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Abstract

The magnetism of two model systems that undergo orbital ordering transitions,

MnV2O4 and GdVO3, has been studied using neutron scattering and synchrotron

x-rays.

MnV2O4 comprises a network of corner-sharing tetrahedra with the vanadium

ions forming a pyrochlore lattice. This structure is typical of systems that are

geometrically frustrated in three dimensions. In the case of MnV2O4, the V3+ 3d

electrons occupy two out of three t2g orbitals and, therefore, the orbital degrees

of freedom come into play. The presence of the magnetic Mn2+ ions leads to

ferrimagnetic structures, allowing the possibility to control the orbital ordering.

The low temperature MnV2O4 magnetic structure and phase diagram were de-

termined using single-crystal neutron diffraction. The magnetic excitations in

the low temperature phases were studied using inelastic neutron scattering. The

rotation method was employed on MAPS to obtain four-dimensional volumes of

reciprocal space. Unidirectional polarization analysis was employed on IN20 to
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Abstract

focus on details of the magnetic dispersion with great sensitivity. The previously

published magnetic exchange model was unable to account for our data and a new

model is proposed. This magnetic exchange model distinguishes between the two

candidate orbital ordering models.

The perovskite orthovanadates, RVO3 (R = rare earth or Y), display a vari-

ety of commensurate magnetic structures. Until now the magnetic structure of

GdVO3 had not been determined by neutron diffraction due to strong absorp-

tion at thermal wavelengths. Magnetisation measurements for GdVO3 reveal an

unusual magnetic memory effect and a series of magnetic-field-induced phase tran-

sitions at low temperature.

We have studied the complex magnetic ordering in GdVO3 using hot neutrons

on D9 at ILL and resonant x-ray scattering on ID20 at ESRF. We have deter-

mined new magnetic structures in the rich magnetic phase diagram of GdVO3 at

low temperature, which we find to be comprised of incommensurate orderings of

gadolinium moments.
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1 Introduction

The Greeks were aware of magnetism in 800 B.C. when they discovered that the

mineral magnetite Fe3O4, also known as lodestone, attracted iron. The property

of magnetism is claimed to have been utilised in the form of the compass by the

Chinese as far back as the 13th century B.C., although the invention of the compass

is generally considered to be of Arabic or Indian origin [1]. The magnetic ions in

magnetite are arranged on a three-dimensional pyrochlore lattice made of corner

sharing tetrahedra. The pyrochlore crystal structure is based upon the mineral

Pyrochlore (Na,Ca)2Nb2O6(OH,F), which is named from the Greek words ‘pyro’

(πũρ) meaning fire and ‘chloros’ (χλωρóς) meaning green, because the mineral

turns green upon ignition [2]. The pyrochlore crystal structure describes mate-

rials of the type A2B2O7 where A and B are generally rare-earth or transition

metal species. These systems are particularly susceptible to geometrical frustra-

tion and novel magnetic effects [2]. The physical properties of materials with

the pyrochlore structure are very varied and range from superconducting materi-

19



1 Introduction

als, electronic insulators, ionic conductors, metallic conductors, mixed ionic and

electric conductors, spin ice systems and spin glass systems [3, 4].

Transition metal (TM) oxides in particular have been the topic of much re-

search since the discovery of high temperature superconductors in 1986 [5]. The

TM oxides often have a perovskite (CaTiO3) structure where the TM ion is at

the centre, surrounded by six oxygen ions. The high symmetry undistorted cu-

bic structure is often lowered to orthorhombic, tetragonal or trigonal structures in

many perovskites to minimise their energy. Perovskite materials also exhibit many

interesting properties including colossal magnetoresistance, ferroelectricity, super-

conductivity, charge ordering, spin dependent transport, high thermopower and

the interplay of structural, magnetic and transport properties. These properties

enable them to be used in many practical applications such as catalyst electrodes

and sensors in fuel cells and memory and spintronics devices [6]. The reason for

such varied properties is that the charge, spin and orbitals of these materials have

several degrees of freedom which interact.
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1 Introduction

1.1 Basic theory of magnetism

Magnetism is concerned with the formation and behaviour of magnetic moments

in solids. It is a collective phenomenon; the magnetic properties of atoms and

molecules individually are often very different to those of the macroscopic systems

of which they are a part. A magnetic moment µ and the current I around a loop

of area ds can be related using classical electromagnetism [7,8]:

dµ = Ids (1.1)

where the magnetic moment points perpendicular to the plane of the current loop.

This magnetic moment is associated with orbital angular momentum L because

the current loop is formed from the movement of particles with mass (electrons).

γ is the gyromagnetic ratio:

µ = γL (1.2)

In a magnetic solid, the vector sum of the magnetic moments per unit volume

is known as the magnetisation M. In free space, M is zero and the magnetic field

can be described by the magnetic flux density B and magnetic field strength H.

B = µ0H (1.3)

where µ0 is the permeability of free space. When a magnetised sample is intro-

21



1 Introduction

duced the relationship becomes:

B = µ0(H + M) (1.4)

In a linear material where M is linearly related to H, M= χH where χ is the

magnetic susceptibility. There is still a linear relationship between B and H:

B = µ0(1 + χ)H = µ0µrH (1.5)

µr is the relative permeability of the material and is equal to 1+χ [7, 8] .
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1.1.1 Hund’s Rules

The resultant angular momentum of an atom is dependant only on electrons in

unfilled shells (the net angular momentum of a filled shell is zero). There are two

factors to consider when determining the appropriate way to add the momentum

of the individual electrons to obtain the overall angular momentum of the atom:

• Electrostatic Coulomb interaction between the atomic electrons leads to an

effective coupling between the spin angular momenta.

• Spin-orbit interaction, a relativistic effect which becomes more significant

for heavier atoms [8].

L-S or Russell-Saunders coupling

For low to intermediate weight elements the electrons’ static interactions dominate

and the spin-orbit interaction can be treated as a perturbation. The combination

of angular momentum quantum numbers which minimize the ground state energy

is found by applying Hund’s rules.

”When an atom has orbitals of equal energy, the order in

which they are filled by electrons is such that a maximum

number of electrons have unpaired spins.” [1]
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1. Maximise the total spin angular momentum S.

Keeping the spins parallel minimises the coulomb repulsion between elec-

trons.

2. Maximise the total orbital angular momentum L.

Electron orbits rotating in the same direction minimises the coulomb repul-

sion between electrons.

3. J = L - S if shell is less than half filled.

J = L + S if shell is more than half filled.

The rules assume that the repulsion between the outer electrons is very much

greater than the spin-orbit interaction which is in turn stronger than any other

remaining interactions. The last rule arises from the spin-orbit interaction. It

works well for rare earth ions but for some systems such as TM ions, the spin-

orbit energies are not as significant as the crystal field for example and so Hund’s

third rule is disobeyed. [7, 8]
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1.1.2 Crystal fields

The electric field experienced by an ion in a solid due to the charge on neighbouring

ions is known as the crystal field. Consider the d orbitals (Figure 1.1). They can

be divided into two classes depending on whether the lobes of the wavefunctions

(i.e. the charge distribution of the ion) points between the x, y and z axes (t2g)

or along them (eg) [7, 8].

Figure 1.1: The angular distribution of d orbitals after Y. Tokura et al. [9]. The
5 fold degenerate d level is split into the 2 fold degenerate level (eg),
which contains d3z2−r2 and dx2−y2 levels, and the 3 fold degenerate
level (t2g) which contains dzx, dyz and dxy levels.

Crystal field effects are stronger for d electrons than f electrons because the d

electron wavefunctions extend a larger distance away from the nucleus whereas f

electron wavefunctions are smaller. The f electrons are also partly shielded from

Coulomb interactions with the surroundings by the s and p electrons in filled
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levels [10]. The ground state of the ion depends on the local environment and

its symmetry. As an example see Figure 1.2. The dxy orbital (Figure 1.2(a))

has a lower overlap than the dx2−y2 orbital (Figure 1.2(b)) and hence has a lower

electrostatic energy. In an octahedral environment t2g states will have lower energy

than the eg states [7].

Figure 1.2: (a) The dxy orbital is lowered in energy compared to (b) the dx2−y2
orbital in an octahedral environment. After Blundell [7].

Sometimes the magnetic properties can influence the symmetry of the local

environment e.g. an octahedron can spontaneously distort because the cost in

elastic energy is balanced by electronic energy saving due to change in crystal-

field splitting. This is known as the Jahn-Teller effect [11] and is discussed in

Section 6.1.2.
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1.1.3 Exchange interactions

Exchange interactions arise as a result of the Exclusion Principle and the re-

sulting change to the spatial distribution of the wavefunctions leads to strong

electrostatic interactions. When the electrons on neighbouring magnetic atoms

interact via an exchange interaction it is known as ’direct’ exchange as there is no

need to involve an intermediary ion in the process [7]. In 1934 Hendrik Kramers

noted that Mn atoms in MnO could interact with one another despite having the

non-magnetic oxygen atoms between them. To explain this he proposed the con-

cept of ’superexchange’, an indirect exchange interaction [12]. In superexchange,

the coupling between two next-nearest neighbour cations through a non-magnetic

anion is usually antiferromagnetic as this has a kinetic energy advantage [7, 8].

Figure 1.3 illustrates this.
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Figure 1.3: Superexchange in the magnetic oxide, MnO. Indirect exchange inter-
action occurs via the non-magnetic oxygen ion. The AF arrangement
in (b) allows electrons to become delocalised over the MOM unit,
whereas some of the excited configurations are prevented by the Ex-
clusion Principle for the FM arrangement in (a). After [7].

An oxygen ion separates the 3d ions. Assume the chemistry is such that the

oxygen has its electrons in the p shell and that there is one electron in each 3d

shell. There are two distinct ways of putting the electrons in their orbits. Either

with ferromagnetic (Figure 1.3(a)) or antiferromagnetic alignment (Figure 1.3(b)).

To decide on which configuration has the lower energy, the kinetic energy needs to

be considered. In the antiferromagnetic arrangement the total energy is lowered

if an electron can hop between the ions. The interaction can be ferromagnetic if

the two next-nearest neighbour positive ions are connected at 90 degrees to the

bridging non-magnetic anion [7, 8].
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1.1.4 Spin waves

Disturbances which propagate in magnetic materials and disrupt the order of the

material are called spin waves. These excitations occur in lattices with continuous

symmetry and are also known as ‘magnons’. Provided its wavelength is long

enough, only a very small amount of energy is required to produce a spin wave [7].

In keeping with typical Curie points at room temperature and below, the energies

of spin waves are typically only 10−3 - 10−2eV and so can be effectively measured

using inelastic neutron scattering [7]. Neutrons can gain energy by annihilating

a spin wave excitation in the sample; the probability for this process to occur is

directly proportional to the number of spin waves. The neutrons can also lose

energy to create a spin wave in the system [13].

The excitation of spin waves as temperature is increased causes a ferromagnet’s

magnetisation to be reduced. The spin waves are thermally excited and this grad-

ually destroys the ordered state. The number of spin waves at each energy and

temperature can be determined; this is directly related to the intensity of the spin

waves [13]. Spin waves have been detected in ferromagnets, ferrimagnets, and an-

tiferromagnets. See Figure 1.4 for the low energy excitations from a ferromagnetic

spin chain.
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Figure 1.4: The classical picture of a spin wave in a ferromagnet: the spin (red
arrow) precesses about a fixed axis (blue). The deviation is measured
by the black arrows. Image by Alan Stonebraker [14]

In order to calculate a spin wave dispersion a model describing the magnetic

energy of the system is needed. Generally it will include the following; crys-

tallographic coordinates, spin orientations, exchange constants and anisotropy

constants [13]. The simplest description of a spin Hamiltonian (the operator cor-

responding to the total energy of the system) is the isotropic Heisenberg model:

Ĥ = −
∑
〈ij〉

JijŜi.Ŝj (1.6)

where Ŝi is the spin operator on the ith site and Jij is the Heisenberg exchange

constant (representing the strength of magnetic exchange) between spins on the

ith and jth site. If Jij is positive, then a lower energy occurs when the moments are

parallel and the ground state at zero temperature will be a ferromagnet, conversely

if Jij is negative, then the nearest-neighbour spins will align antiparallel to lower

their energies, i.e. an antiferromagnet [13,15].

The annihilation and creation operators a†i and ai express the fluctuation of a
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spin away from its classical direction z̄. The following expressions are derived

from a linear approximation satisfying the spin commutation relation.

Sx̄i =

√
S

2
(a†i + ai)

S ȳi = i

√
S

2
(a†i − ai)

S z̄i = S − a†iai

(1.7)

Transforming the expressions 1.7 to a global coordinate gives:


Sxi

Syi

Szi

 = Ri


Sx̄i

S ȳi

S z̄i

 (1.8)

where Ri is a rotational matrix corresponding to the relative rotation between

the global z axis and the local z̄ axis [13]. The spin operator of each sublattice is

inserted into the Hamiltonian, a Fourier transformation is applied then the zeroth

and quadratic operators are considered. The Hamiltonian is then diagonalised by

Bogoliubov transformation to obtain the spin wave dispersion relations. When the

magnetic lattice is an integer multiple of the crystallographic lattice, the number

of modes is equal to the number of magnetic sublattices and the material is said

to be commensurate [13].

31



1 Introduction

1.1.5 Frustration

Geometrical Spin frustration

The geometrical properties of a crystal lattice can prevent simultaneous minimiza-

tion of the interaction energies which can lead to highly degenerate ground states.

For example, in 2D triangular and 3D pyrochlore lattices, it is not possible to

satisfy all of the interactions in the system due to the symmetry of the magnetic

ions in the crystal lattice. This can be seen in Figure 1.5 where the spin on the

third site cannot be orientated in such a way as to satisfy the antiferromagnetic

interactions with the other two spins. This means that several low energy states

are possible and the system is said to be degenerate and frustrated [7, 16].

Figure 1.5: Geometrical spin frustration on a 2D triangular lattice.
Not all exchange couplings can be simultaneously satisfied [7].

Geometrical frustration governs a range of phenomena in the collective be-

haviour of atoms. New properties develop when these frustrated materials are

cooled well below the energy of moment-moment interactions [17]. Examples of
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these are spin ice, spin glasses and spin liquids [15,18–26].

The most common example of geometric frustration is water ice. As predicted

by Pauling in the 1930’s [27], the hydrogen positions are disordered despite the

well-ordered oxygen lattice. This prediction was based upon ‘missing’ entropy in

specific heat measurements [17]. Spin ices are pyrochlore magnets with magnetic

moments analogous to water ice. Like the hydrogen positions in water ice, there

is disorder in the magnetic moment directions, despite the ordered lattice [17].

Spin ice can be studied over a range of energies as its lattice is formed at a higher

temperature than that at which the moments interact [17].

