DE BRUIIN SEQUENCES AND PERFECT FACTORS
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Abstract. In this paper we describe new constructions for de Bruijn sequences and Perfect

Factors.

These constructions are all based upon the idea of constructing one sequence (or set of

sequences) from another. As a result of this fact, the sequences obtained from these construction
methods possess simple decoding algorithms, based on decoding the sequences used to construct
them. Such decoding algorithms are of importance in position location applications.
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1. Introduction.

1.1.

De Bruijn sequences, perfect factors and the decoding problem.

In this paper we address two main issues relating to the existence and decoding of
Perfect Factors and de Bruijn sequences.

Perfect Factors, 1.e. sets of uniformly long cycles whose elements are drawn
from an alphabet of size ¢ and in which every possible v-tuple of elements
occurs exactly once, are of significance for two main reasons.

— They can be used to construct Perfect Maps (or two-dimensional de
Bruijn arrays), see for example, [4, 9, 10], which are of practical impor-
tance in certain position-location applications.

— They are special cases of Perfect Maps themselves, and hence their ex-
istence is of significance in deciding whether Perfect Maps exist for all
parameter sets satisfying certain simple necessary conditions (it has re-
cently been established that these necessary conditions are sufficient for
prime power size alphabets, [12, 13]).

They are also of combinatorial interest in their own right, [4].

It has been conjectured, [6], that the simple necessary conditions for the ex-
istence of a Perfect Factor are sufficient for all finite alphabets and for all
window sizes. This conjecture was established by Paterson for ¢ a prime
power, [11], and for v < 5 in [7]. In this paper we describe two new construc-
tion methods for Perfect Factors, yielding Perfect Factors with parameters
not previously known to exist.

The problem of decoding de Bruijn sequences and Perfect Maps, i.e. of finding
the position within the sequence (or array) of any specified v-tuple (or sub-
array) is of fundamental importance in certain practical applications (see [2, 3,
14]). Tt has recently been shown that de Bruijn sequences can be constructed
which have simple decoding methods, [8]; in this paper we present another
construction method for de Bruijn sequences which also yields sequences with
a simple decoding technique.

In addition, it has been shown that Perfect Maps can be constructed using a
combination of Perfect Factors and de Bruijn sequences, for which decoding
the Perfect Map can be reduced to decoding its component sequences, [9].
The methods for constructing Perfect Factors presented here all allow simple
decoding methods to be devised, and hence contribute to the simpler decoding
of certain Perfect Maps.
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1.2. Notation. We first set up some notation which we will use throughout the
paper.

We are concerned here with c-ary periodic sequences, where by the term c-ary
we mean sequences whose elements are drawn from the set {0,1,...,¢— 1}. We
refer throughout to c-ary cycles of period n, by which we mean periodic sequences
[$0,81,-..,8n—1] where s; € {0,1,...,¢— 1} for every 7, (0 < i < n).

If t = (to,t1,...,ty—1) is a c-ary v-tuple (i.e. t; € {0,1,...,¢ — 1} for every ¢,
(0 <i<w)), and 8 = [sg,81,...,8n-1] I8 a c-ary cycle of period n (n > v), then we
say that ¢ occurs in s at position j if and only if

ti = Siy;
for every i, (0 < ¢ < v), where i + j is computed modulo n.
If sg, 81,...,8-1 are t cycles of the same length, n say, and if
8 = [Si0, 8i1, -, Sim—1)] (0 <1< ),

then Z(sg, 81,...,8:—1) denotes the ¢-fold interleaving of these cycles, i.e.

