Architecture — Technical Overview. Internet2,

2005. http://shibboleth.internet2.edu/docs/

draft-mace-shibboleth-tech-overview-latest.pdf.

162, 163

[212] Marko Schuba, Volker Gerstenberger, and Paul Lahaije. Internet ID —

Flexible Re-use of Mobile Phone Authentication Security for Service Access,

2004. http://www.ericsson.com/res/thecompany/docs/

journal_conference_papers/service_layer/internet_

id_nordsec.pdf. 329, 330

[213] Robert W. Shirey. Internet Security Glossary. IETF: RFC 2828, 2000.

http://www.ietf.org/rfc/rfc2828.txt. 65, 71, 72, 76

[214] William Stallings. Network Security Essentials: Applications and Stan-

dards. Pearson Education, New Jersey, 4th edition, 2010. 88

[215] William Stallings. Cryptography and Network Security — Principles and

Practice. Pearson Education, New Jersey, 5th edition, 2011. 64, 66, 68,

70, 72, 77, 88

420

BIBLIOGRAPHY

[216] Latanya Sweeney. Uniqueness of Simple Demographics in the U.S. Popu-

lation. LIDAP-WP4 Carnegie Mellon University, Laboratory for Inter-

national Data Privacy, Pittsburgh, PA: 2000, 2000. 53

[217] Stephen A. Thomas. SSL and TLS Essentials: Securing the Web. John

Wiley & Sons, New York, 2000. 88

[218] Allan Tomlinson. Introduction to the TPM. In Smart Cards, Tokens,

Security and Applications, pages 155–172. Springer, 2008. 200, 354

[219] Jonathan Tourzan and Yuzo Koga (editors). Liberty ID-WSF web

services framework overview. Liberty Alliance Project, 2005. http:

//www.projectliberty.org/liberty/content/download/

1307/8286/file/liberty-idwsf-overview-v1.1.pdf. 152,

153

[220] Paul Trevithick. From Information Cards to Relationship

Cards. (IIW IX) Internet Identity Workshop, November

3, 2009. http://www.slideshare.net/idworkshop/

relationship-cards-iiw-nov-3-2009. 131

[221] US Code. Title 44 — Public Printing and Documents, 1968. http://

uscode.house.gov/pdf/2006/2006usc44.pdf. 64

[222] US Government Accountability Office (GAO). Privacy: Alterna-

tives Exist for Enhancing Protection of Personally Identifiable Information

(GAO Report 08–536), 2008. http://www.gao.gov/new.items/

d08536.pdf. 52

[223] Bart van Delft and Martijn Oostdijk. A security analysis of OpenID.

In Elisabeth de Leeuw, Simone Fischer-Hübner, and Lothar Fritsch,

editors, Proceedings of IFIP IDMAN ’10 — the 2nd IFIP WG 11.6 Working

Conference on Policies and Research in Identity Management, November 18–

421

BIBLIOGRAPHY

19, 2010, Oslo, Norway, volume 343 of IFIP Advances in Information and

Communication Technology, pages 73–84. Springer, Boston, 2010. 144

[224] Branislav Vuksanovic and Haitham S. Al-Sinani. Two proposals for

improving the image-based authentication system: H-IBAS-H. In Pro-

ceedings of INTERNET ’09 — the First International Conference on Evolv-

ing Internet, August 23–29, 2009, Cannes/La Bocca, French Riviera, France,

pages 168–171. IEEE Computer Society, Washington DC, 2009. 73

[225] Gabe Wachob, Drummond Reed, Les Chasen, William Tan, and Steve

Churchill (editors). eXtensible Resource Identifier (XRI) Resolution Ver-

sion 2.0. OASIS, 2008. http://docs.oasis-open.org/xri/2.

0/specs/xri-resolution-V2.0.html. 138

[226] Thomas Wason (editor). Liberty ID-FF architecture overview.

Liberty Alliance Project, 2005. http://projectliberty.

org/liberty/content/download/318/2366/file/

draft-liberty-idff-arch-overview-1.2-errata-v1.

0.pdf. 152, 153, 156

[227] Rigo Wenning and Matthias Schunter (editors). The Platform for Pri-

vacy Preferences 1.1 (P3P1.1) Specification. W3C, 2006. http://www.

w3.org/TR/P3P11/. 54, 62

[228] Graham Williamson, David Yip, Ilan Sharoni, and Kent Spaulding.

Identity Management: A Primer. MC Press, Big Sandy, Texas, 2009. 47,

74, 100

[229] Phillip J. Windley. Digital Identity. O’Reilly Media, Sebastopol, Cali-

fornia, 2005. 47, 50, 52

[230] Min Wu, Simson Garfinkel, and Rob Miller. Secure web authentication

with mobile phones. In DIMACS Workshop on Usable Privacy and Se-

422

BIBLIOGRAPHY

curity Systems, 2004. http://homepages.mcs.vuw.ac.nz/˜ian/

shared/papers/secureweb.pdf. 328

[231] Po-Wah Yau and Allan Tomlinson. Towards privacy in a context-

aware social network based recommendation system. In Proceedings

of PASSAT/SocialCom ’11 — the 3rd International Conference on Privacy,

Security, Risk and Trust, and the 3rd International Conference on Social

Computing, October 9–11, 2011, Boston, Massachusetts, pages 862–865.

IEEE Computer Society, 2011. 54

423

