=

Y

|

c

L] L
BT o
.
-_ -
|' Pl |
.
-y
My

Minimal Weight k-SR Representations

Yongfei Han, Dieter Gollmann, Chris Mitchell

Information Security Group
Department of Computer Science
Royal Holloway, University of London
Egham
SurreyTW20 0EX
E-mail: {yongfei, dieter, cjm@dcs.rhbnc.ac.uk}

Abstract. An algorithm for a minimal weight string replacement rep-
resentation for the standard square and multiply exponentiation method
is discussed, with a presentation of the design and proof of the algo-
rithm. The performance of this new method is analysed and compared
with previously proposed methods. The technigues presented in this pa-
per have applications in speeding up the implementation of public-key
cryptographic algorithms such as RSA [3].

1 Introduction

We are investigating the property of a redundant integer representation which
can help in reducing the number of multiplications in a square & multiply expo-
nentiation by reducing the weight of exponents [1]. The concept of k-SR repre-
sentations is based on the idea of replacing 1-runs in the binary representation
of an integer by a single digit. We consider runs up to length k, hence the name
k string replacement. An obvious conversion algorithm would just substitute
l-runs by k-SR digits. However, it was observed that this does not necessarily
lead to optimal results. For example, the number 21 = (10101)5 contains three
I-runs but has a 3-SR representation of weight 2, i.e. (77). In this paper, we will
examine algorithms for computing (nearly) minimal k-SR representations.

Definition1. k-SR representation: A k-SR (string replacement) representa-
tion of an integer e is given by

e=> fi2, with fi=2% -1, 0<k <k
i=0
Note that k-SR representations are not unique, e.g. we have the following 4-SR.
representations of 21: 10101, 77, 3F. (F is used to represent 15.) In the following,
let be a k-SR number.

Definition 2. The number of 0-runs in z is written as ro(z). The number of
l-runs in gz is written as r(z).

Definition 3. Weight: The weight of a string z, written as w(z), is defined as
the number of non-zero symbols in z. With w;(z), we denote the length of the
i-th l-run in 2.

hich
tpo-
pre-
tion
ame
sute
rily
iree
will

1ita-

SR
ng,

> of

. as

the

35

2 Staggered k-SR Representations

In this Section, we will define a standard representation of k-SR numbers and
show that we always can find a minimal k-SR representation of this form. These
properties can then be the foundation for developing a minimisation algorithm.
Let e have a minimal representation

@
e=Y (2 - 1)25.
i=0
Note that we have by definition §; < lipq for all i < 7.
Definition4. A k-SR number Y7_ (2% — 1)2% is called staggered if we have
i+l < Ji+1 +liyq for all i < r.

Lemma 5. Every integer e has a staggered k-SR representation of minimal
weight.

Proof: Assume we have a minimal k-SR representation with Ji+h > 5+ Ly
for some i. We rewrite

(23';_,_1 = 1)21,-4.: o (25, L 1)2l; - (2:i£+1;—h+1 n 1)21.'+1 S (2.‘ii+l+1£+l =l _ 1)21;
and get a valid k-SR representation as
Ji>gitli—bin 2 5i+h—fip -5y 20, 5> Gig+h—1 >h—L>0.
[}

Theorem 6. In a minimal k-SR representation, jo — ly is the position of a 0
terminating a I-run or to a I in a I-run of length strictly greater than k.

Proof: Assume that we can find a minimal staggered k-SR representation where
our assumption does not hold. Without loss of generality, assume Iy = 0. First,
assume that jo points to some other 0 in e, eg.jo=4ine=...00101.

1111
o [e L |
ey 01717051

Because we have a staggered representation we will always have a 1 in position
Jo—1 unless we add a correcting digit 2/: —1 in this position. We get an alternative
representation of equal weight and reduced 7; as

(2:'0 a1 1) 30 (2.1:! 28 1)2.fu—1 i 2f1+ju—1 4 (21'0—1 2 1)

Applying this step repeatedly, we can make j; point to the terminator of a 1-run.

In our second case, we let jp point to some 1 in e,eg jo=>5ine=...110101.
11111
e 111 11

...011101

36

Because we have a staggered representation we will always have a 0 in position
Jo unless we add a correcting digit 277 — 1 in this position. Assume we also have
to correct a 0 in a position /) < jo by adding (291 — 1)2". We get an alternative
representation of equal weight and reduced j, as

(2.1'0 -1+ (2J'a ls 1)2_1'.] + (21’1 ol 1)21: = 9datio 4 (2:&1—1 ey 1)211+1 N (211 - 1).