I(s0,51,...,8i-1) = [S00, 510, -, S(¢=1)0, 501,511, - - -, S(t—l)(n—l)]a

a cycle of length nt.
Given a cycle s = [s;], (0 < ¢ < n), and any integer k, we define Tj(s) to be the
cyclic shift of s by k places to the right. T.e. if we write s’ = [s}] = Ty(s) then

Sipr =8, (0<i<n)

where ¢ + k is calculated modulo n.
Suppose 8 = [Sp,81,...,8n-1] and s’ = [s(,8),...,8,,_4] are ¢- ary cycles of
periods n and n’ respectively. Then define the concatenation of s and s’, written

s||s’
to be the c-ary cycle of period n + n'
t= [thtla .. ~atn+n’—1] = S||S/a

where

s fn<i<n+n

t—n

{si fo<i<n
t; =

In addition, if s is a cycle of length n, and k& > 0, then s* denotes the k-fold concate-
nation of s with itself, and hence s* is a cycle of period nk.

Throughout we will write 07 for the i-tuple of all zeros and 17 for the i-tuple of
all ones.

Finally note that, throughout this paper, the notation (m, n) represents the Great-
est Common Divisor of m and n (given that m, n are a pair of positive integers).

1.3. Fundamental definitions and results. We next define the objects of
fundamental importance to this paper.

DEFINITION 1.1. If s = (sg,81,...,5n—1) i @ c-ary cycle of period n, then we
say that s is a v-window sequence if no c-ary v-tuple occurs in two distinct positions
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within a period of s. FEquivalently, it contains n distinct v-tuples in a period of the
cycle.

Using this definition we also have:

DEFINITION 1.2. A c-ary de Bruijn sequence of span v is then stmply a v-window
sequence of period equal to c; equivalently every possible c-ary v-tuple occurs precisely
once in a period of a de Bruijn sequence.

A c-ary punctured de Bruijn sequence of span v (sometimes called a pseudoran-
dom sequence) is a v-window sequence in which every c-ary v-tuple except for 0Y
occurs, and so a punctured de Bruiyn sequence has period ¢¥ — 1. A span v de Bruin
sequence can be ‘punctured’ by deleting one of the zeros in 0V, and a punctured de
Bruijn sequence can be transformed into a de Bruyn sequence by adding a zero to any
one of the ¢ — 1 occurrences of 0V, sequence in which every c-ary v-tuple occurs
except for 0V and 17, and hence a doubly punctured de Bruijn sequence has period
¢V —2. A de Bruin sequence can be ‘doubly punctured’ by first puncturing it and then
deleting one of the ones in 1V, and a doubly punctured de Bruyn sequence can be
transformed into a de Bruyn sequence by adding a zero to any of the ¢ —1 occurrences
of 0°~L, and adding a one to any of the ¢ — 1 occurrences of 1V~ 1.

We next have:

DEFINITION 1.3. Suppose n, ¢ and v are positive integers, where ¢ > 2. An
(n,e,v)-Perfect Factor, or simply a (n,c,v)-PF, is a collection of ¢¥/n c-ary cycles
of period n with the property that every c-ary v-tuple occurs in one of these cycles.

Note that, because we insist that a Perfect Factor contains exactly ¢¥/n cycles,
and because there are clearly ¢V different c-ary v-tuples, each v-tuple will actually
occur exactly once somewhere in the collection of cycles (and hence all the cycles
are distinct). Also observe that a (¢”,c¢,v)-PF is simply a e-ary span v de Bruijn
sequence.

The following necessary conditions for the existence of a Perfect Factor are trivial
to establish.

LEMMA 1.4. Suppose A is a (n,e,v)-PF. Then

1. n|e¢Y, and
22v<n<c (orn=v=1)

It was conjectured in [6] that these necessary conditions are sufficient for the
existence of a Perfect Factor. Paterson, [11] has shown that the conjecture holds if ¢
is a prime power, and it has also been shown that the conjecture holds if v < 5, [7].

Finally we define a related set of combinatorial objects, first introduced in [6].

DEFINITION 1.5. Suppose n, k, ¢ and v are positive inlegers satisfying n|c’ and
¢ > 2. An (n,k,c,v)-Perfect Multi-factor, or simply a (n, k,c,v)-PMF, is a collection
of ¢”/n c-ary cycles of period nk wilh the property that for every c-ary v-tuple t, and
for every integer j in the range 0 < j < k, t occurs at a position p=j (mod k) in
one of these cycles.

