
Spectral clustering of protein sequences
Alberto Paccanaro*, James A. Casbon and Mansoor A. S. Saqi

Bioinformatics Group, The Genome Centre, Barts and The London School of Medicine,
Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK

Received November 9, 2005; Revised and Accepted January 31, 2006

ABSTRACT

An important problem in genomics is automatic-
ally clustering homologous proteins when only
sequence information is available. Most methods
for clustering proteins are local, and are based on
simply thresholding a measure related to sequence
distance. We first show how locality limits the per-
formance of such methods by analysing the distribu-
tion of distances between protein sequences. We then
present a global method based on spectral clustering
and provide theoretical justification of why it will have
a remarkable improvement over local methods. We
extensively tested our method and compared
its performance with other local methods on several
subsets of the SCOP (Structural Classification of
Proteins) database, a gold standard for protein struc-
ture classification. We consistently observed that,
the number of clusters that we obtain for a given set
of proteins is close to the number of superfamilies
in that set; there are fewer singletons; and the method
correctly groups most remote homologs. In our
experiments, the quality of the clusters as quantif-
ied by a measure that combines sensitivity and
specificity was consistently better [on average,
improvements were 84% over hierarchical clustering,
34% over Connected Component Analysis (CCA)
(similar to GeneRAGE) and 72% over another global
method, TribeMCL].

INTRODUCTION

An important problem in today’s genomics is that of grouping
together homologous proteins when only sequence informa-
tion is available. This problem is difficult since sequence sim-
ilarity is a very noisy measure of evolutionary relatedness.

In spite of this, reasonable results have been obtained with
algorithms which are relatively simple. In fact, the core of

most methods proposed so far in the literature is based on
simply thresholding a measure related to the distance between
the sequences. These methods could be roughly divided into
two categories. A first group uses fully connected graphs, in
which the vertices represent the proteins while the edges are
labelled with the distance between the two proteins they con-
nect. These algorithms proceed by first removing those edges
whose labels are below a certain fixed threshold, and then
obtaining a grouping by collecting those proteins that are
still linked. This technique, known in the vision literature
as Connected Component Analysis (CCA) (1), is used for
example by GeneRAGE (2). Clearly, it is crucial to set the
threshold to a value that will provide useful groupings. Notice
that if the threshold is set to a value which is too conservative
(namely two sequences must have a very high sequence
similarity in order for their link to be retained) then only
very close sequences will be assigned to the same cluster.
This type of grouping would then not be very informative,
since it is already well established that proteins that are very
similar in sequence are very likely to be evolutionary related;
moreover, a conservative threshold is likely to generate many
singleton clusters. On the other hand, a relaxed threshold
would have the opposite effect of including many unrelated
proteins into the same cluster.

A second group of methods uses single linkage clustering
to organize the proteins on a tree according to the distances
between them. A hard threshold on such distances is then used
to separate the clusters. An advantage of this approach is that it
provides the user with an hierarchical organization of the
proteins. These ideas are used, e.g. by SYSTERS (3), Pro-
toMap (4) and ProClust (5) among others.

All the methods outlined above are ‘local’, in the sense that
they assign a protein to a cluster taking into account only the
distances between that protein and the other proteins in the set.
We begin this paper by analyzing what results can be achieved
in this way. Using sequences and their classification in the
SCOP (Structural Classification of Proteins) (6) database, we
are able to show what limitations arise for such methods,
owing to their locality.

Spectral methods differ from the ones described above in
the sense that they are ‘global’, since they assign a protein to a

*To whom corresponding should be addressed at Molecular Biophysics and Biochemistry Department, Yale University, 266 Whitney Avenue, New Haven,
CT 06520-8114, USA. Tel: +1 203 4325065; Fax: +1 203 432 5175 Email: albertopaccanaro@yale.edu

� The Author 2006. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

Nucleic Acids Research, 2006, Vol. 34, No. 5 1571–1580
doi:10.1093/nar/gkj515

 Published online March 17, 2006
 at R

oyal H
ollow

ay, U
niversity of L

ondon on A
ugust 23, 2012

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

cluster taking into account all the distances between every pair
of proteins in the set. We explain why global methods are
useful for clustering protein sequences where related proteins
can have low sequence identity.

We use a random subset of the SCOP dataset to learn a
mapping from sequence distances to probabilities of evolu-
tionary relatedness, and we apply a Spectral Clustering algo-
rithm to these probabilities. We show how these results are
superior to the ones obtained using a CCA-related method
[similar to GeneRAGE (2)], a hierarchical clustering method
and also another global method [TribeMCL (7)] by running
these algorithms on several datasets and comparing them in
terms of a performance measure defined in terms of precision
and recall. Finally, we discuss and explain the reasons for the
differences in performance of the various methods.

RESULTS

How difficult is clustering using sequence distances?

In this paper we consider the problem of clustering proteins
according to their evolutionary relatedness and particularly we
are interested in those cases in which some related proteins
have very low sequence similarity. As a characterization of
evolutionary relatedness we used SCOP’s superfamily group-
ing. The SCOP (6) database is an expert, manually curated
database where proteins are grouped together on the basis of
their 3D structures. It is organized in a hierarchical manner at
four main levels: class, fold, superfamily and family. Proteins
in the same superfamily are believed to be evolutionary
related, and for this reason we chose such superfamily group-
ings as the correct groupings, our ‘ground truth’. At the
superfamily level homology relationships may not be apparent
from sequence considerations alone since proteins in the same
superfamily can display varying degrees of sequence similar-
ity. Therefore, at superfamily level, SCOP provides an

excellent benchmark for testing how algorithms perform in
cases in which some related proteins have very low sequence
similarity. Also, considering SCOP domains rather than
multi-domain proteins allows us to keep the analysis simple
while focusing on the comparison between global and local
methods. The complete SCOP dataset contains many redund-
ant domains, whose sequences are very similar, so we used the
ASTRAL compendium for sequence and structure analysis (8)
to select non-redundant subsets. In the study presented here we
chose the SCOP subset Astral-95 where no two proteins share
95% sequence identity.

