
DE BRUIJN SEQUENCES AND PERFECT FACTORSCHRIS J. MITCHELL�Abstract. In this paper we describe new constructions for de Bruijn sequences and PerfectFactors. These constructions are all based upon the idea of constructing one sequence (or set ofsequences) from another. As a result of this fact, the sequences obtained from these constructionmethods possess simple decoding algorithms, based on decoding the sequences used to constructthem. Such decoding algorithms are of importance in position location applications.Key words. de Bruijn sequence, de Bruijn graph, window sequence, perfect factor1. Introduction.1.1. De Bruijn sequences, perfect factors and the decoding problem.In this paper we address two main issues relating to the existence and decoding ofPerfect Factors and de Bruijn sequences.� Perfect Factors, i.e. sets of uniformly long cycles whose elements are drawnfrom an alphabet of size c and in which every possible v-tuple of elementsoccurs exactly once, are of signi�cance for two main reasons.{ They can be used to construct Perfect Maps (or two-dimensional deBruijn arrays), see for example, [4, 9, 10], which are of practical impor-tance in certain position-location applications.{ They are special cases of Perfect Maps themselves, and hence their ex-istence is of signi�cance in deciding whether Perfect Maps exist for allparameter sets satisfying certain simple necessary conditions (it has re-cently been established that these necessary conditions are su�cient forprime power size alphabets, [12, 13]).They are also of combinatorial interest in their own right, [4].It has been conjectured, [6], that the simple necessary conditions for the ex-istence of a Perfect Factor are su�cient for all �nite alphabets and for allwindow sizes. This conjecture was established by Paterson for c a primepower, [11], and for v < 5 in [7]. In this paper we describe two new construc-tion methods for Perfect Factors, yielding Perfect Factors with parametersnot previously known to exist.� The problem of decoding de Bruijn sequences and Perfect Maps, i.e. of �ndingthe position within the sequence (or array) of any speci�ed v-tuple (or sub-array) is of fundamental importance in certain practical applications (see [2, 3,14]). It has recently been shown that de Bruijn sequences can be constructedwhich have simple decoding methods, [8]; in this paper we present anotherconstruction method for de Bruijn sequences which also yields sequences witha simple decoding technique.In addition, it has been shown that Perfect Maps can be constructed using acombination of Perfect Factors and de Bruijn sequences, for which decodingthe Perfect Map can be reduced to decoding its component sequences, [9].The methods for constructing Perfect Factors presented here all allow simpledecoding methods to be devised, and hence contribute to the simpler decodingof certain Perfect Maps.�Information Security Group, Royal Holloway, University of London, Egham, Surrey TW20 0EX,England. 1



2 C. MITCHELL1.2. Notation. We �rst set up some notation which we will use throughout thepaper.We are concerned here with c-ary periodic sequences, where by the term c-arywe mean sequences whose elements are drawn from the set f0; 1; : : : ; c � 1g. Werefer throughout to c-ary cycles of period n, by which we mean periodic sequences[s0; s1; : : : ; sn�1] where si 2 f0; 1; : : : ; c� 1g for every i, (0 � i < n).If t = (t0; t1; : : : ; tv�1) is a c-ary v-tuple (i.e. ti 2 f0; 1; : : : ; c � 1g for every i,(0 � i < v)), and s = [s0; s1; : : : ; sn�1] is a c-ary cycle of period n (n � v), then wesay that t occurs in s at position j if and only ifti = si+jfor every i, (0 � i < v), where i+ j is computed modulo n.If s0; s1; : : : ; st�1 are t cycles of the same length, n say, and ifsi = [si0; si1; : : : ; si(n�1)] (0 � i < t);then I(s0; s1; : : : ; st�1) denotes the t-fold interleaving of these cycles, i.e.I(s0; s1; : : : ; st�1) = [s00; s10; : : : ; s(t�1)0; s01; s11; : : : ; s(t�1)(n�1)];a cycle of length nt.Given a cycle s = [si], (0 � i < n), and any integer k, we de�ne Tk(s) to be thecyclic shift of s by k places to the right. I.e. if we write s0 = [s0i] = Tk(s) thens0i+k = si; (0 � i < n)where i + k is