Note that, because a PMF contains exactly ¢V /n cycles of length nk, and because
there are ¢V different c-ary wv-tuples, each v-tuple will actually occur exactly k& times
in the collection of cycles, once in each of the possible position congruency classes
(mod k). This also implies that all the cycles are distinct.

The following necessary conditions for the existence of a PMF are simple to
establish.

LEMMA 1.6. Suppose A is a (n,k,c,v)-PMF. Then

1. n|e¢Y, and
2. v<nk (orv=nkandn=1).



4 C. MITCHELL

It has been shown, [6], that the above necessary conditions are sufficient if & > v.

2. A span-dividing construction for Perfect Factors. In this section we
describe a novel method for constructing a Perfect Factor from a Perfect Multi- factor.
This method involves reducing the span and at the same time increasing the alphabet
size. The method is of practical interest because a simple decoding algorithm for the
Perfect Factor can be derived from a decoding algorithm for the Perfect Multi-factor
used to construct it.

2.1. The construction method. CoNsTRUCTION 2.1. Suppose ¢, k,n and v
are positive inlegers where ¢ > 2, n|c’ and k|v, and let A = {a; : 0 <i<c¥/n} be
an (n,k,c,v)-PMF.

Now define D = {d; : 0 < i < ¢'/n} to be the set of ¢V/n cF-ary cycles of
period n defined so that d; is obtained from a; by dividing a; into disjoint k-tuples
and regarding each k-tuple as the c-ary representation of an element from an alphabet
of size c*.

THEOREM 2.2. Suppose ¢, k,n,v and A satisfy the conditions of Construction 2.1.
If D is constructed from A using Construction 2.1, then D is a (n,c*, v/k)-PF.

Proof. Let u = v/k and suppose e and e’ are u-tuples from D occurring at
positions p and p’ in cycles d; and d;/ respectively (0 < p,p’ <nand 0 <, <c¥/n).
We need to show that these tuples are distinct unless p = p’ and i = 7'.

Now if e = e’ then f = f/, where f and f’ are c-ary v-tuples derived respectively
from e and e’ by substituting every cf-ary element with a c-ary k-tuple (inverting
the procedure used to derive D in Construction 2.1). Now f and f’ occur at positions
kp and kp' in cycles a; and a;: respectively. Hence, since A is a Perfect Multi- factor
and kp = kp’ (mod k), we have

i=1i and kp=kp’ (mod nk)

and the desired result follows. O

2.2. An example. We now give a simple example.
EXAMPLE 2.3. Letn=v =4 and c =k = 2. Also let

a=g =] ;

CLQI[O

a (4,2,2,4)-PMF.

Then, using the above construction, we obtain
D={dy=[0033],di=[2013],do=[1122],d3=[0231]},

a (4,4,2)-PF.

2.3. A decoding algorithm. We now present a simple algorithm for decoding
cycles which have been obtained using Construction 2.1; the algorithm is based on
the use of a partial decoder for the Perfect Multi- factor A.

THEOREM 2.4. Suppose ¢, k,n,v and A satisfy the conditions of Construction 2.1,
and D has been constructed from A using Construction 2.1. Suppose also that the pair
of functions (E1, E2) acts as a partial decoder for A, i.e. if © is a c-ary v-tuple then
0 < Fi(z) <c’/n, 0 < Ey(x) <n, and = occurs at position kEs(x) in cycle ap, (4
of A. Le. the partial decoder will find the unique location of the specified tuple in a
position congruent to 0 modulo k.
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Then the pair (E1, Es) is a decoder for D, i.c. if y is a c*-ary u-tuple, then y
occurs at position Ea(y) in cycle dg,(y).
Proof. This result follows immediately from the way in which D is constructed. O

2.4. Constructing suitable PMFs. We now consider the problem of con-
structing PMFs with parameters suitable for use in Construction 2.1. We first observe
that, using Constructions 6.1 and 6.4 of [6], we have:

THEOREM 2.5. Suppose ¢, m, n, s and v are positive integers where ¢ > 2,
min and (s,m) = 1, and suppose also that there exists an (n,c,v)-PF. Then an
(m,ns/m,c,v)-PMF can be constructed.

