Torsion-free metabelian groups with commutator quotient $C_{p^{n}} \times C_{p^{m}}$

Carlos Frederico Cid
AEP - Accelerated Encryption Processing
Bray Business Park
Bray, Co. Wicklow - IRELAND
e-mail: carlos.cid@aep.ie

Torsion-free metabelian groups with commutator quotient $C_{p^{n}} \times C_{p^{m}}$

Carlos Frederico Cid
AEP - Accelerated Encryption Processing
e-mail: carlos.cid@aep.ie

1 Introduction

Let G be a finitely generated torsion-free metabelian group with finite commutator quotient. Then G is a Bieberbach group, that is, G is a torsion-free group containing a normal, maximal abelian subgroup V of finite rank and index. The subgroup V and the quotient G / V are known as the translation subgroup and the point-group (or holonomy group) of G, respectively. It is well known that the finiteness of the commutator quotient of G is equivalent to the triviality of the centre of G [6]. In Theorem A. of [3], we showed that every Bieberbach group with finite commutator quotient and point-group isomorphic to $C_{p^{n}} \times C_{p^{m}}$ contains a subgroup isomorphic to a torsion-free quotient of

$$
\left.K\left(p^{n}, p^{m}\right)=\langle a, b|\left(a^{p^{n}}\right)^{t\left(p^{m}, b\right)},\left(b^{p^{m}}\right)^{t\left(p^{n}, a\right)},\left[[a, b], a^{p^{n}}\right],\left[[a, b], b^{p^{m}}\right], \text { metabelian }\right\rangle,
$$

where $t(s, x)=\sum_{i=0}^{s-1} x^{i}$ and the presentation is written relative to the variety of metabelian groups. Furthermore, we showed that $K\left(p^{n}, p^{m}\right)$ is itself a Bieberbach group of dimension $p^{n+m}-1$, with point-group $C_{p^{n}} \times C_{p^{m}}$ and commutator quotient $C_{p^{n+m}} \times C_{p^{n+m}}$.

In [5], Gupta and Sidki study the existence of torsion-free metabelian groups with a finite elementary abelian p-group as commutator quotient. In particular, they showed that $K(p, p)$ has no proper torsion-free quotients and proved the following theorem.

Theorem 2 of [5] Let G be a metabelian group such that G / G^{\prime} is a finite p-group for some prime p. Suppose furthermore that H is a subgroup of G such that $G=G^{\prime} H$. Then $H^{\prime}=G^{\prime} \cap H$.

They applied the Theorem above and the fact that $K(p, p)$ has no proper torsionfree quotients to show that a finitely generated torsion-free metabelian group can not have commutator quotient isomorphic to $C_{p} \times C_{p}, p$ prime [5]. On working with the torsion-free quotients of $K\left(p^{n}, p^{m}\right)$, we are able to investigate the possibilities for a 2 -generated abelian p-group to be the commutator quotient of a finitely generated
torsion-free metabelian group. In Section 2 we introduce the tools in order to study such quotients. In Section 3, considering the quotients of $K\left(p, p^{m}\right)$, we prove

Theorem A. There exists a finitely generated torsion-free metabelian group G with commutator quotient isomorphic to $C_{p^{n}} \times C_{p^{m}}$ if and only if $n, m \geq 2$.

In Section 4 we describe the calculations to obtain the torsion-free quotients of $K\left(p, p^{2}\right)$. Furthermore, we present the results obtained in [4] for the groups $K(2,8)$ and $K(4,4)$. Using the list of torsion-free quotients of $K(4,4)$ we obtain

Theorem B. Let G be a finitely generated, torsion-free metabelian group, with commutator quotient isomorphic to $C_{4} \times C_{4}$. Then G is isomorphic to

$$
\left.K(2,2)=\langle a, b|\left(a^{2}\right)^{1+b},\left(b^{2}\right)^{1+a},\left[[a, b], a^{2}\right],\left[[a, b], b^{2}\right], \text { metabelian }\right\rangle,
$$

the fundamental group of the Hantzsche-Wendt manifold.

2 The group $K\left(p^{n}, p^{m}\right)$

We recall the notation introduced in [3]. Let

$$
\left.F_{n}=\left\langle x_{1}, \ldots, x_{n}\right| \text { metabelian }\right\rangle
$$

denote the free group of rank n in the variety of metabelian groups. A finitely generated metabelian group G is presented as

$$
\left.G=\left\langle x_{1}, \ldots, x_{n}\right| R_{1}, R_{2}, \ldots, R_{s}, \text { metabelian }\right\rangle \cong F_{n} /\left\langle R_{1}, R_{2}, \ldots, R_{s}\right\rangle^{F_{n}} .
$$

We define the following polynomials, for $s \in \mathbb{N}$:

$$
\begin{aligned}
& t(s, x)=1+x+\ldots+x^{s-1} \\
& d(x)=x-1 \\
& l(s, x)=(t(s, x)-s) / d(x)=\sum_{i=1}^{s-1} t(i, x)=\sum_{i=0}^{s-2}(s-i-1) x^{i} .
\end{aligned}
$$

If g, x_{1}, \ldots, x_{n} are elements of a group G, and $s_{1}, \ldots, s_{n} \in \mathbb{Z}$, then we write

$$
g^{s_{1} x_{1}+s_{2} x_{2}+\ldots+s_{n} x_{n}}
$$

for the element $\left(g^{s_{1}}\right)^{x_{1}}\left(g^{s_{2}}\right)^{x_{2}} \ldots\left(g^{s_{n}}\right)^{x_{n}}$.
Whenever it is convenient, we will write additively in abelian subgroups of G. When the commutator subgroup G^{\prime} of G is abelian, using the module notation, we write

$$
\left[x_{1}, x_{2}^{s}\right]=\left[x_{1}, x_{2}\right] . t\left(s, x_{2}\right)
$$

Consider then

$$
\left.K\left(p^{n}, p^{m}\right)=\langle a, b|\left(a^{p^{n}}\right)^{t\left(p^{m}, b\right)},\left(b^{p^{m}}\right)^{t\left(p^{n}, a\right)},\left[[a, b], a^{p^{n}}\right],\left[[a, b], b^{p^{m}}\right], \text { metabelian }\right\rangle .
$$

We recall that the group $G=K\left(p^{n}, p^{m}\right)$ is a Bieberbach group of dimension $p^{n+m}-1$, with point-group isomorphic to $C_{p^{n}} \times C_{p^{m}}$ and commutator quotient $C_{p^{n+m}} \times C_{p^{n+m}}$. The commutator subgroup G^{\prime} of G is free abelian of rank $p^{n+m}-1$, and if we denote the commutator $[a, b]$ by c and the action of a and b on G^{\prime} by A and B, respectively, it follows that G^{\prime} is freely generated by the set

$$
\left\{c . A^{i} B^{j}, 0 \leq i<p^{n}, 0 \leq j<p^{m},(i, j) \neq\left(p^{n}-1, p^{m}-1\right)\right\} .
$$