calculated modulo n.Suppose s = [s0; s1; : : : ; sn�1] and s0 = [s00; s01; : : : ; s0n0�1] are c- ary cycles ofperiods n and n0 respectively. Then de�ne the concatenation of s and s0, writtensjjs0to be the c-ary cycle of period n + n0t = [t0; t1; : : : ; tn+n0�1] = sjjs0;where ti = � si if 0 � i < ns0i�n if n � i < n + n0In addition, if s is a cycle of length n, and k > 0, then sk denotes the k-fold concate-nation of s with itself, and hence sk is a cycle of period nk.Throughout we will write 0 i for the i-tuple of all zeros and 1 i for the i-tuple ofall ones.Finally note that, throughout this paper, the notation (m;n) represents the Great-est Common Divisor of m and n (given that m;n are a pair of positive integers).1.3. Fundamental de�nitions and results. We next de�ne the objects offundamental importance to this paper.Definition 1.1. If s = (s0; s1; : : : ; sn�1) is a c-ary cycle of period n, then wesay that s is a v-window sequence if no c-ary v-tuple occurs in two distinct positions



DE BRUIJN SEQUENCES AND PERFECT FACTORS 3within a period of s. Equivalently, it contains n distinct v-tuples in a period of thecycle.Using this de�nition we also have:Definition 1.2. A c-ary de Bruijn sequence of span v is then simply a v-windowsequence of period equal to cv; equivalently every possible c-ary v-tuple occurs preciselyonce in a period of a de Bruijn sequence.A c-ary punctured de Bruijn sequence of span v (sometimes called a pseudoran-dom sequence) is a v-window sequence in which every c-ary v-tuple except for 0voccurs, and so a punctured de Bruijn sequence has period cv � 1. A span v de Bruijnsequence can be `punctured' by deleting one of the zeros in 0v, and a punctured deBruijn sequence can be transformed into a de Bruijn sequence by adding a zero to anyone of the c � 1 occurrences of 0v�1. sequence in which every c-ary v-tuple occursexcept for 0v and 1v, and hence a doubly punctured de Bruijn sequence has periodcv�2. A de Bruijn sequence can be `doubly punctured' by �rst puncturing it and thendeleting one of the ones in 1v, and a doubly punctured de Bruijn sequence can betransformed into a de Bruijn sequence by adding a zero to any of the c�1 occurrencesof 0v�1, and adding a one to any of the c� 1 occurrences of 1v�1.We next have:Definition 1.3. Suppose n, c and v are positive integers, where c � 2. An(n; c; v){Perfect Factor, or simply a (n; c; v){PF, is a collection of cv=n c-ary cyclesof period n with the property that every c-ary v-tuple occurs in one of these cycles.Note that, because we insist that a Perfect Factor contains exactly cv=n cycles,and because there are clearly cv di�erent c-ary v-tuples, each v-tuple will actuallyoccur exactly once somewhere in the collection of cycles (and hence all the cyclesare distinct). Also observe that a (cv; c; v){PF is simply a c-ary span v de Bruijnsequence.The following necessary conditions for the existence of a Perfect Factor are trivialto establish.Lemma 1.4. Suppose A is a (n; c; v){PF. Then1. njcv, and2. v < n � cv (or n = v = 1).It was conjectured in [6] that these necessary conditions are su�cient for theexistence of a Perfect Factor. Paterson, [11] has shown that the conjecture holds if cis a prime power, and it has also been shown that the conjecture holds if v < 5, [7].Finally we de�ne a related set of combinatorial objects, �rst introduced in [6].Definition 1.5. Suppose n, k, c and v are positive integers satisfying njcv andc � 2. An (n; k; c; v){Perfect Multi-factor, or simply a (n; k; c; v){PMF, is a collectionof cv=n c-ary cycles of period nk with the property that for every c-ary v-tuple t , andfor every integer j in the range 0 � j < k, t occurs at a position p � j (mod k) inone of these cycles.Note that, because a PMF contains exactly cv=n cycles of length nk, and becausethere are cv di�erent c-ary v-tuples, each v-tuple will actually occur exactly k timesin the collection of cycles, once in each of the possible position congruency classes(mod k). This also implies that all the cycles are distinct.The following necessary conditions for the existence of a PMF are simple toestablish.Lemma 1.6. Suppose A is a (n; k; c; v){PMF. Then1. njcv, and2. v < nk (or v = nk and n = 1).