REMARK 2.6. FEzamination of the construction methods in [6] reveals that a
decoding algorithm for the PMF can very easily be derived from a decoding algorithm
for the PF used to construct .

Note also that the ({,2,2,4)-PMF of Example 2.3 was obtained from an (8,2,4)-
PF using exactly this method.

There are two simple ways in which we can combine Theorem 2.5 with our new
construction method.

e First suppose that n = ¢¥, k|v, and (k,¢¥) = 1, and put m = n and s = k
(and hence (s,m) = 1). Then, starting with a (¢?, ¢, v)-PF (a c-ary span v de
Bruijn sequence), we can obtain a (¢¥, k, ¢, v)-PMF. Now, since k|v, we can
apply Construction 2.1 to obtain a (c¢¥,c* v/k)-PF, i.e. a ck-ary span v/k
de Bruijn sequence. Most significantly this new de Bruijn sequence can be
trivially decoded using a decoder for the de Bruijn sequence used to construct

it.
e Second suppose k|v and n|c”, and put m = n/(k,n) and s = k/(k,n) (and
hence (s,m) = 1). Then, starting with a (n,¢,v)-PF, we can obtain a

(n/(k,n), k,e,v)-PMF. Now, since k|v, we can apply Construction 2.1 to
obtain an (n/(k,n),c* v/k)-PF. Again, this new PF can be trivially decoded
using a decoder for the PF used to construct it.

REMARK 2.7. Note that, in the first case considered immediately above, we could
replace the initial de Bruiyn sequence with any c-ary v-window sequence of pertod n,
as long as (n, k) = 1 and klv. We would then obtain a c*-ary (v/k)-window sequence,
also of period n. Thus if (¢! — 1, k) = 1 then we could start with a punctured c-ary
span v de Bruin sequence, in which case the final sequence would also be a punctured
de Bruyn sequence.

2.5. Example. EXaAMPLE 2.8. Letv=4,c=k=2andn=c"—1=15 (and
hence (k,n) = (2,15) = 1). Also let

a/=[0 00100110101 111],

a 2-ary span 4 punctured de Bruyn sequence.
Then, using Constructions 6.1 and 6.4 of [6], we obtain

a:[000100110101111000100110101111].
Using Construction 2.1 we obtain
d=[0 103 1132021223 3],

a 4-ary span 2 punctured de Bruyn sequence.
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3. Constructing Perfect Factors by interleaving. We now present another
method for constructing Perfect Factors with a simple decoding algorithm. It also
enables the construction of Perfect Factors for parameter sets for which the existence
question was previously unanswered (examples of new parameter sets are given in
Section 3.4 below).

3.1. The construction method. We start by describing the method of con-
struction.

CONSTRUCTION 3.1. Suppose ¢, n,t,v are positive integers satisfying ¢ > 2 and
t|nt_1. Moreover suppose that

A= {aOa A, ..., ac”/n—l}

is an (n,c,v)-PF.

Consider the set S of all n-ary t-tuples (xo, 21, ..., 2¢-1) with the property that
Z:;é zp=n—1 (modn). Ife,y €S then write @ ~ y if and only if & can be
obtained from y by a cyclic shift operation. It is straightforward to verify that ~ is an
equivalence relation on S which partitions S into n'~1/t classes each of size t. Now
let

X ={zo, 2, ~~,33nt—1/t—1}

be a set of elements of S chosen so that X contains precisely one element of each
equivalence class under ~.
Nezt let

U:{(aiuaaiu"'aait—l) DG, Qg e, Gy EA}

be the set of all t-tuples of elements of A, and hence |U| = ¢t /nt.
Finally let B the set of all interleaved cycles of the form

I(To(aio)’ Tl?u(ail)’ Tfu-l'fl(alé)’ R Tx0+171+"'+xt—2(ait—1))’

where (wg,x1,...,20¢-1) € X and (@i, @iy, ..., 0;,_,) € U. Hence |B| = |X|.|U| =
(n'=1/H) (e /nt) = ¢ Jtn.