The understanding of colossal magnetocapacitive coupling, multiferroic behaviour

and mechanisms of high-transition-temperature superconductivity have required

mechanisms related to geometric frustration [22,24]. Geometrically frustrated sys-

tems have many potential uses. When the crystallisation energy of the material is

significantly higher than the energy of the moment interactions, it is the structure

which, through frustration, dictates the behaviour at low energies. However, un-

expected patterns can emerge if the material itself can respond to the frustration.

One such example is the blue phase of cholesteric liquid crystals [26] and self-

assembled nanotubes (see Figure 1.6) [28] for drug delivery [29]. Nanotubes are

lipid electrolyte bi-layers which curl up in the form of a tube when the polyelec-

trolytes and lipid membranes have different charge densities [17]. The properties

of these nanotubes are such that they are useful in textile, cosmetics and drug
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industries. It is in principle possible to target specific sites in the body to de-

liver precise quantities of drugs. Understanding of the geometrical frustration of

these compounds could allow the size and shape of the nanotubes to be altered

for specific uses [17].

Figure 1.6: Self-assembled vanadium oxide nanotubes (a) Scanning electron mi-
croscopy (SEM) images show that the tubes can be several microme-
tres long, with diameters that vary from 60 to 100 nm. (b) A transmis-
sion electron microscopy (TEM) image shows the tubes to be multi-
walled. Images taken from Nature paper by Krusin-Elbaum et al. [28]

There are several other examples of the uses of geometrically frustrated mate-

rials. The frustrated compound (Ba,Sr)TiO3 (BST) could be used in dielectrics

and storage capacitors for dynamic random access memories [16]. Geometric frus-

tration has also led to the discovery of magnetic monopoles [21,30,31].
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Orbital frustration

Orbital frustration does not require reduced dimensionality or a certain crystal

geometry as the orbital interaction depends on the bond direction. The possible

orbital states compete because each bond interaction requires the population of

different orbital states. This dependence on the direction of the bonds leads to

large degeneracy and quantum effects. The electrons in TM oxides which take

part in superexchange are in the 3d state. For the vanadates, the t2g orbitals are

occupied but only two out of the three possible orbitals are relevant for superex-

change in each direction and orbital fluctuations arise between them as shown in

Figure 1.7.

Figure 1.7: Two out of three t2g orbitals are equally involved in the superexchange
on every bond of a cubic crystal. A particular component of angular
momentum is selected by these two orbitals. After Khaliullin et al.
[32].
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Tsunetsugu et al. [33] proposed the following orbital order in AV2O4 shown in

Figure 1.8 (a) and (b). There are three orbitals; dxy (blue), dyz (red) and dzx

(yellow). The four different sizes of orbitals represent four different ab planes

with different z coordinates. S. H. Lee et al. [34] showed how the occupation of

orbitals could control the magnetic exchange interaction in this system, see Figure

1.8. At low temperatures in the orbitally ordered phase, spin chains are formed in

[110] directions. At high temperature where the occupation of orbitals is random,

three-dimensionally tangled chains are obtained.

Figure 1.8: (a) and (b): After S.H. Lee et al. [34], viewed down the [001] direction.
(a) At low T, antiferro-orbital ordering occurs, blue rods show signif-
icant intrachain J and J3, but negligible interchain J’ as dyz and dzx
orbitals do not overlap. (b) At high T the three orbitals, dxy, dyz
and dzx, are randomly occupied. The blue rods indicate possible dy-
namic magnetic interactions due to overlap of orbitals. Hence, there
are fluctuating three-dimensionally tangled chains.

This thesis explores the interplay between magnetism and orbital order in the

perovskite orthovanadate GdVO3 and the pyrochlore MnV2O4.
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1.2 Aims of the Project

The aims of the thesis were to characterize GdVO3 and MnV2O4 single crystal

samples fully using X-ray diffraction, SQUID magnetometry and heat capacity

and to study their orbital and magnetic ordering and excitations at the ILL,

ESRF and ISIS.

GdVO3

Little neutron work had been carried out on GdVO3 due to its strongly absorb-

ing nature. Bulk thermodynamic measurements suggest a rich magnetic phase

diagram at low temperatures [35]. We wanted to map the phase diagram at

low temperatures and determine the orbital ordering and magnetic structure of

GdVO3 in zero field and in a field respectively.

MnV2O4

The studies already carried out on MnV2O4 had several inconsistencies which

required clarification [33, 36–42]. Results from our initial data showed that the

magnetic structure we had assumed for MnV2O4, in accordance with previous

studies, was incorrect. We intended to confirm the crystal structure, magnetic

structure and the orbital ordering of MnV2O4. There was also some disagreement

as to whether the structural transition temperature was at TM = 53K or at TN =

57K [37, 38, 42–45] so we sought to resolve this issue. We wanted to understand
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the excitations in the ordered phase in a magnetic field and to map out the

phase diagram using neutron diffraction. We aimed to investigate the frustrated

magnetism of MnV2O4 and the role of the orbital degree of freedom in order

to determine an entirely new way of thinking about charge transport in metals,

and with it the first theoretical clues to the solution to a long standing theoretical

problem: how to stabilise fractional spin or charge excitations in three dimensions.
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2 Neutron and X-ray scattering

2.1 Scattering theory

X-rays and neutrons are useful in determining crystallographic and magnetic

structures because their wavelengths are comparable to the distance between

atoms and so they can be used to perform diffraction measurements [8]. In both

the X-ray and neutron diffraction experiments carried out for this thesis, a beam

was scattered from a single crystal sample. In a general diffraction experiment the

X-rays or neutrons are incident on the sample with a wavevector of k i and exit

the sample with a scattering angle 2θ and a final wavevector k f [46], see Figure

2.1.
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Figure 2.1: (a) A beam of neutrons or X-ray photons incident on a sample with
incident wavevector k i. A diffracted ray k f emerges within the solid
angle dΩ, at the scattering angle 2θ. (b) A close up of the sample
scattering volume showing two rays of the beam scattered by elemental
volumes dV separated by a displacement vector r. After P. Normile
[47]

For particle beams the energy is Ei = ~2|ki|2/2m (particle mass = m). Con-

structive interference resulting in Bragg reflections is produced in elastic scatter-

ing when the scattering vector Q obeys the Laue condition and is equal to the

reciprocal lattice vector G, see Equation 2.1.

Q = ki − kf = G (2.1)

G can be described as follows with basis vectors a∗, b∗ and c∗ and Miller indices

h, k, and l :

G = ha∗ + kb∗ + lc∗ (2.2)

Elastic scattering occurs when there is zero energy transfer, |ki| = |kf | = k.
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The value of Q in this case is:

Q = 2ksinθ =
4π

λ
sinθ (2.3)

In an elastic neutron or X-ray diffraction experiment the intensity of particles

entering the detector per unit incident flux and solid angle dΩ is measured. This

is called the differential cross-section and is defined as follows:

dσ

dΩ
(Q) = N

(2π)2

υ

∑
G

|F (Q)|2δ(Q−G) (2.4)

N is the number of crystal unit cells in the sample scattering volume and υ is

the volume of each cell. The δ function is associated with a summation over the

lattice points of the whole crystal as opposed to the unit cell structure factor F(Q)

which is only summed over the unit cell:

F (Q) =
∑
j

fj(Q)eiQ.r (2.5)

fj(Q) is the scattering amplitude of the atom in the crystallographic unit cell at

position vector rj.
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2.2 Neutrons

Neutrons interact with matter in two different ways, either with short range strong

nuclear forces or through the magnetic moment of the neutron. The neutron is

a spin 1
2

particle and as such has a non zero magnetic moment [8, 48, 49]. The

neutron ‘senses’ the magnetic fields due to the unpaired electrons in the solid and,

being uncharged, it can penetrate deep into the material and come close to the

nuclei before being scattered by the nuclear forces [8, 48, 49]. Neutrons are cre-

ated in large quantities by spallation or nuclear fission and the beam of neutrons

produced has a spectrum of energies which are determined by the properties of

the moderator; this therefore means that the neutrons also have a range of veloc-

ities. Thermal neutrons have a De Broglie wavelength which is similar to atomic

spacings and so they are perfect for determining the structure of materials via

diffraction experiments [8, 48, 49]. A thorough explanation of the theory of neu-

tron scattering can be found in [48]. The most relevant aspects will briefly be

covered here.
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2.2.1 Coherent and incoherent nuclear scattering

A measure of the neutron-nucleus interaction or the ‘strength’ of scattering is b,

the neutron scattering length. Each atom has a constant value which is indepen-

dent of Q in thermal neutron scattering. The scattering cross section for a single

nucleus is 4πb2. The differential cross section is the fundamental quantity deter-

mined in a scattering experiment but it is the partial differential cross section,

shown in Equation 2.6, which is used when the energy of the scattered beam is

analysed:

d2σ

dΩdEf
=

kf
ki

1

2π~

∫ ∞
−∞
〈
∑
j,j′

bjbj′e
−iQ.Rj′ (0)eiQ.Rj(t)〉e−iωtdt (2.6)

Rj(t) is the Heisenberg operator of the nuclear positions, 〈...〉 is an ensemble

average of the operator and the summation is over all pairs of nuclei. The nuclear

spins and isotopes, in a single element at a temperature of a few mK, are randomly

distributed and so the scattering length b varies between nuclei. In this case, the

nuclear parameters can be decoupled:

d2σ

dΩdEf
=

kf
ki

1

2π~
∑
j,j′

〈bjbj′〉
∫ ∞
−∞
〈e−iQ.Rj′ (0)e−iQ.Rj(t)〉e−iωtdt (2.7)

This cross section is averaged over all the nuclei with different scattering lengths
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(〈bj, bj′〉 term). Assuming no correlation between the b values of the different

nuclei gives the following relationships:

〈bj, bj′〉 = 〈b〉2, j
′ 6= j

〈bj, bj′〉 = 〈b2〉, j
′
= j

(2.8)

Equation 2.7 can now be written as:

d2σ

dΩdEf
= 〈b〉2

∑
j,j′

〈j′, j〉+ (〈b2〉 − 〈b〉2)
∑
j

〈j′, j〉 (2.9)

The first term is the coherent scattering cross section σcoh = 4π〈b〉2 and the second

term is the incoherent scattering cross section σincoh = 4π(〈b2〉−〈b〉2). The coher-

ent scattering term gives the intensity which would be produced if the scattering

lengths of all the nuclei were equal to 〈b〉. The incoherent scattering term is the

result of the random distribution of the deviations of the scattering lengths from

their mean value and this must be used in order to obtain the intensity which is

produced by the actual system [48].
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2.2.2 Magnetic scattering

The neutron is an excellent probe to investigate the magnetic properties of ma-

terials as it has a magnetic dipole moment µn and so can interact with any

unpaired electrons in a magnetic atom. Elastic scattering of this kind allows the

arrangement of the electron spins and their density distribution to be deduced.

In addition, inelastic scattering gives information on the energies of the magnetic

excitations [48]. Unlike X-rays, neutrons have equal sensitivity to nuclear and

magnetic structures because the cross-sections for the two processes are roughly

the same [8]. In a magnetic solid a magnetic field B arises due to the unpaired

electrons. The neutron experiences this interaction potential µn.B when it enters

the material and is therefore scattered. Only the magnetic moment component

perpendicular to the scattering vector Q is able to scatter the neutrons and so

contribute to the scattering amplitude. This means that neutrons are sensitive to

the magnetisation direction as well as the spatial distribution [8, 48].

2.2.3 Inelastic scattering

Whereas elastic scattering gives information on the time-averaged structure, in-

elastic scattering gives information on the dynamical behaviour of a sample. Many

excitations in condensed matter have energies similar to the energy of thermal

neutrons and hence inelastic scattering of neutrons allows the energy of the exci-

tations inside the sample to be deduced and this in turn gives information on the
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interatomic forces [48]. Inelastic scattering occurs when the neutrons impart or

take energy to/from the sample on passing through it:

~ω = Ei − Ef (2.10)

Ei and Ef are the incident and final energies respectively. If ~ω is greater than

zero, energy is transferred from neutron to sample and an excitation of ~ω is

created. If, on the other hand, ~ω is less than zero, the neutron gains energy from

the sample and an excitation is annihilated [48].

Inelastic scattering from magnetic materials has two components. One is magneto-

vibrational scattering due to the thermal displacement of the magnetic atoms from

their equilibrium positions (resulting in the Debye-Waller factor and a reduction

in the magnetic reflection intensity). The second is spin waves which, as dis-

cussed in Chapter 1 Section 1.1.4, are produced by fluctuations of the orientation

of individual magnetic moments due to thermal energy and quantum zero-point

fluctuations. The spins are coupled together via exchange interactions and so these

fluctuations are collective excitations. Neutrons interacting in a magnetic crystal

undergo inelastic scattering and either produce or annihilate excitations [7].
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The cross section for inelastic scattering is:

d2σ

dΩdEf
∝
∑
G

{S2δ(Qz −G)δ(~ω) + (δS)2(1 + Q̂
2

z)×

[δ(Qz − k−G)δ(ω − Ω) + δ(Qz + k−G)δ(ω + Ω)]}

(2.11)

2.2.4 Diffuse scattering

A diffraction pattern for a completely ordered crystal would consist only of a

discrete set of Bragg reflections. However deviations, such as thermal fluctuations

and atomic defects, create disorder in a crystal which reduces the intensity of

the Bragg reflections and produces diffuse scattering outside of these positions.

The features of diffuse scattering depend upon the correlation functions of the

deviations from a perfectly ordered crystal [50]. The static structure factor S(Q)

can be obtained by integrating over energy transfer. This is often useful as it is

related to the static susceptibility χ(Q) which can be calculated if the Hamiltonian

is known [51].
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2.2.5 Polarised neutrons

Polarised neutrons are used to separate the magnetic and non-magnetic scatter-

ing. Polarisation of the incident beam may be used to see whether scattering is

magnetic but complex magnetic structures may require full polarisation analysis

of both the incident and scattered beam. One disadvantage in using polarised

neutrons is that there is a considerable reduction in intensity [50].

A neutron has an angular momentum of ± 1
2
~ and spin S = 1

2
. The spin vector

Sn of a neutron defines the polarisation P of a neutron beam as the average over

all neutron spin vectors normalised to their modulus:

P = 〈Sn〉/
1

2
= 2〈Sn〉 (2.12)

A neutron can be considered as being spin up ↑ or spin down ↓ relative to

an applied magnetic field. The polarisation can then be expressed as a scalar as

follows:

P =
N+ −N−
N+ +N−

=
F − 1

F + 1
(2.13)

where N+ and N− is the number of neutrons with spin up and spin down and

F = N+

N−
is the flipping ratio. A completely polarised beam has P = 1 (all ↑) or P

= -1 (all ↓) and an unpolarised beam has P = 0.
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In order to produce a polarised beam, polarised filters, mirrors (and supermir-

rors) or crystals can be used. This equipment causes polarisation by preferential

absorption, reflection or Bragg reflection respectively. Once the polarised beam

has been produced, an external magnetic field is required to prevent depolarisa-

tion. Varying the magnetic field or using spin flippers can be used to rotate or

flip the polarisation. When using polarised neutrons the magnetic cross sections

generally have spin-flip (SF) and non-spin-flip (NSF) components in all the x, y

and z axes.