Applying this step repeatedly, we can make Jo point to the terminator of a 1-run.
If we do not have to correct a 0, we get can increment jg as

(270 — 1) + (272 — 1)2f0 = 2datio _ 1 = (gdo+l _ 1) + (2F2=1 — 1)2d0+1,

=]
In the following, we show how the choice of the l; can be restricted in a minimi-
sation algorithm. We will frequently make use of the fact that we may construct
a staggered representation. Adding a new digit (2* — 1)2% to an intermediate
result will have the following effect:

— When the intermediate result has a 1 in position l;, then (2% — 1)2% s a
0-corrector, changing this bit to 0, leaving the remainder of the intermediate
result unchanged, and appending a string 10...0 at the top.

— When the intermediate result has a 0 in position [;, then (29 — 1)2% is a 1-
corrector, changing any string 10. . .0 starting in position l; to 01...1 leaving
the remainder of the intermediate result unchanged, and appending a string
10...0 at the top.

Adding (2% — 1)2"% to an intermediate result, therefore, will only imply local
changes at I; and the addition of a string at the top.

Lemma 7. When computing a minimal k-SR representation for a given jy and
L; < jo+1y, then j; +1; cannot be the position of a 0 in the ‘first available’ 0-run.

Proof: W.l.o.g. assume that j; +1; is the position of a 0 in the first 0-run above
jo, e.g. jl =3 and I1 =11in e = 1001101.

1111
1111
101101

Adding (291 —1)2" to the intermediate result will generate a 1 in position 7; +1;.
We do not have to correct any 1 in a position below j; + I;. We may have to
correct some 0’s but because we are constructing a staggered representation, no
O-corrector would change the 1 in position 71 + l1. Therefore, we have to add a
corrector (272 — 1)271+:| We get an alternative representation of equal weight
for the digits in position Iy, 1, Iy which meets the condition of our Lemma as

(290 — 1)2’0 + (2.1': - 1)2 + (273 — 1)2114-11
£5 (211—10 s 1)210 + (25o+fo—h-1 £ 1)211+1 3 2j1+.‘i:+h‘

—

37
i Lemma 8. When 'computz'ng a minimal k-SR representation for a given jo and
) l; < jo+1o, then j; +1; can be the position of a I only if this 1 is the terminator

rative of a O-run.

Proof: W.lo.g. assume j; +I; is the second position in a l-run, e.g. j; = 4 and
- 1). li=1ine=...110101.
111
l-run. 1111
...100101
] 1
| ...010101

sl | Adding (27 — 1)2" to the intermediate result will generate a 0 in the position
Yriscl : where the 1-run starts. Adding a digit (22 —1)2" to correct this 0 will change the
Hiuie | 1in position j; +{; to a 0 and we have to add another digit (272 —1)271+th1 Note

that other digits in a staggered representation will not affect these positions. We

get an alternative representation of equal weight for these digits which meets

is a the condition of our Lemma as
diate \ (271 —1)2h 4 (292 — 1)2% 4 (295 — 1)27:+h
al ‘ e 1)2‘1 i (2.1'3*1) 1)212+1 4 9fitist
wing ! .

Lemma 9. When computing a minimal k-SR representation for a given jy and
l; < jo+lo, then j;+1; can be the position of a 0 only if it this 0 is the terminator

tring l
local | of a I-run.

l Proof: W.l.o.g. assume that I is the start of a l-run, I3 is the start of the next

and l-run,and i3 <l3 < j1+lh,e.g. 1o =3,l3 =5,and ji+1; = 6ine =...00110101.

TUN. |

" 111
bove ‘ 111111

| ...10000101

1111

| ..

| 01110101
|

|

‘ Adding (271 — 1)2" to the intermediate result will generate a 0 in position [5.
4. . Adding a digit (272 — 1)2' to correct this 0 will create 1’s in positions I3 to

Applying this argument repeatedly, we get a representation of equal weight and ‘
+h =l 0O i

e to i g1+ & — 1. We have to correct these 1’s individually. Consider, for example,

, no | position 71 +1; — 1. We add a digit (274 — 1)271th =1 pyt

et | (27— 1)2fs 4 (2 - 1)2fr+h=T = (271 _1)gh 4 ikt |
1S ! 1

| Lemma 10. When computing a minimal k-SR representation for a given jy and . ||
O | I; < jo+ 1y, then j; + I; cannot be the terminator of a 1-run of length 1. '

38

Proof: W.l.o.g. assume that j; + I; is the terminator of a l-run of length 1.
We have to add a 1-compensator in position J1+h —1 and a 0-compensator in
position j; + I;, but

(2j1 = 1)211 = (2.‘f= iR 1)21'1+11—1 e (2.1': o 1)2.’:"1+11
— (9f1=1 _ I g3k _. J1+11 Jj1+is+a
(2 1)2h + (2 1)2 +2 h

3 Computing a k-SR representation

We now can formulate strategies for finding minimal k-SR representations of an
integer e. We start from the binary representation of e. Let Iy be the position of
the least significant 1 in e.