We can now state and prove the following result.

THEOREM 3.2. Suppose ¢, n,t,v and A satisfy the conditions of Construction 3.1.
If B is constructed from A using Construction 3.1 then B is a (tn,c,tv)-PF.

Proof. Suppose y is any c-ary tv-tuple. We need to show that y occurs in one of
the cycles of B. Suppose

Y :I(ZOazla .. 'azt—l)

where zg, 21, ..., 21 are c-ary v-tuples. Now suppose that z; occurs in cycle ay, at
position k;, for every ¢ satisfying 0 < ¢ < {. In addition we define a further n-ary
t-tuple @ = (xo,21,...,44-1) where #; = k; — ki1 (mod n), for every ¢ satisfying

0<i<t—1l,and 241 = ki1 —ko—1 (mod n).
First observe that & € S, since

t—2

t—1
S wi=> (ki —kigr) + (ks — ko — 1) = =1 (mod n).
i=0

i=0
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Hence there exists some cyclic shift of x, say

Tt—u(m) = (xuaxu-l—la"'axt—laan"wxu—l)a
which is a member of X. Hence if we define the n-ary t-tuple (vg, v1,...,v:—1) by
0 ifz=0
v; = Z}iz_lxjmodn fo<i<t—u
Z;;ixj+2}i%_t_lxj modn ft—u<i<t-—1

then the following cycle is a member of B:

w = I(Tvo(azu)’ T'Ul(a‘eu-{—l)’ cry T'Ut—u—l(a‘et—l)’ T'Ut—u(a‘el])’ cry T'Ut—l(a‘eu—l))'

Now zy4; occurs in Ty (ay,,,) at position kyy; + vi, (0 <4 <t —wu), and z occurs
in T,,,,_,(ag) at position k; + vi_yyi, (0 <7 <wu—1). In addition, by definition of
(z;) we have

0 ifz =20
v; = ky — kyyi mod n Hfo<i<t—u
ky —ky—t4i—1modn ift—u<i<t-1

Thus zy4; occurs in Ty, (ae,,,) at position k,, (0 < ¢ < t — u), and z; occurs in
Ty, .(ag) at position k, — 1, (0 < i < u—1). Hence y occurs in w at position
k.t — v and the result follows. O

3.2. Examples. Before proceeding we give two simple examples of the construc-
tion method.

EXAMPLE 3.3. Letn = 4 and ¢c = v =t = 2. Then let A be the following
(4,2,2)-PF (a de Bruijn sequence):

aoz[O 0 1 1]
Then

S={(0 3), (3 0), (2 1), (1 2)}

Then we can define

In addition

Hence

B ={Z( To(ao), To(ao)), Z( To(ao), T2(a0))}
={Z([0011],[0011]), Z([0011],[1100])}
={[00001111],[01011010]}

is a (8,2,4)-PF.
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EXAMPLE 3.4. Letn = c =1t =3 and v = 1. Then let A be the following
(3,3, 1)-PF (a de Bruijn sequence):

a=[0 1 2]

Then

Then we can define
X={(0 0 2), (0 1 1), (2 2 1)}

In addition

UI {( ap, ap, ag )}

Hence

B = {Z(To(ao), To(ao), Toto(ao)),Z(To(ao), To(ao), Tot1(ao)),
I(To(ao), T2(ao), Taya(ao))}
={Z([012],[012],[012]),Z([012],[012],[201]),Z([012],[120],[201])}
={[000111222],[002110221],[012120201]}

isa(9,3,3)PF.