Unidirectional polarisation analysis

The method used in our experiments was unidirectional polarisation analysis, the

experimental set up of which is shown in Figure 2.2. The flipper positions required

to produce spin-flip (SF) and non-spin-flip (NSF) channels are shown in Table 2.1.

Figure 2.2: Experimental setup for unidirectional polarisation analysis.
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σ↑↑ Both flippers off Non spin flip
σ↓↓ Both flippers on

σ↓↑ 1st flipper on, 2nd off Spin flip

σ↑↓ 1st flipper off, 2nd on

Table 2.1: Unidirectional polarisation analysis: experimental set up to produce
SF and NSF channels

Structural (nuclear) scattering is seen only in the non-spin-flip (NSF) channels.

Magnetic scattering is seen in both the NSF and the spin-flip (SF) channels.

The component of the magnetic moment parallel to z is observed in NSF and

the component of the magnetic moment perpendicular to z is observed in SF.

Spin incoherent signal is present in both channels. The SF channel contains only

magnetic scattering and spin incoherent signal. The spin incoherent scattering is

uniform in Q and centered on zero energy transfer. Therefore if a peak is seen in

the SF channel which is peaked in Q and not at zero energy transfer it is magnetic.
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2.2.6 Laue diffraction

Laue diffraction uses a white incident beam, fixed crystal geometry and an area

detector which records the diffraction pattern over a large solid angle. The white

beam ensures that Bragg condition is satisfied for many reciprocal lattice points

[8]. The Laue diffraction instrument, Orient Express at the ILL, was used with

the assistance of Bachir Ouladdiaf, to align our MnV2O4 single crystal samples.

The Laue pattern is symmetrical when the incoming beam is parallel to a high-

symmetry direction of the crystal. In cubic crystals, such as our MnV2O4 crystal,

an incoming beam parallel to one of the unit cell edges produces Laue patterns

with 4-fold symmetry (See Figure 2.3).

Figure 2.3: Laue diffraction pattern measured on Orient Express (ILL) with the
incident beam parallel to a four fold axis of MnV2O4.
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2.3 Synchrotron X-rays

In the 1930s the first particle accelerators called cyclotrons were built. They used

the collision of high energy particles to split the nucleus of an atom, the results of

these experiments helped physicists to understand the fundamental physics of the

universe. Synchrotron radiation was seen for the first time in 1947. The electrons

moved so fast that they produced electromagnetic radiation [46]. This was at first

considered undesirable because it meant that the particles lost energy but later

on in the 1960s it was found to be electromagnetic radiation with exceptional and

useful properties. X-rays have both electric and magnetic components which are

normal to each other and oscillate perpendicular to the direction of propagation.

Interaction between the electric charge densities and the electric field of the X-ray

gives information on the structural properties of the material. Interaction of the

material spins and orbital densities with the magnetic field of the X-ray gives

information on the magnetism of the material. The interactions are described by

amplitudes or ‘form factors’. X-rays can be considered quantum mechanically as

photons carrying a quantum, ~ω, of energy or ~k of momentum [46].

2.3.1 Thomson scattering

This type of elastic scattering occurs far from any absorption edge. When the

electric field E of the incident X-ray exerts a force on the charge it causes a new

wave with the same wavelength to be radiated. This is a first order interaction
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since no excitations occur [8,46]. The intensity I of both the incident and scattered

beams is as follows:

I ∝ |E|2 × Area of beam (2.14)

|E|2 is proportional to the energy of the beam per unit area which in turn is

proportional to the number of photons. Therefore:

If
Ii

=
|Ef |2

|Ei|2
× AD

Ai
(2.15)

AD is the area of the detector and Ai is the incident beam area. Ef is the final

radiated energy and Ei is the incident beam energy. If Ii
Ai

= Φi, the incident flux,

and AD = dΩR2 where R is the target-detector distance then:

If = Φi
|Ef |2

|Ei|2
× dΩR2 (2.16)

So, the Thomson differential cross section is:

(
dσ

dΩ

)
Thomson

=
If

Ii × dΩ
(2.17)

(
dσ

dΩ

)
Thomson

=
|Ef |2

|Ei|2
×R2 (2.18)
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The Thomson scattering length (i.e. the classical electron radius) is r0, the

scattering angle is Ψ and ε0 is the permittivity of free space:

r0 =

(
e2

4πε0mc2

)
= 2.82× 10−5Å (2.19)

(
dσ

dΩ

)
Thomson

= r0
2cos2Ψ (2.20)

In general this can be written as:

(
dσ

dΩ

)
Thomson

= r0
2P (2.21)

where P is equal to 1 when the synchrotron radiation is scattered vertically, P =

cos2Ψ when the synchrotron radiation is scattered horizontally and P = 1
2
(1 +

cos2Ψ) when the source is unpolarised [8].

For Thomson scattering the atomic form factor as described above is defined

by:

f o(Q) =

∫
ρ(r)eiQ.rdr (2.22)

r is the vector between two volume elements.

The Thomson scattering cross section is calculated by assuming that the elec-

trons are ‘free’ which, for electrons bound in atoms, is obviously not the case.

The atomic form factor describes the scattering amplitude associated with a sin-
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gle atom (it is the Fourier transform of the electron density in an atom) [8, 46].

When there is no phase difference, Q = 0, the form factor equals Z, the number of

electrons in the atom. As Q increases, the wavelength of the radiation decreases

and destructive interference occurs, damping the diffraction pattern [8, 46].

2.3.2 Resonant X-ray scattering (RXS)

The RXS method was devised by Templeton and Templeton in the 1970’s [52].

RXS can be used to investigate charge and orbital order parameters as well as

magnetic properties. An X-ray photon can be absorbed by an electron only if its

energy is above the binding energy of the electron. This binding energy is element

and shell specific and is known as an absorption edge. When an atom absorbs an

X-ray, a core electron is given enough energy to escape the atom and is known as

a photoelectron (see Figure 2.4). It is then energetically favourable for an outer

shell electron to move down and fill the hole in the core. This causes a fluorescent

X-ray to be emitted [8, 46].
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Figure 2.4: (a) An atom absorbs an X-ray with an energy large enough to promote
a core electron to the continuum. (b) The vacancy can then be filled by
an outer shell electron which results in the emission of a fluorescent
X-ray. A large increase is observed in the fluorescence absorption
spectrum. Electrons are shown as blue circles. After Skoulatos [53]

When the incident photon energy is close to the atomic absorption edge large

resonant enhancements of the scattering cross section are observed [54]. For the

rare earths it is the LII and LIII edges and in transition metals it is the K edges.

The polarisation dependence of the resonant cross section can be used to deduce

information on the magnetic moment direction and the symmetry of the ordered

state. Resonances sensitive to magnetic and quadrupolar order have been observed

[54]. Resonant magnetic X-ray scattering (RMXS) was first seen by Namikawa

et al. [55] in 1985 when they were studying Nickel. In 1988 Gibbs et al. was

investigating the magnetic structure of Holmium and observed RMXS when a

large resonant enhancement was seen when the X-ray energy was tuned to the LII

and LIII edges [56].
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Because electrons in solids cannot be considered as ‘free’, the scattering theory

given by Thomson scattering must be extended. The scattering length of the atom

becomes more complicated and includes both real and imaginary parts:

f(Q, ω) = f o(Q) + f ′(ω) + if ′′(ω) (2.23)

f ’ and f” are energy dependent and are known as the dispersion corrections to f o.

Classically describing RXS involves thinking of an atom as an assembly of damped

forced charge oscillators. To describe RXS in quantum mechanical terms requires

time-dependent perturbation theory [46]. The transition rate probability W be-

tween initial |i〉 and final |f〉 states of the combined system of target electron and

X-ray photon is given by:

W =
2π

~
〈f |HI |i〉+

∞∑
n=1

〈f |HI |n〉〈n|HI |i〉
Ei − En

2

ρ(εf ) (2.24)

where ρ(εf ) is the density of states and the interaction between the photon and

the electron is described by the Hamiltonian HI . Although RXS is a quantum

mechanical process, this equation can be used to describe RXS semi-classically; a

core electron at an initial state is given energy by the incident photon and makes

a virtual transition to an intermediate state |n〉 before relaxing back to the initial

state with the creation of a scattered photon which is experimentally detected.

Resonant behaviour arises when the denominator tends to zero which occurs when
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the incident energy Ei, is equal to the energy of the intermediate state En or when

it corresponds to an absorption edge [46].

The term 〈f |HI |i〉 from Equation 2.24 is the matrix element Mif and is the

first-order perturbation term. This gives an interaction Hamiltonian (Equation

2.25) which is responsible for photoelectric absorption (first term) and Thompson

scattering (second term):

HI =
eA.p

m
+
e2A2

2m
(2.25)

A is the vector potential describing electromagnetic fields, e and m are the elec-

tron’s charge and mass respectively and p is the momentum operator of the elec-

tron. In summary, RXS is used to investigate intermediate unoccupied atomic

states. If the degeneracy of the intermediate state is lifted by magnetic or Jahn-

Teller interactions it becomes sensitive to magnetic or orbital ordering.
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3.1 Neutron instruments

3.1.1 Operating principles of two-axis diffractometers

As discussed in Section 2.1, Bragg reflections are produced by elastically scattered

neutrons when the scattering vector is equal to a reciprocal lattice vector. This

type of reflection can be studied using two-axis diffractometers [7]. Examples of

two-axis diffractometers include powder and single crystal diffractometers, small

angle instruments and reflectometers [57].

A schematic diagram of a two-axis diffractometer is shown in Figure 3.1. The

first axis of rotation is about the monochromator crystal M. A white beam of

neutrons is incident on M, but by rotation of M to the Bragg angle θM and the

monochromator-sample direction to 2θM , a single wavelength is selected. The sec-

ond axis of rotation is about the sample S. Usually the sample has been aligned

so that the desired crystallographic plane is in the horizontal scattering plane. It
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is then possible to rotate the sample to the correct Bragg angle θS for elastic scat-

tering of neutrons of the given wavelength, and to rotate the detector to 2θS. The

detector does not discriminate between elastic and inelastic scattering. However,

the elastic signal always swamps the inelastic signal so that the configuration is

suitable for diffraction measurements.

The collimators C1, C2 and C3 and the mosaic spread of the monochromator

ηM and the sample ηS determine the instrument resolution. There is always a

trade off between narrow wave-vector transfer resolution and flux [57,58].

Figure 3.1: Schematic of a two-axis diffractometer, adapted from Gaulin [57]. S is
the sample, M is the monochromator, C1, C2 and C3 are collimators.
The incoming neutrons are collimated to produce a parallel beam.
They are then monochromated to select a single wavelength before
interacting with the sample. The beam is diffracted and the angle of
diffraction is measured by the detector.
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3.1.2 Neutron diffractometers

D15 thermal neutron diffractometer

D15 at the Institut Laue Langevin (ILL) in Grenoble is a single crystal diffrac-

tometer and can be used to solve a variety of problems including magnetic field

and/or pressure induced phase diagrams as well as determining both nuclear and

magnetic structures. Determining these structures requires the collection of a

large number of Bragg reflections [59].

Three different wavelengths (and hence fluxes) are available and the instrument

can be operated in normal beam or four-circle mode with a choice of monodetector

or bidimensional microstrip detector. When using normal beam geometry either

a 6T or 10T orange cryostat can be used. There is also the possibility of using

3GPa pressure cells, stress apparatus and furnaces [59]. See Figure 3.2.

Figure 3.2: Schematic of the D15 thermal neutron diffractometer, taken from [59].
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D10 four-circle diffractometer

D10 is a four-circle diffractometer at the ILL with the possibility of using energy

analysis on three-axis spectrometers. Temperatures as low as T = 65mK can

be reached using its four-circle cryostat and high reciprocal space resolution and

low intrinsic background (or medium real space resolution) can be achieved. The

cryostat allows the crystal to be easily orientated in the beam and the techniques

are similar to those used in high altitude balloons and satellites [60]. See Figure

3.3.

Figure 3.3: Schematic of the D10 four-circle diffractometer, taken from [60].

Neutrons are detected by a 3He detector. The scattered neutron is absorbed by

the pressurised gas which results in this reaction occurring:

3

2
He+

1

0
n→ 3

1
H +

1

1
p (3.1)
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The gas regenerates itself as the 3
1
H decays back to 3

2
He via β-decay. A helium

cooled cryomagnet can be used to apply a field of up to B = 3T. A pyrolytic

graphic filter can be used to reduce background and remove higher order Bragg

contamination [61].

D9 hot neutron diffractometer

This hot neutron source at ILL is close to the core of the nuclear reactor and hence

produces neutrons with high incident energies which makes it especially useful as

it allows strongly absorbing materials such as Gadolinium to be investigated since

hot neutrons are more strongly penetrating than thermal neutrons, see Figure 3.4.

Figure 3.4: Schematic of the D9 hot neutron diffractometer, taken from [62].

Monochromators can be used to select the smallest wavelengths which allows a

large area of Q to be investigated [62]. Structures can be more accurately deter-

mined as more Bragg reflections can be measured. D9 has a two-dimensional mul-
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tidetector and is well suited for experiments which require high resolution nuclear

density maps to give accurate analysis of the structure. Atomic displacements as

small as 0.001Å can be discerned because of the short neutron wavelength [62].

It uses an Eulerian cradle sample holder with four-circle geometry which allows

the sample to be positioned accurately in any orientation in the beam. Displex,

He-flow cryostats, furnaces and cryomagnets can be used to achieve various tem-

peratures and magnetic fields [62].
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3.1.3 Operating principles of triple-axis spectrometers

The triple-axis spectrometer (TAS) was developed by Bertram Brockhouse in 1961

[63]. It is used at reactor sources for carrying out inelastic scattering experiments.

The TAS has the first and second axes described in Section 3.1.1. In addition, it

has a third axis centred on the analyser crystal A, see Figure 3.5.

Figure 3.5: Schematic of a triple-axis spectrometer, adapted from [64]. M is the
monochromator, S is the sample, A is the analyser, C1, C2, C3 and C4

are collimators and D is the detector. The incoming neutrons are
collimated to produce a parallel beam. They are then monochromated
to select a single wavelength before interacting with the sample. The
beam is diffracted by an angle 2θS and the final wavelength is measured
by the analyser crystal before being counted by the detector.

The direction of the final wavevector is determined by the scattering angle of

the diffracted beam from δ - A. The TAS can be set to measure neutrons of a

given final wavelength by rotating the analyser crystal to the Bragg angle θA and

the A-D direction to 2θA. The angles of the monochromator and analyser crystals

can both be changed independently which allows neutrons with a large range of
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energy and momentum to be measured [7, 13,63].

The angles θM , 2θM , θS, 2θS, θA and 2θA are adjusted to probe a particular

point in reciprocal space (Q, ~ω). Figure 3.6 shows the scattering triangle. In this

thesis the final energy of the neutron was chosen to remain fixed in inelastic TAS

scans to make the corrections to the data more reliable.