1. Choose jp + Iy to be the terminator of a 1-run or Jjo = k if there is no such
terminator;

2. For every Il; withe;, =0 and iy < I; < Jo add a O-corrector; we correct from
the least significant 0 upwards by matching the ‘next available 0-run in e’.

3. Strategy 1: choose j; so that j; + I; is the most significant position in this
0-run;

4. Strategy 2: choose j; so that j; + I; is the most significant position in the
1-run following this 0-run; add the least significant position of this 1-run into
a list of positions which have to be corrected;

5. If the next available O-runs is followed by a I-run of length 1, then choose
Strategy 1.

For a given binary string z with least significant bit 1, we now compute a k-SR
representation using Strategy 1 only.

i (21’:(5) 5., 1) 9li(z)

i=0

Let the I;(z) be the position of the i-th least significant 0 in z. Define Jo(z) < kto
be the terminator of a 1-run and let Nj, (z) be the number of zeroes in z[j0(z), 0].
For i > 0 and l;(z) < jo(z), define Ji(z) iteratively by the algorithm given in
Figure 1. For example, with k = 15, z = 11 0111 0101 0001 0010 0101 0101, and
jo(2) = 13 we get

1012345867
L0135 7 81011
7:[13 15151514 14 14 14

and the representation of weight 8,

(2% = 12" - 1)0(2™ - 1) (2% - 1)0(2!5 - 1)0 (215 — 1)0(2!5 — 1)(2" - 1).

1 1.
rin

of

ich

ym

his

he
to

39

P = jo(z); /* p is a pointer %/
L=
WHILE l(z) < jo(z) DO
pi=p+1;
IFz, =1 THEN
Ji(z) = p - Li(z);
IF ji(z) > k THEN STOP
ii=i41;
END IF
END WHILE

Fig. 1. A k-SR replacement algorithm

However, the maximal jy(z) is not always the optimal choice, in our example we
have also 15-SR representations of weight 7, :

10 0000 (2° — 1)(2° — 1)00 0000 0000 00(21 — 1)0 (2° - 1)0(2% - 1)(27 - 1)
or

00 0000 (2° — 1)0(27 — 1)(27 — 1) 0001 0000 0000 (2° - 1)0(2° - 1)(2° - 1).
We now prove that the algorithm given in Figure 1 is correct.

Lemma 11. Assume that represents an odd number. If ji(z), 0 < i < r, are
successfully computed for some r, then & and the binary ezpansion of

’
2, = 2(21-’(52) - 1)2‘:’(2)
=0
will coincide in positions 0 to I(z) and positions jo(z) — 1 to L.(z) + 7,(z).

Between positions I,(z)+1 and Jo(2) -1, the coefficients of the binary expansion
of &, are all 1.

Proof (by induction): For r = 0, we have By = 2/ _ 1 As z is odd and
lo(z) = 0, we have z, = 1, Zjy(2)-1 = 1, and Zjy(z) = 0 so the Lemma holds.

Assume that all the assumptions of the Lemma hold for a given r. The next 0
in z will occur in position Lii(z). If lyq(z) > Jjo(z) we stop and observe that
z and the binary expansion of #, now coincide in positions 0 to L(z) + 7 (z).

Ifl41(z) < jo(z) and if 5,4 (z) can be computed, then we update Z, by adding
(27-+1(@) — 1)2!+1(@), This addition will switch the coefficient of the binary ex-
pansion of %, +1 in position I, (z) to 0 and leave all coefficients in positions
Leya(z) + 1 to I (z) + J»(z) unchanged. Thus, z and the binary expansion of

2,41 coincide in positions 0 to I.,1(z) and in positions Jo(z) to I (z) + . (z).

40

Define § := I, 11(z) + jr41(2) — (I, () + j»(2)) — 1. Note that § = 0 if Ly1(z) +
Jr+1(2) = L(z) + j-(z) + 1 and that § is the length of a O-run otherwise. The
coefficients of Z,; in position I,(z) + j,(z) and above are therefore 10°1. We
have to consider two cases.

1. 8 = 0: then the coefficient of z in position I,(z) + j»(z) + 1 = 1; hence z and
the binary expansion of Z, +1 coincide also in position I, 41 (z) + Fr1(z) =
L(z) + j.(2) + 1.

2. 8 # 0: there is a 0-run in z which is terminated by a 1 in position loy1(z) +
Jr+1(2); again z and the binary expansion of #,.; coincide in all positions
up to l11(z) + jry1(2).

