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Abstract. We describe a key agreement system based on the assump-
tion that there exists a public broadcast channel transmitting data at
such a rate that an eavesdropper cannot economically store all the data
sent over a certain time period. The two legitimate parties select bits
randomly from this channel, and use as key bits those which they have
selected in common. The work is inspired by recent work of Maurer, [3].

1 Introduction

In a recent paper, [3], Maurer has described a number of related methods for
providing secret key agreement between two parties using only publicly available
information. These methods are based on a development of Wyner’s ideas, [4].

The particular method which has inspired the work described here relies on
the two parties wishing to agree a secret key, and any eavesdropper, all receiving
a signal from some channel, for which each party only receives a noisy version
of the originally transmitted signal. For the system to operate, the common
information derived from the channel by the two legitimate parties, A and B
say, must not be a subset of the information derived from the channel by any
eavesdropper. Note that it is not necessary for A or B to receive a ‘better’ version
of the signal than the eavesdropper.

This requirement is very simply met in any situation where the channel errors
are statistically independent for each of the three parties. However, in practice
this requirement may be rather difficult to guarantee. As an example consider a
radio channel: the eavesdropper might be able to position his antenna close to
one of the legitimate parties, and hence obtain a strictly better version of the
signal than one of the legitimate parties.

It is also necessary for the parties A and B to share an error-free ‘authenti-
cated channel’| although this may also be intercepted by the eavesdropper. By
an authenticated channel we mean one in which B 1s able to verify that all the
data received on the channel originated from A in exactly the same form as was
received, and vice versa. This may also be non-trivial to provide in practice.

In this paper we consider a slightly different key agreement system, which
avolids the first requirement above. This system is based on the assumption that
there exists a public broadcast channel transmitting data at such a rate that
an eavesdropper cannot economically store all the data sent over a certain time
period. The two legitimate parties randomly choose which bits to store from



this broadcast channel, and then compare notes (using an authenticated chan-
nel which need not provide privacy) after the chosen time period has passed as to
which bits they have both selected, which then constitute the shared secret key.
Unless the eavesdropper has stored a high proportion of all the bits transmitted
on the public broadcast channel, it will almost certainly have no more than a
small proportion of the secret key bits. This idea is analogous to the encryption
system described by Maurer in [2], where the idea of a noise source producing
data in quantities which cannot economically be stored is also exploited. How-
ever, the idea in [2] is rather different, in that the legitimate users do not divulge
which of the bits they have used.

In the scheme described here the provable guarantees of security which can be
obtained for Maurer’s schemes, [3], are thus exchanged for arguments regarding
the cost (in providing large amounts of data storage) to a third party of obtaining
the key agreed by A and B. It is important to note that this scheme, like all the
schemes in [3], still requires the error-free authenticated channel.

Before proceeding observe that, for clarity and brevity of presentation, we
only provide informal arguments to support certain of our main results. Formal
proofs can be constructed using information theoretic arguments.

2 The basic scheme

In order to describe our key agreement system we first need to describe our model
of the communicating parties. We suppose that A and B, the two legitimate
parties wishing to establish a shared secret key, both have access to an (error
free) public broadcast channel sending random binary data at a high rate, say
R bits/sec. We suppose also that A and B

— share an authenticated error-free channel,

— have the means to store n4 and np bits respectively, and

— are ‘synchronised’ with respect to the broadcast channel, i.e. they have the
means to refer to a single bit sent on this channel.

By an authenticated channel shared by A and B we mean a channel for which
A can be sure that any bits received claiming to be from B are genuinely from
B, and have not been manipulated in transit (and vice versa).

The eavesdropper, who we call (', also has error-free access to both the public
broadcast channel and the authenticated channel between A and B.

The basic key agreement system works as follows. Note that in a subsequent
section we describe some improvements on this basic scheme.

Algorithm K

1. A and B both monitor the broadcast channel for an agreed interval of time
of duration T'. The start and end points of this interval can be agreed using
the authenticated channel. We assume that the exact details of the time
interval are also known to the eavesdropper C'. Note that this means that
N = TR bits are transmitted during the agreed interval.



2. During this interval A selects n 4 of the bits sent over the broadcast channel
at random and stores them. Similarly, and independently, B selects ng bits
at random and stores them.

3. At the end of the interval (and not before) A sends B the ‘indices’ of the
bits that it has stored, where the bits sent over the public channel during the
time interval are successively given the indices 0,1, ... etc. Having received
these indices, B examines them and compares them with the indices of the
bits 1t has stored and makes special note of any coincidences.