Figure 3.6: The scattering triangle. The magnitude of the incident wavevector ki
is determined by θM and 2θM . In general, θS, 2θS, θA and 2θA need to
be adjusted for a given wavevector transfer and energy transfer.

The wavevector and energy transfer resolutions are determined by the collima-

tors, C1, C2, C3 and C4 , the mosaic of the monochromator, sample and analyser,

and the sense of rotations. Highest resolution is achieved with the ‘ω’ configura-

tion shown in Figure 3.2. For flat regions of the dispersion it is best to perform

constant Q scans, whereas for steep regions of the dispersion it is better to scan

Q holding E fixed. These instruments can also be used to measure quasielastic

energy broadening of diffuse scattering, and in this case constant Q scans are

required. [13,63,64]
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The use of monochromator and analyser crystals can lead to spurions caused by

higher order effects but these can be reduced by using filters. Although the use of

TAS is slow and requires expert knowledge, there are many advantages of using

this instrument. The experiment can be focussed on the area of reciprocal space

that is important. Measurements can be carried out along high-symmetry direc-

tions and the parallel-perpendicular polarisation method can be used to separate

magnetic and phonon signals [13,63–65].
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3.1.4 Triple axis spectrometers

IN20 triple axis spectrometer

This thermal neutron three-axis spectrometer at the ILL is used for inelastic scat-

tering experiments and can be used with magnets up to B = 15T, see Figure 3.7.

Figure 3.7: Schematic of the IN20 triple axis spectrometer, taken from [66].

High resolution linewidth studies of dispersionless excitations can be investi-

gated using TASSE, the spin echo technique. Full polarization analysis can be

employed using CRYOPAD [66]. XYZ polarisation analysis can be employed

where Heusler (111) crystal monochromators are used to select the neutron energy

and spin state and a Heusler (111) analyser is used to determine the properties

of the scattered beam. It has a single 3He detector and parallel-perpendicular po-
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larisation analysis can also be used. For this, Helmholtz coils are placed around

the sample and a field of about 15 Gauss can be applied in any direction [66].

3.1.5 Time-of-flight spectrometers

At a pulsed neutron source such as ISIS the TAS design is inappropriate since it

does not exploit the available neutrons efficiently. Instead new types of spectrom-

eters have been developed that collect neutrons in large banks of detectors and

use is made of the time-of-flight of the neutron to determine its energy. There are

two types of spectrometer, direct geometry (where the incident energy is selected

and the final energy is calculated from the time-of-flight) and indirect geometry

instruments (where the final neutron energy is selected). During the course of this

thesis a direct geometry time-of-flight spectrometer was used.

The incident beam is monochromated using a velocity selector called a ‘chop-

per’. A rotating absorbing disc has a hole that allows neutrons to pass through

once per revolution. This is synchronised with pulses of neutrons so that the

time-of-flight from moderator to chopper only allows neutrons of one wavelength

to pass [49].

For a given orientation of the sample, the direction of ki is fixed, and the

magnitude is fixed by the chopper. For each detector, the direction of kf is fixed,

but the magnitude of kf varies and it is determined by the time-of-flight. Thus

each detector measures the scattered intensity for an arc in reciprocal space.
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Data can be acquired much more efficiently if it is collected in arrays of de-

tectors. Combining detectors in a one-dimensional array allows the intensity of

scattered neutrons to be measured simultaneously over a surface of reciprocal

space in the scattering plane. By using an area detector information is obtained

in the third spatial dimension. Information can be obtained very efficiently in

this way from two-dimensional systems, such as spin chains and two-dimensional

magnets, by appropriate orientation of the sample.

For the three-dimensional system studied in this thesis the rotational method

is used. Data is acquired in a large area detector and the sample is rotated about

a vertical axis. In this way a four dimensional data set is obtained. The steps

in the rotation need to be small enough, typically 5◦, so that there are no gaps

in the data. The angular range is determined by the symmetry of the crystal, so

that 90◦ is sufficient for a cubic system.

In order to visualise the data specialist software is required, in this case Horace

[67]. Because the rotational method gives the complete four-dimensional data

set, any cuts in reciprocal space can be obtained. Furthermore, it generates a

huge data set for comparison with theory. A complete survey of reciprocal space

is also attractive since it also yields any additional features that have not been

anticipated, increasing the likelihood of discovering new science [68].
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MAPS spectrometer

The TOF instrument used during the course of this thesis was the direct geometry

MAPS spectrometer at ISIS (See Figure 3.8). MAPS at ISIS in Oxfordshire has

been designed specifically to measure high energy magnetic excitations in single

crystals. Vast areas of the Brillouin zone can be mapped out due to its very large

array of position sensitive detectors which give almost continuous coverage over a

large solid angle [68].

Figure 3.8: Schematic of the MAPS spectrometer, taken from [68].

MAPS uses a range of incident energy between 15-2000 meV and has a Fermi

Chopper situated 10m from moderator. Sample position is 12m from the moder-

ator [68].

The monochromated neutrons interact with the sample (where they lose or gain

energy, resulting in a velocity change) and are scattered to the detector [63]. The
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detectors are position sensitive 3He tubes positioned 6m from the sample position.

They consist of a 16m2 array of 147,456 pixel elements [68].

The neutron transfers energy E and momentum Q to the sample and hence

the scattering function S(Q,E) can be mapped out. Momentum transfer can be

calculated using the cosine rule [49]:

Q2 = k2
i + k2

f − 2 · ki · kf · cos θ (3.2)

where ki is the incident wavevector, kf is the final wavevector and θ is the scat-

tering angle [49].

3.2 X-ray instruments

ID20 single crystal diffractometer

ID20 at the European Synchrotron Radiation Facility (ESRF) in Grenoble is de-

signed for investigating magnetic, charge and orbital ordering properties of solids.

The following techniques can be implemented : Polarization Analysis (PA), Non

Resonant Magnetic X-ray Scattering (NRMXS) and Resonant X-ray Scattering

(RXS). PA allows the magnetic signal to be isolated and the magnetic moment

direction can be determined. Use of an X-ray phase plate allows the polarisation

of the incident beam to be controlled. ID20 can be used to scan an element’s

absorption edge with very good resolution (1eV) and harmonics can be removed
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via the use of two mirrors. In addition, many sample environments can be main-

tained; low temperature, pressure and high magnetic fields [54]. Situated on an

insertion device, it has a very large signal with which to detect the usually very

weak magnetic scattering.

Figure 3.9: Schematic of the ID20 single crystal diffractometer, taken from [54].

XMaS single crystal diffractometer

The X-ray Magnetic Scattering (XMaS) beamline, (otherwise known as BM28)

at the ESRF can be used for high resolution and magnetic single crystal diffrac-

tion over an energy range of 2.3 to 15keV. It is situated on a bending magnet

and as a consequence is less sensitive than ID20. However, provided the signal

is sufficiently large, it is a very versatile instrument with a flexible sample en-
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vironment. The white synchrotron radiation is monochromated by the use of a

watercooled Si (111) crystal monochromator. It has a diamond phase plate, to

enable the polarisation to be changed as required, and a polarisation analyser.

Temperatures of T = 1-1200K can be achieved and a 1T magnet for both vertical

and horizontal scattering geometries can be utilised [69].

Figure 3.10: Schematic of the XMaS single crystal diffractometer, taken from [53]
who adapted diagram from [70].

Several detectors are available: standard scintillator detector, avalanche pho-

todiodes, Si drift diode and a MarCCD is also available. A 4T superconducting

magnet for horizontal and vertical scattering geometries can also be utilised [69].
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3.3 SQUID

A SQUID (Superconducting Quantum Interference Device) makes use of the

Josephson Effect to measure extremely small voltages, currents and magnetic

fields and allows the total sample magnetisation to be measured very accurately.

Figure 3.11: Schematic of a SQUID magnetometer. Taken from [71].

The Josephson Effect is a name for any of the phenomena that occur when a

current flows through a thin insulating layer between two superconducting sub-

stances when the temperature is sufficiently low. The very thin film of insulating

material between the superconductors is known as the Josephson Junction. As

a result of the Tunnel Effect, electrons forming part of the current are able to

move across this junction. The d.c. Josephson Effect is when the current can
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flow across the junction without the application of an externally applied voltage.

The superconducting current in a SQUID can be highly sensitive to the effect of

an external magnetic field in certain configurations. Hence it can be used as an

extremely fast electronic switch with very low power dissipation. Measurements

can be taken over a temperature range of T = 1.8 - 300K and a magnetic range of

B = 0 - 7T. Graphs of longitudinal moment (emu) against temperature (K) are

plotted to determine the magnetisation in the sample to great accuracy.
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4 MnV2O4 structure

4.1 Background

4.1.1 Crystal structure of MnV2O4

MnV2O4 has a spinel structure comprising a network of corner-sharing tetrahedra

in which the vanadium ions form a pyrochlore lattice, this is typical of systems

that are geometrically frustrated in three dimensions [33,34,38,42–45,72–74].

In the case of MnV2O4, the V3+ 3d electrons occupy two out of three t2g or-

bitals and, therefore, the orbital degrees of freedom come into play leading to

complicated magnetic ordering and excitations [41–45, 74–76]. The presence of

the magnetic manganese ions leads to a ferrimagnetic structure and hence it is

potentially possible to control both the magnetism and the orbital physics via an

applied magnetic field.

Although it has been agreed that the high temperature structure is Fd3̄m, as

shown in Figure 4.1, there has been debate as to whether the low temperature
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Figure 4.1: The Fd3̄m cubic crystal structure of MnV2O4 at room temperature.
(Produced using Diamond software from Crystal Impact [77]).

tetragonal structure of MnV2O4 is I41/amd [38–40] or I41/a [33,41,42]. This has

been solved by single-crystal X-ray diffraction by Suzuki et al. who measured weak

reflections at the Photon Factory, KEK in Japan [75]. In an I41/amd structure

the (802) and (421) peaks are both forbidden, but for I41/a only the (421) is

forbidden. Suzuki’s results, shown in Figure 4.2, show the (802) peak clearly and

the absence of the (421) thus proving that the structure is I41/a [75].
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Figure 4.2: Results from Suzuki et al.showing the temperature dependence of X-
ray diffraction of the MnV2O4 single crystal around (a) the (802) peak
and (b) the (421) absence (in the cubic setting) [75].

This result proves that the low temperature tetragonal structure is I41/a. A

structural phase transition from the cubic to the tetragonal phase occurs at TN

= 57K and the results suggest that this transition is dominated by the orbital

degrees of freedom, and that they interact with the spin [75].
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4.1.2 Orbital ordering of MnV2O4

In MnV2O4 the Manganese ions (Mn2+) have spin S = 5
2

and no orbital degrees

of freedom, the Vanadium ions (V3+) have spin S = 1 and the d2 electrons occupy

two out of three t2g levels [41–45,74–76]. Three possible orbital orders have been

proposed. The first by Tsunetsugu and Motome, see Figure 4.3, presumes tetrag-

onal distortion which lowers the energy of the dxy level and predicts staggered

occupation of dyz and dzx orbitals leading to antiferro-orbital order and I41/a

structure [33].

Figure 4.3: The orbital order of vanadium ions below the structural phase tran-
sition, viewed down the (001) direction. As proposed by Tsunetsugu
and Motome [33]. Ions which are further away are smaller. After
Tchernyshyov et al. [38].
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The second by Tchnernyshyov et al., predicted equal occupation of dyz and dzx

orbitals and hence ferro-orbital order and I41/amd structure (again presuming

tetragonal distortion) [38]. See Figure 4.4.

Figure 4.4: The orbital order of vanadium ions below the structural phase tran-
sition, viewed down the [001] direction. Ions which are further away
are smaller. As proposed by Tchernyshyov et al. [38].
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Lastly Sarkar et al. used density functional calculations with all t2g levels par-

tially occupied which predicted orbital chains running along a and b, ferro-orbital

order and I41/a structure. A staggered trigonal distortion causes the orbitals

within each chain to be rotated alternately by 45◦ [41].

Figure 4.5: Orbital ordering as predicted by Sarkar et al. [41]. The black solid and
dashed lines show the orbital chains and the arrows show the orbitals
within each chain rotated alternately by 45◦.

Experiments were carried out in order to determine which of these models is

correct.
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4.1.3 Magnetic structure of MnV2O4

The magnetic structure of MnV2O4 was first solved by Plumier et al. [36,37] using

powder neutron diffraction. MnV2O4 exhibits ferrimagnetic ordering below TN

= 57K, where the Mn and V moments align in opposite directions along [001],

Figure 4.6 (a). There is a change in this collinear configuration to a non-collinear

‘triangular’ magnetic structure with vanadium moments lying in (H00) sheets

below TM = 53K, Figure 4.6 (b). The fitted angle of canting of the V3+ moments,

µ is 63◦ [36, 37].

Figure 4.6: (a) The collinear ferrimagnetic ordering of MnV2O4 at intermediate
temperature; (b) The triangular magnetic structure at low tempera-
ture. After Plumier et al. [37]. The moments shown are those of the
V3+ ions at the B sites. The Mn moments at the A sites are along the
c direction, in the opposite direction to the ferromagnetic component
on the vanadium sites, as is the resultant magnetization.
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However, it was later deduced that this ground state was incorrect when Garlea

et al. resolved the magnetic structure of MnV2O4 using high-resolution powder

neutron diffraction at NIST. Garlea proposed that the V3+ moments have anti-

ferromagnetic components in the ab plane, staggered along the c axis, (angle of

canting of V3+ moments from c axis, θ = 65.12◦) [42].

Figure 4.7: (a) and (b): Low-temperature non-collinear ferrimagnetic structure of
MnV2O4. The Mn moments are aligned parallel to the c axis, while
the V moments are canted by approximately 65◦. (c) Projection of
the magnetic structure on the tetragonal basal plane. After Garlea et
al. [42].
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4.2 Experimental procedure

Single crystals of MnV2O4 were grown by Le Duc Tung using the floating-zone

technique at the University of Warwick. X-ray diffraction studies at the University

of Liverpool confirmed the high structural quality. Several small crystals were

produced for bulk physical property measurements and diffraction experiments

and one large 6g crystal was produced for inelastic scattering experiments.

XMaS experiment

Single-crystal resonant X-ray scattering was performed on the XMaS beamline

at the ESRF with the aid of Laurence Bouchenoire, Peter Normile and Paul

Thompson. Samples were polished to obtain a flat (111) plane. The experiment

was carried out in the vicinity of the vanadium K edge.

D10 experiment

The magnetic structure of MnV2O4 was determined using zero field measurements

performed in the D10 cryostat at the ILL. Many reflections could be accessed but

at zero field MnV2O4 has multiple domains. Single-crystal neutron scattering

experiments were completed with Garry McIntyre and Bachir Ouladdiaf using an

MnV2O4 single crystal aligned with the (100) plane perpendicular to the crystal

surface. An energy of 52meV was used and structure factor scans were performed

at T = 2K, 57K, 75K and 295K. The details of the magnetic structure determined
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on D10 are a prerequisite to model the orbital ordering using ab initio calculations.