Following many authors before us, we chose BLAST E-val-
ues as a distance measure between two sequences. BLAST (9)
is fast, widely used and, unlike custom distance measures,
E-values are directly understood by both biologists and
bioinformaticians.

Our first goal was to ascertain the difficulty of clustering
protein sequences. We performed an all-against-all BLAST
comparison of the Astral-95 dataset and we then examined the
distribution of BLAST E-values within and between
superfamilies. In particular, we wanted to understand how
far members of the same superfamily can be from each
other, and how these distances compare with the distances
to members of other superfamilies. This would allow us to
analyze the limitations of local methods that involve using a
hard threshold on such distances to decide whether proteins
should be clustered together.

For each non-singleton domain in Astral-95 we calculated
the E-value to the nearest neighbour from its own superfamily
and the E-value to the nearest neighbour from any other
superfamily. In other words, these are the minimum E-
value to a domain from its own superfamily and the minimum
E-value to a domain from any other superfamily (Figure 1). [A
similar figure is calculated in (5). However, here we study the
distribution of minimum E-values rather than all E-values
since minimum E-values are the ones that ultimately affect

1e–80 1e–70 1e–60 1e–50 1e–40 1e–30 1e–20 1e–10 1
0

500

1000

1500

2000

2500

3000

minimum e–value

n
u

m
b

er
 o

f
p

ro
te

in
s

1e–10 1e–8 1e–6 1e–4 1e–2 1 100
0

100

200

300

400

500

Figure 1. (Left) Pictorial description of how the plot to the right was generated. A protein is represented by a circle. Assume that there are two super-families,
identified by the two different colours, blue (solid) and black (pattern). For each protein in turn we computed the distance to the closest protein with the same colour
(and we used it for the red plot) and the distance to the closest protein with a different colour (and we used it for the green plot). In the figure, the distances used for one
of the blue proteins are shown. (Right) Distribution of minimum E-values within (red) and across (green) super-families in Astral-95, for E-values between 1e�80

and 100.

1572 Nucleic Acids Research, 2006, Vol. 34, No. 5

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

the clustering accuracy.] Furthermore, we counted for how
many domains the closest domain within a certain distance
belonged to the same superfamily, and conversely, for how
many domains the closest domain within that distance
belonged to a different superfamily. Figure 2 (left) shows
the curves obtained for different values of the distances.
From these plots we can understand both why the problem
is difficult and what are the limitations of local clustering
methods based on placing a hard threshold on the E-values.

First of all, we can see that the curves in Figure 1 (right)
overlap. This means there does not exists a threshold that will
allow a perfect clustering. Take for example the CCA algo-
rithm: a conservative threshold, placed where the green curve
of Figure 1 is zero, say at 10�6, will provide all pure clusters;
i.e. it will never happen that proteins that belong to different
superfamilies are assigned to the same group (in fact the green
curve of Figure 2 is zero). At the same time, however, such
threshold will place into different groups proteins that really
should have been grouped together. Such a cut-off will pro-
duce many singleton clusters. A looser threshold, say at 10�1,
will produce impure clusters, while continuing to place into
different groups proteins that should have been grouped
together. We can see then that there is no perfect threshold,
and the best results are obtained using a conservative cut-off,
as it is usually done by the algorithms found in the literature.

However, we want to point out that such conservative cut-
offs solve only the ‘easy’ part of the problem: i.e. assigning
very similar proteins to the same cluster. It cannot solve the
most interesting part of the problem, i.e. grouping correctly
those proteins having low sequence similarity with the other
members of their own class—thus recognizing evolutionary
relatedness among proteins which are wildly different in
sequence. Interestingly, Figure 2 (right) shows that using
psi-BLAST (10), a more sensitive search algorithm, will
not improve things—even in this case the problem cannot
be solved using conservative cut-offs. Although the error
rate is lower for a higher coverage, there are still errors.

This discussion has elucidated the shortcomings of local
methods that use hard thresholds. One way to try to get better
results is to use global methods, that assigns a protein to a
cluster taking into account not only its distance to every other
protein in the set, but also the distance between any pair of
proteins in the set.

Spectral clustering results

Spectral methods allow one to study global properties of a
dataset by making only pairwise similarity measurements
between data points. Here we present the results obtained
by our spectral clustering algorithm and we compare them
with the ones obtained with three other methods from
the literature: GeneRAGE (2) (our implementation), hierarch-
ical clustering and TribeMCL (7). The first two are examples
of the two common types of local methods described in the
Introduction. TribeMCL was chosen because it is an interest-
ing attempt to use global information.

Considering the grouping provided by SCOP superfamilies
as the ‘ground truth’, it is possible to use the so called external
quality measures to evaluate a clustering. In order to evaluate
the performance of the different algorithms, we used the
F-measure, which combines Precision and Recall with
equal weights. Refer to the Materials and Methods section
for details on the algorithms and on the performance measure.