3.3. A decoding algorithm. We next show how, given a Perfect Factor con-
structed using the above method, a simple decoding algorithm can be devised which
reduces decoding the constructed Perfect Factors to decoding the Perfect Factor and
the set of rotation vectors used as components in the construction.

ALGORITHM 3.5. Suppose ¢,n,t,v and A satisfy the conditions of Construc-
tion 3.1, and B has been constructed from A using Construction 3.1. Suppose also
that the pair of functions (E1, Fq) acts as a decoder for A, i.e. if z is a c-ary v-tuple
then 0 < Bi(z) < ¢v/n and 0 < Ea(z) < n and z occurs at position Ea(z) in cycle
ag,(z) of A.

We also need to define labellings for the sets U and B (defined in Construc-
tion 3.1). If 0 < i < " /n', then suppose i;_1%4—» ..., 111 1s the (c' /n)-ary represen-
tation of i (with least significant digit ip), i.e. 0<i; < c”/n (0<j<t) and

t—1 )
i = Z(cv/n)fij,
j=0
and let
u; = (aiua iy .ny ait—l)'

It should be clear that U = {u; : 0 <i<c'/n'}.
Nezt, if u; € U, say

U; = (aiua Qiyy-oey ait—l)’
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and x; € X, say
:13]' = (l‘o, L1, .. .,$nt—1/t_1),
then put

bij = I(To(aio)’ Tl‘u(ail)a T170+171(ai2)a B Tl‘0+l‘1+"'+l‘t—2(ait—1))’

and hence B ={b; : 0<i<c¥/n',0<j<n=1/t}
Define the triple of functions

Fi T —{0,1,...,¢%/n" — 1}
Fio T —{0,1,... 0" /t — 1}
Fy: T—{0,1,...,nt —1}

as follows, where T is the set of all c-ary tv-tuples.
First suppose y € 1", and suppose

y=T(z0,21, -, 2-1)
Nezt put
w = (wo,wy, ..., wi—1) = (Fa(z0), Fa(z1), . .., Fa(z:21)),
and let
' = (zp, 2], 2 ) = (wo — wi,wy —wa, ..., W9 — W1, wi—1 — wg — 1).
Now =’ € S (as defined in Consiruction 3.1) and hence suppose
e = Tr(z,),

for some xy € X, (where 0 < r <t). We now put Fia(y) = q.
Nezt put

g =90, 9%, . 9_1) = (E1(20), E1(#1), ..., E1(z:-1))
and let

g = (gOagla .. 'agt—l) — TT(g/)

Finally put
t—1 '
Fia(y) =Y gi(c"/n)’,
i=0
and

Fy(y) =tEa(z) — 1.

THEOREM 3.6. If B and (Fi1, Fia, Fa) are defined as in Algorithm 3.1, then the
pair ((F11, F12), Fa) is a decoder for B, i.e. if y is a c-ary tv-tuple, then y occurs at
position F(y) in cycle by, (y) Fiy(y)-
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Proof. Suppose y, (z0,21,...,2-1), Fi1, F12 and Fy are as in the Algorithm. We
need to show that y occurs at position Fy(y) in cycle bp, (y) rya(y)-
First observe that

Fily) = Y (e )

and

TFiz(y) = (o, x1,...,2¢-1) € X.

Now, by definition:

bFu(y),Fm(y) = I( To(agu)’ Tfu(agl)’ ) T@'D+x1+"'+xt—2(agt—l))
=1 TO(ag;)a Txo(ag’rJrl)a S Txo+x1+~~+xt_z(ag’r_1))
(since g = Tr(g"))
= I( TO(aE1(Zr))’ Tl?o(aE1(Zr+1))’ R Tl?0+171+"'+17t—2(aEl(Zr—1)))
(by definition of ¢')

= I(To(ap, (), Toy (@8 (arin))s Tortar (OB (54205
Toptst pyrtet (@21 (n)
(since &' = T, (=z,))
=1( TO(aEl(ZT‘))’ Twr—wr+1(aE1(zr+1))’ Twr—wr+2(aE1(zT+2))’ o