A low wavelength of 1.25Å was used to enable a large number of structure factors

to be measured.

D15 experiment

The Néel temperature was determined using single-crystal neutron diffraction on

D15 at the ILL and a cryomagnet was used to map out the phase diagram. The

experiment was carried out with Garry McIntyre using an energy E = 52meV

and a wavelength λ = 1.2Å. Measurements were performed at zero field in the

cryomagnet to compare directly with the measurements on D10. The sample was

placed in the cryomagnet with the (100) plane perpendicular to the crystal surface

giving (HK0) in the horizontal scattering plane. About 270 structure factors were

measured at T = 2K and 70K. A 2T field was applied along the [001] direction

and 284 structure factors were measured at T= 2K. The field was applied in the

paramagnetic phase at T= 70K.
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4.3 Results

4.3.1 SQUID results

Figure 4.8 shows the bulk single-crystal magnetic susceptibility results obtained

using an MPMS SQUID magnetometer at The University of Liverpool. The mag-

netic transition temperatures can be seen at TN = 57K and TM = 53K.

Figure 4.8: Magnetic susceptibility of MnV2O4 using a field of 100 Oe applied
in the [100] direction. The magnetic transition temperatures can be
deduced from the sharp features at TN = 57K and TM = 53K.

Single crystals allow the magnetic susceptibilities to be studied as a function of

the direction of magnetic field applied along [100], [011] and [111], see Figure 4.9.
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Figure 4.9: Magnetisation of MnV2O4 with applied field along [100], [011] and
[111]. Transitions can be seen at TN = 57K and TM = 53K. Measure-
ments performed by Le Duc Tung.

Again, the zero-field magnetic phase transitions are at TN = 57K and TM =

53K. The hysteresis measurements give the same behaviour for fields applied in

[001] and [110] cubic directions. The temperature dependencies show two clear

transition temperatures in small fields. However at fields of B = 2.5 T and above,

the [001] and [110] directions follow each other and show only one transition

whereas the [111] direction maintains two decipherable transitions throughout

and hence is used to produce the phase diagram (Figure 4.20).
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Hysteresis

SQUID measurements of MnV2O4 show a small hysteresis, of about 1K, between

warming and cooling as shown in Figure 4.10. Cooling measurements only were

used to produce the phase diagram.

Figure 4.10: SQUID measurements of MnV2O4 showing a small hysteresis, of
about 1K, on heating and cooling.
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4.3.2 XMaS results

The experiment was carried out in the vicinity of the vanadium K edge as can

be seen in Figure 4.11(c). Di Matteo et al. [74] used the FDMNES program

to perform a numerical simulation calculating the intensity of signal produced

by complex orbital occupancy for CdV2O4, the result of which can be seen in

Figure 4.11(b). This calculated orbital ordering is the same as that proposed by

Tchernyshyov [38]. Our results show no peak at the (111) position (Figure 4.11

(a)). This null result is consistent with the results of Suzuki et al. [75], which

rules out the ferro-orbital model of Tchernyshyov [38]. Di Matteo et al. predict

no peak for the orbital ordering models with space group I41/a [74].
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Figure 4.11: (a) XMaS data for MnV2O4 at (111) showing the absence of a peak.
(b) The calculated intensity at (111) from the ferro-orbital model of
Tchernyshyov [38] from Di Matteo [74] and (c) the Vanadium edge
fluorescence scan.
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The cubic-to-tetragonal phase transition was studied using an MnV2O4 (100)

sample and TS was determined as a function of applied magnetic field.

Figure 4.12: (H,K) mesh plot at 0T showing the temperature dependence of the
MnV2O4 structural (400) peak. The structure changes from the cu-
bic phase at 65K to the tetragonal phase at 56.1K and below. Co-
existence of these phases can be seen at 56.2K and 56.3K.

The data from these mesh plots is shown in Figure 4.12 and the formation of

two peaks indicates the transition from the cubic to the tetragonal phase. Figure

4.13, shows h-scans and the fitted peak positions. From these data the transition

temperature is estimated to be TS = 56.3 ± 0.2 K. Figure 4.14 shows the fitted

peak positions as a function of applied field. These XMaS data are used to produce

the MnV2O4 phase diagram shown in Figure 4.20.
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Figure 4.13: (a) and (b) The temperature dependence of the MnV2O4 (400) peak
at B = 0T from XMaS. The structural transition can clearly be seen
where the crystal changes from tetragonal (double peak) to cubic
(single peak) as the temperature increases.
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Figure 4.14: XMaS results showing the temperature dependence of the position
of the MnV2O4 (400) structural peak at various fields (temperature
decreasing).
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4.3.3 D10 results

The following refinement of the zero-field magnetic structure was carried out by

Garry McIntyre at the ILL. The absorption correction was calculated by following

the method described by Coppens, Leiserowitz and Rabinovich [78].

T = 75 K T = 2 K
Fd3̄m I41/amd

(untwinned)

a [Å] 8.5117(5) 8.5142(8)

Mn1
(x, y, z) (1

8
, 1

8
, 1

8
) (0, 3

4
, 1

8
)

Bis 0.108(63) 1.01(27)

V1
(x, y, z) (1

2
, 1

2
, 1

2
) (0, 0, 1

2
)

Bis 0.108(63) 1.01(27)

O1
x 0.26306(10) 0
y 0.26306(10) 0.02424(89)
z 0.26306(10) 0.2619(12)
Bis 0.348(43) 1.13(18)

Observations 222 81
R1 4.470 11.01
R2 6.914 13.04
R3 3.680 13.82
R4 6.028 15.63
χ2 15.4 129

Table 4.1: Structural refinement of MnV2O4 BIS = Isotropic temperature factor
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The following magnetic refinement was carried out assuming these magnetic

form factors: Mn2+ 〈j0〉, V3+ 〈j0〉. The reflections are separated into two groups,

those which are allowed by the structural space group and those which are not.

Ferromagnetic components are in the structural reflections along with the anti-

ferromagnetic components which are canted. Non-canted antiferromagnetic com-

ponents go into other reflections. The scale factor, atom coordinates and thermal

parameters are fixed.

Ferromagnetic Antiferromagnetic Garlea et al.

µMn(µB) 3.4(1.1) 4.2
µV (µB) -0.96(79) 1.02(10) 1.3
φV 54.9(5.1) 65.12
Observations 53 28
R1 12.07 37.49
R2 21.60 31.48
R3 11.21 17.18
R4 14.30 20.03
χ2 133 22.2

Table 4.2: Magnetic structure refinement of MnV2O4

In summary, Table 4.2 shows that the manganese moment, µMn, is 3.4(1.1)µB,

along the c direction, and the vanadium moment, µV , is 1.4(5)µB canted with

an angle, φ, of 54.9(5.1)◦ from the c direction. Basal plane components in each

tetrahedra rotated by 90◦. This is in good agreement with Garlea et al., see Figure

4.7. The results of the magnetic moments calculated using McPhase (discussed

in Chapter 5) also agree with this magnetic structure.
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4.3.4 D15 results

Measurements in zero field

We started doing ω − 2θ scans for our structure factor measurements and found

multiple peaks. We realised that there was severe contamination by powder lines

from the cryomagnet. Therefore we performed ω - scans so that any contribution

from powder lines would appear as a flat background. The data set at B = 2T,

T = 2K are ω - scans so we know that these data are reliable.

Figure 4.15: Scan directions used in the D15 experiment. Data from radial ω−2θ
scans were difficult to use due to the presence of powder lines. Tan-
gential ω - scans contain only a constant contribution from powder
lines and so the peak intensities on top of a flat background are used.
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The following temperature dependencies were obtained for the cubic (400) re-

flections (Figure 4.16) and (200) reflections (Figure 4.17). (These are (220) and

(110) in the tetragonal phase).

Figure 4.16: Temperature dependence of (a) the intensity and (b) the position of
the (400) Bragg reflection at B = 0T. The peak splitting due to the
tetragonal distortion occurs at 56.5K, the same temperature as the
onset of magnetic ordering.

The temperature dependence of the Q-scans through the (400) reflection shows

two peaks up to 56K in both the H and K directions, this is due to the pres-

ence of multiple domains. The structural transition can be seen to occur at 57K

(where the double peak becomes a single peak). The Q-scans through the struc-
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tural/magnetic (400) and purely magnetic (200) peaks all show domains below TS

= 57K. All our data sets imply a cubic-to-tetragonal distortion at TS = 57K. We

agree with Suzuki et al. [75], who performed single-crystal synchrotron measure-

ments and determined TS to be 57K. It also seems to be logical for the structural

distortion to occur around TS = 57K, when all agree that the system orders with

a net ferromagnetic moment along the c direction. The (200) reflection arises from

the non-collinear low temperature magnetic structure and it is not expected in

the intermediate ferrimagnetic phase.

Figure 4.17: Temperature dependence of the intensity of the magnetic peak (200)
at B = 0T.

The presence of a peak above TM suggests the presence of higher order contam-

ination. The increase in intensity from the magnetic ordering would be expected

at TM ≈ 53K. However, the fact that the higher order contamination will have
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an additional magnetic component below TN = 57K may explain the observed

increase in intensity at (200) below TN .

Measurements in a field

The measurements in a field were an attempt to map out the phase diagram and

measure the magnetic structure for a single domain. The domains of MnV2O4 seen

on D15 are shown in Figure 4.18. The Néel temperature, TN , was determined as

a function of applied magnetic field. The temperature dependence in a field was

also measured. See Figure 4.19.

Figure 4.18: Domains of MnV2O4 seen on D15. At zero field the presence of
domains is shown by the double peak. With a field of 2T applied the
sample becomes a single structural and magnetic domain
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Figure 4.19: D15 measurements showing the integrated intensity of the (400) peak
at various fields (a) B = 0T (b) B = 0.3T (c) B = 2T (d) B = 5T
with temperature cooling. The transition temperatures can be clearly
seen and are marked by blue lines. An intermediate phase can also
be clearly seen in the 0.3T data (b), but this phase is less well defined
at higher fields.
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A model was used in which the manganese and vanadium moments are fixed at

the values found using D10 (Table 4.2) and the scale factor and extinction factor

were deduced. The Cambridge Crystallographic Subroutine Library can be used

to model the extinction but the sample dimensions need to be known. A good fit

to the data was obtained but with a large extinction factor.

4.3.5 Phase diagram

The following phase diagram (Figure 4.20) was produced using SQUID, neutron

and X-ray diffraction and lattice striction measurements (taken from Adachi et

al. [43]). All measurements shown are with temperature cooling.

Figure 4.20: MnV2O4 phase diagram produced using SQUID (green line), neu-
tron (pink line) and X-ray diffraction (red line) and lattice striction
measurements (black line) with cooling temperature.
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It is clear from the measured structural transition temperature and the slope

of the phase boundary that the transition from cubic to tetragonal occurs at

the Néel temperature, TN = 57K. This is in contrast to the result stated, but

not explicitly shown by Plumier et al. [37], and restated by most subsequent

authors [38,42–45], that the structural distortion occurs at TM = 53K. Our result

agrees with single crystal synchrotron X-ray study of the structural transition by

Suzuki et al. [75].
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4.4 Discussion

The structure deduced from our single crystal measurements agrees with that

predicted by Garlea et al. [42]. Measurements on D10 are affected by extinc-

tion. Extinction occurs if the diffracted beam is at the correct angle for a second

diffraction to take place. This internal scattering in the crystal causes the exiting

beam to miss the detector. At a strong Bragg point there is a higher probability

of the beam diffracting again which decreases the relative intensity of the strong

reflections.

Figure 4.21: (a) Primary extinction caused by multiple reflections from different
atomic planes in a perfect crystal and (b) Secondary extinction caused
by multiple reflections from a crystal with domains. Both situations
result in a loss of intensity but the effect is worse for a single domain
crystal.

In the D15 experiment the use of a magnetic field enabled us to obtain mea-

surements in a single structural and magnetic domain (see Figure 4.18), but since

the sample was mounted in a cryostat, we had access to fewer reflections than on

D10. These single phase measurements also agree with Garlea et al. [42].
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Figure 4.22: (a) Domains present on D10 (b) Use of a field on D15 produced a sin-
gle structural and magnetic domain but this leads to more extinction.
The formation of a single domain also leads to a higher extinction
factor.

The formation of a single domain also leads to a higher extinction factor. This

means that the single domain approach does not add much, but it is the best that

we can do. Our results clearly show that the structural transition from cubic to

tetragonal occurs at the Néel temperature.
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5.1 Background

5.1.1 Magnetic excitations from MnV2O4

The magnetic excitations of MnV2O4 were measured using single-crystal neutron

scattering at NIST by Chung et al. [79]. Figure 5.1 shows the magnetic intensity

along the [4-l, 0, l] and [2, 0, l] directions, in the cubic setting, in the non-collinear

phase at T = 5K. The dispersion relations shown in this figure were calculated

from the excitations from the non-collinear ground state proposed by Plumier et

al. [36, 37]. There is certainly good qualitative agreement with the data. There

are two energy bands. The lower band is mostly due to magnetic fluctuations of

Mn2+ and the upper band is mostly due to the fluctuations of the V3+ ions. The

problem with this interpretation of the results is that the magnetic ground state

proposed by Garlea et al. [42] using powder neutron diffraction, and confirmed by

us in the previous chapter using single-crystal neutron diffraction, is different to
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that proposed by Plumier et al. [36,37]. Thus the calculated excitations in Chung

et al. [79] are from the wrong magnetic ground state. In this chapter we have

re-examined the magnetic excitations from MnV2O4 in the light of new, more

accurate inelastic neutron scattering data. First, we have obtained a much more

comprehensive data set in zero field using unpolarised neutrons, sampling a much

larger region of reciprocal space, using the MAPS spectrometer at ISIS. Secondly,

we have focussed on selected regions of the dispersion using polarised inelastic

neutron scattering studies from a single domain using the IN20 spectrometer at

the ILL.

Figure 5.1: Inelastic neutron scattering intensity from the non-collinear phase of
MnV2O4 at T = 5K by Chung et al. [79]. The magnetic excitations are
calculated from the non-collinear ground state proposed by Plumier et
al. [36, 37]. In (a) [(b)], the dotted, dashed and solid lines correspond
to dispersions calculated along (0kl), (h0l) and (hk0) [(h00), (0k0)
and (00l)] directions respectively, which are superimposed due to the
pseudocubic symmetry.
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5.2 Experimental procedure

Sample preparation

A large 6g single crystal was produced by Le Duc Tung at the University of

Warwick which was six times larger than the crystal used by Chung et al. [79].

Figure 5.2: Photograph showing MnV2O4 6g sample mounted on cryostat sample
stick.