O

Corollary 12. Assume that z represents an odd number and let » be the mazi-
mal value with I, (z) < jo(z). If the algorithm successfully computes Ji(z) for all
i with l;(z) < jo(z), then z[5.(z) + . (z), 0] can be replaced by

B, = Z(gis(a) — 1)2%e),
=

4 The Algorithm

The algorithm is defined for any n-bit binary digit e and for any k > 2. We will
use following notations.

— e is a binary string of length n;
— 1 is pointer indicating the current position in e;
— weight[-1...n — 1] is an array of integers initialized to n.

In our algorithm, we first look for the start of l-runs, i.e. the least significant
position of such a run (Fig.2). Once we have found the start of a l-run, we
examine all possible choices of jp (Fig. 3). The subroutine CORE has as input the
starting point i of a substring and a position j; which terminates a 1-run. It
executes the algorithm given in Fig. 1. If it succeeds in computing all j;’s and
l;’s, then it signals success = TRUE and returns the weight N;, and a pointer
top to the most significant position which is affected by this computation.

As an example, we compute the weight of a 4-SR representations of the string 1
1111 0101. :

MANAARANN
nnrn2nunnnl
neann2nannll
nnnn2n2ll
nnonn22211
n3nn22211
33nn22211

OV B W B = O &,

|
|
|
|

he
Ne

all

1t
e
1e
It

T

41

1:= 03
weight[-1]:= 0;
WHILE i <n do
IF ¢; = 0 THEN
weight [{] := MIN(weight[i],weight[i— 11);
ir= i+ 1;
END THEN
ELSE REPLACE(%)
END WHILE

Fig. 2. The main algorithm

REPLACE (1) :
jo := position of the next O above position i;
IFjo>i1+k
THEN weight [i+ k] := MIN(weight[i+ k],weight[i— 1]+1);
1:= 1+ k;
END THEN
ELSE weight [jo] := MIN(weight[jo] ,weight [i — 1]1+1);
WHILE jo < i+k DO
jo:= terminator of the mext 1-runm;
CORE (%, jo,top, Nj, ,success) ;
IF success=TRUE THEN
weight[top] := MIN(weight[top],weight[i — 1]1+N;,)
END WHILE
2:= i+l
END ELSE
RETURN

Fig. 3. Subroutine REPLACE

Using a backtracking algorithm, we would obtain the 4-SR representation 0 00F0
0077. For our previous example with ¥ = 15 and z = 11 0111 0101 0001 0010
0101 0101 we get

42

411011101010001001001010101
08 6 4 3 2 1
2188 66 4 4 S S LG RS N 1
488 866 6 4 4 3 3 22211
688 866 6 4 4 3 3222211
988 866 6 4 4 3333222211
12188 866 6 4 4333333222211

. 1678 866 6 44444333333222211
| 1876 866 5444444333333222211
J 2076 66655444444333333222211

J 5 Analysis of the Algorithm

Define the cost of the algorithm to be the number of read operations on sequence
elements.

Theorem 13. The cost of our algorithm is O(nk?).

Proof: The main algorithm reads every position exactly once. For each position
i, we have to consider less than k choices for jy. For each choice, we have to
correct less than k positions checking less than 2k positions overall. |

Remark: For ¥ = 6 and & = 1 0110 0101 our algorithm only finds 6-SR repre-
sentations of weight 4, despite the existence of a 6-SR representation of weight
3, 70 00(2% — 1)7. We can change our algorithm so that it chooses Strategy 2
whenever possible. Note that this may force us to check the entire binary repre-
sentation of e for every choice of j5. We get

Theorem 14. The cost of a Strategy 2-algorithm is O(n?k?).

To see the limitations of this approach, consider the number 1101101011. Here,
the modified algorithm would not terminate and we have to add further rules
defining when to switch from Strategy 2 to Strategy 1.

Open question: Find an indicator to determine which strategy to choose. An
‘increase of weights in a l-run’ is a candidate, e.g.

101100101
433222211

Finally, we may decide to pursue both strategies for every corrector. This is
guaranteed to give a minimal representation but has exponential complexity.

1ce

lon
to

Ire-

zht

Tre-

Te,
les

6 Conclusion

We have proposed a standard representation for k-SR numbers and have shown
that all integers have a minimal k-SR representation of this form. Furthermore,
we have derived properties which will hold for minimal representations and pro-
posed an algorithm based on these properties. The minimal representation can
save more modular multiplications in the ‘square and multiply’ algorithm than
signed-digit representations or canonical k-SR representations [1, 2].

References

1. D. Gollmann, Yongfei Han, and C. Mitchell. Redundant integer representations
and fast exponentiation. to appear in International Journal: Designs, Codes and
Cryptography.

2. D.E. Knuth. The art of computer programming, Volume 2: seminumerical algo-
rithms. Addison-Wesley, Reading, Mass., 2nd edition, 1981.

3. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120-126, 1978.