Furthermore $V=\left\langle a^{p^{n}}, b^{p^{m}}, G^{\prime}\right\rangle$ is the translation subgroup of G.
Lemma 2.1 Let M be the $\mathbb{Q}\left[\frac{G}{V}\right]$-module defined as $M=\mathbb{Q} \otimes V$. Then M decomposes as a direct sum of

$$
(m-n) p^{n}+(p+1) \frac{p^{n}-1}{p-1}
$$

irreducible, non-isomorphic submodules.
Proof. It is clear that as $\mathbb{Q}\left[\frac{G}{V}\right]$-module, M is cyclic and it is generated by c. And since for $s \geq 1$, we have $\operatorname{gcd}\left(d(x), t\left(p^{s}, x\right)\right)=1$, we are able to write

$$
M=M_{1} \oplus M_{2} \oplus M_{3} \oplus M_{4},
$$

where

$$
\begin{array}{ll}
M_{1}=M \cdot d(A) d(B), & M_{2}=M \cdot t\left(p^{n}, A\right) d(B) \\
M_{3}=M \cdot d(A) t\left(p^{m}, B\right), & M_{4}=M \cdot t\left(p^{n}, A\right) t\left(p^{m}, B\right) .
\end{array}
$$

Furthermore we have $\operatorname{M.t}\left(p^{n}, A\right) d(A)=M . t\left(p^{m}, B\right) d(B)=0$. Thus the submodule M_{4} is central G and is therefore trivial. When $s \geq 2$, the polynomial $t\left(p^{s}, x\right)$ can be factored as $t\left(p^{s-i}, x\right) t\left(p^{i}, x^{p^{s-i}}\right)$, for $1 \leq i \leq s-1$. Thus we can write

$$
t\left(p^{s}, x\right)=t(p, x) t\left(p, x^{p}\right) t\left(p, x^{p^{2}}\right) \ldots t\left(p, x^{p^{s-1}}\right),
$$

where all the terms are irreducible over \mathbb{Q}. Let U_{j} be the companion matrix of the polynomial $t\left(p, x^{p^{j-1}}\right)$ and $I d$ be the identity matrix. Since M is generated by c, we are able to find a basis for M_{2} such that $[A]=I d$ and

$$
B=\left(\begin{array}{cccc}
U_{1} & & & \\
& U_{2} & & \\
& & \ddots & \\
& & & U_{m}
\end{array}\right)
$$

Similarly, there exists a basis of M_{3} such that $[B]=I d$ and

$$
A=\left(\begin{array}{cccc}
U_{1} & & & \\
& U_{2} & & \\
& & \ddots & \\
& & & U_{n}
\end{array}\right)
$$

Therefore M_{2} and M_{3} decompose as

$$
M_{2}=\bigoplus_{j=1}^{m} M_{2 j} \text { and } M_{3}=\bigoplus_{j=1}^{n} M_{3 j}
$$

where the submodules $M_{2 j}$ and $M_{3 j}$ have dimension $p^{j-1}(p-1)$. The actions of a and b on these submodules are given by the matrices above.

On M_{1}, we have that A and B have $t\left(p^{n}, x\right)$ and $t\left(p^{m}, x\right)$ as minimal polynomials, respectively. If we extend the field of rationals \mathbb{Q} by B, we obtain the algebra

$$
\mathbb{Q}[B] \cong \bigoplus_{j=1}^{m} \mathbb{Q}\left[U_{j}\right]
$$

And if we extend the algebra $\mathbb{Q}[B]$ by A, we have

$$
\mathbb{Q}[B][A] \cong \bigoplus_{j=1}^{m} \mathbb{Q}\left[U_{j}\right][A] \cong \bigoplus_{j=1}^{m} \bigoplus_{i=1}^{n} \mathbb{Q}\left[U_{j}^{B}\right]\left[U_{i}^{A}\right] .
$$

Now we can verify in a straightforward manner that these submodules decompose as direct sum of irredutible submodules. Furthermore, it should be clear that they are all non-isomorphic. And it follows from Proposition 2.6 de [7], that describes the structure of the algebra $\mathbb{Q}\left[\frac{G}{V}\right]$, that the number of irreducible submodules of M is equal to the number of non-trivial cyclic subgroups of $C_{p^{n}} \times C_{p^{m}}$. By induction on $(m+n)$, we can show that $C_{p^{n}} \times C_{p^{m}}$ has

$$
(m-n) p^{n}+(p+1) \frac{p^{n}-1}{p-1}
$$

non-trivial cyclic subgroups, and the result follows.
Notice that we have $\left(b^{p^{m}}\right)^{d(b)}=\left[b^{p^{m}}, b\right]=e=\left[a^{p^{n}}, a\right]=\left(a^{p^{n}}\right)^{d(a)}$. Now, since $\operatorname{ker}(d(B))=M_{3}$ and $\operatorname{ker}(d(A))=M_{2}$, we have

$$
b^{p^{m}} \in M_{3} \text { and } a^{p^{n}} \in M_{2} .
$$

Lemma 2.2 Let G be a Bieberbach group with translation subgroup V. Furthermore let $N_{1}, N_{2} \unlhd G$, such that G / N_{1} and G / N_{2} are both torsion-free. If $\mathbb{Q} \otimes\left(N_{1} \cap V\right) \subseteq$ $\mathbb{Q} \otimes\left(N_{2} \cap V\right)$, then $N_{1} \leq N_{2}$.

Proof. We denote $\mathbb{Q} \otimes\left(N_{i} \cap V\right)$ by R_{i}. Since G / N_{1} and G / N_{2} are torsion-free, $N_{1} \cap V$ and $N_{2} \cap V$ are both pure submodules of V and

$$
N_{1} \cap V=R_{1} \cap V \subseteq R_{2} \cap V=N_{2} \cap V .
$$

Let $[G: V]=n$. If $x_{1} \in N_{1}$, then $x_{1}^{n} \in N_{1} \cap V \subseteq N_{2} \cap V$. Since G / N_{2} is torsion-free and $x_{1}^{n} \in N_{2}$, we must have $x_{1} \in N_{2}$ and $N_{1} \leq N_{2}$.

We describe now the method we use to compute the torsion-free quotients of $K\left(p^{n}, p^{m}\right)$. Let N be a non-trivial normal subgroup of $K\left(p^{n}, p^{m}\right)$. Then the module $R=\mathbb{Q} \otimes(N \cap V)$ is a non-trivial submodule of M. Since M is direct sum of

$$
(m-n) p^{n}+(p+1) \frac{p^{n}-1}{p-1}=k
$$

irreducible, non-isomorphic submodules, it follows from the Krull-Schmidt Theorem that R is equal to the sum of some of them. Thus we have $2^{k}-1$ cases for R to study (we exclude the trivial one).

Suppose that for a certain possibility for R, we find $N \unlhd K\left(p^{n}, p^{m}\right)$ and $x \in$ $K\left(p^{n}, p^{m}\right)$, such that $R=\mathbb{Q} \otimes(N \cap V)$ and $x \notin N$, but with $x^{s} \in N, s \geq 2$. Then $K\left(p^{n}, p^{m}\right) / N$ is not torsion-free but we can define \bar{N} as the normal closure on $K\left(p^{n}, p^{m}\right)$ of the subgroup $\langle N, x\rangle$ and repeat the analysis with the subgroup \bar{N}. It is clear that we might have $\bar{R}=\mathbb{Q} \otimes(\bar{N} \cap V)$ different of R. Also, if x is one of the generators of $K\left(p^{n}, p^{m}\right)$, then the group $K\left(p^{n}, p^{m}\right) / \bar{N}$ is cyclic and finite. For instance, we have seen that $a^{p^{n}} \in M_{2}$ and $b^{p^{m}} \in M_{3}$. Therefore, neither M_{2} nor M_{3} can be contained in R, in order to obtain a torsion-free quotient. We should look for powers of the generators to eliminate some possibilities for R. Furthermore, it follows from Lemma 2.2 that for any possibility for R being analised, there will be at most one possible $N \unlhd K\left(p^{n}, p^{m}\right)$, such that $\mathbb{Q} \otimes(N \cap V)=R$ and $K\left(p^{n}, p^{m}\right) / N$ is torsion-free.

