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Fractionalization—the breaking up of an apparently indivisible microscopic degree of freedom—is one

of the most counterintuitive phenomena in many-body physics. Here we study its most fundamental

manifestation in spin ice, the only known fractionalized magnetic compound in 3D: we directly visualize

the 1=r2 magnetic Coulomb field of monopoles that emerge as the atomic magnetic dipoles fractionalize.

We analyze the internal magnetic field distribution, relevant for local experimental probes. In particular,

we present new zero-field NMR measurements that exhibit excellent agreement with the calculated line

shapes, noting that this experimental technique can in principle measure directly the monopole density in

spin ice. The distribution of field strengths is captured by a simple analytical form that exhibits a low

density of low-field sites—in apparent disagreement with reported muon spin rotation results.

Counterintuitively, the density of low-field locations decreases as the local ferromagnetic correlations

imposed by the ice rules weaken.
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Introduction.—The magnetic field set up by a spin con-
figuration is the most direct manifestation of the under-
lying magnetic moments. The discovery of a new spin state
thus holds the promise of generating—and revealing its
existence in—novel properties of the field it sets up.

A case in point is spin ice [1], which, uniquely among
magneticmaterials in three dimensions, exhibits an emergent
gauge field and magnetic monopole excitations [2] that have
analogies in magnetic nanoarrays [3–6]. The spin ice state
has the great advantage of exhibiting phenomena of funda-
mental conceptual importance in a setting, which as we
describe below, is simple enough to be easily and intuitively
visualized: an order of topological nature manifests itself in
the fractionalization of the microscopic dipole degrees of
freedom, leading to the deconfined magnetic monopoles [7].

Neutron scattering experiments, which provide mag-
netic field correlations in reciprocal space, have produced
some of the strongest evidence so far for the gauge struc-
ture [8,9] and ‘‘Dirac strings’’ [10] that emerge at low
temperatures. Another probe that has been prominently
employed is muon spin rotation [11–13] (�SR), which
like NMR, is sensitive to the local fields in real space.
For such local probes, studies of the level of detail char-
acteristic of the neutron analysis are still lacking.

We remedy this situation by computing the spatially
resolved distribution of internal fields in spin ice. Most
fundamentally, the internal fields in spin ice contain a con-
tribution from the underlying magnetic monopoles [2].

Thus, isolating and identifying this contribution is of great
conceptual importance in corroborating the peculiar nature
of these unique elementary excitations.
Here we show how to visualize the monopole contribu-

tion: by measuring the field strength at the considerably
sized magnetic voids of the lattice, we find a radially
symmetric signal (Fig. 4) that is well described by
Coulomb’s law, / 1=r2, with a coefficient that is in good
agreement with the theoretical prediction [2]. Even if mea-
suring the field strength deep inside the sample may be
beyond the reach of current experiments, the Coulomb field
of a magnetic monopole near the sample surface could be
accessible to a sufficiently spatially resolved measurement.
To make contact with �SR and NMR experiments, we

compute the full field distribution in the unit cell (Fig. 1).
This provides detailed predictions for NMR experiments,
with the line shape (Fig. 2) in excellent agreement with the
first zero-field NMR measurements, the results of which
we report here.
Our analysis places strong constraints on the �SR sig-

natures of the spin ice state. In particular, it seems highly
unlikely that the signal detected in Ref. [12] is due to
muons implanted in pristine bulk spin ice. (Our results
are consistent with earlier estimates of the internal field
strength at the muon site [11,13,14].)
In finer detail,wefind that the internal field distributionfits

well to a simple functional form at all temperatures (Fig. 3).
Counterintuitively, we find an ‘‘enhancement’’ of the weak
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field sites as the temperature is lowered. This is surprising, as
spin ice is a ferromagnet—as defined by the sign of its Weiss
temperature—and one might expect enhanced internal fields
to appear as spins align. We interpret this unusual behavior
as a result of the interplay of the nanoscopic lattice structure
of spin ice and the slow decay of monopolar fields.