4 C. MITCHELLIt has been shown, [6], that the above necessary conditions are su�cient if k � v.2. A span-dividing construction for Perfect Factors. In this section wedescribe a novel method for constructing a Perfect Factor from a Perfect Multi- factor.This method involves reducing the span and at the same time increasing the alphabetsize. The method is of practical interest because a simple decoding algorithm for thePerfect Factor can be derived from a decoding algorithm for the Perfect Multi-factorused to construct it.2.1. The construction method. Construction 2.1. Suppose c; k; n and vare positive integers where c � 2, njcv and kjv, and let A = fai : 0 � i < cv=ng bean (n; k; c; v)-PMF.Now de�ne D = fdi : 0 � i < cv=ng to be the set of cv=n ck-ary cycles ofperiod n de�ned so that di is obtained from ai by dividing ai into disjoint k-tuplesand regarding each k-tuple as the c-ary representation of an element from an alphabetof size ck.Theorem 2.2. Suppose c; k; n; v and A satisfy the conditions of Construction 2.1.If D is constructed from A using Construction 2.1, then D is a (n; ck; v=k){PF.Proof. Let u = v=k and suppose e and e 0 are u-tuples from D occurring atpositions p and p0 in cycles di and di0 respectively (0 � p; p0 < n and 0 � i; i0 < cv=n).We need to show that these tuples are distinct unless p = p0 and i = i0.Now if e = e 0 then f = f 0, where f and f 0 are c-ary v-tuples derived respectivelyfrom e and e 0 by substituting every ck-ary element with a c-ary k-tuple (invertingthe procedure used to derive D in Construction 2.1). Now f and f 0 occur at positionskp and kp0 in cycles ai and ai0 respectively. Hence, since A is a Perfect Multi- factorand kp � kp0 (mod k), we havei = i0 and kp � kp0 (mod nk)and the desired result follows.2.2. An example. We now give a simple example.Example 2.3. Let n = v = 4 and c = k = 2. Also letA = f a0 = � 0 0 0 0 1 1 1 1 � ; a1 = � 1 0 0 0 0 1 1 1 � ;a2 = � 0 1 0 1 1 0 1 0 � ; a3 = � 0 0 1 0 1 1 0 1 � g;a (4,2,2,4){PMF.Then, using the above construction, we obtainD = f d0 = � 0 0 3 3 � ; d1 = � 2 0 1 3 � ;d2 = � 1 1 2 2 � ; d3 = � 0 2 3 1 � g;a (4,4,2){PF.2.3. A decoding algorithm. We now present a simple algorithm for decodingcycles which have been obtained using Construction 2.1; the algorithm is based onthe use of a partial decoder for the Perfect Multi- factor A.Theorem 2.4. Suppose c; k; n; v and A satisfy the conditions of Construction 2.1,and D has been constructed from A using Construction 2.1. Suppose also that the pairof functions (E1; E2) acts as a partial decoder for A, i.e. if x is a c-ary v-tuple then0 � E1(x ) < cv=n, 0 � E2(x ) < n, and x occurs at position kE2(x ) in cycle aE1(x )of A. I.e. the partial decoder will �nd the unique location of the speci�ed tuple in aposition congruent to 0 modulo k.



DE BRUIJN SEQUENCES AND PERFECT FACTORS 5Then the pair (E1; E2) is a decoder for D, i.e. if y is a ck-ary u-tuple, then yoccurs at position E2(y) in cycle dE1(y).Proof. This result follows immediately from the way in which D is constructed.2.4. Constructing suitable PMFs. We now consider the problem of con-structing PMFs with parameters suitable for use in Construction 2.1. We �rst observethat, using Constructions 6.1 and 6.4 of [6], we have:Theorem 2.5. Suppose c, m, n, s and v are positive integers where c � 2,mjn and (s;m) = 1, and suppose also that there exists an (n; c; v){PF. Then an(m;ns=m; c; v){PMF can be constructed.Remark 2.6. Examination of the construction methods in [6] reveals that adecoding algorithm for the PMF can very easily be derived from a decoding algorithmfor the PF used to construct it.Note also that the (4,2,2,4){PMF of Example 2.3 was obtained from an (8,2,4){PF using exactly this method.There are two simple ways in which we can combine Theorem 2.5 with our newconstruction method.