Twr_wt—l(aEl(zt—l))’ Twr—wu—l(aEl(Zu))’ A Twr—wr—l—l(aEl(Zr—l)))
(by definition of @)

=I(To(ar,(z)), TEs(zr)- Ea(zr4) (@B (2,01))s TE(20) = Ba(2r42) (OB (2,42))
B TE2(ZT)_E2(Zt—1)(aEl(zt—l))’ TE2(ZT)_E2(ZD)_1(aEl(zD))’ B

Tiy(2)-Balz-)-1(8B, (2,_1)))
(by definition of w)

Now, since z; occurs at position Fo(2;) in ap,(s,), (0 <1 < 1), we have
2z, occurs in To(ag,(,,)) at position F(z,),

Zry1 oceurs in Tp, (o )—By(z40) (@B (2,4,)) @b Position Fa(z,),
Zry2 occurs in Tp, (0 )—By(2r4) (@8 (2,4,)) @b Position Fa(z)
zi—1 oceurs in T, (2 )—Ey(z_) (@B, (z_,)) at position Fa(z,),
zo oceurs in Tp,(z )=, (2)-1(0E, (2,)) at position Fy(z,) — 1, and

zr—1 occurs in Tp,,)—py(z_1)-1(@E,(2,_,)) at position Fy(z.) — 1.

Hence y occurs in bp,, (y),r,,(y) at position t Fa(z,) —r = F(y), and the result follows.
O

bl

3.4. New parameter sets. We conclude our discussion of this method for con-
structing Perfect Factors by showing how it can be used to construct Perfect Factors
with parameters for which the existence question was previously unresolved.

As has already been mentioned, in [7] the necessary conditions of Lemma 1.4
have been shown to be sufficient for the existence of a Perfect Factor when v < 5.
Construction 3.1 does not help with any of the unresolved parameter sets for v = 5,
and so we examine the case v = 6.

Now, by Theorem 7.1 of [6], Perfect Factors exist for all triples (n, ¢, 6) satisfying
the conditions of Lemma 1.4 with the possible exceptions of:
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=10, ¢ =10d (d > 1),
=12,¢c=6d(d>1
=15, ¢ =15d (
=20, c=10d (
=30, ¢ = 30d (

e n==060,¢c=30d(d>1).
Next observe that, by Theorem 26 of [7], the following Perfect Factors exist:

e (6,6d,3)-PFs, d > 1,

e (10,10d,3)-PFs, d > 1, and

e (30,30d,3)-PFs, d > 1.
Applying Construction 3.1 to all of these Perfect Factors (in each case with ¢t = 2)
we obtain Perfect Factors for precisely the parameter sets in the second, fourth and
sixth of the cases listed above.

This means that the only unresolved cases for v = 6 are

e n=10,¢c=10d (d > 1),

e n=15¢=15d (d > 1), and

e n=230,c=30d (d>1).

® & o o o
3 33 33

4. Summary and conclusions. Using recursive methods of construction we
have made further progress towards proving the conjecture of [6], namely that Perfect
Factors exist for all parameter sets satisfying the necessary conditions of Lemma 1.4.
All the construction methods in this paper, both for de Bruijn sequences and for
Perfect Factors, admit simple methods of decoding, making their use in practical
applications advantageous.

Finally, it is interesting to observe that, when put together with the de Bruijn
sequence construction methods in [8] and [11] (special case of Lemma5.1), there exists
a series of construction methods for building one de Bruijn sequence out of another. If
it turns out that some or all of these construction methods have ‘complexity preserving
properties’ (c.f. the Lempel construction, [5]), then there may exist the means to
make further progress with the long- standing problem of discovering for which linear
complexities there exist de Bruijn sequences (see, for example, [1]).

Acknowledgements. The author would like to thank an anonymous referee
for invaluable comments regarding Construction 2.1, which have both improved and
shortened the paper.
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