Here we present the results obtained on two sets of
experiments; the results of other two sets of experiments
are presented in the Supplementary Data (Experiment 1 and
Experiment 2 files). The first set of experiments was done on a
group of proteins extracted from SCOP, where superfamilies
were hand-chosen in such a way that they would be challen-
ging to cluster, and at the same time the dataset had a simple
structure, thus enabling the performance of the algorithm to be
appreciated visually. The dataset consists of 507 sequences
belonging to 6 super-families, namely Globin-like (88 pro-
teins), EF-hand (83), Cupredoxins (78), (Trans)glycosidases

1e–80 1e–70 1e–60 1e–50 1e–40 1e–30 1e–20 1e–10 1
0

1000

2000

3000

4000

5000

6000

threshold e–value

n
u

m
b

er
 o

f
d

o
m

ai
n

s

1e–10 1e–8 1e–6 1e–4 1e–2 1 100
0

2000

4000

6000

 1e–10 1e–09 1e–08 1e–07 1e–06 1e–05 1e–4 1e–3 1e–2 1e–1 1 10
0

1000

2000

3000

4000

5000

6000

7000

threshold e–value

n
u

m
b

er
 o

f
p

ro
te

in
s

Figure 2. Plots showing the number of non-singleton domains in Astral-95 that hit a member of the same super-family (red line) or different super-family (green line)
beneath a threshold E-value. The left plot was generated using BLAST, considering E-values between 1e�80 and 100. The right plot was generated using psi-BLAST
(five rounds with Astral-95 embedded in non-redundant protein database), considering E-values between 1e�10 and 10.

Nucleic Acids Research, 2006, Vol. 34, No. 5 1573

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

(83), Thioredoxin-like (81), Membrane all-alpha (94). The last
two superfamilies contained 12 and 13 families, respectively.
This set was extracted from Astral-95, so the maximum
pairwise identity was 95%.

Figure 3 shows the results obtained using the four methods.
The spectral clustering method clearly outperforms the other
three. First of all, it detects a number of clusters which is close
to the correct number of superfamilies, since it detects eight
clusters; at the same time, our implementation of GeneRAGE
detects 152 clusters, the hierarchical clustering detects 205
clusters and TribeMCL 50 (with the inflation parameter set
to 1.58). Only the 30 most populated clusters are shown in
Figure 3. The better quality of the clustering is quantified by
the F-measure: for the spectral clustering it is equal to 0.8132;

our implementation of GeneRAGE has a score of 0.4739, the
hierarchical clustering 0.2609 and TribeMCL 0.3173.

Looking at Figure 3 we can see that GeneRAGE and the
hierarchical clustering algorithms are sometimes able to detect
families, but they are inferior to our spectral clustering algo-
rithm in terms of being able to group separate families into
superfamilies. This is a direct consequence of our analysis
in the Introduction: since proteins in SCOP families have a
high degree of sequence similarity they are easy to detect
with methods that use a conservative threshold. On the
other hand SCOP superfamilies are constructed by grouping
families for which a pairwise comparison of individual
sequence members may reveal low sequence identity, but
whose structures and possibly functional features suggest

GeneRAGE Hierarchical Clustering

TribeMCL Spectral Clustering

Figure 3. Clustering results on the 507 dataset with our implementation of GeneRAGE (Top Left), hierarchical clustering (Top Right), TribeMCL (Bottom Left) and
our Spectral Clustering algorithm (Bottom Right). The figures show only the top 30 most populated clusters returned by each algorithm and 8 for the spectral
clustering, since it returned only 8 clusters. Each row in the diagrams corresponds to a different cluster. Short (green) bars represent the assignment of each protein
sequence to a cluster. Each protein has one of these bars in only one of the rows (clusters); the presence of the bar means that the protein is assigned to that cluster.
Boundaries between super-families are shown by vertical thick (red) lines; boundaries between families within each super-family are shown by dotted (blue) lines.
The dataset has 6 super-families, orderly from left to right: Globin-like (88), EF-hand (83), Cupredoxins (78), (Trans)glycosidases (83), Thioredoxin-like (81),
Membrane all-alpha (94).

1574 Nucleic Acids Research, 2006, Vol. 34, No. 5

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

that a common evolutionary origin is probable. Therefore
methods that use a conservative threshold will not
perform well, since related proteins have low sequence
similarity.

The cluster plots for the 507 dataset reveal that our spectral
method (Figure 3 bottom right) correctly groups together
almost all the members of the EF-hand, Cupredoxins and
Membrane all-alpha superfamilies. Most of the members of
the (Trans)glycosidases superfamily are correctly grouped
although a few (belonging to one family) are wrongly assigned
to the Membrane all-alpha cluster. The Globin superfamily
is split into two clusters corresponding to the Globin and
Phycocyanin families, and these two clusters include hardly
any wrongly assigned members. For those superfamilies where
most of the members are correctly assigned to a cluster [e.g.
the (Trans)glycosidases] a next step would be to analyse in
detail the relationships of those incorrectly assigned members
to the rest of their superfamily.

Our implementation of GeneRAGE (Figure 3 top left)
grouped many of the Globin and EF-hand proteins and also
part of the Cupredoxins, (Trans)glycosidases and Thiore-
doxins. Hierarchical clustering (Figure 3 top right) grouped
many of the Globins, and part of the Cupredoxins and some
families within the (Trans)glycosidase superfamily. However,
neither of these methods seem to be able to capture
superfamily relationships effectively. As we predicted earlier,
using a conservative cut-off, both of them create many sin-
gletons and all the clusters are pure.

As regards TribeMCL (Figure 3 bottom left), the main
clusters it identifies appear to group disparate families. More-
over, TribeMCL also tends to create many spurious clusters
containing only few proteins. However it did group together
most of the sequences in the EF-hand superfamily.

The second set of experiments was performed on a group
of 10 different datasets which were generated from Astral-95
by adding random superfamilies to a dataset until it contained
at least 500 proteins. To ensure a fair selection of
superfamilies, these were chosen by selecting a random pro-
tein from Astral-95 and then including all members of the
corresponding superfamily in the dataset. The number of
superfamilies in the datasets thus obtained varied between
13 and 23.