� First suppose that n = cv, kjv, and (k; cv) = 1, and put m = n and s = k(and hence (s;m) = 1). Then, starting with a (cv; c; v){PF (a c-ary span v deBruijn sequence), we can obtain a (cv; k; c; v){PMF. Now, since kjv, we canapply Construction 2.1 to obtain a (cv; ck; v=k){PF, i.e. a ck-ary span v=kde Bruijn sequence. Most signi�cantly this new de Bruijn sequence can betrivially decoded using a decoder for the de Bruijn sequence used to constructit.� Second suppose kjv and njcv, and put m = n=(k; n) and s = k=(k; n) (andhence (s;m) = 1). Then, starting with a (n; c; v){PF, we can obtain a(n=(k; n); k; c; v){PMF. Now, since kjv, we can apply Construction 2.1 toobtain an (n=(k; n); ck; v=k){PF. Again, this new PF can be trivially decodedusing a decoder for the PF used to construct it.Remark 2.7. Note that, in the �rst case considered immediately above, we couldreplace the initial de Bruijn sequence with any c-ary v-window sequence of period n,as long as (n; k) = 1 and kjv. We would then obtain a ck-ary (v=k)-window sequence,also of period n. Thus if (cv � 1; k) = 1 then we could start with a punctured c-aryspan v de Bruijn sequence, in which case the �nal sequence would also be a puncturedde Bruijn sequence.2.5. Example. Example 2.8. Let v = 4, c = k = 2 and n = cv � 1 = 15 (andhence (k; n) = (2; 15) = 1). Also leta 0 = � 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 � ;a 2-ary span 4 punctured de Bruijn sequence.Then, using Constructions 6.1 and 6.4 of [6], we obtaina = � 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 � :Using Construction 2.1 we obtaind = � 0 1 0 3 1 1 3 2 0 2 1 2 2 3 3 � ;a 4-ary span 2 punctured de Bruijn sequence.



6 C. MITCHELL3. Constructing Perfect Factors by interleaving. We now present anothermethod for constructing Perfect Factors with a simple decoding algorithm. It alsoenables the construction of Perfect Factors for parameter sets for which the existencequestion was previously unanswered (examples of new parameter sets are given inSection 3.4 below).3.1. The construction method. We start by describing the method of con-struction.Construction 3.1. Suppose c; n; t; v are positive integers satisfying c � 2 andtjnt�1. Moreover suppose thatA = fa0;a1; : : : ;acv=n�1gis an (n; c; v){PF.Consider the set S of all n-ary t-tuples (x0; x1; : : : ; xt�1) with the property thatPt�1i=0 xi � n � 1 (mod n). If x ; y 2 S then write x � y if and only if x can beobtained from y by a cyclic shift operation. It is straightforward to verify that � is anequivalence relation on S which partitions S into nt�1=t classes each of size t. Nowlet X = fx0; x1; : : : ; xnt�1=t�1gbe a set of elements of S chosen so that X contains precisely one element of eachequivalence class under �.Next let U = f(ai0;ai1; : : : ;ait�1) : ai0;ai1; : : : ;ait�1 2 Agbe the set of all t-tuples of elements of A, and hence jU j = ctv=nt.Finally let B the set of all interleaved cycles of the formI(T0(ai0);Tx0(ai1);Tx0+x1(ai2); : : : ;Tx0+x1+���+xt�2 (ait�1));where (x0; x1; : : : ; xt�1) 2 X and (ai0 ;ai1; : : : ;ait�1) 