Figure 5.3: MnV2O4 Laue diffraction pattern, showing a 4-fold axis, produced on
Orient Express at the ILL with the help of Bachir Ouladdiaf.
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MAPS experiment

A single-crystal inelastic unpolarised neutron scattering experiment was carried

out on MAPS at ISIS with Christopher Frost. The crystal was mounted with the

(110) crystallographic plane horizontal. Four-dimensional data sets were produced

in the low temperature, non-collinear phase at T = 5K. No field was applied and,

therefore, the sample was multi-domain. These results can be compared directly

with those of Chung et al. [79]. Data sets were obtained with incident energies Ei

= 30meV, to focus on the lower energy excitations with high resolution, and Ei

= 60meV to probe the highest energy regions of the dispersion. The sample was

rotated about its vertical axis by one degree over a total range of 45 to 135◦ at Ei

= 30meV and from 45 to 69◦ at Ei = 60meV, scanning one degree in 66 minutes.

IN20 experiment

The experiment on IN20 at the ILL was carried out with Mechthild Enderle. The

sample was mounted in a vertical cryomagnet with the [001] direction vertical. As

has been verified on D15, MnV2O4 adopts a single magnetic and structural domain

at an applied field of B = 2T, see Section 4.3.4. These measurements of single-

domain MnV2O4 were performed at a temperature of T = 2K and a field along

the [001] direction of B = 2T. Unidirectional polarisation analysis was achieved

using Heusler (111) monochromator and analyser crystals. The final energy was

fixed at Ef = 14.8meV, and the incident energy was scanned with Q fixed along
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the [2+h, -2+h, 0], [h, 0, 0], [2, k, 0], [2+h, -h, 0] and [2.5-h/4, h, 0] directions.

The first four were accessible high symmetry directions and the last was a more

general scan.

5.3 Results

5.3.1 MAPS results

The data was analysed using HORACE (a computer program for the visualisation

and analysis of datasets from TOF neutron inelastic scattering spectrometers) [67]

with assistance from Russell Ewings of ISIS. Figures 5.4 and 5.5 show cuts through

reciprocal space with an incident energy of Ei = 30meV. Figure 5.4 shows constant

energy slices integrated over a narrow range of energy transfer as a function of

Q in the (hk0) plane, with Q along the [00l] direction integrated over l = -0.2

to 0.2. Cones of scattering are seen to come from the (2, -2, 0) and (4, 0, 0)

positions, and these are found to disperse by about 10meV. This enables a robust,

qualitative conclusion to be drawn. The antiferro-orbital model of Tsunetsugu

et al. [33] results in negligible interchain coupling (J’ << J) and this would lead

to perpendicular stripes of scattering in this plane from the perpendicular chains.

The 3D excitations observed have ruled out this model. Thus, even the qualitative

features of these data show directly that the interchain coupling is not negligible

compared to the intrachain coupling.
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Figure 5.4: Magnetic excitations from MnV2O4 at T= 5K observed on MAPS with
an incident energy Ei = 30meV. The cuts show data in the (HK0) plane
integrated over the following energy transfer ranges: (a) 2-5meV (b)
5-7meV (c) 7-9meV
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Selected spin wave dispersions are shown in Figure 5.5, where the data are

plotted as a function of Q in one direction, energy in the other and an integration

over a Q range -0.2 to 0.2 is performed over the perpendicular directions in Q.

The data for Q = [ξ,−ξ, 0] in Figure 5.5(a) can be directly compared with the

data of Chung et al. [79] along [4-l, 0, l] in Figure 5.1(a). The two data sets are

found to be entirely consistent. The dispersion along Q = [ζ, 0, 0] in Figure 5.5(b)

can be compared with Chung et al. for Q = [2, 0, l] in Figure 5.1(b). In this case,

the greater sensitivity of the MAPS data indicates an additional feature at Q =

(200) that is not clear from the earlier data set. Figure 5.5(c) is an example of

data in a new region of reciprocal space along Q = [ζ, ζ, ζ].
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Figure 5.5: Magnetic excitations from MnV2O4 at T = 5K observed on MAPS
with an incident energy Ei = 30meV. Data along (a) (ξ,−ξ,0)(b) (ζ,
0, 0) and (c) (ζ, ζ, ζ). A crossing in the dispersion can be seen in (b)
at the (200) position which is not seen in the calculation.
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Figure 5.6 shows data obtained on MAPS with an incident energy of Ei =

60meV. The aim in this case was to probe the higher energy excitations.

Figure 5.6: Magnetic excitations from MnV2O4 at T = 5K observed on MAPS
with an incident energy Ei = 60meV.
Some scattering can be seen at high energy but it is not well defined.

The very broad feature above 20meV at Q = (400) is consistent with the data in

Figure 5.1(b) by Chung et al. [79]. In the latter case the intensity at high energy

transfer has been emphasised by multiplying by frequency. However, we note that

in both cases it may prove difficult to resolve features of the models clearly using

the rather washed out features at high energy.

5.3.2 IN20 results

Figure 5.7 shows the polarised inelastic neutron scattering for Q = (2+h, -2+h,

0) from a single domain of MnV2O4 in the non-collinear phase at a temperature

T = 2K and a field B = 2T applied along the [00l] direction. Figure 5.7(a) shows
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the data in the spin-flip channel and Figure 5.7(b) shows the corresponding data

in the non-spin-flip channel. The fact that the scattering is much stronger in the

spin-flip channel directly confirms the magnetic origin of these excitations. These

data can be directly compared with the MAPS data in Figure 5.5(a) and the NIST

data of Chung et al. in Figure 5.1(a). It is clear that the signal-to-background is

much better in the spin-flip channel on IN20 as expected.

Figure 5.7: IN20 MnV2O4 data along (2+h, -2+h, 0). a) Data in the spin-flip
channel. b) Data in the non-spin-flip channel. The calculation fits the
observed dispersion fairly well.
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Figure 5.8 shows the data in the spin-flip channel for Q = (h00). The feature

first revealed at Q = (2,0,0) and ∆ E = 10meV on MAPS, see Figure 5.5(b), is

shown to be a crossing point. This qualitatively new feature was missed during

the NIST experiment due to the lower signal-to-background. In fact, a closer

inspection of Figure 5.7 reveals a similar, but weaker, feature near Q = (3,-1,0)

and ∆ E = 10meV. Figures 5.9, 5.10 and 5.11 show the spin-flip scattering for

Q = (2, h, 0), (2+h, -h, 0) and (2.5 - h, 4 , -h, 0) respectively. The crossing point

is particularly clear for Figure 5.10.

Figure 5.8: IN20 MnV2O4 data along (H00). A dipping and crossing in the disper-
sion can be seen at (200) which is not accounted for in the calculation.
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Figure 5.9: IN20 MnV2O4 data along (2K0). A dipping and crossing in the dis-
persion can be seen at (200) which is not observed in the calculation.
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Figure 5.10: IN20 MnV2O4 data along (2+h, -h,0). A complex crossing is seen in
the dispersion at (200) which is not accounted for in the calculation.
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Figure 5.11: IN20 MnV2O4 off-symmetry data. This data can also be seen to
depart from the calculation.
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5.4 Magnetic model calculations

Spin wave dispersion

In order to compare our data with that of Chung et al. [79] we needed to re-

produce Chung’s magnetic model calculation. This was done by Peter Conlon

(University of Oxford), he produced a Matlab program in which the spin wave

dispersions could be calculated for any choice of model parameters and for any

cut in reciprocal space [80]. The following is a brief overview of the steps he used

to reproduce the spin wave dispersion calculation.

Firstly the lattice positions of the atoms in the tetragonal phase were determined

and it was assumed for simplicity that this did not change. As described in Section

4.1.1, MnV2O4 has a spinel structure, the general formula of which is AB2O4. The

A sites form a diamond lattice and have 12 B neighbours which form a pyrochlore

lattice. The A sites can be thought of as being at the centre of a tetrahedron

interacting with three spins on the face of each tetrahedron [80].

The next step was to define the spin Hamiltonian. Jij are the Heisenberg

exchange constants. The simplest Hamiltonian to give reasonable fits to the data

include the nearest neighbour exchange interactions between A and B ions JAB,

the interactions between B ions JBB and JBB′ and single ion anisotropies for both

ions (defined as Dd
i , where d is the axis of the anisotropy) [79].
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H =
1

2

∑
i 6=j

JijSi · Sj +
∑
i,d

Dd
i (S

d
i )2 (5.1)

AB bonds were given an energy of JABSA·SB, BB and BB’ bonds have an energy

of JBBSB ·SB and JBB′SB ·S′B. The spin quantum numbers are SA = 5
2

for Mn2+

and SB = 1 for V3+ [79, 80]. It was assumed that, classically, the MnV2O4 spin

structure could be parameterised by one angle, θY K with a structure SA = SA(0,0,-

1) for both A sites [80]. The B sites can be defined as S1,2
B = SB(0, sinθY K , cosθY K)

and S3,4
B = SB(0,−sinθY K , cosθY K). The total energy per unit cell was calculated

and then differentiated with respect to θ to obtain a stationary point which is a

minimum of the classical energy [80].

A quadratic Hamiltonian was then deduced using Holstein-Primakoff Bosons

[80]. To do this it was assumed that each primitive cell is identical. The spinel

has two A sites and four B sites in a primitive cell. The Holstein-Primakoff boson

operators are defined relative to a quantisation axis and expresses the quantum

fluctuation of a spin away from its classical direction. The operators are then con-

verted to cartesian coordinates. [80]. Considering the products of spins (separated

by the angle φ ) gives:

J12S1 · Sj ≈ J12S1Sj
1

4
√
S1S2

(b†b)Q(φ12)

 b

b†

 for b = (b1b2) (5.2)
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To calculate the spin wave spectrum, the quadratic part of all bonds is retained

and a Fourier transform is applied to arrive at a 12 × 12 matrix M(q). This is a

quadratic form for bosons at wavevector q [80].

The quadratic Hamiltonian is ‘Bogoliubov-diagonalised’ via canonical variables

[80]. The basis transformation from bosons to canonical x = (p, q) is:

 b

b†

 =
1√
2

 i 1

−i 1


 p

q

 (5.3)

The Hamiltonian was then expressed as a quadratic form for canonical variables

in the form H = 1
2
xTAx where

A = 2
1

2

 −i i

1 1

M

 i 1

−i 1

 (5.4)

The spectrum of the quadratic spin wave Hamiltonian are the eigenvalues of

IA [80] where

I =

 0 −E

E 0

 (5.5)

and E is the identity matrix. This is then possible to calculate on a computer

[80].

It is possible to reproduce Chung’s dispersion using the same exchange and

anisotropy parameters listed in Table 5.1, but only when the spin of the Mn (SA)
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is set to the incorrect value of 1 instead of 5
2
.

SB SA JAB JBB JBB′ Dz
A Dy

B Dz
B

1 1 2.8(2) 9.8(9) 3.0(8) -0.6(4) -4.0(4) 2.7(9)

Table 5.1: Exchange parameters of MnV2O4 used by Chung to create spin wave
dispersions [79]. Nearest neighbour exchange interaction between A
and B ions = JAB. The exchange along orbital chains = JBB. The
exchange between orbital chains = JBB′ . The values of Dd

i are the
single ion anisotropies where d is the axis of the anisotropy.

In order to fit the data with the correct value, SA = 5
2
, the exchange parameters

had to be changed to those given in Table 5.2. The new values were determined

via trial and error. Each parameter was varied through a range from -10 to +10 to

see how it affected the calculation. Combinations of parameters were then varied

to see if the fits could be improved. Because the spin of the Mn has been changed

it makes sense that JAB changes by more than JBB and JBB′ . The single-ion

anisotropies also change substantially.

SB SA JAB JBB JBB′ Dz
A Dy

B Dz
B

1 5/2 4.3 10.0 3.0 -1.0 -6.0 0.5

Table 5.2: Exchange parameters of MnV2O4 as deduced via trial and error. Near-
est neighbour exchange interaction between A and B ions = JAB. The
exchange along orbital chains = JBB. The exchange between orbital
chains = JBB′ . The values of Dd

i are the single ion anisotropies where
d is the axis of the anisotropy.
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In the previous figures, showing data from MAPS at ISIS, the calculated disper-

sion fits the data along Q =[ξ,−ξ, 0] very well (Figure 5.5 (a)). However, the data

along [ξ, 0, 0] (Figure 5.5 (b)) does not correspond to the dispersion calculated in

this model. A closer examination of Chung’s data in Figure 5.1 (b) is consistent

with this conclusion. Furthermore, there appear to be crossing points at, for ex-

ample, the (200) position (Figure 5.5 (b)) that are completely inconsistent with

the model. When we look in regions of reciprocal space further away from the

Chung data, the extrapolation of the model does not work fully. For example, the

splitting of the modes in the calculation at (1
2

1
2

1
2
) is not found in the data (see

Figure 5.5 (c)). The comparison with the higher energy modes is also problematic.

In common with Chung et al., we do not clearly resolve the high energy magnetic

excitations. The scan performed with an incident energy of 60meV (Figure 5.6)

shows some scattering at high energy but like the Chung data (Figure 5.1) it is

rather washed out so it is difficult to compare with the calculations. Therefore, we

investigated the excitations in particular regions of reciprocal space with greater

sensitivity by using polarised neutrons on IN20 at the ILL. The measurements

were performed with a magnetic field along the c-direction in order to select a

single magnetic domain. The figures showing spin flip scattering data from IN20

at the ILL (Figures 5.7 to 5.11) have better experimental resolution than Chung et

al. These results show that Chung et al. does not correctly model the excitations

from MnV2O4 in the low temperature phase.
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5.5 McPhase calculations

The program McPhase was designed to calculate the static and dynamic mag-

netic properties of a system given the crystal field and exchange parameters.

Anisotropic and higher order terms such as quadrupolar interactions can be taken

into account [81]. It has several independent modules. The module ‘cfield ’ is

used to calculate the crystal field transitions. The module ‘mcphas’ deals with

the pair interactions, it calculates the thermodynamic properties and the free en-

ergy by running a combined mean-field/Monte-Carlo algorithm. The most stable

magnetic structure at a given field and temperature is deduced using randomly

chosen initial moment configurations. Calculations at several temperatures and

magnetic fields can be run in order to map a magnetic phase diagram [81]. The

module ‘msdisp’ uses a mean-field random phase approximation to calculate the

dispersion and intensity of magnetic excitations and diffuse magnetic scattering

cross section [82]. McPhase uses the following Hamiltonian:

H =
∑
i

[
Bm
l O

m
l (Ji)− gJiµBJiH−

1

2

∑
j

J(ij)JiJj

]
(5.6)

where the first term describes the crystal field using Stevens operators Om
l , the

strength of the crystal field is given by the crystal field parameters Bm
l . (l =

angular quantum number, m = magnetic quantum number). The second term is

the Zeeman energy if a magnetic field is applied. The third term is the bilinear
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magnetic interaction [81].