Again the spectral clustering algorithm outperformed the
other three methods. Figure 4 summarizes the results by show-
ing the F-measure obtained on each of the 10 datasets for each
of the four methods. For some problems, the F-measure
obtained by TribeMCL is better than the one obtained by
our implementation of GeneRAGE. The hierarchical cluster-
ing algorithm often has a better performance than TribeMCL,
but is generally less effective than GeneRAGE. However, our
algorithm consistently offers an improvement in performance
over the other three.

In the Supplementary Data (Experiment 1 file) we present
the results obtained by all four methods on a dataset which
consists of 511 sequences belonging to 7 superfamilies, namely
Globin-like (88), Cupredoxins (78), Viral coat and capsid
proteins (106), Trypsin-like serine proteases (73), FAD/
NAD(P)-binding domain (64), MHC antigen-recognition
domain (51), Scorpion toxin-like (51).

In the Supplementary Data (Experiment 2 file) we present
the results obtained on a dataset which consists of 430

sequences belonging to 5 superfamilies, namely NAD(P)-
binding Rossmann-fold domains (208), Triosephosphate
isomerase (TIM), (15) Nucleotide-binding domain (8),
Globin-like (97) and EF-hand (102). All the datasets used
in the experiments presented in the paper and in the Supple-
mentary Data are available in the Supplementary Data (Data-
sets file).

Finally, we wanted to test whether the clustering of a certain
superfamily was influenced by the other superfamilies in the
set, i.e. whether the four clustering algorithms produced con-
sistent groupings of a given superfamily when it was part of
different datasets. This is the reason why the Globin-like and
the EF-hand superfamilies were included in more that one
experiment—the first appears in all three datasets, while the
second one appears in the dataset presented above and in the
Experiment 2 in the Supplementary Data. In both cases the
spectral clustering method gave very consistent results. Gen-
eRAGE and the hierarchical clustering also gave reasonably
consistent results, while TribeMCL gave quite inconsistent
results for the Globin-like superfamily and more consistent
results for the EF-hand one.

In our experiments, on average, the value of the F-measure
given by our method is 84% better than hierarchical clustering,
72% better than TribeMCL and 34% better than our imple-
mentation of GeneRAGE.

DISCUSSION

Our earlier analysis had anticipated what sort of results one
might expect using a local method based on placing a hard
threshold on the distances between sequences. The results
shown in section 2 have confirmed our analysis: all clusters
obtained with such methods are pure, but often homologous
proteins are placed in different clusters and there are many
singletons.

We pointed out earlier that the problem with local methods
is that a protein is assigned to a cluster using ultimately only a

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dataset number

F
 m

ea
su

re

Figure 4. F-measure of the cluster quality on the 10 randomly drawn subsets
from SCOP. For each dataset the bars represent the performance respectively,
from left to right: our implementation of GeneRAGE (dark blue), TribeMCL
(light blue) with inflation parameter set to 1.60, hierarchical clustering (yellow)
and our spectral method (red).

Nucleic Acids Research, 2006, Vol. 34, No. 5 1575

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

few measurements, the distances to its closest neighbours.
Global methods, on the other hand, assign a protein to a
cluster taking into account the distances between every pair
of proteins in the set, and for this reason they should be less
sensitive to the error which might be present in a few
measurements.

We have suggested that spectral clustering methods are
global methods, and we have seen that results obtained
with a particular implementation are much better than the
ones obtained with some local methods. But what exactly
do we mean when we say that spectral clustering methods
are global? And can we intuitively explain why results are
so much better?

Spectral methods use the leading eigenvectors of a matrix
derived from the distance matrix between the points. And we
know that the eigenvectors of a matrix depend on the whole
matrix: change one value in the matrix, and its eigenvectors
will be different. This fact ensures the globality of the method.

To intuitively understand how this leads to better results, let
us think of a situation as the one depicted in Figure 5. Here we
see proteins from two different superfamilies, identified by the
two different colours, green (solid) and blue (pattern). Four of
the green proteins are very close together and form a tight
cluster, and so do the four blue ones. Then there is another
green protein, node 5, which shows only very weak similarities
to other proteins in the dataset. Four of these weak similarities
are with members of its own family, but it also has a weak
similarity to one of the blue proteins; moreover, let us
assume that such similarity is slightly stronger than any of
the similarities to a green protein, that is the distances a > b.

Since the closest protein to node 5 is a blue protein, in
general, a local method will either place protein 5 together
with the blue proteins, or at best in a cluster by itself.
To understand what a spectral method will do instead, let
us make use of the random walk interpretation of spectral
clustering. We can imagine that at any given time there are
some particles placed on the vertices of the graph, and at each
time step these particles jump from one vertex onto another
with a probability related to how similar the two vertices are:
the more similar they are, the more likely it is for the particles
to jump between them (refer to the Materials and Methods
section for details on the random walk interpretation of spec-
tral clustering). According to this, the algorithm will assign
node 5 to one of the two clusters, depending on whether a
particle travelling on the graph will spend more time within the
set {1, 2, 3, 4, 5} or within the set {5, 6, 7, 8, 9}. And although
a particle starting from node 5 at any given time step will

always be more likely to travel to node 6, for certain values of
a and b, it will on average travel more often within the green
cluster, since there are four connections to the green cluster,
but only one to the blue cluster. In our figure, if for example
a ¼ 0.5 and b ¼ 0.3, protein 5 would be clustered together
with the green proteins. We see that the spectral clustering
algorithm takes into account the fact that protein 5 has weak
similarities to four green proteins, and this is considered a
stronger clue of its evolutionary grouping than the fact that
there is just one slightly stronger similarity to one of the blue
proteins.

Furthermore, due to the globality of the method and accord-
ing to the random walk interpretation of spectral clustering, the
distance between every pair of proteins in the dataset plays a
role in the clustering. This means that, in general, the distances
within the proteins in the groups {1, 2, 3, 4} and {6, 7, 8, 9}
will influence the assignment of protein 5, although such dis-
tances do not directly involve protein 5.