If we denote by $\Lambda_{p, n, m}$ the set of representatives of isomorphism types of torsionfree quotients of $K\left(p^{n}, p^{m}\right)$, we can turn $\Lambda_{p, n, m}$ into a partially ordered set if we define for any $Q_{1}, Q_{2} \in \Lambda_{p, n, m}$,

$$
Q_{1} \geq Q_{2} \Longleftrightarrow \exists N \unlhd Q_{1} \quad \text { s.t. } \quad \frac{Q_{1}}{N} \cong Q_{2} .
$$

Using this method, we compute in Section 4 the list of torsion-free quotients for the groups $K\left(p, p^{2}\right), K(2,8)$ and $K(4,4)$, presenting the lattice of $\Lambda_{p, n, m}$ for the last two cases. In Section 3 we use the torsion-free quotients of $K\left(p, p^{m}\right)$ in order to obtain some general properties of torsion-free metabelian groups with finite commutator quotient. The problem of extending this method to the general case is due to the exponential growth of the possibilities of the $K\left(p^{n}, p^{m}\right)$-module $R=\mathbb{Q} \otimes(N \cap V)$.

3 Quotients of $K\left(p, p^{m}\right)$

As in the previous Section, let V be the translation subgroup of $K\left(p, p^{m}\right)$ and U_{j} be the companion matrix of the polynomial $t\left(p, x^{p^{j-1}}\right)$. We have seen in Lemma 2.1 that $M=\mathbb{Q} \otimes V$ decomposes as a direct sum of $m p+1$ irreducible, non-isomorphic submodules

$$
M=\bigoplus_{i=1}^{p-1} \bigoplus_{j=1}^{m} M_{1 j_{i}} \bigoplus_{j=1}^{m} M_{2 j} \bigoplus M_{3}
$$

where $M_{1 j_{i}}$ has dimension $p^{j-1}(p-1)$, with $[A]=U_{j}^{i p^{j-1}}$ and $[B]=U_{j} . \quad M_{2 j}$ has dimension $p^{j-1}(p-1)$, with $[A]=I d$ and $[B]=U_{j}$, and M_{3} has dimension $p-1$, where $[A]=U_{1}$ and $[B]=I d$.

Lemma 3.1 Following the terminology above, we have that

$$
\left(a b^{k}\right)^{p^{m}} \in M_{11_{i}}
$$

for $1 \leq i \leq p-1$ and $k+i=p^{m}$, and

$$
\left(a b^{k p^{j-1}}\right)^{p^{m}} \in M_{21} \oplus \ldots \oplus M_{2(j-1)} \oplus M_{1 j_{i}}
$$

for $1 \leq i \leq p-1,2 \leq j \leq m$ and $k+i=p^{m-j+1}$.
Proof. We will show that $\left(\left(a b^{k}\right)^{p^{m}}\right)^{\left(a-b^{r}\right)}=e$ if $k+r=p^{m}$. Since both $\left(a b^{k}\right)^{p^{m}}$ and $b^{p^{m}}$ are contained in V, they must commute. Thus $\left(a b^{k}\right)^{p^{m}}$ commutes with

$$
b^{p^{m}}\left(a b^{k}\right)^{-1}=b^{p^{m}-k} a^{-1}=b^{r} a^{-1}
$$

and we have

$$
\left(\left(a b^{k}\right)^{p^{m}}\right)^{\left(1-b^{r} a^{-1}\right)}=e
$$

We can conjugate the above expression by a, and we obtain

$$
\left(\left(a b^{k}\right)^{p^{m}}\right)^{\left(a-b^{r}\right)}=e
$$

if $k+r=p^{m}$.
Now let $r=i p^{j-1}$, where $1 \leq i \leq p-1$. By the decomposition we obtained for M, we have

$$
\operatorname{ker}\left(A-B^{i p^{j-1}}\right)=M_{21} \oplus \ldots \oplus M_{2(j-1)} \oplus M_{1 j_{i}}
$$

when $2 \leq j \leq m$, and

$$
\operatorname{ker}\left(A-B^{i}\right)=M_{11_{i}}
$$

when $j=1$. In fact, A acts as $B^{i p^{j-1}}$ on $M_{1 j_{i}}$ and as $I d$ on $M_{2 s}, 1 \leq s \leq m$. Furthermore, B acts as the companion matrix of $t\left(p, x^{p^{s-1}}\right)$ on $M_{2 s}$. Therefore, for $1 \leq s \leq j-1, B^{i p^{j-1}}$ also acts as Id.

Thus we have

$$
\left(a b^{k}\right)^{p^{m}} \in \operatorname{ker}\left(A-B^{i}\right)=M_{11_{i}}
$$

for $1 \leq i \leq p-1$ and $k+i=p^{m}$, and

$$
\left(a b^{k p^{j-1}}\right)^{p^{m}} \in \operatorname{ker}\left(A-B^{i p^{j-1}}\right)=M_{21} \oplus \ldots \oplus M_{2(j-1)} \oplus M_{1 j_{i}}
$$

for $1 \leq i \leq p-1,2 \leq j \leq m$ and $k+i=p^{m-j+1}$.
Remark: Notice that from the factorization of the polynomial $t\left(p^{s}, x\right)$ as

$$
t\left(p^{s}, x\right)=t\left(p^{s-i}, x\right) t\left(p^{i}, x^{p^{s-i}}\right)
$$

we can conclude that the group $K\left(p^{n}, p^{m}\right)$ has a torsion-free quotient isomorphic to $K\left(p^{n^{\prime}}, p^{m^{\prime}}\right)$, for any $1 \leq n^{\prime} \leq n$ and $1 \leq m^{\prime} \leq m$.

Proposition 3.2 For any $2 \leq i, j \leq m+1$, the group $K\left(p, p^{m}\right)$ has a torsion-free quotient with commutator quotient isomorphic to $C_{p^{i}} \times C_{p^{j}}$.

Proof. We use induction on m. If $m=1$, then $i=j=2$ and the Proposition is true, since $K(p, p)$ itself has commutator quotient isomorphic to $C_{p^{2}} \times C_{p^{2}}$.

Let $m \geq 2$. Since $K\left(p, p^{m}\right)$ has a torsion-free quotient isomorphic to $K\left(p, p^{m-1}\right)$, by induction we have that $K\left(p, p^{m}\right)$ has a torsion-free quotient with commutator quotient isomorphic to $C_{p^{i}} \times C_{p^{j}}$, for all $2 \leq i, j \leq m$. Because the commutator quotient of $K\left(p, p^{m}\right)$ is isomorphic to $C_{p^{m+1}} \times C_{p^{m+1}}$, we have only to find $N_{k} \unlhd K\left(p, p^{m}\right)$, such that $K\left(p, p^{m}\right) / N_{k}$ is torsion-free with commutator quotient $C_{p^{k}} \times C_{p^{m+1}}$, for $2 \leq k \leq m$.

For $2 \leq k \leq m$, let N_{k} be the normal closure on $K\left(p, p^{m}\right)$ of the subgroup generated by

$$
\left(a^{p}\right)^{t\left(p^{k-1}, b^{p m+1-k}\right)} .
$$

It is clear that N_{k} is contained in the translation subgroup V of $K\left(p, p^{m}\right)$, and $K\left(p, p^{m}\right) / N_{k}$ has commutator quotient $C_{p^{k}} \times C_{p^{m+1}}$. Then it remains to show that $K\left(p, p^{m}\right) / N_{k}$ is torsion-free.