4. B now sends back to A a list of all coincidences, and the bits corresponding
to these coincident indices become the key bits (which both A and B have).

As we now show, given that A and B make genuinely random selections, and
T, R,n4 and np are chosen appropriately (with N = T'R), the eavesdropper will
be obliged to store many more bits than either A or B to have a good probability
of knowing more than a very few of the key bits. To demonstrate this we first
establish the following simple result.

Theorem 1. Suppose A and B follow Algorithm K, and an eavesdropper stores
ne bits randomly selected from the broadcast channel during the agreed time
interval. Suppose also that ny and np are both very much smaller than N (the
number of bits sent during the agreed time interval). Then the following will hold.

(i) The expected number of bits of key shared by A and B at the end of the
process will be approzimately nang/N.
(i) The expected number of key bits available to C' is approzimately nangnc /N?.

Proof. Both results follow from elementary probability considerations.

(i) For any given bit of the ny selected by A, the probability that it is also
selected by B is ng/N. Given that n4 is very small with respect to N, we
may ignore the fact that the probabilities are not independent and hence say
that the expected size of the set of bits selected by both A and B will be
approxzimately ns times the above probability, and (i) follows.

(ii) follows by a precisely analogous argument.

Before proceeding note that A will actually need (L + 1)n, bits of storage,
where L = [log, N, i.e. L is the number of bits in the index values. Similarly
B will need (L + 1)np bits of storage. In addition A will need to send Lny bits
over the authenticated channel as part of the key agreement process.

We have thus presented a system which provides a cost difference between
legitimate key agreement and unauthorised interception of key material.

3 A simple example of the system

To illustrate how such a system might operate we consider a simple example.
Suppose T is 10° seconds (i.e. approximately one day) and R is 10*° bits per
second, i.e. 10 Gbits/sec, and hence N = TR = 10'® and L = 50. Now suppose



that ny = np = 3 x 10% and hence A and B will need to have 51 x 3 x 10® bits
of storage, i.e. a little under 2 Gigabytes. At current prices, high speed magnetic
disk storage of this capacity will cost approximately £500, and prices are likely to
continue to fall. At the same time, A will need to send a little under 2 Gigabytes
of information to B over the shared authenticated channel. By Theorem 1, at
the end of the process A and B will expect to share a key of approximately
(3 x 10%)%/101° = 90 bits.

We next consider what strategy the eavesdropper might adopt to try and
learn significant amounts of key information. In order to obtain, say, 10% of
the key bits, by Theorem 1 the eavesdropper will need to store 10% of the bits
sent over the public broadcast channel. This will require 10'* bits of storage, i.e.
approximately 12,000 Gbytes. At today’s prices, low cost storage (e.g. magnetic
tape) still costs significantly more than £10 per Gbyte, and hence such storage
will cost the eavesdropper well in excess of £120,000, and, by similar arguments,
to obtain 50% or 100% of the key bits would cost in excess of £600,000 or
£1,200,000 respectively.

If A and B were concerned about the possibility that an eavesdropper could
make use of a small number of the key bits, then security could be increased
by using a one-way hash function to produce, say, a 64-bit key from the 90 bits
derived from the key exchange process.

4 Extensions of the basic scheme

There are a number of ways in which the basic system can be modified to in-
crease the cost differential between the legitimate parties and the eavesdropper.
We consider two such possibilities. Both offer methods by which the storage re-
quirements for A and B can be reduced from (L +1)n,4 and (L4 1)np to around
ny and npg respectively.

4.1 Pseudo-random selection of bits by A and B

Suppose A and B have agreed in advance the choice of a cryptographically
secure pseudo-random number generator. By this we mean a generator which,
given a secret key as input, produces a sequence of pseudo-random numbers
as output and for which, given knowledge of some of the output sequence, it
is computationally infeasible to compute any more information regarding the
output sequence (in particular it will be computationally infeasible to deduce
the key used to generate this sequence).

We now describe a modified version of the basic system described in Algo-
rithm K, which makes use of such a pseudo-random number generator.

Algorithm L

1. Before starting the process A and B select random keys for their chosen
pseudo-random number generator, which we call R4 and Rp respectively.