One final question remains to be addressed, which is why
the results obtained with our spectral method are better than
the ones obtained using TribeMCL. In fact, both methods are
global and the starting point for both is the Markov transition
matrix. The two algorithms differ in the way in which they
propagate the Markov chain on the graph. Our spectral
method analyses the perturbations to the stationary distribution
of a Markovian relaxation process defined in terms of simil-
arity weights (refer to the Materials and Methods section for
details). The Markovian relaxation process never needs to be
explicitly carried out; instead, it is analytically expressed using
the eigenvectors corresponding to the leading eigenvalues of
the Markov transition matrix. TribeMCL does something dif-
ferent since it actually modifies the random walks to promote
the emergence of clusters in the graph (refer to the Materials
and Methods section for details). While the expansion oper-
ators just amounts to one iteration of the relaxation process, the
inflation parameters modifies the random walk, boosting prob-
abilities on strong intra-cluster walks and demoting weak
inter-cluster walks. While this results in an extremely efficient
algorithm, an error is introduced, as the process is only an
approximation to the relaxation process implied by the data.

CONCLUSIONS

In this paper we have shown that the problem of correctly
grouping together evolutionary related proteins using only
sequence information is a difficult one. Our main goal was
to point out that if we want to cluster correctly those cases in

Figure 5. Pictorial representation of proteins belonging to two different super-families, identified by green (solid) and blue (pattern) circles, respectively. Numbers
on the connection represent distances between the proteins.

1576 Nucleic Acids Research, 2006, Vol. 34, No. 5

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

which related proteins have very low sequence similarity then
local methods will not provide a satisfactory answer, and
global methods should instead be used. Here we have proposed
one method to do so, and we have presented results on difficult
sets of problems. However, other global methods based on
spectral clustering have been proposed (see for example
http://crd.lbl.gov/~cding/Spectral/ for a good reference list),
and their performance for clustering protein sequences should
be investigated.

The spectral clustering algorithm that we used is very
simple to implement. The eigenvectors of the normalized
symmetric matrix are obtained by singular value decomposi-
tion (SVD), which is a very stable process and there exist
numerical procedures to compute it efficiently. A Matlab
implementation of the algorithm, running on a 1.8 GHz
Pentium 4, took only few seconds to cluster the biggest dataset
presented here. Our procedure gave very stable results for
several different runs. The Matlab code of our implementation
is available from the authors upon request.

We have compared the results obtained by our algorithm
with those obtained by a connected component method (sim-
ilar to GeneRAGE), hierarchical clustering and TribeMCL.
Our algorithm gives an improved performance over the
other three methods in terms of the quality of the clusters
as measured by the F-measure. Most importantly, the number
of clusters returned by the algorithm is in general much closer
to the correct one than the one returned by the other two
methods, and particularly there are much fewer singletons.
This is particularly relevant for biological applications since
it means that the algorithm is able to detect the evolutionary
relatedness of proteins which are distant in sequence space.

In our study we have chosen SCOP as our gold standard
because it is an expertly curated categorization of proteins
which takes into account structural information. Proteins in
the same SCOP superfamily may be very distantly related and
the similarity may not be apparent from consideration of the
sequences alone. We remain aware that the SCOP categoriza-
tion is not perfect and it may also change. For example, one of
the superfamilies considered in this study, viral coat and cap-
sid proteins, (refer to Supplementary Data, Experiment 1 file)
was reclassified after version 1.63 of SCOP. In addition to
SCOP other classifications exist which could also have been
used [e.g. CATH, (11)]. It would be interesting to investigate
how the different clustering methods perform with respect to
different protein classification schemes.

So far we have not addressed the problem of multi-domain
sequences. Also we need to see how our spectral method scales
to datasets that are much larger in size.

MATERIALS AND METHODS

The spectral clustering algorithm

In order to apply spectral methods to our problem of clustering
protein sequences we re-formulate it as the problem of
partitioning a graph.

We consider partitioning a weighted undirected graph G
into a set of discrete clusters. Each node in the graph corres-
ponds to a protein sequence and the weight on each edge
corresponds to the similarity between the two protein
sequences it connects. Ideally, we are looking for areas in

the graph, the clusters, in which the nodes are connected
with highly-similar edges; and at the same time the connec-
tions between such areas should be weak, constituted by edges
with low similarity. The problem is to identify these tightly
coupled clusters, and cut the inter-cluster edges.

Following the formulation in (12,13) (http://books.nips.cc/
papers/files/nips15/AA26.pdf) (citeseer.ist.psu.edu/article/
meila01random.html), we consider an undirected graph
G ¼ (V,E) with vertices vi 2 V, for i ¼ 1, . . . , n and edges
ei,j 2 E with non-negative weights si,j (the similarity between
vertices vi and vj). The edge weights are assumed to be sym-
metric, i.e. si,j ¼ sj,i. We shall use the following notation: all
vectors are column vectors, and are denoted by bold letters;
capital letters denote matrices; vT denotes the transpose of
column vector v. Similarities are collected into a symmetric
n · n matrix S with elements si,j. We shall use d to denote the
vector of degrees of the nodes, i.e.: d ¼ (d1, . . . , dn), where
di ¼

P
j si‚ j ð¼

P
j si‚ j, since S is symmetric); D will denote

the diagonal matrix of degrees: D ¼ diag(d1, . . . , dn).
Spectral methods use the leading eigenvectors of a matrix

derived from the similarity information. There are various
ways in which this can be done. We used a method which
has been proposed recently (14) (http://www-2.cs.cmu.edu/
Groups/NIPS/NIPS2001/papers/psgz/AA35.ps.gz), and was
shown to give good results in a variety of difficult problems.
The algorithm, depicted in Figure 1 in the Supplementary Data
(Appendix file), is the following:

(i) From the affinity matrix S construct a symmetric
normalized matrix L ¼ D�1/2 SD�1/2.