We have seen that $a^{p} \in M_{2}$ and that B acts as the companion matrix of $t\left(p, x^{p^{j-1}}\right)$ on $M_{2 j}$. Since $t\left(p^{k-1}, b^{p^{m+1-k}}\right)$ can be factored as

$$
t\left(p^{k-1}, b^{p^{m+1-k}}\right)=t\left(p, b^{p^{m+1-k}}\right) \ldots t\left(p, b^{p^{m-2}}\right) t\left(p, b^{p^{m-1}}\right),
$$

we have

$$
\operatorname{ker}\left(t\left(p^{k-1}, B^{p^{m+1-k}}\right)\right)=M_{2(m+2-k)} \oplus \ldots \oplus M_{2 m},
$$

and the element $\left(a^{p}\right)^{t\left(p^{k-1}, b^{p^{m+1-k}}\right)}$ is contained in $M_{21} \oplus M_{22} \oplus \ldots \oplus M_{2(m+1-k)}$, with non-trivial components in all these submodules. Therefore

$$
\mathbb{Q} \otimes N_{k}=M_{21} \oplus M_{22} \oplus \ldots \oplus M_{2(m+1-k)}
$$

and N_{k} has rank $\sum_{i=0}^{m-k} p^{i}(p-1)=p^{m+1-k}-1$.
Then consider

$$
\begin{aligned}
\left(a^{p}\right)^{t\left(p^{k-1}, b^{p^{m+1-k}}\right)} & \left.=a^{p}\left(a^{p}\right)^{b^{p+1-k}} \ldots\left(a^{p}\right)^{\left(b^{p m+1-k}\right.}\right)^{p^{k-1}-1} \\
& =p^{k-1} a^{p}+c . t(p, A) t\left(p^{m+1-k}, B\right) l\left(p^{k-1}, B^{p^{m+1-k}}\right) \\
& =p^{k-1} a^{p}+c \cdot\left(1+\ldots+A^{p-1}\right)\left(1+\ldots+B^{p^{m+1-k}-1}\right)\left(\left(p^{k-1}-1\right)+\right. \\
& \left.+\ldots+\left(B^{p^{m+1-k}}\right)^{p^{k-1}-2}\right) .
\end{aligned}
$$

It is clear that the set

$$
\left\{\left(a^{p}\right)^{t\left(p^{k-1}, b^{m+1-k}\right) b^{i}}, 0 \leq i \leq p^{m+1-k}-2\right\}
$$

is a basis of N_{k}. Therefore the elements of N_{k} can be expresssed as

$$
\left(a^{p}\right)^{t\left(p^{k-1}, b^{p m+1-k}\right) f(b)}
$$

where $f(b) \in \mathbb{Z}[b]$, of degree at most $p^{m+1-k}-2$. If we compute the Smith Normal Form for the matrix of generators of V / N_{k}, we can verify in a straightforward manner that V / N_{k} is torsion-free. We illustrate these calculations with the group $K(2,8)$ and with N_{2} being the normal closure on $K(2,8)$ of the subgroup generated by $\left(a^{2}\right)^{t\left(2, b^{4}\right)}=$ $\left(a^{2}\right)^{1+b^{4}}$.

The subgroup N_{2} is abelian of rank 3, with free generators

$$
\left(a^{2}\right)^{1+b^{4}},\left(a^{2}\right)^{b+b^{5}},\left(a^{2}\right)^{b^{2}+b^{6}} .
$$

If we write the elements above in terms of the basis of V, and construct the matrix of generators of V / N_{2}, we get

$$
\left(\begin{array}{lllllllllllllll}
2 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
2 & 0 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

Notice that the last non-zero entry in the last row is equal to 1 , and is contained in a column that has all other entries equal to zero. Therefore we can perform elementary column operations and obtain a new matrix, whose last row has only one non-zero entry, which is equal to 1 , with all the other rows remaining unchanged. Then we can repeat this procedure with the other rows, until we reach a matrix, equivalent to the above, of the form

$$
\left(\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus V / N_{2} is torsion-free. The general case is similar to the above, with the rows of the matrix of generators of V / N_{k} presenting the same characteristics as of the one above, which allows us in the same manner to conclude that V / N_{k} is torsion-free. Therefore, to show that $K\left(p, p^{m}\right) / N_{k}$ is torsion-free, it remains to show that there exists no $g \in K\left(p, p^{m}\right) \backslash V$, such that $g^{p^{m}} \in N_{k}$.

We should recall that the elements $p^{m} a^{p}$ and $p b^{p^{m}}$ are contained in the commutator subgroup of $K\left(p, p^{m}\right)$, and therefore these can be expressed in terms of the basis of $K\left(p, p^{m}\right)^{\prime}$. Indeed, we have $p^{m} a^{p}=-c . t(p, A) l\left(p^{m}, B\right)$ and $p b^{p^{m}}=\operatorname{c.t}\left(p^{m}, B\right) l(p, A)$, and we can write

$$
\text { c. } A^{p-1} B^{p^{m}-2}=-p^{m} a^{p}-c .\left(t(p, A) l\left(p^{m}, B\right)-A^{p-1} B^{p^{m}-2}\right)
$$

and

$$
c . A^{p-2} B^{p^{m}-1}=p b^{p^{m}}-c .\left(t\left(p^{m}, B\right) l(p, A)-A^{p-2} B^{p^{m}-1}\right)
$$

Every $g \in K\left(p, p^{m}\right)$ can be written as $g=a^{i} b^{j} v$, where $0 \leq i \leq p-1,0 \leq j \leq p^{m}-1$ and $v \in V$. Then

$$
\begin{aligned}
g^{p^{m}} & =\left(a^{i} b^{j} v\right)^{p^{m}} \\
& =i p^{m-1} a^{p}+j b^{p^{m}}-c . t(j, B) t(i, A) \sum_{k=1}^{p^{m}-1} t\left(k, A^{i}\right) B^{j k}+v \cdot t\left(p^{m}, A^{i} B^{j}\right)
\end{aligned}
$$

and we should verify if the equation

$$
\begin{aligned}
& i p^{m-1} a^{p}+j b^{p^{m}}-c . t(j, B) t(i, A) \sum_{k=1}^{p^{m}-1} t\left(k, A^{i}\right) B^{j k}+v . t\left(p^{m}, A^{i} B^{j}\right)= \\
& =p^{k-1}\left(a^{p}\right)^{f(b)}+c . t(p, A) t\left(p^{m+1-k}, B\right) l\left(p^{k-1}, B^{p^{m+1-k}}\right) f(B)
\end{aligned}
$$

has non-trivial solutions. Since $f(b)$ has degree at most $p^{m+1-k}-2$, the term in $\left(a^{p}\right)^{t\left(p^{k-1}, b^{p m+1-k}\right) f(b)}$ with the highest sum of exponents would be c. $A^{p-1} B^{p^{m}-3}$, and therefore the term $b^{p^{m}}$ will not appear in the expression

$$
p^{k-1}\left(a^{p}\right)^{f(b)}+c . t(p, A) t\left(p^{m+1-k}, B\right) l\left(p^{k-1}, B^{p^{m+1-k}}\right) f(B)
$$

