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Abstract. At Asiacrypt 1996, M’Raihi presented an electronic payment
scheme using a blinding office to achieve anonymity. This scheme allows
both a bank and blinding office to impersonate a user without being
detected. It may result in a denial problem where the user can deny
his bad behaviour by suggesting that either the bank or the blinding
office did wrong. This paper proposes a variant of the M’Raihi scheme
to prevent the bank and blinding office from impersonating the user, so
that the user cannot deny it if he abuses a coin himself.

1 Introduction
In electronic payment systems there are likely to be two contradictory Re-

quirements. On the one hand users want to have anonymous electronic cash, and
on the other hand banks have requirements to ensure the electronic cash cannot
be misused. For instance, if abuse (e.g. over-spending) is suspected, the related
user’s identity should be traceable. Some recent research has made use of blind
signature and escrow-like techniques to design a payment scheme, which meets
the requirements of both the users and banks, e.g. [4, 5].

M’Raihi [7], at Asiacrypt 1996, presented a payment scheme using a Blinding
Office (BO) as a pseudo-identity escrow agency. This protocol relies on the
assumption of strong trust relationships among a User (U), Bank (BA) and
BO, because both BA and BO can impersonate U without being detected. A
potential problem resulting from these trust relationships is that U can deny his
bad behaviour by claiming no longer to trust either BA or BO. In this case it
is difficult for an impartial Judge (J) to arbitrate amongst the three parties.

In this paper we introduce an extra requirement in the M’Raihi scheme: non-

denial, which, if it holds, will enable J to determine who is lying: U , BA or BO.
This requirement has been met in a number of other payment schemes, e.g. [3].
We then present a modification of the M’Raihi scheme to offer the three prop-
erties of anonymity, traceability and non-denial. The main advantage of the new
scheme is in preventing BA and BO from impersonating U , so that U cannot
deny that he has misused a coin himself.

2 An electronic payment model
In this section we describe a general electronic payment model which is suit-

able for both the M’Raihi scheme and our modified one. It consists of five par-
ticipants, i.e., U , BA, BO, a Shop (S) and J .

Briefly, this electronic payment model works as follows. U gets a coin (C)
blindly signed by BA. BA retains a relationship-proof between U ’s real identifier
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(ID) and pseudo identifier (PID). BO, involved in the blind signature, main-
tains another relationship-proof between PID and C. To spend C, U proves to
S that he has knowledge of a private key x corresponding to C. If C is abused,
e.g. if it is over-spent, BA and BO will collaborate to build a link between ID

and C. J will be involved in this tracing procedure to arbitrate.

We suppose that both BA and U have public-key based signature schemes,
respectively named (SBA, VBA) and (SU , VU ), where VBA is known to U , BO

and S, and VU is known to BA. We also suppose that BO has a public-key
based encryption scheme, named (EBO, DBO), where EBO is known to U and
BA. All the schemes can be verified by J . A possible implementation for these
asymmetric cryptographic schemes is RSA [8].

We assume that the coin C consists of three components. The first is the
public verification key y for a public-key based signature scheme, where the
corresponding private signature key is denoted by x. The second is a data field
D containing certain relevant information about C, such as its expiry date and
value. The third is BA’s signature on both y and D. There are two different ways
of including D in BA’s signature. Firstly D can be concatenated with y by BO,
prior to computing a blinded public key denoted by ŷ. Secondly D can be ‘added’
by BA by using a different signature key depending on the data which is to be
indicated. In the subsequent discussion in this paper we ignore this distinction,
and assume that either may be used.

We actually require the signature scheme of the bank to have certain special
property, i.e., SBA(z1)SBA(z2) = SBA(z1z2), which holds for RSA. Of course
this is normally a most undesirable feature for a signature scheme, and is one
reason why RSA should, in normal circumstances, always be used in conjunction
with a one-way hash-function or a special ‘redundancy’ function (such as that
specified in ISO/IEC 9796 [2]). In our case, we either explicitly specify the use of
a one-way hash-function (denoted by H(z) for message z) with SBA, or prevent
frauds resulting from the use of ‘straight’ RSA by other means. We denote a
blinding function by F , and let it be an ‘inverse’ of the signature function, so
that SBA(F (z1)z2) = z1SBA(z2) for any z1, z2. If BA’s signature scheme is RSA,
then F is simply exponentiation using the public verification exponent.