(ii) Find a matrix U of eigenvectors: U ¼ [u1, u2, . . . , uK],
corresponding to the K largest eigenvalues of L.

(iii) Build a matrix Y by renormalizing each of U’s rows to have
unit length: Yi‚ j ¼ Ui‚ j

ð
P

j
U2

i‚ jÞ
1=2.

(iv) Treating the rows of Y as points in R
K, cluster them into K

clusters using K-Means.
(v) Assign node i to cluster k if and only if row i of the matrix

Y was assigned to cluster k.

Here we shall give an intuitive explanation of how the
algorithm works. To do this let us think of a graph as a system
with some dynamics. We can imagine that at any given time
there are some particles placed on the vertices of the graph,
and at each time step these particles jump from one vertex onto
another with a probability related to how similar the two
vertices are: the more similar they are, the more likely it is
for the particles to jump between them. The path that the
particle travels is called random walk and the dynamical
process is called Markovian relaxation process.

It is possible to prove that for a fully connected, undirected
graph with positive non-zero weights, any particle starting
from any position after an infinite number of iterations will
always reach the same stationary distribution (15). The
stationary distribution, however, is not very interesting for
us: in fact, being the distribution that is reached after an infinite
number of iterations, it does not give us a lot of information
about which areas of the graphs are tighter and relatively
isolated from the rest of the graph. However, if the graph
exhibits such areas, we expect that during the Markovian
relaxation process a particle would spend there some time
before eventually jumping onto a different area of the

Nucleic Acids Research, 2006, Vol. 34, No. 5 1577

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

graph. In other words, looking at areas where the particles ‘get
trapped’ and thus spend most of their time, we can identify the
tight clusters in the graph that we are looking for [see Figure 2
in the Supplementary Data (Appendix file)]. Now we shall see
that we can study the random walk of a particle on the graph
and particularly where it spends most of its time before reach-
ing the stationary distribution by analysing the eigenvectors
and eigenvalues of a matrix which is derived from the simil-
arity matrix.

Given a graph with n vertices, we can describe the initial
position of a particle as a discrete probability distribution
over the vertices, that can be written out as a vector p0 2
R

n whose components are all positive and sum to 1. Then
the probability distribution of the particle at the next time
step is given by:

p1 ¼ M · p0

where:

M ¼ SD�1

M is called Markov transition matrix, and it completely
describes the random walk of the particle.

We show in the Supplementary Data (Appendix file) that the
probability distribution of the particle after b iterations is
given by Mb. Therefore Mb describes the dynamics of the
particle before we reach the stationary distribution and we
expect that during this time the particle will spend longer
time travelling within the clusters than across clusters. So
we would expect to be able to discern in the Mb matrix
some structure relating to the clusters in the graph. In the
appendix we show that Mb can be nicely decomposed as:

Mb ¼ D1=2u1 uT
1 D�1=2 þ

Xn

i¼2

D1=2uil
b
i uT

i D�1=2

¼ M1 þ
Xn

i¼2

D1=2uil
b
i uT

i D�1=2

1

where ui and li, i ¼ 1, . . . , n, are the eigenvectors and
eigenvalues of the L matrix, which is similar to M.

Therefore we can think of the probability distribution of a
particle after b iterations as the sum of two terms: the first term
is the distribution in which the particle would end up if the
random walk was allowed to run for an infinite number of
iterations; while the second term accounts for the fact that the
random walk is stopped only after b iterations—it is therefore
a perturbation to the stationary distribution.

The matrix constituting the second term of Equation 1 is
thus the most ‘responsible’ for the fact that the particles spend
most of their time in certain regions of the graph. Therefore we
expect it to contain blocks of positive values, roughly corres-
ponding to the clusters in the graph. And given that such
matrix is constituted by a weighted sum of outer products
of eigenvectors, these eigenvectors should therefore exhibit
the property of being roughly piecewise constant, and com-
ponents corresponding to elements in the same cluster should
have approximately the same value. In fact in (13), it was
shown that for K weakly coupled clusters the leading K eigen-
vectors will be roughly piecewise constant. Finally, notice that

the contribution of each eigenvector to the summation in the
right hand side of Equation 1 is weighted by the b power of its
eigenvalue. Therefore, since all eigenvalues (except the first)
are strictly less than one, only the contribution of the first few
eigenvectors will be relevant. Figure 3 in the Supplementary
Data (Appendix file), shows the eigenvectors and the uiƒu

T
i for

a few values of i and the matrix constituting the second term of
Equation 1 for a simple toy problem.

Therefore it is clear why a simple recipe that has been
quite successful at partitioning the graph into two clusters
is to assign points based on the sign of the elements of the
second eigenvector of the Markov matrix M. This algorithm
is called Normalized Cut (or NCut) (16) (citeseer.ist.psu.edu/
shi97normalized.html). And the spectral clustering procedure
described earlier can be seen as a particular manner of employ-
ing the standard K-Means algorithm on the elements of the
leading K eigenvectors to extract K clusters simultaneously.

One final comment to be made regards how to choose the
number of clusters K. In our implementation, we analysed the
eigenvalues of M. We computed the eigengaps which are
the ratios of successive eigenvalues. We then applied a pre-
defined threshold e on the eigengaps to select the number of
clusters: K ¼ min{i : li/li+1 > e}. While this method of
selecting K is not perfect, we found it to be adequate for
the protein datasets on which we tried it.