2. A and B both monitor the broadcast channel for an agreed interval of time
of duration T (and N = TR as previously). The start and end points of
this interval can be agreed using the authenticated channel. We assume that
the exact details of the time interval are also known to the eavesdropper C.
For the purposes of this discussion we suppose that the bits sent over the
broadcast channel during the selected time interval are labelled

bOabla"'abN—1~

3. Before starting the monitoring A and B also choose step values s4 and
sp respectively, where s4 = |N/na| and sp = |N/np]. If necessary, at
some point (either before, during or after the monitoring period) A and B
exchange these step values.

4. During the time interval, A uses the chosen pseudo-random number genera-
tor and its secret key R4 to produce a sequence %g,¢1,...,%, -1 of pseudo-
random numbers, where each pseudo-random number ¢; 1s chosen from the
range 0,1,...,54 — 1 (with uniform probabilities). A then selects the follow-
ing na bits sent over the broadcast channel and stores them:

bty bsattys b2sattas ooy blna1)sattn, -

Similarly, and independently, B uses the pseudo-random number generator
and its secret key Rp to produce a sequence ug,uq,...,unz—1 of pseudo-
random numbers, where each pseudo-random number u; is chosen from the
range 0,1,...,sp — 1 (with uniform probabilities). B then selects the follow-
ing ng bits sent over the broadcast channel and stores them:

buua bsB+U1’bsz+U2’ ceey b(nB—l)SB-l-UnB—l .

5. At the end of the interval (and not before) A sends B its secret key Ry,
used to help select which bits from the public channel it has stored during
the time interval. Similarly B sends A its secret key Rp.

6. A can then use R4 and Rp to find those values of ¢ and j (0 < i < ny,
0 < j < npg) for which isy +t; = jsp + u;. This can be done with the
minimum of storage by at any point retaining the values of 7, ¢;, j and wu;,
and then

— replacing the pair (4,¢;) with the pair (i + 1,¢;41) if isa +t; < jsp + uj,
— replacing the pair (j, ;) with the pair (j+1,u;41) if isa 4+ > jsp+u;,
and
— storing the values is4 +t; whenever is4 +; = jsp + u;.
B can do precisely the same calculations, leaving A and B with a known set
of mutually held bits (which can be used to create a key).

Before attempting to describe the performance of this modified scheme, we
first consider the best strategy for an eavesdropper wishing to find as many
key bits as possible using the minimum amount of storage. There would appear
to be three obvious strategies for the eavesdropper, C'. Firstly C' could choose
to store a random selection of bits from the channel (without regard to the



‘step values’). Secondly C' could store a fixed number of bits from each range,
by = (bisa,bs a1y bgrysa—1), fort =0,1,...,ng—1. Thirdly, C could select
a number of ranges b; for various values of ¢, (0 <t < ny4), and store all the bits
for the selected ranges. Note that, alternative versions of the second and third
strategies would involve replacing sx and n4 with sp and np.

Now, since there is at most one key bit within any range b;, (0 <t < ny4),
the second strategy would seem to be the best (although all strategies yield very
similar results when n4 and np are small relative to N). In the following simple
result, in which we derive the performance of this revised scheme, we therefore
assume that the eavesdropper is using the second of the above strategies.

Theorem 2. Suppose A and B follow Algorithm L, and an eavesdropper C' stores
ne bits selected from the public broadcast channel during the agreed time interval.
Suppose also that nc = dny for some integer d, and that C' stores d bits from
each range by, (0 <t < ny). As previously we assume that ny and np are both
very much smaller than N. Then the following will hold.

(i) The expected number of bits of key shared by A and B at the end of the
process will be approzimately nang/N.
(i) The expected number of key bits available to C is approzimatelynangnc /N?.

Proof. (i) Consider any range: b; (for some value of ¢ satisfying 0 < ¢ < ny4).
At the end of the agreed time interval, A will store exactly one bit from
this range. The probability that B will also store this bit is equal to ng/N.
Given that there are n4 such ranges, and assuming that these probabilities
are independent (which is a reasonable approximation given ny and np are
small with respect to ), we see that the expected number of bits held by
both A and B at the end of the agreed time interval is approximately equal
to nang/N, as required.

(ii) As previously, consider any range: b; (for some value of ¢ satisfying 0 < ¢ <
n4). At the end of the agreed time interval, 4 will store exactly one bit from
this range. The probability that B and ' will also store this bit i1s equal
to (np/N)(d/sa). Given that there are ny such ranges, and assuming that
these probabilities are independent (which is a reasonable approximation
given ny and np are small with respect to N), we see that the expected
number of bits held by all of A, B and C at the end of the agreed time
interval is approximately equal to nangd/Nss = nangnc/N?, as required.