Note also that we do not make a similar assumption for the user’s signature
scheme used in spending a coin. In fact, if DSA, [1], is used for this signature
scheme, the user’s computational load can be significantly reduced through pre-
computations.

3 Outline of the M’Raihi scheme

The M’Raihi scheme works as follows. U and BA first establish a shared
secret s. BA then signs a collision-free one-way function of s, i.e. SBA(H(s)),
which is used to construct PID by concatenating with EBO(s). BA also retains
a relationship-proof between ID and s, which we denote by {ID, s}. It, for
example, is a signature on H(s) using SU . To withdraw C, U shows BO both
PID and x which is generated by U . BO computes a corresponding y and a
set of pre-computed values (which is used for reducing the computation of U ’s



signature used in spending C). BO then blinds y with a random blinding factor
v to obtain ŷ = F (v)y. BA signs ŷ without knowing y and withdraws a real
coin from U ’s account. BO derives C from BA’s signature on ŷ and gives it to
U . BO maintains a relationship-proof between PID and C, which we denote
by {PID, C}. To spend C, U signs a message, which is generated by S as a
challenge, to prove U knows x. S claims a real coin back from BA later. If C is
over-spent, BA will ask for a tracing procedure in which BA and BO collaborate
to build a link between C and ID, based on {ID, s} and {PID, C}.

As mentioned earlier, this scheme relies on strong trust relationships amongst
U , BA and BO. Both BA and BO must be trusted not to impersonate U to
obtain and spend C, since they are capable of doing so if they wish. During
a tracing procedure, U can make one or more of the following claims to J to
suggest that BA and/or BO has been impersonating U .

Claim 1. BA can impersonate U to BO to obtain C, and is then able to

impersonate U to S to spend C. This holds because BA knows s.
Claim 2. BO can impersonate U to spend C. It holds because BO knows x.
Claim 3. BO can cheat BA and U to obtain more than one coin from a

single delegating blind signature. It can be shown in the following one possible
implementation example.

Suppose that BA’s signature scheme is RSA, in which BA’s private signature
key is d and public verification key is (e, n). That is, BA’s signature on a message
z is defined as SBA(z) = zd mod n, and the corresponding blinding function
of the blinding factor v is F (v) = ve mod n. Suppose also that the signature
scheme used in spending C is DSA, in which the private signature key is x and
its corresponding public verification key is y = gx mod p. The meaning of d, e

and n in RSA and x, y, g and p in DSA follows [8] and [1] respectively.
If BO wants to obtain m different coins from one blind signature, he chooses

v = v1(g
m−1 mod p), where v1 is a random number, and computes

ŷ = (ve
1 mod n)((gm−1 mod p)e mod n)y.

After obtaining SBA(ŷ), he unblinds it by using different blinding factors
(v1 · gm−1−i mod p, i = 0, 1, ..., m − 1) as follows:

SBA(ŷ) = v1(g
m−1 mod p)((gx mod p)d mod n)

= v1(g
m−1−i mod p)((g(x+ie) mod p)d mod n).

Following the M’Raihi scheme, U obtains one pair of private and public keys
(x, y = gx mod p), and BO obtains a set of key pairs (xi = x + ie, yi = gx+ie

mod p, 0 ≤ i ≤ m − 1). Each key pair is relevant to a valid coin.

4 A new scheme
The new scheme has the following three differences from the M’Raihi one.

⋄ BO does not know x, and hence is not able to spend C.
⋄ U and BO jointly generate a random v. It ensures that neither U nor BO

can individually control the value of v, and hence neither U nor BO can
obtain more than one coin from a single blind signature.