Manh le Duc, from HZB in Berlin attempted to model the magnetism of

MnV2O4 using McPhase (with assistance from Martin Rotter, University of Ox-

ford). He used orbital angular momentum and spin angular momentum values as

follows: S = 5
2

and L = 0 for Mn2+ and S = 1, L = 3 for V3+, with parameters

determined using Peter Conlon’s Matlab program (Table 5.2). The crystal field

was calculated using a point charge model rather than the anisotropy parame-

ters. The crystal field has no effect in the case of Mn2+ because it only operates

on the orbital part of the electronic wavefunctions and L=0 for the ground state

of Mn2+ [83]. V3+ has a slight trigonal distortion [45], this was calculated by

reducing the space group symmetry of MnV2O4 from Fd3̄m to R3m. The O−2

position is (x,x,x) in Fd3̄m but is (x,x,z) in R3m. The trigonal distortion was

calculated by reducing z by 0.02rlu (reciprocal lattice units), this displaced the

oxygen atoms by about 0.15Å. However, this lowering of the space group does

not affect the positions of the Mn2+ and V3+ ions and so, as the oxygen ions are

not included in the mean field calculations, the cubic Fd3̄m space group was used

for the calculations [83]. The crystal field parameters Bm
l obtained from running

McPhase are shown in Table 5.3.

126



5 MnV2O4 excitations

B2
0 B4

0 B4
3

7.19483 meV 1.16733 meV 37.8707 meV

Table 5.3: McPhase crystal field parameters

These parameters give a doublet ground state (|S = 1, L = 3, mL = 0, mS =

±1 〉), and excited singlet at 1.4meV, (|S = 1, L = 3, mL = 0, mS = 0〉) and an

excited doublet at 8meV (|S = 1, L = 3, mL = 2, mS = ±1〉), with other levels

above 50meV.

The calculations by Manh le Duc using the McPhase program have been quite

successful. Including the orbital interactions gives a magnetic structure similar

to that of Garlea et al. [42] which agrees with our single crystal neutron diffrac-

tion data and there is a qualitative agreement with the experimental excitations.

Figure 5.12 shows that it is possible to reproduce the observed crossing points.
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Figure 5.12: McPhase calculation of MnV2O4 excitations showing the crossing
point which was not produced using the Chung model.
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5.6 Discussion

The fact that the magnon dispersion has cones corresponding to a three dimen-

sional system, rather than the streaks from a one dimensional system and the

results support a non-negligible JBB′ , rules out the anti-ferro orbital ordering

model suggested for AV2O4 compounds by Tsunetsugu and Motome [33]. The

ferro-orbital model of Tchernyshyov et al. [38] is already excluded by the space

group I41/a determined by Suzuki et al. [75]. Thus the orbital order proposed by

Sarkar et al. [41] is the only remaining candidate. It has the correct space group

and it agrees with the magnetic structure measured in Chapter 5 and calculated

using McPhase. Furthermore, in this model all of the orbitals are partially occu-

pied so it readily explains why the excitations should be three dimensional. Sarkar

et al. [41] predict an interchain to intrachain ratio of J’/J ≈ 0.2, and this agrees

qualitatively with our estimate of J’/J ≈ 0.3.

In the light of Garlea’s proposed magnetic structure [42], and our new evidence

in support of this structure, it is now clear that the Chung model [79] uses the

wrong ground state. Our inelastic neutron scattering studies show empirically

that this model is wrong. Attempts to model the excitations using the correct

ground state are already promising. The model of Chung gives manganese modes

at low energy and vanadium modes at high energy transfer. The crossing points

in our data seem to suggest that the vanadium modes extend to lower energy

transfer. The calculations using McPhase seem to imply that the rather simple
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dispersion measured experimentally is just the mode with the strongest intensity

and, in fact, the full dispersion is rather more complicated. The approach of using

a ‘black box’ programme such as McPhase is, therefore, a very suitable starting

point for understanding a system with so many magnetic atoms in its unit cell.
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6.1 Background

6.1.1 Crystal structure of GdVO3

The RVO3 compounds have an orthorhombic perovskite structure at room tem-

perature (Figure 6.1) [84]. The Vanadium ions are situated in the centre of corner

sharing octahedra with the rare earth cation situated between the octahedra. The

structure has the orthorhombic spacegroup (Pbnm) rather than a cubic space-

group (Pm3m) because the octahedra are tilted in order to accommodate the

large cations (This is known as GdFeO3-type distortions) [85–87].
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Figure 6.1: The crystal structure of GdVO3 at room temperature with space group
Pbnm after Skoulatos [53]. The Vanadium octahedra (blue) are sur-
rounded by 6 corner-shared Oxygen ions (red) and Gadolinium (yel-
low). The ionic radii of V and Gd differ giving rise to GdFeO3-type
distortions.
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6.1.2 Orbital ordering of GdVO3

Cuprate superconductors and manganites with colossal magnetoresistance belong

to the transition metal oxides (TMO) with the 3d eg bands at the Fermi level. In

these systems the Jahn Teller (JT) interaction is relatively strong and the orbital

degeneracy is lifted well above the magnetic ordering temperature. The situation

is different for the perovskite orthovanadates RVO3 (R = rare earth or Y) with 3d

t2g bands at the Fermi level where the JT interaction is much weaker. As a result,

the intrinsic frustration between spin and orbital degrees of freedom is believed to

be crucial for understanding the interplay between ordering mechanisms [88–90].

In a crystal with TM ions the 5 fold degenerate d level is split into the 2

fold degenerate level (eg) and the 3 fold degenerate level (t2g), see figure 1.1.

There are two t2g electrons in V3+, and these adopt the high-spin configuration

S=1 due to Hund’s-rule coupling. One electron always occupies the dxy orbital

due to the orthorhombic distortion and the other electron occupies one of two

possible states dyz or dzx [7, 91, 92]. As described in Section 1.1.2, an ion in

a solid experiences a crystalline electric field, known as the ‘crystal field’, due

to the charge on neighbouring ions. Because the d orbitals are not spherically

symmetrical, the different orbitals behave in different ways in reaction to the

form of the crystal field.
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Jahn Teller effect

For many orbitally ordered transition metal systems the Jahn Teller (JT) effect

is an important concept. The Jahn Teller effect was discovered in 1937 and has

been extensively studied for the past 70 years. The theorem states that “any non-

linear molecular system in a degenerate electronic state will be unstable and will

undergo distortion to form a system of lower symmetry and lower energy thereby

removing the degeneracy.” [11].

Figure 6.2: The Jahn Teller effect for a t2g system. The distortion of the crystal
lifts the degeneracy of the orbital energy levels. Figure from [53].

When this degeneracy is lifted, a ‘vibron’ (an electron-vibrational interaction),

is emitted from the orbital-lattice coupling [92,93]. This can be thought of as an

interaction between the distorted lattice and the electrons of the degenerate level.

When it is energetically favourable, the Jahn Teller effect can often cause distor-
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tion of the lattice which alters the orbital energy levels and lowers the symmetry

of the crystal [94].

6.1.3 Magnetic structure of GdVO3

The magnetic properties of RVO3 compounds were studied in the 1970’s [95–98]

and were shown to display a variety of commensurate magnetic structures. A

systematic investigation was carried out in 1976 by Zubkov, Bazuez and Shveikin

using low-temperature, powder neutron diffraction [99]. Their study concluded

that the beginning of the Vanadate series (Lanthanum to Dysprosium) showed

C-type magnetic ordering of the Vanadate ions whereas the end of the series (Yt-

trium to Lutetium) had G-type magnetic ordering. These magnetic orderings are

characterised by antiferromagnetic interactions on the ab plane with ferromagnetic

interaction between planes for C-type and antiferromagnetic interaction between

the planes for G-type [99]. Their investigations using X-ray diffraction showed

that the C-type compounds also exhibited a structural phase transition around

the Néel temperature, accompanied by a change in the degree of orthorhombic dis-

tortion [99]. At the time, Samarium, Gadolinium and Europium were not studied

due to their strong absorption of neutrons at thermal wavelengths. Subsequent

magnetisation measurements for GdVO3 reveal intriguing magnetic properties in-

cluding an unusual magnetic memory effect at the transition temperature TM

and a series of magnetic-field-induced phase transitions at low temperatures be-
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low TM [88].

The neutron measurements by Markos Skoulatos et al. reveal the onset of spin

ordering at TSO in a C-type magnetic structure, with spins arranged ferromag-

netically along the c direction and antiferromagnetically in the ab plane. G-type

orbital ordering was observed below TOO using resonant X-ray scattering with

alternating occupation of dyz and dzx orbitals in all three directions [53] in accor-

dance with the Goodenough-Kanamori rules [100].

Figure 6.3: Structures of spin and orbital patterns often adopted by RVO3 com-
pounds. Jahn Teller distortions are in the ab plane. (a) V-O bond
arrangements are in phase. (b) V-O bond arrangements are 90◦ out
of phase. Orbitals in green are yz, orbitals in yellow are zx (the com-
monly occupied xy orbitals are not plotted). Vanadium sites are in
purple, oxygen ion at corners of octahedra are not shown. Figure taken
from Skoulatos [53].
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6.1.4 Magnetisation reversal

Multiple temperature induced magnetisation reversals have been reported in YVO3

[101] which has the same GdFeO3 type distorted crystal structure as GdVO3.

Normally magnetic moment reversals are observed in ferrimagnets with strong

magnetic anisotropy, however in YVO3 all the magnetic V3+ sites are equiva-

lent. The distortion of the crystal leads to canted spins and the antisymmetric

Dzyaloshinsky-Moriya (DM) interaction is present because the oxygen ions medi-

ating the superexchange between the V ions are not at an inversion centre [101].

A temperature-induced magnetization jump is also seen in GdVO3, along the

a axis (See Figure 6.4) [53], but whereas YVO3 has only magnetic vanadium

ions, GdVO3 has both magnetic Vanadium, V3+, and Gadolinium ions, Gd3+.

GdVO3 also displays an unusual magnetic memory effect below TM ≈ 8K. Above

TM the material appears to be a homogeneous antiferromagnet, as it shows no

remnant magnetization or coercivity, but the history dependent magnetism which

is seen when heating the material through TM suggests that there are domains

present in the crystal [35].
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Figure 6.4: Effect of a trapped field on the ZFC magnetisation measured along
the a axis of the GdVO3 single crystal in applied field Hmeas of 10 Oe.
After Tung [35].

Hubbard model

GdVO3 is a Mott insulator and as such its properties can be explained by the

Hubbard model. It does not exhibit normal metallic behaviour, where the elec-

trons save kinetic energy by delocalising over the whole crystal, because in TMOs

the Coulomb energy (the cost of putting an extra electron on a site) is very strong

and cannot be overcome. As a result the electrons cannot move freely throughout

the crystal, metallic behaviour ceases and electrons can no longer be treated as

free particles, hence electron correlations become important. Such systems are

therefore insulating [7,9]. The Hubbard model expresses the competition between

the metallic behaviour and the Coulomb repulsion energy (U). If U is not infinite
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an antiferromagnetic structure is formed, as two electrons can occupy the same

site providing that their spins are antiparallel. The internal degrees of freedom,

spin and orbital, are still present in a Mott insulator unlike in a conventional band

insulator. However, metallic behaviour can occur if the electronic band width, W,

is larger than U. A metal-insulator transition occurs when U ≈ W [7,9].
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6.2 Experimental method

D9 Experiment

We studied single-crystal GdVO3 on D9 at the ILL with the aid of local contact

Garry McIntyre. Magnetic reflections in each of the four metamagnetic phases of

GdVO3 were measured from T= 2K to 10K. Having considered the magnetisation

results shown in Figure 6.6, we applied the following magnetic fields along the

vertical a axis: 15 kOe (between H1 and H2), 23 kOe (between H2 and H3), 28

kOe (between H3 and H4) and 40 kOe (above H4). Temperature dependencies of

selected reflections were also measured. In addition to the interest in the magnetic

memory effect below TM [35], the results were required for ab-initio calculations

of the resonant X-ray scattering at the Vanadium K edge from field-driven orbital

transitions.

ID20 experiment

In order to unravel the anomalous magnetic properties of this compound [35],

we performed magnetic X-ray scattering at the ESRF on instrument ID20 with

Luigi Paolasini, Le Duc Tung and Martin Rotter. The single crystal GdVO3 was

aligned with the surface parallel to (011) and (100) directions and mounted in the

B = 12T vertical field split coil cryomagnet with magnetic field applied along the

(100) direction. This orientation of the crystal allows access to reflections close

to or within the bc plane. The energy was set to the Gadolinium LII-edge in
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order to measure the Gadolinium ordering. We performed k-scans at T = 2.4 K

in different magnetic fields in both the πσ and ππ channels.

6.3 Results

6.3.1 Bulk characterisation measurements

The following measurements were carried out by Le Duc Tung at The University

of Warwick. The two transitions at TSO and TM observed in the heat capacity

data (Figure 6.5) are again shown up in the magnetization data (Figure 6.7, a

axis). There is no kink in the magnetisation data at TOO and this is consistent

with orbital ordering.

Figure 6.5: Heat capacity measurements for GdVO3 reveal a phase transition at
TOO= 199 K, magnetic ordering at TSO =118 K, and a further mag-
netic transition at TM= 8 K [35].
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Figure 6.6: SQUID magnetisation and magnetostriction measurements below TM

as a function of applied field. Four metamagnetic phase transitions
are formed by the application of an increasing magnetic field along
the a axis [35].
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Figure 6.7: FCC (Field Cooled Cooling), FCW (Field Cooled Warming) magneti-
sation of the GdVO3 single crystal measured at 0.1 kOe along the main
axes. After Tung [35].
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6.3.2 D9 results

The following results show the field dependence of the (002̄) peak at T = 4.5K.

Figure 6.8: D9 field dependence of the GdVO3 (002̄) peak at 4.5K with field in-
creasing. The lines indicate changes of slope and these are interpreted
as phase transitions.

Figure 6.9: D9 field dependence measurements of the GdVO3 (002̄) peak at 4.5K
showing a very small hysteresis.
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Our subsequent experiments on D9 show that GdVO3 undergoes a transition to

an incommensurate magnetic structure below TM (8K). Furthermore, we find that

this is an intermediate phase and there is a transition to another incommensurate

phase at T ≈ 7.5K.

The following results are from the hot neutron source, D9, at the ILL. Figures

6.10(a) and (b) show the temperature dependence of Q in zero field, and Figures

6.11 (a) and (b) show the field dependence of Q at 2K. We have focussed on the

low temperature region of the phase diagram below TM (8K). We find incommen-

surate magnetic modulations for the first time in RVO3 compound. Five distinct

antiferromagnetic phases were found, labelled AF1 up to AF5.
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Figure 6.10: The temperature dependence of the incommensurate superlattice
peaks of (0K3) in zero field using D9. There is a phase transition
at about 7.5K, from AF1 to AF5 with a small region of coexistence
between phases and a transition from AF5 to PM at about 9.5K.
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Figure 6.11: The field dependence of the incommensurate superlattice peaks of
(0K3) at 2K using D9. Phase transitions can be seen at 1.8T (AF1
to AF2), at 2.4T (AF2 to AF3) and at 3.4T (AF3 to AF4). The
crystal becomes ferromagnetic above 3.4T.
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6.3.3 ID20 results

The species selectivity of resonant X-rays enables us to focus on the magnetism

of the Gadolinium. Furthermore, since this is not a signal-limited technique, we

are able to determine the phase diagram in much greater detail than before with

neutrons.