Learning a similarity function

In our experiments, in order to cluster a set of proteins, we
began by computing the BLAST E-values for each pair of
sequences in the set, and collected them into a matrix P. In
general P will not be symmetrical, since there are no guaran-
tees that the E-value obtained when aligning protein a with b
will the same which is obtained when aligning protein b with a.
We transformed P into a symmetrical matrix, S, by assigning
to each si,j and sj,i the higher of the two values pi.j and pj,i This
amounts to a conservative interpretation of the E-values.
(We also tried assigning to each si,j the average of the two
values pi.j and pj,i , but we found the results to be roughly the
same.)

We began by applying the spectral clustering algorithm
described earlier directly to S [these earlier experiments are
described in (17)]. We then realized that results could be
improved by integrating some background knowledge into
our method. This can be done easily by analysing the statistics
of the E-values for the same and different superfamilies.

To do this we randomly extracted superfamilies from SCOP
until we had collected about 1000 proteins. We used these
sequences to create two sets of distances, one of intra-class
distances (which contained 15 544 elements), and one of inter-
class distances (with 981 670 elements). We then used this
data to train a simple logistic regression model to discriminate
between the two classes. We can interpret the posterior prob-
abilities returned by the model as probabilities of evolutionary
relatedness. Such probabilities are then fed as affinities into the
spectral clustering algorithm. Note that the training of the
logistic regression model needs to be done only once. Also
we point out that those proteins which were used during this
phase were not used later for testing the performance of the
clustering algorithm. A scheme of the complete method that
we used is shown in Figure 6.

1578 Nucleic Acids Research, 2006, Vol. 34, No. 5

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

Performance measure

For a certain protein set, let us call K the categorization into
superfamilies provided by SCOP, and let us denote by l the
clustering returned by a certain clustering algorithm for that
set. Let n be the total number of proteins in the dataset; nh the
number of proteins in superfamily Kh according to K; nl

the number of proteins in cluster Cl according to l; and nh
l

the number of proteins that are in cluster l according to l as
well as in class h given by K. The Precision is then defined as
the fraction of correctly retrieved proteins out of all the pro-
teins in the cluster:

PðCl‚KhÞ ¼
nh

l

nl

The Recall is defined as the fraction of correctly retrieved
proteins out of all the proteins in the superfamily:

RðCl‚KhÞ ¼
nh

l

nh

The F-measure combines Precision and Recall with equal
weights. For the entire clustering, the total F-measure is
defined as:

Fðl‚KÞ ¼ 1

n

X

h

nh max
l

2nh
l

nl þ nh

Algorithms for comparison: GeneRAGE, hierarchical
clustering and TribeMCL

We implemented a simplified version of GeneRAGE (2), a
CCA-related method which has recently been introduced for
clustering protein sequences. The starting point of the algo-
rithm is a set of pairwise BLAST E-values between sequences.
It then binarizes such matrix using a threshold value of 10�6.
A connected component search is then performed on the bin-
arized matrix to retrieve the clusters. The original GeneRAGE
presents also other features. For example, it uses the CAST
algorithm to mask composition bias; it solves the problem of
asymmetric E-values by performing an additional dynamic
programming alignment between asymmetric elements; and
putative multi-domain proteins are identified considering
where transitivity does not hold. However these aspects are
not relevant for the discussion addressed here, and so were not
included in our implementation.

Hierarchical clustering (18) is a clustering method that
begins with the individual data points and then builds a tree
by iteratively merging the closest points until only one is left.
The links in the resulting tree are then cut in order to obtain
separate clusters. There are therefore two matters to be
addressed by a hierarchical clustering procedure. The first
one is how to determine the distance from a newly merged
data point to the rest of the dataset [various choices for this
distance have been analyzed e.g. in (19)]. The second one is
how to cut the tree into different clusters.

We tried several different choices for these parameters, and
here we presented the best results that we obtained on our
datasets. For these we used the average distance metric, in
which the distance between two clusters is given by the aver-
age distance between all pairs of items where one member of a
pair belongs to each cluster. This distance metric was chosen
after comparing it with several other metrics using the cophen-
etic correlation coefficient (20). We then cut those links in the
tree that were greater than 10�6.

As for our spectral method, the starting point of the Markov
Cluster (MCL) algorithm (21) is to build a Markov transition
matrix, M. The two algorithms differ in the way in which they
propagate the Markov chain on the graph: while our spectral
clustering analyses perturbations to the stationary distribution
of M, MCL modifies the random walks to promote the emer-
gence of clusters in the graph.

We discussed earlier that a cluster in a graph is character-
ized by the presence of many strong edges between its
members and perhaps few weak connections with other clus-
ters. If a graph contains such clusters, then it is unlikely that
random walks based on Markov transition probabilities will
jump between two clusters too frequently. The idea behind the
MCL algorithm is the following: if the random walks can
somehow be biased, say by pruning weak edges and reinfor-
cing strong edges simultaneously, clusters may emerge from
the graph.

MCL induces this bias in random walks by alternating
between two operators called expansion and inflation. Expan-
sion is similar to the propagation we discussed in the intro-
duction, where the Markov transition matrix M is raised to a
power. Inflation corresponds to taking powers of M entry-wise
and it is followed by a normalization step, so that the matrix
elements in each column sum up to 1 again. Expansion makes
the differences between nodes less distinguishable, while

E-values

Probab. of
functional
similarity

compute pairwise
distances (BLAST)

K-Means
Spectral

Clustering

Logistic Regress.
Model

SLSAAQKDN

ALVEDNNA

AFTACEKQT

EVPSEPGRL

DLGAPQNPNA

GKPEIHKCRS

GDVAKGKKTF

DGESIYING

SQWGSGKNLY

EGDAAAGEKA

DGESIYING
GDVAKGKKTF
EGDAAAGEKA
SQWGSGKNLY

DLGAPQNPNA
EVPSEPGRL
GKPEIHKCRS

SLSAAQKDN
ALVEDNNA
AFTACEKQT

Figure 6. The scheme of the method that we used in our experiments. Proteins of the same colour are evolutionary related.