Overall, our analysis plugs two gaps: firstly, the con-
ceptual one between the effective long-wavelength emer-
gent gauge theory [2] and the nanoscale physics of the
lattice; and secondly, the practical one between theory and
real-space experimental probes.

Distribution of internal field strengths.—In spin ice, the
magnetic dipoles reside on the sites of the pyrochlore
lattice, which consists of corner-sharing tetrahedra. We
provide details of this structure as Supplemental Material
[15] but all that is necessary for digesting the following is
(i) in any of the exponentially numerous spin ice configu-
rations, two spins point into each tetrahedron and two point
out and (ii) an (anti)monopole corresponds to a tetrahedron
with three spins pointing in (out).
In Fig. 3, we show histograms of the internal field

distribution PðhÞ collected across the primitive unit cell
for three different classes of spin configurations (see the
Methods Section in the Supplemental Material [15]). We
consider the cases of monopole-free states (red line) and of
configurations containing two maximally separated mono-
poles, evaluating the field in a primitive cell containing
a monopole (blue dots) or halfway between the pair
(magenta crosses). This is compared to a random configu-
ration of Ising spins with local [111] easy axes, corre-
sponding to an infinite temperature state (green).
In all cases, at small fields, PðhÞ / h2, while at large

fields, PðhÞ / h�2. The latter reflects the geometric proba-
bility of probing the 1=r3 divergence of h close to a spin.
The former is a nontrivial result that will play an important
role in the interpretation of �SR experiments further be-
low; it implies that a site with a vanishing field is not
‘‘special’’ in the sense that even an entirely flat probability
distribution for each of the three components of the field
vector would yield this functional form for PðhÞ.

FIG. 1 (color online). Cross sections of the primitive unit cell.
Left: average field strength in 2in–2out spin ice configurations.
The logarithmic color scale ranges from dark blue (0.137 Tesla,
the smallest average field strength recorded) to deep red
(6 Tesla). Right: average field strength in completely disordered
Ising spin configurations.
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FIG. 2 (color online). Histograms of the magnetic field
strength at the Oð1Þ sites obtained from: experimental NMR
data nominally at T ¼ 0:1 K (blue) and at T ¼ 0:4 K (cyan,
almost overlapped with the blue line)—top axis; Monte Carlo
simulations in equilibrium at T ¼ 0:6 K (green triangles) and
equally weighted ensemble of 2in–2out spin ice configurations
(red circles)—bottom axis. The experimental curves have been
shifted so as to match the main peak position from numerics (see
the Methods Section in the Supplemental Material [15]); the
vertical axis is chosen to set the maxima equal to unity.

FIG. 3 (color online). Histograms of the field strengths across
a uniform cubic grid spanning the primitive unit cell in a system
of size L ¼ 4 containing 16L3 ¼ 1024 spins. Red (leftmost)
dotted line: without monopoles. Magenta crosses and blue
(intermediate) dotted line: with two monopoles (see text).
Green (rightmost) dotted line: random spin ice configuration
(i.e., T much larger than any interaction energy scale). Thin
black lines: centers of the supertetrahedra and of the rare earth
tetrahedra (low and high field curves, respectively). Black tri-
angles: PðhÞ � h2=ðh2 þH2

0Þ2 fit to the random spin ice behav-

ior. Inset: spatial distribution of locations of field strength
smaller than 10 mTesla in at least one of the 10 000 statistically
independent configurations sampled. The dimensionless volume
fraction of such sites is approximately 5� 10�5.
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The presence of a monopole is only weakly visible far
away from it but nearby its effect is felt strongly—statis-
tical weight is shifted from low to higher fields, whereas
the overall shape of the distribution does not appreciably
vary. This is highly counterintuitive, if one considers that
spin ice 2in–2out tetrahedra are ‘‘ferromagnetically or-
dered’’: all the spins point in the same direction, to the
extent allowed by the local easy axes. For a ferromagnet,
one would naively expect that the internal fields are larger
in the 2in–2out arrangement than they are in presence of a
monopole or otherwise disordered spins.