Then p must divide j, since if the term $b^{p^{m}}$ appears in the expression

$$
-c . t(j, B) t(i, A) \sum_{k=1}^{p^{m}-1} t\left(k, A^{i}\right) B^{j k}+v . t\left(p^{m}, A^{i} B^{j}\right),
$$

its coefficient would be a multiple of p. Therefore $g=a^{i} b^{j^{\prime} p} v$ and

$$
g^{p^{m-1}}=i p^{m-2} a^{p}+j^{\prime} b^{p^{m}}-c . t\left(j^{\prime} p, B\right) t(i, A) \sum_{k=1}^{p^{m-1}-1} t\left(k, A^{i}\right) B^{j^{\prime} k p}+v . t\left(p^{m-1}, A^{i} B^{j^{\prime} p}\right) \in V .
$$

We can repeat the argument above m times and conclude that p^{m} divides j. Then $g=a^{i} v^{\prime}$, with $v^{\prime} \in V$, and $g^{p} \in V$. Thus the equation can be written for g^{p} as

$$
g^{p}=i a^{p}+v^{\prime} . t\left(p, A^{i}\right)=p^{k-1}\left(a^{p}\right)^{f(b)}+\operatorname{c.t}(p, A) t\left(p^{m+1-k}, B\right) l\left(p^{k-1}, B^{p^{m+1-k}}\right) f(B),
$$

and using the same argument, now with a^{p}, we finally conclude that p divides i and thus arrive at $g \in V$. Thus $K\left(p, p^{m}\right) / N_{k}$ is torsion-free, of dimension

$$
r k(V)-r k\left(N_{k}\right)=p^{m+1}-1-\left(p^{m+1-k}-1\right)=p^{m+1}-p^{m+1-k}=p^{m+1-k}\left(p^{k}-1\right) .
$$

The quotient $K\left(p, p^{m}\right) / N_{k}$ has also point-group isomorphic to $C_{p} \times C_{p^{m}}$, since it is not isomorphic to a quotient of $K\left(p, p^{m-1}\right)$.

Remark: We have seen that the group $K\left(p^{n}, p^{m}\right)$ has a torsion-free quotient isomorphic to $K\left(p^{n^{\prime}}, p^{m^{\prime}}\right)$, for any $1 \leq n^{\prime} \leq n$ and $1 \leq m^{\prime} \leq m$. In particular, when working with the group $K\left(p, p^{m}\right)$, we have that if $N_{m^{\prime}}$ is the normal closure on $K\left(p, p^{m}\right)$ of the subgroup

$$
\left\langle\left(a^{p}\right)^{t\left(p^{m^{\prime}}, b\right)},\left(b^{p^{m^{\prime}}}\right)^{t(p, a)},\left[c, b^{p^{m^{\prime}}}\right]\right\rangle
$$

then $K\left(p, p^{m}\right) / N_{m^{\prime}} \cong K\left(p, p^{m^{\prime}}\right)$. In this case, for $1 \leq m^{\prime} \leq m-1$, we have

$$
R_{m^{\prime}}=\mathbb{Q} \otimes\left(N_{m^{\prime}} \cap V\right)=\bigoplus_{i=1}^{p-1} \bigoplus_{j=m^{\prime}+1}^{m} M_{1 j_{i}} \bigoplus_{j=m^{\prime}+1}^{m} M_{2 j} .
$$

Proposition 3.3 The group $K\left(p, p^{m}\right)$ has no torsion-free quotient with commutator quotient isomorphic to $C_{p} \times C_{p^{m}}$.

Proof. Let V be the translation subgroup of $K\left(p, p^{m}\right), M$ be the module $\mathbb{Q} \otimes V$ and N be a non-trivial normal subgroup of $K\left(p, p^{m}\right)$. Then $R=\mathbb{Q} \otimes(N \cap V)$ is a non-trivial submodule of M, and it should be the sum of some of the $m p+1$ submodules obtained in the decomposition of M. Suppose that $K\left(p, p^{m}\right) / N$ is torsion-free. It follows from Lemma 3.1 that $M_{3}, M_{11_{i}} \nsubseteq R$. We divide the possibilities for R in 2 cases.

First suppose that $M_{21} \nsubseteq R$. Then it follows from Lemma 2.2 and the previous remark that $K\left(p, p^{m}\right) / N$ has a torsion-free quotient isomorphic to $K(p, p)$. Since $K(p, p)$ has commutator quotient isomophic to $C_{p^{2}} \times C_{p^{2}}$, it is clear that $K\left(p, p^{m}\right) / N$ can not have commutator quotient isomorphic to $C_{p} \times C_{p^{m}}$.

Suppose now that $M_{21} \subseteq R$. If $m=1$, then $K\left(p, p^{m}\right) / N$ is not torsion-free, since $a^{p} \in M_{21}$. Consider then $m \geq 2$. We ask which of the submodules $M_{12_{i}}, M_{22}$ are contained in R. It follows from Lemma 3.1 that $M_{12_{i}}$ can not be contained in R, since $\left(a b^{k p}\right)^{p^{m}} \in M_{21} \oplus M_{12_{i}}$ for $1 \leq i \leq p-1$ and $k+i=p^{m-1}$. If $M_{22} \subseteq R$, we repeat this analisys, this time with the submodules $M_{13_{i}}, M_{23}$, and so on. Since $a^{p} \in M_{2}$, there exists $2 \leq s \leq m$, such that $M_{21} \oplus \ldots \oplus M_{2(s-1)} \subseteq R$, and $M_{1 s_{i}}, M_{2 s} \nsubseteq R$, for $1 \leq i \leq p-1$.

Now we apply Proposition 3.2 to the group $K\left(p, p^{s}\right)$. If N_{2} is the normal closure on $K\left(p, p^{s}\right)$ of the subgroup generated by $\left.\left(a^{p}\right)^{t\left(p, b^{p-1}\right.}\right)$, then $H=K\left(p, p^{s}\right) / N_{2}$ is torsionfree and has commutator quotient isomorphic to $C_{p^{2}} \times C_{p^{s+1}}$. However it follows again from Lemma 2.2 and the previous remark that $K\left(p, p^{m}\right) / N$ has a torsion-free quotient isomorphic to H, and therefore can not have commutator quotient $C_{p} \times C_{p^{m}}$.

We are now able to prove Theorem A.
Theorem A. There exists a finitely generated torsion-free metabelian group G with commutator quotient isomorphic to $C_{p^{n}} \times C_{p^{m}}$ if and only if $n, m \geq 2$.

Proof. By the result of Proposition 3.2, it remains to show that there is no finitely generated, torsion-free metabelian group with commutator quotient isomorphic to $C_{p} \times C_{p^{m}}$, for $m \geq 1$. Suppose that there exists a metabelian group of this type. If $x, y \in G$ are the generators of G modulo G^{\prime} and $H=\langle x, y\rangle$, then it follows from Theorem 2 of [5] that H is a 2-generated, metabelian Bieberbach group, with

$$
\frac{H}{H^{\prime}} \cong \frac{G}{G^{\prime}} \cong C_{p} \times C_{p^{m}} .
$$

Furthermore, if we denote by V_{H} the translation subgroup of H, we have that $H^{\prime} \leq V_{H}$, and Theorem A. of [3] tells us that H is isomorphic to a torsion-free quotient of $K\left(p, p^{m}\right)$. However, it follows from the previous Proposition that $K\left(p, p^{m}\right)$ does not have a torsion-free quotient of this type, and we reach a contradiction.

We now compute the torsion-free quotients for some other groups $K\left(p^{n}, p^{m}\right)$, using the method described in Section 2. We illustrate this method with the calculations for $K\left(p, p^{2}\right)$. In [4], one can find the calculations for $K(2,8)$ and $K(4,4)$.