2 U . Hence jBj = jXj:jU j =(nt�1=t)(ctv=nt) = ctv=tn.We can now state and prove the following result.Theorem 3.2. Suppose c; n; t; v and A satisfy the conditions of Construction 3.1.If B is constructed from A using Construction 3.1 then B is a (tn; c; tv){PF.Proof. Suppose y is any c-ary tv-tuple. We need to show that y occurs in one ofthe cycles of B. Suppose y = I(z0; z1; : : : ; zt�1)where z0; z1; : : : ; zt�1 are c-ary v-tuples. Now suppose that zi occurs in cycle a`i atposition ki, for every i satisfying 0 � i < t. In addition we de�ne a further n-aryt-tuple x = (x0; x1; : : : ; xt�1) where xi � ki � ki+1 (mod n), for every i satisfying0 � i < t� 1, and xt�1 � kt�1 � k0 � 1 (mod n).First observe that x 2 S, sincet�1Xi=0 xi � t�2Xi=0(ki � ki+1) + (kt�1 � k0 � 1) � �1 (mod n):



DE BRUIJN SEQUENCES AND PERFECT FACTORS 7Hence there exists some cyclic shift of x , sayTt�u(x ) = (xu; xu+1; : : : ; xt�1; x0; : : : ; xu�1);which is a member of X. Hence if we de�ne the n-ary t-tuple (v0; v1; : : : ; vt�1) byvi = 8><>: 0 if i = 0Pi+u�1j=u xj mod n if 0 < i � t� uPt�1j=u xj +Pi+u�t�1j=0 xj mod n if t � u < i � t� 1then the following cycle is a member of B:w = I(Tv0(a`u);Tv1(a`u+1); : : : ;Tvt�u�1(a`t�1);Tvt�u(a`0); : : : ;Tvt�1(a`u�1)):Now zu+i occurs in Tvi(a`u+i) at position ku+i + vi, (0 � i < t � u), and zi occursin Tvi+t�u(a`i) at position ki + vt�u+i, (0 � i � u� 1). In addition, by de�nition of(xi) we have vi = 8<: 0 if i = 0ku � ku+i mod n if 0 < i < t� uku � ku�t+i � 1 mod n if t� u � i � t� 1Thus zu+i occurs in Tvi(a`u+i) at position ku, (0 � i < t � u), and zi occurs inTvi+t�u(a`i) at position ku � 1, (0 � i � u � 1). Hence y occurs in w at positionkut� u and the result follows.3.2. Examples. Before proceeding we give two simple examples of the construc-tion method.Example 3.3. Let n = 4 and c = v = t = 2. Then let A be the following(4; 2; 2){PF (a de Bruijn sequence):a0 = � 0 0 1 1 �Then S = f ( 0 3 ); ( 3 0 ); ( 2 1 ); ( 1 2 ) g:Then we can de�ne X = f ( 0 3 ); ( 2 1 ) g:In addition U = f( a0; a0 )g:Hence B = f I( T0(a0); T0(a0) ); I( T0(a0); T2(a0) ) g= f I( � 0 0 1 1 � ; � 0 0 1 1 � ); I( � 0 0 1 1 � ; � 1 1 0 0 � ) g= f � 0 0 0 0 1 1 1 1 � ; � 0 1 0 1 1 0 1 0 � gis a (8; 2; 4){PF.



8 C. MITCHELLExample 3.4. Let n = c = t = 3 and v = 1. Then let A be the following(3; 3; 1){PF (a de Bruijn sequence):a0 = [ 0 1 2 ]Then S = f ( 0 0 2 ); ( 0 2 0 ); ( 0 1 1 );( 2 0 0 ); ( 2 2 1 ); ( 2 1 2 );( 1 0 1 ); ( 1 2 2 ); ( 1 1 0 ) gThen we can de�neX = f ( 0 0 2 ); ( 0 1 1 ); ( 2 2 1 ) g:In addition U = f( a0; a0; a0 )g:HenceB = fI(T0(a0);T0(a0);T0+0(a0)); I(T0(a0);T0(a0);T0+1(a0));I(T0(a0);T2(a0);T2+2(a0))g= fI([0 1 2]; [0 1 2]; [0 1 2]); I([0 1 2]; [0 1 2]; [2 0 1]); I([0 1 2]; [1 2 0]; [2 0 1])g= f�0 0 0 1 1 1 2 2 2� ; �0 0 2 1 1 0 2 2 1� ; �0 1 2 1 2 0 2 0 1�gis a (9; 3; 3){PF.3.3. A decoding algorithm. We next show how, given a Perfect Factor con-structed using the above method, a simple decoding algorithm can be devised whichreduces decoding the constructed Perfect Factors to decoding the Perfect Factor andthe set of rotation vectors used as components in the construction.Algorithm 3.5. Suppose c; n; t; v and A satisfy the conditions of Construc-tion 3.1, and B has been constructed from A using Construction 3.1. Suppose alsothat the pair of functions (E1; E2) acts as a decoder for A, i.e. if z is a c-ary v-tuplethen 0 � E1(z ) < cv=n and 0 � E2(z ) < n and z occurs at position E2(z ) in cycleaE1(z ) of A.We also need to de�ne labellings for the sets U and B (de�ned in Construc-tion 3.1). If 0 � i < ctv=nt, then suppose it�1it�2 : : : ; i1i0 is the (cv=n)-ary represen-tation of i (with least signi�cant digit i0), i.e. 0 � ij < cv=n (0 � j < t) andi = t�1Xj=0(cv=n)jij ;and let ui = (ai0 ;ai1; : : : ;ait�1):It should be clear that U = fui : 0 � i < ctv=ntg.Next, if ui 2 U , say ui = (ai0 ;ai1; : : : ;ait�1);