Nonetheless, there are two reasons why this happens.
Firstly, the characteristic dipolar correlations between
2in–2out tetrahedra lead to an unusually large cancellation
between fields from different tetrahedra. The spins form
‘‘flux loops’’ where the sum of their dipole moments
vanishes. These flux loops get broken down as monopoles
appear, whose field decreases with distance more slowly
than that of any dipole. This effect is captured by the
dumbbell model [2], which accounts well for the long-
wavelength aspect of the field distribution. (A more de-
tailed explanation can be found in a dedicated section in
the Supplemental Material [15] for this Letter.)

However, to reveal the second reason, such a picture
needs to be supplemented to account for the detailed
structure of the field distribution on the lattice scale. This
exhibits considerable local structure, as shown in Fig. 1:
near the spins and at the centers of tetrahedra there are
large fields in excess of 4 Tesla. By contrast, in the voids
between the spins, the fields average much lower. Most
saliently, at the centers of supertetrahedra (Fig. 4, inset),
the probability of finding a low-field site is greatly en-
hanced (Fig. 3, black dots). Indeed, the oscillations in this
latter curve provide a crucial pointer: at these locations,
aided by symmetry, the fields of nearby spins can cancel
locally, leaving a lower characteristic field scale, and
hence, enhanced low-field probability.

This shows up in the field distribution averaged across a
unit cell near a monopole (Fig. 3, magenta line), which
follows the form PðhÞ � h2=ðh2 þH2

0Þ2 derived for the

distribution of fields due to randomly located and oriented
spins [16]. Crucially, the value of H0 is ‘‘reduced’’ com-
pared to that of a defect-free configuration (red line). This
picture is backed up by the good fit of the above equation to
a high-temperature state corresponding to a collection of
randomly oriented [111]-easy-axis dipoles (green line), and
hence a high density of randomly distributed monopoles.

Finally, Fig. 1 directly demonstrates that, along with the
breaking of ice rules, the spontaneous spatial organization
of fields strengths into high- and low-field locations within
the unit cell is suppressed.

Average field due to magnetic monopoles.—Having an-
alyzed the spatial distribution of fields inside the unit cell,
we next turn to visualizing the field set up by a monopole.
Recall that magnetic monopoles experience a relative

force of Coulombic nature. We ask: can one also measure
the corresponding magnetic field ð�0=4�Þðq=r2Þ? This is
difficult for two reasons. Firstly, the internal field away
from the lattice sites varies tremendously between configu-
rations. Secondly, the Dirac string [2] emanating from the

monopole carries a magnetization, ~M, which cancels off

the field, ~H, to give a net ~r � ~B ¼ �0ð ~r � ~Hþ ~r � ~MÞ ¼ 0.
These two issues can be taken care of by (i) averaging over
many configurations (or, in experiment, over time while
keeping the observed monopole position fixed) and
(ii) measuring the field at points as far away as possible
from any lattice sites. (This also minimizes the strong near
field of the spins.)
In Fig. 4, we display the direction of the average fields at

the centers of the supertetrahedra set up by two stationary
monopoles, which visually reproduce the expected
hedgehog-like monopolar field pattern. We have verified
that by subtracting the analytical Ewald-summed field for
two point monopoles with charge given in Ref. [2], the
residual fields appear randomly oriented with average
strength tenfold suppressed.
To be more quantitative, in Fig. 4 we show the average