Before proceeding note that A will only need n4 bits of storage. Similarly B
will only need np bits of storage. In addition A and B will only need to send
their respective secret keys R4 and Rp over the authenticated channel as part
of the key agreement process.

Hence this amended procedure reduces the storage for A and B to ns and
npg respectively, minimises use of the authenticated channel, and also makes the
match-finding process a simple one. This is at the cost of making the security de-
pendent on the computational security of the pseudo-random number generator
employed by A and B. To show how effective this improvement is we consider a



modified version of our previous example; we use the same cost assumptions as
in Section 3.

Suppose T' is 105 seconds (i.e. approximately one day) and R is 102 bits
per second, i.e. 1000 Gbits/sec, and hence N = TR = 10'7. Now suppose that
nay = ng = 3 x 10° and hence A and B will need to have 3 x 10° bits of
storage, i.e. a little under 400 Megabytes, costing no more than £100. At the
same time, A will need to send only one key (of say 128 bits) to B over the shared
authenticated channel (and vice versa). By Theorem 2, at the end of the process
A and B will expect to share a key of approximately (3 x 10%)2/10'7 = 90 bits.

We next consider the position of the eavesdropper. In order to obtain, say,
10% of the key bits, the eavesdropper will need to store 10% of the bits sent
over the public broadcast channel. This will require 10'® bits of storage, i.e.
approximately 1,200,000 Gbytes. Such storage will cost the eavesdropper well in
excess of £12,000,000, and, by similar arguments, to obtain 50% or 100% of the
key bits would cost in excess of £60,000,000 or £120,000,000 respectively.

4.2 Block-wise selection of bits

In the previous section we described a system which minimises both the storage
requirements for A and B and the use of the authenticated channel for A and B.
This was at the cost of making the security depend on the cryptographic proper-
ties of a pseudo-random number generator. We now consider a slightly different
modification of the basic scheme which retains many of the advantages of the
scheme described in Section 4.1, but which does not rely on any computational
security assumptions. The procedure is as follows.

Algorithm M

1. A and B both monitor the broadcast channel for an agreed interval of time
of duration T'. The start and end points of this interval can be agreed using
the authenticated channel. We assume that the exact details of the time
interval are also known to the eavesdropper C. Suppose that the bits sent
over the broadcast channel during the selected time interval are labelled

bOabla"'abN—1~

To make our discussions simpler we also assume that ns|N and ng|N, and
hence define sy, and sg by sana = sgpng = N. Suppose moreover that
sasg|N, and define w by s4sgw = N. We assume that all these parameters
are known to A and B before the start of the agreed time interval.

2. During the time interval A randomly chooses w values pg, p1, . . ., pw—1, where
each value p; satisfies 0 < p; < s4. A then stores the following w sets of sp
bits during the agreed time interval (i.e. a total of n4 bits):

bisAsB‘l'psz’ bisAsB+psz+1’ sy biSAsB+psz+sB—1

fori=0,1,...,w—1.



Similarly, and independently, B randomly chooses w values qg, 41, ..., quw—1,
where each value ¢; satisfies 0 < ¢; < sg. B then stores the following w sets
of s4 bits during the agreed time interval (i.e. a total of np bits):

biSASB-I-(Jz ) biSASB+SB+qm ) biSASB-I-(SA—l)SB-l'(h

fore=0,1,...,w—1.
3. At the end of the agreed time interval it should be clear that A and B will
share precisely one bit from each range of bits

/
bi — (bisAsBabisAsB+1a ey b(i+1)sAsB—1)

fore=0,1,...,w—1.1e. A and B will share precisely w bits.

4. At the end of the agreed time interval (and not before) A sends B its random
values pg, p1, ..., Pw_1, used to help select which bits from the public channel
it has stored during the time interval. Similarly B sends A its secret random
values ¢o, q1, ..., Quw_1-

5. A and B can then both very easily determine which key bits they share.

As in the previous section, before attempting to describe the performance of
this scheme, we first consider the best strategy for an eavesdropper wishing to
find as many key bits as possible using the minimum amount of storage. There
would appear to be three obvious strategies for the eavesdropper, C. Firstly '
could choose to store a random selection of bits from the channel. Secondly C'
could store a fixed number of bits from each range, b}, for t = 0,1,...,w — 1.
Thirdly, C' could select a number of ranges b} for various values of ¢, (0 < ¢ < w),
and store all the bits for the selected ranges.