4 Torsion-free quotients of $K\left(p, p^{2}\right)$

Let

$$
\left.K\left(p, p^{2}\right)=\langle a, b|\left(a^{p}\right)^{t\left(p^{2}, b\right)},\left(b^{p^{2}}\right)^{t(p, a)},\left[[a, b], a^{p}\right],\left[[a, b], b^{p^{2}}\right], \text { metabelian }\right\rangle .
$$

The group $K\left(p, p^{2}\right)$ is a Bieberbach group of dimension $p^{3}-1$, with point-group isomorphic to $C_{p} \times C_{p^{2}}$ and commutator quotient isomorphic to $C_{p^{3}} \times C_{p^{3}}$. Let V denote once more the translation subgroup of $G=K\left(p, p^{2}\right)$ and $c=[a, b]$. It follows from Section 2 that the module $M=\mathbb{Q} \otimes V$ decomposes as a sum of $2 p+1$ irreducible, non-isomorphic submodules

$$
M=\bigoplus_{i=1}^{p-1} \bigoplus_{j=1}^{2} M_{1 j_{i}} \bigoplus_{j=1}^{2} M_{2 j} \bigoplus M_{3}
$$

where $M_{11_{i}}, M_{21}, M_{3}$ have dimension $p-1$ and $M_{12_{i}}, M_{22}$ have dimension $p(p-1)$. The actions of a and b on these submodules were described in the previous Section.

We have that $b^{p^{2}} \in M_{3}$ and $a^{p} \in M_{2}$. Furthermore, $\left(a^{p}\right)^{t\left(p, b^{p}\right)} \in M_{21}$ and $\left(a^{p}\right)^{t(p, b)} \in$ M_{22}, and both are non trivial. It follows from Lemma 3.1 that

$$
\left(a b^{k}\right)^{p^{2}} \in M_{11_{i}}
$$

for $1 \leq i \leq p-1$ and $k+i=p^{2}$, and

$$
\left(a b^{k p}\right)^{p^{2}} \in M_{21} \oplus M_{12_{i}}
$$

for $1 \leq i \leq p-1$ and $k+i=p$. For the last case, we have

$$
\begin{aligned}
\left(\left(a b^{k p}\right)^{p}\right)^{t\left(p, b^{p}\right)} & =\left(a^{p}\right)^{t\left(p, b^{p}\right)}+k p b^{p^{2}}-c . t(k p, B) \sum_{i=1}^{p-1} t(i, A)\left(B^{k p}\right)^{i} t\left(p, B^{k p}\right) \\
& =\left(a^{p}\right)^{t\left(p, b^{p}\right)}+k p b^{p^{2}} \\
& -c .\left(1+B^{p}+\ldots+B^{p(k-1)}\right) t(p, B) t\left(p, B^{p}\right) \sum_{i=1}^{p-1} t(i, A)\left(B^{k p}\right)^{i} \\
& =\left(a^{p} t^{t\left(p, b^{p}\right)}+k p b^{p^{2}}-k c . t\left(p^{2}, B\right) l(p, A)\right. \\
& =\left(a^{p}\right)^{t\left(p, b^{p}\right)} \in M_{21},
\end{aligned}
$$

and $0 \neq\left(\left(a b^{k p}\right)^{p}\right)^{t(p, b)} \in M_{12_{i}}$.

Lemma 4.1 For $1 \leq i \leq p-1$, we have $\left(b^{p}\right)^{t\left(p, a^{i}\right)} \in M_{22} \oplus M_{12_{k}}$, where $i k \equiv 1 \bmod p$.
Proof. On writing additively, we have

$$
\left(b^{p}\right)^{t\left(p, a^{i}\right)}=b^{p^{2}}-c . t(p, B) t(i, A) \sum_{j=1}^{p-1} t\left(j, A^{i}\right) B^{p(p-1-j)} .
$$

If we show that $\left(b^{p}\right)^{t\left(p, a^{i}\right)(a-1)\left(a-b^{k p}\right)}=0$, then $\left(b^{p}\right)^{t\left(p, a^{i}\right)} \in M_{21} \oplus M_{22} \oplus M_{12_{k}}$ would follow. First we calculate

$$
\begin{aligned}
\left(b^{p}\right)^{t\left(p, a^{i}\right)(a-1)} & =\left(b^{p^{2}}\right)^{a-1}-c . t(p, B)\left(A^{i}-1\right) \sum_{j=1}^{p-1} t\left(j, A^{i}\right) B^{p(p-1-j)} \\
& =-c . t\left(p^{2}, B\right)-c . t(p, B) \sum_{j=1}^{p-1}\left(A^{i j}-1\right) B^{p(p-1-j)} \\
& =-c . t\left(p^{2}, B\right)+\operatorname{c.t}(p, B) t\left(p, B^{p}\right)-c . t(p, B) \sum_{j=0}^{p-1} A^{i j} B^{p(p-1-j)} \\
& =-c . t(p, B) \sum_{j=0}^{p-1} A^{i j} B^{p(p-1-j)} .
\end{aligned}
$$

Now we write $s=p-1-j$. Then

$$
\begin{aligned}
\left(b^{p}\right)^{t\left(p, a^{i}\right)(a-1)\left(a-b^{k p}\right)} & =-c . t(p, B)\left(A-B^{k p}\right) \sum_{j=0}^{p-1} A^{i j} B^{p(p-1-j)} \\
& =-c . t(p, B) \sum_{s=0}^{p-1} A^{i(p-1-s)+1} B^{p s}+ \\
& +c . t(p, B) \sum_{s=0}^{p-1} A^{i(p-1-s)} B^{p(s+k)},
\end{aligned}
$$

and after reordering the terms of $c . t(p, B) \sum_{s=0}^{p-1} A^{i(p-1-s)} B^{p(s+k)}$, we have

$$
\begin{aligned}
c . t(p, B) \sum_{s=0}^{p-1} A^{i(p-1-s)} B^{p(s+k)} & =\text { c.t }(p, B) \sum_{s=0}^{p-1} A^{i(p-1-s)} B^{p(s+k)} \\
& =c . t(p, B) \sum_{s=0}^{p-1} A^{i(p-1-s+k)} B^{p s} \\
& =c . t(p, B) \sum_{s=0}^{p-1} A^{i(p-1-s)+1} B^{p s}
\end{aligned}
$$

since $i k \equiv 1 \bmod p$. Thus $\left(b^{p}\right)^{t\left(p, a^{i}\right)(a-1)\left(a-b^{k p}\right)}=0$ and

$$
\left(b^{p}\right)^{t\left(p, a^{i}\right)} \in M_{21} \oplus M_{22} \oplus M_{12_{k}}
$$

To prove that $\left(b^{p}\right)^{t\left(p, a^{i}\right)} \in M_{22} \oplus M_{12_{k}}$, it is enough to show that $\left(b^{p}\right)^{t\left(p, a^{i}\right) t\left(p, b^{p}\right)}=0$. Then

$$
\begin{aligned}
\left(b^{p}\right)^{t\left(p, a^{i}\right) t\left(p, b^{p}\right)} & =p b^{p^{2}}-\operatorname{c.t}(p, B) t\left(p, B^{p}\right) t(i, A) \sum_{j=1}^{p-1} t\left(j, A^{i}\right) B^{p(p-1-j)} \\
& =p b^{p^{2}}-\operatorname{c.t}\left(p^{2}, B\right) t(i, A) \sum_{j=1}^{p-1} t\left(j, A^{i}\right) \\
& =p b^{p^{2}}-c . t\left(p^{2}, B\right) t(i, A) l\left(p, A^{i}\right) .
\end{aligned}
$$