field (over 106 configurations) evaluated along a line

FIG. 4 (color online). Top: illustration of the magnetic field
due to the monopoles (red and blue spheres) at the centers of the
supertetrahedra of the pyrochlore lattice, visualized by unit
vectors in the local field direction (red and blue arrows), for
1024 spins with periodic boundary conditions, averaged over
10 000 independent configurations. As shown, each supertetra-
hedron is formed by four regular tetrahedra in the lattice. The
supertetrahedra centers are (locally) the farthest points from any
spin on a pyrochlore lattice site. Bottom: averaged fields along
the [001] line joining two monopoles (connected blue dots). The
leading behavior is captured, to within 20% error, by the Ewald-
summed field from two point magnetic charges at the locations
of the monopoles, with charge from the theoretical prediction
[2], 2�=ad ’ 4:6�B= �A (thin black line). The periodic deviations
from the Coulomb form are due to spins that sit very close to the
line—this contribution is explicitly shown by a thick magenta
line for the spin at the midpoint between the monopoles.
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joining the two monopoles halfway across a system of
128,000 spins (L ¼ 20), along the [001] direction. The
Coulomb field predictions are borne out, but masked in
part by the line passing very close to spins, which contrib-
ute a strong and periodic deviation (magenta line) from the

theoretical curve at positions 2
ffiffiffi

2
p

n, n ¼ 0; . . . ; 10 (in units
of rnn).

It is tempting to speculate that, if a quantum spin ice
material were to be discovered where monopole motion
can be made slower than quantum dynamics of spin rear-
rangements preserving the ice rules, the internal fields
would be due almost entirely to the emergent magnetic
monopoles.

Experiment I: zero-field NMR at the Oð1Þ sites.—Given
the ferromagnetic interactions, the centers of the rare
earth tetrahedra experience a large internal field of several
Tesla (from numerical simulations using Ewald-summed
interactions and fields, see the Methods Section in the
Supplemental Material [15] for further details), which as
we show next can be used to distinguish between tetrahedra
that host monopoles and those that do not.

The centers of the rare earth tetrahedra in the pyrochlore
lattice are occupied by oxygen ions [customarily referred to
as Oð1Þ oxygens]. The 17O isotopes are NMR active and
can be used to detect the internal fields in a zero-field NMR
measurement. Indeed, two of the present co-authors have
carried out the first NMR experiments on the ‘‘monopole-
free’’ line as shown in Fig. 2. Also shown is a comparison to
Monte Carlo simulations in thermal equilibrium. The
agreement of the line shape is remarkably good. The ex-
perimental spectrum is actually peaked at 3.4 Tesla, i.e.,
about 25% below the calculated peak. This shift is most
likely due to spatial distribution of Dy-4f electrons causing
deviations from a point dipole approximation (multipolar
effects) and/or effects of Dy-O chemical bonding.

A promising aspect of these NMR measurements lies in
the possibility of the direct detection of monopoles.
Indeed, when a tetrahedron hosts a monopole, the field at
its Oð1Þ site drops by approximately 13%. This effect is 3
times larger than the line width due to variations in the field
at theOð1Þ site because of neighboring monopoles or more
distant spins. Therefore, the relative intensity of the NMR
signal at this pair of field values provides a quantitative
measure of the density of monopoles. In practice, small
densities may be hard to detect above the background.
Also, monopoles must not move over the timescale of
NMR spin echo experiments (a few tens of microseconds)
to be detected as a distinct resonance line. Given the in-
sights from modeling ac susceptibility results, which sug-
gest a hopping rate in the range of milliseconds [17,18],
this condition seems comfortably achievable.

Experiment II: muon spin rotation.—The other major
probe of the local magnetic fields is�SR. Indeed, Ref. [12]
has reported using �SR experiments to measure the
monopole charge via an ingenious analogy to the Wien

effect familiar from electrolytes. This is currently a con-
tested experiment [13] and we would like to make a few
observations on it from the perspective of the current
Letter.
First, we note that one important feature of the data

presented in Ref. [12] is that their signal was extracted
from sites where the muons experience very low fields, of
order a few milliTesla. This follows from the observation
that doubling the strength of the applied transverse field
from 1 to 2 mTesla results in doubling the �SR precession
frequency. From our work, it is clear that there is a very low
density of such sites (Fig. 3) located preferentially near the
centers of supertetrahedra (Fig. 1). Thus, it seems very
unlikely that the substantial muon signal emanates from
sites in the pristine bulk.
Second, the analysis of Ref. [12] invokes two distinct