Nucleic Acids Research, 2006, Vol. 34, No. 5 1579

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

inflation has the effect of boosting probabilities on strong
intra-cluster walks and demoting weak inter-cluster walks.
The inflation process is controlled by a parameter r. Increasing
r has the effect of increasing the tightness of the clusters.
Iterative application of expansion and inflation operators
approaches an equilibrium state and the resulting graph is
then examined for cluster information. We tried several dif-
ferent choices for the r parameter, and here we presented the
best results that we obtained on our datasets.

MCL constitutes the core component of TribeMCL, an
algorithm used for clustering protein sequences (7). In
TribeMCL, the similarity measure between two proteins is
built on the BLAST E-value. In particular, a similarity matrix
S is put together by taking the average of the pairwise �log10

(E-value) values between two proteins, thus resulting in a
symmetric matrix. The similarity matrix is then converted
into a Markov transition matrix for the application of the
expansion and inflation operators.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

This project began as a collaboration with Chakra
Chennubhotla. The authors would especially like to thank
Chakra for many crucial discussions and for always sharing
his enthusiasm, inspiration and criticism. Also thanks to Paul
Grosvenor, Mike Curtis, Mark Gerstein, Rajkumar Sasidharan,
Madan Babu, Aroul Selvam, Zoubin Ghahramani, Jaz Kandola
and Allan Jepson for many important and stimulating discus-
sions. Thank you to Allan Jepson for the code for Connected
Component Analysis and to Ian Nabney for the Netlab package
(22). Funding to pay the Open Access publication charges for
this article was provided by Queen Mary, University of
London. A.P. was supported from MRC/DTI (grant
G0100109) and J.A.C. from the Special Trustees of St
Bartholomews and the Royal London Hospital.

Conflict of interest statement. None declared.

REFERENCES

1. Ballard,D. and Brown,C. (1982) Computer Vision. Englewood Cliffs:
Prentice-Hall.

2. Enright,A.J. and Ouzounis,C.A. (2000) GeneRAGE: a robust algorithm
for sequence clustering and domain detection. Bioinformatics, 16,
451–457.

3. Krause,A., Stoye,J. and Vingron,M. (2000) The SYSTERS protein
sequence cluster set. Nucleic Acids Res., 28, 270–272.

4. Yona,G., Linial,N. and Linial,M. (2000) ProtoMap: automatic
classification of protein sequences and hierarchy of protein families.
Nucleic Acids Res., 28, 49–55.

5. Pipenbacher,P., Schliep,A., Schneckener,S., Schonhuth,A.,
Schomburg,D. and Schrader,R. (2002) ProClust: improved clustering of
protein sequences with an extended graph-based approach.
Bioinformatics, 18, S182–S191.

6. Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995) SCOP: a
structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol., 247, 536–540.

7. Enright,A.J., Van Dongen,S. and Ouzounis,C.A. (2002) An efficient
algorithm for large-scale detection of protein families. Nucleic Acids Res.,
30, 1575–1584.

8. Brenner,S.E., Koehl,P. and Levitt,M. (2000) The ASTRAL compendium
for protein structure and sequence analysis. Nucleic Acids Res., 28,
254–256.

9. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)
Basic local alignment search tool. J. Mol. Bio., 215, 403–410.

10. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids Res.,
25, 3389–3402.

11. Pearl,F., Todd,A., Sillitoe,I., Dibley,M., Redfern,O., Lewis,T.,
Bennett,C., Marsden,R., Grant,A., Lee,D. et al. (2005) The CATH
Domain Structure Database and related resources Gene3D and DHS
provide comprehensive domain family information for genome analysis.
Nucleic Acids Res., 33, 247–251.

12. Chennubhotla,C. and Jepson,A. (2002) Half-lives of eigenflows for
spectral clustering. In Becker,S., Thrun,S. and Obermayer,K. (eds),
Advances in Neural Information Processing Systems 15, NIPS.
pp. 689–696.

13. Meila,M. and Shi,J. (2001) A random walks view of spectral
segmentation. Proceedings International Workshop on AI
and Statistics, AISTATS.

14. Ng,A., Jordan,M. and Weiss,Y. (2001) On spectral clustering: analysis
and an algorithm. In Dietterich,T.G., Becker,S. and Ghahramani,Z. (eds),
NIPS 14, Advances in Neural Information Processing Systems 14.
pp. 849–856.

15. Fan,R.K. (1997) Chung Spectral Graph Theory. Am. Math. Soc., 92,
1–212.

16. Shi,J. and Malik,J. (2000) Normalized cuts and image segmentation.
IEEE Transaction on Pattern Analysis and Machine Intelligence. 8,
888–905.

17. Alberto,P., Chennubhotla,C., Casbon,J. and Saqi,M. (2003)
Spectral clustering of protein sequences. International Joint
Conference on Neural Networks, IJCNN. Portland,
OR, USA.

18. Everitt,B.S. (1993) Cluster Analysis. 3rd edn. Edward Arnold, London.
19. Sasson,O., Linial,N. and Linial,M. (2002) The metric space of proteins:

comparative study of clustering algorithms. Bioinformatics, 18,
S14–S21.

20. Farris,J.S. (1969) On the cophenetic correlation coefficient. Syst. Zool.,
18, 279–285.

21. van Dongen,S. Graph Clustering by flow simulation. Ph. D. Thesis,
University of Utrecht, 2000, The Netherlands.

22. Nabney,I.T. Netlab: Algorithms for Pattern Recognition Springer,
2002.

1580 Nucleic Acids Research, 2006, Vol. 34, No. 5

 at R
oyal H

ollow
ay, U

niversity of L
ondon on A

ugust 23, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