⋄ BA retains U ’s signature on ŷ as a relationship-proof between ID and ŷ,
denoted by {ID, ŷ}. It ensures that BA and U cannot dispute whom x was



issued by. Note that in the M’Raihi scheme, although BA can record ID with
ŷ, it is still possible for U to refuse the responsibility for C because he has
no idea about the relationship between y and ŷ when making a contribution
to this record, in other words, because he was blinded as well.

In the new scheme, the procedure of withdrawing a coin works as follows,
where all messages exchanged between U and BO are assumed to be encrypted
with s if the communication channels between them are unprotected.

1. U randomly chooses x, computes y, and then sends EBO(y) to BO.
2. U and BO establish a shared v, e.g. using Diffie-Hellman algorithm [6].
3. BO then computes ŷ = F (v)y and sends it to U .
4. U verifies ŷ, and then sends BA a message signed using SU . This message is

made up of s, ŷ, BO’s name and (possibly) other application data, such as
a nonce and/or a time-stamp, to ensure that the uniqueness and freshness
of the signature is verifiable.

5. BA retains the U ’s signature, withdraws a real coin from U ’s account, and
then replies to U with T = EBO(SBA(ŷ)).

6. U passes T to BO.
7. BO decrypts T to obtain SBA(ŷ), unblinds SBA(y) to construct C, and then

sends C to U . After that, BO stores {PID, C}, which consists of a record
of PID and two encryption values, i.e. the encryption of EBO(y) with s and
the encryption of T with s.

We now sketch the proofs that the new scheme holds the following security
properties. Unless giving a specific indication, we suppose that all participants,
U , BA, BO, S and J , do not collude with each other.

Theorem 1. U cannot obtain C without the involvement of BA and BO.

Proof sketch. In order to obtain C without BA and/or BO being involved,
U must invert either BA’s signature function SBA or BO’s decryption function
DBO, both of which are assumed to be infeasible. 2

Theorem 2. A valid coin relevant to a private key x can only be spent by

the participant who is the issuer of x.

Proof sketch. Assume that given y and other related public information, it
is computationally infeasible to recover x, e.g. based on the discrete logarithm
problem. Following the scheme, x is known only to its issuer and is not revealed
to anyone else. Thus, the issuer of x is the only person able to spend C. 2

Theorem 3. BO cannot impersonate U to either BA or S.

Proof sketch. To impersonate U to BA, BO must invert U ’s signature
function SU , which is assumed to be infeasible. To impersonate U to S for
spending C, BO must know both C and x. Since U is able to verify ŷ, BO

cannot blind U and then obtain BA’s signature on ŷ with his own x. Therefore,
it is infeasible for BO to obtain C and its corresponding x. 2

Theorem 4. If BA impersonates U to obtain and to spend a coin, he cannot

claim that the coin was issued by U .

Proof sketch. It holds because if U was not involved in the coin generation,
whether colluding with BO or not, BA cannot prove {ID, ŷ}. 2



We conclude the analysis of security properties of this scheme by the following
final theorem.

Theorem 5. If a coin, with a relationship-proof of {ID, C}, is misused, U

cannot deny responsibility for this abuse.

Proof sketch. Based on Theorems 2, 3, and 4, a valid coin, C, with a
relationship-proof of {ID, C}, maintained jointly by BA and BO, must be re-
lated to a private key, x, issued by U , and then U is the only person able to
spend the coin. The theorem follows. 2

5 Conclusions
This paper discussed a potential denial problem in the M’Raihi payment

scheme and proposed a variant scheme to overcome the problem. The main ad-
vantage of the new scheme is that neither BA nor BO can impersonate U to
obtain and spend a coin without being detected, so that if U abuses the coin,
he cannot deny it by suggesting that it was done by either BA or BO. This
advantage is at the cost that the user computational requirements are more
onerous than for the M’Raihi scheme, because the user himself needs to do pre-
computations of the signature (if using DSA) for spending a coin.
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