DE BRUIJN SEQUENCES AND PERFECT FACTORS 9and xj 2 X, say xj = (x0; x1; : : : ; xnt�1=t�1);then put bij = I(T0(ai0);Tx0(ai1);Tx0+x1 (ai2); : : : ;Tx0+x1+���+xt�2(ait�1));and hence B = fbij : 0 � i < ctv=nt; 0 � j < nt�1=tg.De�ne the triple of functionsF11 :T ! f0; 1; : : : ; ctv=nt � 1gF12 :T ! f0; 1; : : : ; nt�1=t� 1gF2 : T ! f0; 1; : : : ; nt� 1gas follows, where T is the set of all c-ary tv-tuples.First suppose y 2 T , and supposey = I(z0; z1; : : : ; zt�1):Next put w = (w0; w1; : : : ; wt�1) = (E2(z0); E2(z1); : : : ; E2(zt�1));and letx 0 = (x00; x01; : : : ; x0t�1) = (w0 �w1; w1 �w2; : : : ; wt�2 �wt�1; wt�1 �w0 � 1):Now x 0 2 S (as de�ned in Construction 3.1) and hence supposex 0 = Tr(xq);for some xq 2 X, (where 0 � r < t). We now put F12(y) = q.Next put g 0 = (g00; g01; : : : ; g0t�1) = (E1(z0); E1(z1); : : : ; E1(zt�1))and let g = (g0; g1; : : : ; gt�1) = Tr(g 0):Finally put F11(y) = t�1Xi=0 gi(cv=n)i;and F2(y) = tE2(zr)� r:Theorem 3.6. If B and (F11; F12; F2) are de�ned as in Algorithm 3.1, then thepair ((F11; F12); F2) is a decoder for B, i.e. if y is a c-ary tv-tuple, then y occurs atposition F2(y) in cycle bF11(y);F12(y).



10 C. MITCHELLProof. Suppose y , (z0; z1; : : : ; zt�1), F11, F12 and F2 are as in the Algorithm. Weneed to show that y occurs at position F2(y) in cycle bF11(y);F12(y).First observe that F11(y) = t�1Xi=0 gi(cv=n)iand xF12(y) = (x0; x1; : : : ; xt�1) 2 X:Now, by de�nition:bF11(y);F12(y) = I(T0(ag0);Tx0(ag1); : : : ;Tx0+x1+���+xt�2 (agt�1))= I(T0(ag0r );Tx0(ag0r+1); : : : ;Tx0+x1+���+xt�2 (ag0r�1))(since g = Tr(g 0))= I(T0(aE1(zr));Tx0(aE1(zr+1)); : : : ;Tx0+x1+���+xt�2 (aE1(zr�1)))(by de�nition of g 0)= I(T0(aE1(zr));Tx0r(aE1(zr+1));Tx0r+x0r+1(aE1(zr+2)); : : : ;Tx0r+x0r+1+���+x0r�2 (aE1(zr�1)))(since x 0 = Tr(xq))= I(T0(aE1(zr));Twr�wr+1(aE1(zr+1));Twr�wr+2(aE1(zr+2)); : : : ;Twr�wt�1(aE1(zt�1));Twr�w0�1(aE1(z0)); : : : ;Twr�wr�1�1(aE1(zr�1)))(by de�nition of x 0)= I(T0(aE1(zr));TE2(zr)�E2(zr+1)(aE1(zr+1));TE2(zr)�E2(zr+2)(aE1(zr+2));: : : ;TE2(zr)�E2(zt�1)(aE1(zt�1));TE2(zr)�E2(z0)�1(aE1(z0)); : : : ;TE2(zr)�E2(zr�1)�1(aE1(zr�1)))(by de�nition of w )Now, since zi occurs at position E2(zi) in aE1(xi), (0 � i < t), we have� zr occurs in T0(aE1(zr)) at position E2(zr),� zr+1 occurs in TE2(zr)�E2(zr+1)(aE1(zr+1)) at position E2(zr),� zr+2 occurs in TE2(zr)�E2(zr+2)(aE1(zr+2)) at position E2(zr),� zt�1 occurs in TE2(zr)�E2(zt�1)(aE1(zt�1)) at position E2(zr),� z0 occurs in TE2(zr)�E2(z0)�1(aE1(z0)) at position E2(zr) � 1, and� zr�1 occurs in TE2(zr)�E2(zr�1)�1(aE1(zr�1)) at position E2(zr)� 1.Hence y occurs in bF11(y);F12(y) at position tE2(zr)�r = F2(y), and the result follows.3.4. New parameter sets. We conclude our discussion of this method for con-structing Perfect Factors by showing how it can be used to construct Perfect Factorswith parameters for which the existence question was previously unresolved.As has already been mentioned, in [7] the necessary conditions of Lemma 1.4have been shown to be su�cient for the existence of a Perfect Factor when v < 5.Construction 3.1 does not help with any of the unresolved parameter sets for v = 5,and so we examine the case v = 6.Now, by Theorem 7.1 of [6], Perfect Factors exist for all triples (n; c; 6) satisfyingthe conditions of Lemma 1.4 with the possible exceptions of:



DE BRUIJN SEQUENCES AND PERFECT FACTORS 11� n = 10, c = 10d (d � 1),� n = 12, c = 6d (d � 1),� n = 15, c = 15d (d � 1),� n = 20, c = 10d (d � 1),� n = 30, c = 30d (d � 1), and� n = 60, c = 30d (d � 1).Next observe that, by Theorem 26 of [7], the following Perfect Factors exist:� (6; 6d; 3){PFs, d � 1,� (10; 10d; 3){PFs, d � 1, and� (30; 30d; 3){PFs, d � 1.Applying Construction 3.1 to all of these Perfect Factors (in each case with t = 2)we obtain Perfect Factors for precisely the parameter sets in the second, fourth andsixth of the cases listed above.This means that the only unresolved cases for v = 6 are� n = 10, c = 10d (d � 1),� n = 15, c = 15d (d � 1), and� n = 30, c = 30d (d � 1).4. Summary and conclusions. Using recursive methods of construction wehave made further progress towards proving the conjecture of [6], namely that PerfectFactors exist for all parameter sets satisfying the necessary conditions of Lemma 1.4.All the construction methods in this paper, both for de Bruijn sequences and forPerfect Factors, admit simple methods of decoding, making their use in practicalapplications advantageous.Finally, it is interesting to observe that, when put together with the de Bruijnsequence construction methods in [8] and [11] (special case of Lemma 5.1), there existsa series of construction methods for building one de Bruijn sequence out of another. Ifit turns out that some or all of these construction methods have `complexity preservingproperties' (c.f. the Lempel construction, [5]), then there may exist the means tomake further progress with the long- standing problem of discovering for which linearcomplexities there exist de Bruijn sequences (see, for example, [1]).Acknowledgements. The author would like to thank an anonymous refereefor invaluable comments regarding Construction 2.1, which have both improved andshortened the paper. REFERENCES[1] S. Blackburn, T. Etzion, and K. Paterson, Permutation polynomials, de Bruijn sequencesand linear complexity, Journal of Combinatorial Theory (Series A), (to appear).[2] J. Bondy and U. Murty, Graph theory with applications, Elsevier, 1976.[3] J. Burns and C. Mitchell, Coding schemes for two-dimensional position sensing, in Cryp-tography and Coding III, M. Ganley, ed., Oxford University Press, 1993, pp. 31{66.[4] T. Etzion, Constructions for perfect maps and pseudo-random arrays, IEEE Transactions onInformation Theory, 34 (1988), pp. 1308{1316.[5] A. Lempel, On a homomorphism of the de Bruijn graph and its application to the design offeedback shift registers, IEEE Transactions on Computers, C-19 (1970), pp. 1204{1209.[6] C. Mitchell, Constructing c-ary perfect factors, Designs, Codes and Cryptography, 4 (1994),pp. 341{368.[7] , New c-ary perfect factors in the de Bruijn graph, in Codes and Cyphers, P. Farrell, ed.,Formara Ltd., Southend, 1995, pp. 299{313. Proceedings of the fourth IMA Conference onCryptography and Coding, Cirencester, December 1993.[8] C. Mitchell, T. Etzion, and K. Paterson, A method for constructing decodable de Bruijnsequences, IEEE Transactions on Information Theory, (to appear).
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