Experiments using resonant X-ray scattering on ID20 at the ESRF confirmed

the presence of an incommensurate phase below T = 8K. Magnetic scattering was

not isolated at the Vanadium K edge (5.465 keV) and there was little resonance

enhancement. On the other hand, strong resonant scattering was found at the

Gadolinium LII edge (7.932 keV). Figure 6.12 shows energy scans at this edge;

the published Gadolinium LII edge, E = 7.93 keV, is shown as a red line in the

figure. It agrees to within 1 eV with the point of inflection of the fluorescence scan

confirming instrumental energy calibration. Scans of X-ray energy with wavevec-

tor transfer fixed at Q= (0, 2.84, 2) show a very large resonant enhancement of

the signal within 1 eV of the Gadolinium LII edge in both the πσ and ππ chan-

nels. This signal is peaked in Q at an incommensurate wave-vector similar to

that observed using magnetic neutron diffraction. We associate this peak with

magnetic scattering from the Gadolinium moments.
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Figure 6.12: Resonant X-ray Scattering scans of (0K2) in a) ππ channel b) πσ
channel and c) the fluorescence spectrum (from ID20). The red line
shows the Gadolinium LII edge at ∼7.93keV.

At temperatures below T = 10K, the Gadolinium moments were seen to order

in four different competing magnetic phases apart from a forced ferromagnetic

state at applied field greater than B = 3T. At T = 2K and zero field (see Figure

6.13), the Gadolinium moments order with the propagation vector (0, 2.833, 2)
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(AF1 phase) which does not change significantly up to B = 0.75T. At B = 1T,

the propagation vector shifts to (0, 2.843, 2) (AF2 phase). This corresponds well

with a jump observed at around B = 0.9T observed both in the magnetisation

and magnetostriction data. At around 1.75T, the third magnetic phase (AF3)

with two distinct peaks located at around (0, 2.803, 2) and (0, 2.899, 2) in the πσ

channel appeared. These two peaks were slightly moved to higher k values with

increasing applied field. At 2.5T, the compound changes to a new magnetic phase

with propagation vector of about (0, 2.759, 2) (AF4) before reaching the forced

ferromagnetic state (FM) at 3T. The positions of the three transitions AF2-AF3,

AF3-AF4, and AF4-FM observed in the magnetic X-ray scattering data are in

good agreement with the magnetisation and magnetostriction data. Figures 6.13

and 6.14 show the change in the propagation vector as temperature and field vary.

Phases AF1 and AF2 have the same propagation vector but different moment

directions. AF2 is seen only in the πσ channel which is sensitive to moments

in the b and c directions. AF1 is present in both channels. The ππ channel is

sensitive only to moments in the a direction (the direction of the field). Figures

6.15 to 6.20 show the field and temperature dependence of Q in both the ππ and

πσ channels.
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Figure 6.13: X-ray results from ID20 showing the typical data in each phase AF1,
AF2, AF3, AF4, FM at different temperatures and fields at (0K4) in
both the πσ and ππ channels.

A systematic study at fixed temperature is shown in Figure 6.14; the signal in

the ππ channel decreases as field increases. This infers that GdVO3 has an anti-

ferromagnetic structure with spin flop occurring (moments turning perpendicular

to the field) as the field is raised. (The modulated Gadolinium moment compo-

nent becomes restricted to the bc plane and there is only a ferromagnetic moment

component along (100)). Phases AF4 and AF5 also have the same propagation

vector but AF4 is seen in the πσ channel and AF5 in the ππ channel.
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Figure 6.14: X-ray data from ID20 at 2K showing the phases AF1, AF2, AF3,
AF4, FM of (0K2) as a function of field in the πσ and ππ channels.
The bottom panel shows the phase boundaries and where in each
phase the measurements were taken.
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Field dependence of Q

Figure 6.15: The scattering near (0K2) at 2K in the πσ channel. Phase changes
can be seen at 1T (AF1 to AF2), at 1.75T (AF2 to AF3), at 2.5T
(AF3 to AF4). The material becomes ferromagnetic beyond 3T.

Figure 6.16: The scattering near (0K2) at 2K in the ππ channel. A phase transi-
tion can be seen at 1T (AF1 to AF2).
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Temperature dependence of Q

Figure 6.17: The scattering near (0K2) at 2T in the πσ channel. A phase change
can be seen at 6K (AF1 to AF4). The material becomes ferromag-
netic beyond 7K.

Figure 6.18: The scattering near (0K2) at 2T in the ππ channel.
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Figure 6.19: The scattering near (0K2) at 1T in the πσ channel. Phase changes
can be seen at 5K (AF2 to AF3) and at 6K (AF3 to AF4). The
material becomes ferromagnetic beyond 7.5K.

Figure 6.20: The scattering near (0K2) at 1T in the ππ channel. Again phase
changes can be seen at 5K (AF2 to AF3) and at 6K (AF3 to AF4).
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6.4 Phase diagram

The magnetic phase diagram of GdVO3 at low temperature is comprised of incom-

mensurate orderings of the Gd moments. Using neutrons we produced a phase

diagram with four phases, AF1 to AF4, but by using polarised X-rays at ID20

we were able to deduce that there are in fact five separate phases in GdVO3 (see

Figure 6.21). AF4 and AF5 are phases with the same propagation vector but

different moment directions. The phase boundaries determined from Figure 6.21

(H1 = 1T, H2 = 1.75T, H3 = 2.5T, H4 = 3T), correspond to the phase boundaries

from magnetisation and magnetostriction data in Figure 6.6 (H1 = 0.8T, H2 =

1.8T, H3 = 2.6T, H4 = 3.15T). The small discrepancies in these values may be

due to demagnetisation effects.

Figure 6.21: Phase diagram for GdVO3 produced using data from ID20.
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6.5 Modelling of resonant magnetic scattering

It is clear from the very large resonant enhancement at the Gd LII edge in Figure

6.12 that in order to model the data it is sufficient to consider the ordering of

the Gadolinium moments only. For rare earths the dipolar contribution to the

scattering is dominant at the L edges. The magnetic intensity is given by

I = |
∑
j

fE1 e
iQ.rj |2 (6.1)

where the summation is over the magnetic unit cell. The magnetic form factor

for the πσ channel is given by

fπσE1 = iFE1(z1cosθ + z3sinθ) (6.2)

and for the ππ channel it is

fππE1 = −iFE1(z2sin2θ) (6.3)

Since one matrix element in the cross section dominates it is sufficient to treat

FE1 as a constant experimental scale factor. The coordinate system for resonant

x-ray scattering is shown in Figure 6.22. The moment components are z1 perpen-

dicular to Q in the scattering plane, z2 perpendicular to Q and perpendicular to

the scattering plane and z3 parallel to Q. These cross sections also depend on the
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Bragg angle θ [102].

Figure 6.22: The coordinate system for resonant x-ray scattering

In order to compare calculated intensities with the data it is necessary to per-

form an absorption correction. The measurements were performed in reflection

geometry from a polished surface. Hence the calculated intensity is multiplied by

inverse absorption correction for a flat plate.

A−1 = µ

(
1 +

sin ψ

sin(2θ − ψ)

)
(6.4)

where 2θ is the scattering angle, µ is the linear absorption coefficient and ψ is the

angle between the incident beam and the plate [103].

Figure 6.23 shows the calculated scattering with a transverse sinusoidal modu-

lation of the moments along the a direction. This model predicts intensity in the

ππ channel only. The observations of substantial intensity in the πσ channel rules

this model out. Similarly, the calculations for a longitudinal sinusoidal modula-
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tion with moments along the b-direction (Figure 6.24) and a transverse sinusoidal

modulation with moments along the c-direction (Figure 6.25) predict intensity in

the πσ channel only. The observation of intensity in the ππ channel rules out

these two collinear structures.

The calculations for a cycloidal structure with moments in the ab plane (Figure

6.26) and a helical structure with moments in the ac plane (Figure 6.27) give

peaks where expected, and there is some qualitative agreement with the data.

The model proposed for TbMnO3 [104] has sinusoidal variation of components of

the Tb along a and b. Application of this model to GdVO3 (Figure 6.28) also

gives some qualitative agreement with the data.

159



6 GdVO3

Figure 6.23: The experimental data (pink stars) are compared with calculations
(blue circles) for the transverse sinusoidal modulation with moments
along the a direction. The observed intensity in the πσ channel rules
out this model.
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Figure 6.24: The experimental data (pink stars) are compared with calculations
(blue circles) for the longitudinal sinusoidal modulation with mo-
ments along the b direction. The observed intensity in the ππ channel
rules out this model.
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Figure 6.25: The experimental data (pink stars) are compared with calculations
(blue circles) for the transverse sinusoidal modulation with moments
along the c direction. The observed intensity in the ππ channel rules
out this model.
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Figure 6.26: The experimental data (pink stars) are compared with calculations
(blue circles) for a cycloidal structure with moments in the ab plane.

163



6 GdVO3

Figure 6.27: The experimental data (pink stars) are compared with calculations
(blue circles) for a helical structure with moments in the ac plane.
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Figure 6.28: The experimental data (pink stars) are compared with calculations
(blue circles) for a structure with both transverse and longitudinal
components as described in Fabrizi et al. [104]
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6.6 Discussion

Gadolinium has not been studied before due to its high neutron absorption cross

section and GdVO3 turns out to have very different magnetic properties to the

other RVO3 compounds at low temperature. We find a complicated phase diagram

of incommensurate orderings at low temperature, and this may be linked to the

unusual magnetic memory effect observed in bulk measurements. Gadolinium has

a half-filled shell and, therefore, no anisotropy. This should make it easier to form

incommensurate magnetic structures than the other RVO3 compounds.

The resonant X-ray scattering technique allows us to focus on the ordering of the

Gadolinium. Because it is not a signal limited technique, it is possible to map out

the phase diagram accurately. Furthermore we find that two regions that looked

the same using unpolarised neutrons are shown to have very different moment

directions using the polarisation dependence of the X-ray scattering. Indeed the

polarisation results allow some robust conclusions to be drawn on the magnetic

structure. So, for example, the zero field structure has a significant component

along the a direction. Transverse and longitudinal sinusoidal moments have been

ruled out. The experimental uncertainty allows for the possibility of a helical

structure, a cycloidal structure or a model with both transverse and longitudinal

components, as reported for TbMnO3 by Fabrizi et al. [104] (see Figure 6.29).
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Figure 6.29: (a) Crystallographic and (b) magnetic structures of TbMnO3 [104].

We attempted to measure a much larger set of magnetic reflections, but we

were not confident that the peaks were fully maximised, except for those shown

in Figures 6.23 - 6.28. Obtaining reliable structure factors over a wide range of

Q is diffcult with X-rays, due to the movement of the beam on the sample, etc.

Our approach of measuring the neutron structure factors in the zero-field phase at

base temperature should at least have given reliable structure factors. However,

to date we have not succeeded in obtaining a satisfactory fit to the data. An

alternative promising approach that might work with X-rays might be to use non-

resonant circularly polarised studies, as performed recently with TbMnO3 (The

full magnetic structure for TbMnO3 is shown in Figure 6.29). This would have

the advantage of only requiring data from a small range of Q and would also be

sensitive to the vanadium moments.
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The work presented in this thesis includes the study of the orbital ordering and

magnetism of the spinel MnV2O4 (Chapters 4 and 5) and the perovskite ortho-

vanadate GdVO3 (Chapter 6) using synchrotron radiation and neutron scattering

techniques.

The MnV2O4 single-crystal neutron diffraction data (Section 5.3.1 and 5.3.2)

and the McPhase calculations (Section 5.5) agree with the magnetic structure

predicted by Garlea et al. [42] who proposed that the V3+ moments have antifer-

romagnetic components in the ab plane, staggered along the c axis, with the angle

of canting of V3+ moments from c axis, θ = 65.12◦ (Section 4.1.3 , Figure 4.7).

We also show that the structural transformation to I41/a occurs at TN = 57K

and not at TM= 53K as reported by others [38, 42–45]. Our results agree with

Suzuki et al. [75] who performed single crystal synchrotron measurements (Section

4.1.1). The I41/a structural space group determined by Suzuki et al. and our

three dimensional magnon dispersion results rule out several proposed orbital
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ordering models [33,38] which left only the model of Sarkar et al. [41]. This model

predicts that all t2g levels are partially occupied which gives orbital chains running

along a and b, ferro-orbital order and the correct I41/a structure. The orbitals

within each chain are rotated alternately by 45◦ an effect caused by a staggered

trigonal distortion [41] (Section 4.1.2, Figure 4.5). The fact that the orbitals are

all partially occupied explains why the magnon excitations are three dimensional.

Also, Sarkar et al. [41] predict an interchain to intrachain ratio of JBB′/JBB ≈

0.2, and this agrees qualitatively with our estimate of JBB′/JBB ≈ 0.3. Our results

show that a previous attempt by Chung et al. [79] to model the excitations of

MnV2O4 were incorrect (Section 5.1.1, Figure 5.1). The model was corrected and

the parameters changed to produce the best fit to the data but some characteristics

of the dispersions were unaccounted for. Our new evidence in support of the

Garlea structure show that the Chung model uses the wrong ground state. The use

of the correct ground state with the McPhase program showed that these features

could be modelled, although this work is still ongoing (Section 5.5). Models of

the dispersion produced using McPhase also show that the dispersion is very

complicated and that it is just the higher intensity modes which had been seen in

experiment (Figure 5.12). A detailed phase diagram for MnV2O4 was determined

using synchrotron X-rays (Section 4.3.5, Figure 4.20).

The complex magnetic ordering in GdVO3 was studied using hot neutrons (Sec-

tion 6.3.2). This was not previously possible using thermal neutron instruments
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due to the strongly absorbing nature of Gadolinium [99]. Resonant X-ray scatter-

ing was also used to study the ordering of the Gadolinium (Section 6.3.3). The

rich magnetic phase diagram of GdVO3 has been determined at low tempera-

ture (Section 6.4, Figure 6.21) and is comprised of incommensurate orderings of

Gadolinium moments which may be linked to its magnetic memory effect observed

on bulk measurements [35]. It is likely that GdVO3 forms incommensurate struc-

tures because Gadolinium has no anisotropy. Two regions on the phase diagram

which appeared to be the same when using unpolarised neutrons have been shown

to have different moment directions using polarisation dependence of X-ray scat-

tering. An attempt has been made to model the magnetic structure (Section 6.5)

and our results reveal sinusoidal modulation with components perpendicular and

parallel to the modulation direction.
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