Now we have

$$
c . l\left(p, A^{i}\right)\left(A^{i}-1\right)=c .\left(t\left(p, A^{i}\right)-p\right)=c .(t(p, A)-p)=c . d(A) l(p, A)
$$

and therefore

$$
c .\left(l\left(p, A^{i}\right) t(i, A)-l(p, A)\right) d(A)=0,
$$

and $c . l\left(p, A^{i}\right) t(i, A)-c . l(p, A) \in M_{2}$. Thus

$$
\operatorname{c.l}\left(p, A^{i}\right) t(i, A)=\operatorname{c.l}(p, A)+m_{2}
$$

where $m_{2} \in M_{2}$. However, since $m_{2} \cdot t\left(p^{2}, B\right)=0$, we have

$$
\begin{aligned}
\left(b^{p}\right)^{t\left(p, a^{i}\right) t\left(p, b^{p}\right)} & =p b^{p^{2}}-\operatorname{c.t}\left(p^{2}, B\right) t(i, A) l\left(p, A^{i}\right) \\
& =p b^{p^{2}}-\operatorname{c.t}\left(p^{2}, B\right) l(p, A)=0,
\end{aligned}
$$

and therefore, for $1 \leq i \leq p-1$, we have $\left(b^{p}\right)^{t\left(p, a^{i}\right)} \in M_{22} \oplus M_{12_{k}}$, where $i k \equiv 1 \bmod p$. Furthermore, we can easily verify that the components of it in both submodules are non-trivial.

Proposition 4.2 The group $K\left(p, p^{2}\right)$ has $\frac{2^{p}-2}{p}+2$ proper, non-isomorphic torsion-free quotients.

Proof. Let $N \unlhd G=K\left(p, p^{2}\right)$. Then $R=\mathbb{Q} \otimes(N \cap V)$ is sum of some of the $2 p+1$ submodules obtained in the decomposition of M. Therefore we have $2^{2 p+1}-1$ cases to study (we exclude the trivial case). It follows from Lemma 2.2 that for any possibility for R being studied, there will be at most one possible $N \unlhd K\left(p, p^{2}\right)$, such that $\mathbb{Q} \otimes(N \cap V)=R$ and $K\left(p, p_{2}^{2}\right) / N$ is torsion-free.

Since $b^{p^{2}} \in M_{3}$ and $\left(a b^{k}\right)^{p^{2}} \in M_{11_{i}}$, where $k+i=p^{2}$, we have that $M_{3}, M_{11_{i}} \nsubseteq R$. Thus we have $2^{p+1}-1$ cases to study. If $M_{21} \subseteq R$, it follows from Lemma 3.1 that no other submodule of M can be contained in R.

Let $N=\left\langle\left(a^{p}\right)^{t\left(p, b^{p}\right)}\right\rangle^{G}$. It is clear that $\mathbb{Q} \otimes N=M_{21}$. Now, in Proposition 3.2 in showed that

$$
\left.\frac{G}{N} \cong\langle a, b|\left(a^{p}\right)^{t\left(p, b^{p}\right)},\left(b^{p^{2}}\right)^{t(p, a)},\left[[a, b], a^{p}\right],\left[[a, b], b^{p^{2}}\right], \text { metabelian }\right\rangle
$$

is a Bieberbach group of dimension $p^{3}-1-p+1=p^{3}-p$, point-group isomorphic to $C_{p} \times C_{p^{2}}$ and commutator quotient $C_{p^{2}} \times C_{p^{3}}$. Notice that this group has no proper torsion-free quotients. We denote it by T_{M}.

Now R can be equal to the sum of any of the submodules $M_{12_{j}}$ and M_{22}. Thus we have $2^{p}-1$ cases to study. Once we find $N \unlhd V$, such that $\mathbb{Q} \otimes N=R$ and $\frac{V}{N}$ is torsion-free, that must be enough, since it follows from Lemma 2.2 and the remark before Proposition 3.3 that the group $\frac{G}{N}$ will have a quotient isomorphic to $K(p, p)$, with the kernel of the epimorphism contained in $\frac{V}{N}$.

Let R be equal to one of these submodules, for instance M_{22}. If $N=\left\langle\left(a^{p}\right)^{t(p, b)}\right\rangle^{G}$, then $\mathbb{Q} \otimes N=M_{22}$ and if we compute the Smith Normal Form for the matrix of generators of $\frac{V}{N}$, we can show in a similar manner to the proof of Proposition 3.2, that $\frac{V}{N}$ is torsion-free. Thus

$$
\left.\frac{G}{N} \cong\langle a, b|\left(a^{p}\right)^{t(p, b)},\left(b^{p^{2}}\right)^{t(p, a)},\left[[a, b], a^{p}\right],\left[[a, b], b^{p^{2}}\right], \text { metabelian }\right\rangle
$$

is a Bieberbach group of dimension $p^{3}-1-p^{2}+p=\left(p^{2}+1\right)(p-1)$. It also has pointgroup isomorphic to $C_{p} \times C_{p^{2}}$ and commutator quotient isomorphic to $C_{p^{2}} \times C_{p^{3}}$. All the remaining cases for R being equal to one of the submodules $M_{12_{j}}, M_{22}$ is isomophic to the group above, by the isomorphism induced by the automorphism of $K\left(p, p^{2}\right)$ given by $a \mapsto a b^{p}, b \mapsto b$; see [3]. We denote this group by T_{1}.

Now suppose R is sum of two of the submodules $M_{12_{j}}, M_{22}$. If $p=2$, then $\frac{G}{N} \cong K(2,2)$. If p is odd, then we have $\binom{p}{2}$ possibilities in this case, but using once more the isomorphism defined above, we can suppose that $M_{22} \subseteq R$ and we have $\frac{1}{p}\binom{p}{2}=\frac{p-1}{2}$ cases to study. We have seen that

$$
\left(b^{p}\right)^{t\left(p, a^{i}\right)} \in M_{22} \oplus M_{12_{k}},
$$

where $i k \equiv 1 \bmod p$. Let $N_{k}=\left\langle\left(a^{p}\right)^{t(p, b)},\left(b^{p}\right)^{t\left(p, a^{i}\right)}\right\rangle^{G}$, for $1 \leq k \leq \frac{p-1}{2}$. We can show again that $\frac{V}{N_{k}}$ is torsion-free, since N_{k} is a pure submodule of V. And because $\frac{G}{N_{k}}$ has a quotient isomorphic to $K(p, p)$, with the kernel contained in $\frac{V}{N_{k}}$, we have that

$$
\left.\frac{G}{N_{k}} \cong\langle a, b|\left(a^{p}\right)^{t(p, b)},\left(b^{p}\right)^{t\left(p, a^{i}\right)},\left(b^{p^{2}}\right)^{t(p, a)},\left[[a, b], a^{p}\right],\left[[a, b], b^{p^{2}}\right], \text { metabelian }\right\rangle
$$

is a Bieberbach group of dimension $p^{3}-1-2\left(p^{2}-p\right)$, point-group isomorphic to $C_{p} \times C_{p^{2}}$ and commutator quotient $C_{p^{2}} \times C_{p^{2}}$. There are $\frac{p-1}{2}$ groups and applying the Theorem 2.2, Chapter III of [2], we can show that they are all non-isomorphic, since there is not a semi-linear homomorphism (f, σ) between their translation subgroups, such that $f\left(m \cdot A^{i} B^{j}\right)=f(m) \cdot \sigma\left(A^{i} B^{j}\right)$. We denote these groups by $T_{21}, T_{22}, \ldots, T_{2 i_{2}}$, where $i_{2}=\frac{p-1}{2}$.