phenomena: first, the applied magnetic field induces an
increase in the monopole density; and second, this increase
leads to an enhanced depolarization rate. The first feature is
indeed an expected phenomenon for the steady state of
electrolytes in a field, but for spin ice, it can only occur as a
transient. Since monopole motion magnetizes the sample,
there can be no steady state with a nonzero monopole
current. Moreover, in thermal equilibrium, the density of
monopoles is believed to decrease in an applied field.
About this, our present work has nothing to say.
However, regarding the second step, our results indicate

that a field-induced regime with heightened monopole
density would be accompanied by a depletion of low-field
sites. At least this aspect is qualitatively in keeping with the
finding in Ref. [12] that the rate of decay of the �SR
asymmetry gets larger in the Wien setting as the applied
field is increased.
Third, combining the above observations leads us to

consider the interesting possibility that the signal arises
from the action of an enhanced monopole density on
muons implanted outside the sample. The idea here is
that outside the sample the monopole fields would
dominate over the much smaller fields present in their
absence—given that the field of a monopole decays less
slowly than that of an isolated spin. (Interestingly, it was
very recently suggested in Ref. [13] that the signal from
muons inside the sample is lost altogether because of large
[compared to 1 mTesla] and fast magnetic fluctuations and
that the only measurable signal due to spin ice comes from
muons implanted outside, sensitive to stray fields, which
are analyzed in Ref. [19].)
Avery rough estimate based on amonopole liquid subject

to Debye screening [20] suggests that in the temperature
range T � 0:2–0:5 K, the magnetic field set up by a mono-

pole measured a distance roughly 100� 50 �A from the
sample surface both lies in the range relevant for �SR
(between 0.1 and 1 mTesla) and dominates that set up by
an individual spin in the sample. Note that, unlike stray
fields set up by the magnetization induced by a uniform
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external field, the monopole density grows with tempera-
ture, thus providing a qualitative discriminant between the
two. Therefore, a combined study of temperature-
dependent (uniform) susceptibility and �SR experiments
looks like themost prominent direction tomake progress on
this issue.

All such considerations point to the need for more de-
tailed studies of what happens near the surface of a sample
[21], e.g., what happens to the surface monopole density
(as a function of time and field)?Moreover, at present, little
is known about the surface of spin ice samples, e.g., what
the nature of the local crystal fields is or how the magnetic
lattice terminates. It is also worth bearing in mind that
equilibration in spin ice may be incomplete at low tem-
peratures, as the equilibrium monopole density vanishes
exponentially. At 70 mK, the lowest temperature accessed
so far in �SR measurements, their numberdensity is esti-
mated to be such that there is only one pair for a ‘‘macro-
scopic’’ volume of a quarter of a cubic meter.

Finally, we would be remiss if we did not note that our
considerations here have everything to do with spatially
fluctuating static fields and their dephasing of muon pre-
cession, whereas Ref. [13] proposes that large dynamical
fluctuations are present. The tension between their pro-
posal and the magnetic susceptibility data that are consis-
tent with much slower dynamics for the spins will need to
be resolved before a consistent account of spin dynamics
in spin ice can be given.

Conclusions.—We have provided a way of visualizing
the magnetic field of a magnetic monopole inside spin ice,
yielding the first nanoscopic real space picture of this
fractionalized excitation. Our work attests to the reality
of the monopolar magnetic field not only at long wave-
lengths but also on the lattice scale.

As experimental proofs of the existence of monopoles
move in the direction from thermodynamics towards in-
creasingly microscopic ‘‘single-monopole’’ detection, we
hope that this work will lay the theoretical groundwork for
future searches, such as the ones using NMR or local field
probes outside the sample that we have outlined above.
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