Now, since there is exactly one key bit within any range b}, (0 <t < w), all
strategies would appear to yield similar results. In the following simple result, in
which we derive the performance of this revised scheme, we therefore arbitrarily
assume that the eavesdropper is using the second of the above strategies.

Theorem 8. Suppose A and B follow Algorithm M, and an eavesdropper C
stores ng bits selected from the public broadcast channel during the agreed time
winterval. Then the following will hold.

(i) The number of bits of key shared by A and B at the end of the process will
be exactly w =nang/N.
(i) The expected number of key bits available to C' is wnc/N = nangnc /N2

Proof. (i) This follows from the discussion given as part of Algorithm M.

(i1) Consider any range: b, (for some value of ¢ satisfying 0 < t < w). At the
end of the agreed time interval, A and B will store exactly one bit from this
range. The probability that C' will store this particular bit is equal to ng/N.
Given that there are w such ranges, and given that these probabilities are
independent, we see that the expected number of bits held by all of A, B
and C at the end of the agreed time interval is equal to wne /N, as required.



This system then achieves a comparable performance to the system in the
previous section. The only disadvantage is the slightly increased communication
cost in transferring the values p; and ¢; across the authenticated channel. How-
ever, this 1s a very small cost since the number of these values will only be the
same as the number of key bits agreed by A and B, and each value will only
require log, s4 or log, sp bits of storage.

Moreover this variant of the basic scheme has two significant advantages.

— Unlike the first variant (described in Section 4.1), its security is not depen-
dent on the cryptographic properties of a pseudo-random number generator.

— Unlike both the other schemes, it yields a key of guaranteed length to A and
B, and not just a varying number of key bits with an associated expected
value. The disadvantage of this latter case is that on some occasions the
number of key bits provided to A and B may be somewhat less than the
expected value, potentially causing problems.

5 Summary and conclusions

We have thus described systems which provide secret key agreement between A
and B and whose security rests solely on the following two assumptions.

— The cost of storage remains high relative to the bandwidth of one or more
publicly available broadcast channels.
— A and B share an error-free authenticated channel.

It is particularly interesting to note that, with the exception of the scheme de-
scribed in Section 4.1, the systems’ security does not depend on any assumptions
regarding the computational difficulty of any problems. In that sense the systems
are provably secure (given the two key assumptions listed above).

We now briefly consider possible practical circumstances in which the above
two assumptions might be satisfied. There are various ways in which the two
legitimate parties might be provided with an authenticated channel (but not
with the means to securely agree a key). Two of the more likely are as follows.

— The users may purchase a communications facility which provides an au-
thenticated channel as a premium service (which can be obtained simply by
paying the appropriate rate). The communications service provider may, for
example, provide this by using digital signatures, MACs or some other type
of cryptographic check function. It is certainly conceivable that this could
be provided in such a way that the users have no access to the keys used,
and hence no direct means to exchange secret keys.

— The users may have access to an implementation of a digital signature func-
tion such as DSS, which cannot be used for data encryption. They could
then use this digital signature function, in conjunction with authenticated
keys for each other, to provide the authenticated channel.

We next briefly describe two possible sources for a high bit rate (say greater
than 10 Gbit/sec) public broadcast channel.



— The first is to make use of a high rate public satellite data channel. In this
case the bits sent over the channel will not be random—instead they will
consist of many data streams intermingled. However, in practice they may
be ‘random enough’ for our purposes (especially if a hashing operation is
performed on any agreed set of key bits).

— The second is to employ a purpose-designed high speed random data source,
the output of which is made publicly available by some means (e.g. by fibre-
optic cable). Although this will now guarantee randomness for the bits, there
are obvious problems with this approach if it is simultaneously used by many
pairs of parties to agree a secret key (as would almost certainly be necessary
to justify the cost of providing such a channel). In such an event there are
much greater incentives for third parties to invest resources in storing the
channel output, since it could yield many secret keys simultaneously.

Finally, it could be argued that, given that A and B share an authenticated
channel, then they can achieve secret key agreement by using the well-known
Diffie-Hellman key exchange protocol, (see, for example, [1]). Whilst this is cer-
tainly true, there may be situations where users do not wish to take such an
approach. For example, users may not choose to trust a system whose security
depends entirely on a single mathematical function remaining hard to compute
(i.e. the discrete logarithm problem), and they may prefer to trust in arguments
about the likely cost of data storage. It is certainly of theoretical interest to
observe that key agreement schemes can be devised which rely only on the two
assumptions listed above, and which do not require any assumptions about the
computational difficulty of certain calculations.
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