If R is equal to sum of n submodules, $3 \leq n \leq p-1$, then using the automorphism defined above, we can suppose that $M_{22} \subseteq R$ and there are $\frac{1}{p}\binom{p}{n}=i_{n}$ non-isomorphic torsion-free quotients (using again Theorem 2.2, Chapter III of [2]), defined as following :

For each n, we obtain $R_{k}, 1 \leq k \leq i_{n}$, and define $N_{k}=V \cap R_{k}$. Then N_{k} is a pure submodule of V and $\frac{V}{N_{k}}$ is torsion-free, Since $\frac{G}{N_{k}}$ has quotient isomophic to $K(p, p)$, with kernel contained in $\frac{V}{N_{k}}$, we have that $\frac{G}{N_{k}}$ is a Bieberbach group, of dimension $p^{3}-1-n\left(p^{2}-p\right)$. Furthermore, G / K_{k} has point-group isomorphic to $C_{p} \times C_{p^{2}}$ (otherwise it would be isomorphic to $K(p, p)$) and commutator quotient isomorphic to $C_{p^{2}} \times C_{p^{2}}$. Indeed, they are all quotients of some of the $T_{2 j}$ defined above and have $K(p, p)$ as quotient. And of course these groups have commutator quotient isomophic to $C_{p^{2}} \times C_{p^{2}}$. For each n, we have $i_{n}=\frac{1}{p}\binom{p}{n}$ quotients, that we denote by $T_{n 1}, \ldots, T_{n i_{n}}$.

And finally, if R is sum of p submodules $M_{22}, M_{12_{j}}$, we have $\frac{G}{N}$ isomorphic to $K(p, p)$. Thus we have a total of $\frac{2^{p}-2}{p}+2$ proper, non-isomorphic quotients of $K\left(p, p^{2}\right)$. Notice that T_{M} and $K(p, p)$ are the only ones that have no proper torsion-free quotient.

In particular, when $p=2$, the group $K(2,4)$ has 3 proper, non-isomorphic torsionfree quotients, given by:

$$
\begin{aligned}
& \left.H_{1}=\langle a, b|\left(a^{2}\right)^{1+b^{2}},\left(b^{4}\right)^{1+a},\left[[a, b], b^{4}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.H_{2}=\langle a, b|\left(a^{2}\right)^{1+b},\left(b^{4}\right)^{1+a},\left[[a, b], b^{4}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.K(2,2)=\langle a, b|\left(a^{2}\right)^{1+b},\left(b^{2}\right)^{1+a},\left[[a, b], b^{2}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle,
\end{aligned}
$$

where H_{1} and H_{2} have dimension 6 and 5 , respectively. Both have point-group isomorphic to $C_{2} \times C_{4}$ and commutator quotient $C_{4} \times C_{8}$.

We should notice that eventhough for p odd, we found torsion-free quotients with point-group $C_{p} \times C_{p^{2}}$ and commutator quotient $C_{p^{2}} \times C_{p^{2}}$, this did not happen when $p=2$.

5 Torsion-free quotients of $K(2,8)$ and $K(4,4)$

Using the method of the previous Section, we are able to produce the following complete list of torsion-free quotients of $K(2,8)$ and $K(4,4)$; the proof can be found in [4].

Proposition 4.4 of [4] The group $K(2,8)$ has 12 proper, non-isomorphic torsion-free quotients.

$$
\begin{aligned}
& \left.Q_{1}=\langle a, b|\left(a^{2}\right)^{\left(1+b^{2}\right)\left(1+b^{4}\right)},\left(b^{8}\right)^{t(2, a)},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& Q_{2}=\langle a, b|\left(a^{2}\right)^{\left.(1+b)\left(1+b^{4}\right),\left(b^{8}\right)^{t(2, a)},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle} \\
& \left.Q_{3}=\langle a, b|\left(a^{2}\right)^{t(8, b)},\left(b^{8}\right)^{t(2, a)},\left(\left(a b^{2}\right)^{4}\right)^{1+b},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.Q_{4}=\langle a, b|\left(a^{2}\right)^{t(4, b)},\left(b^{8}\right)^{t(2, a)},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.Q_{5}=\langle a, b|\left(a^{2}\right)^{1+b},\left(b^{8}\right)^{t(2, a)},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.Q_{6}=\langle a, b|\left(a^{2}\right)^{1+b^{2}},\left(b^{8}\right)^{t(2, a)},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.Q_{7}=\langle a, b|\left(a^{2}\right)^{1+b^{4}},\left(b^{8}\right)^{t(2, a)},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.Q_{8}=\langle a, b|\left(a^{2}\right)^{t(4, b)},\left(b^{8}\right)^{t(2, a)},\left(\left(a b^{2}\right)^{4}\right)^{1+b}, b^{8}[a, b]^{(1+b)\left(a-b^{4}\right)},\left[[a, b], b^{8}\right],\left[[a, b], a^{2}\right], \text { metab. }\right\rangle \\
& Q_{9}=K(2,4) \\
& \left.Q_{10}=H_{1}=\langle a, b|\left(a^{2}\right)^{1+b^{2}},\left(b^{4}\right)^{t(2, a)},\left[[a, b], b^{4}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& \left.Q_{11}=H_{2}=\langle a, b|\left(a^{2}\right)^{1+b},\left(b^{4}\right)^{t(2, a)},\left[[a, b], b^{4}\right],\left[[a, b], a^{2}\right], \text { metabelian }\right\rangle \\
& Q_{12}=K(2,2) .
\end{aligned}
$$

The groups Q_{1}, Q_{2}, Q_{3} and Q_{4} have point-group isomorphic to $C_{2} \times C_{8}$ and commutator quotient $C_{8} \times C_{16}$, with dimensions $14,13,13$ and 11, respectively.

The groups Q_{5}, Q_{6} and Q_{7} have point-group isomorphic to $C_{2} \times C_{8}$ and commutator quotient $C_{4} \times C_{16}$, with dimensions 9,10 and 12 , respectively.

The group Q_{8} has point-group isomorphic to $C_{2} \times C_{8}$, commutator quotient $C_{8} \times C_{8}$ and dimension 9 .

The groups Q_{9}, Q_{10}, Q_{11} and Q_{12} are quotients of $K(2,4)$ and have already been described.

It follows from the lattice of $\Lambda_{2,1,3}$ (Figure 1) that Q_{7}, H_{1} and $K(2,2)$ have no proper torsion-free quotients.

Proposition 4.5 of [4] The group $K(4,4)$ has 19 proper, non-isomorphic torsion-free quotients.

$$
\left.\left.\left.\left.\begin{array}{l}
\left.S_{1}=\langle a, b|\left(a^{4}\right)^{1+b^{2}},\left(b^{4}\right)^{t(4, a)},\left[[a, b], b^{4}\right],\left[[a, b], a^{4}\right], \text { metabelian }\right\rangle \\
\left.S_{2}=\langle a, b|\left(a^{4}\right)^{1+b},\left(b^{4}\right)^{t(4, a)},\left[[a, b], b^{4}\right],\left[[a, b], a^{4}\right], \text { metabelian }\right\rangle \\
S_{3}
\end{array}=\langle a, b|\left(a^{4}\right)^{1+b^{2}},\left(b^{4}\right)^{1+a^{2}},\left[[a, b], b^{4}\right],\left[[a, b], a^{4}\right], \text { metabelian }\right\rangle\right), ~\left([a, b], b^{4}\right],\left[[a, b], a^{4}\right], \text { metabelian }\right\rangle\right)
$$

The groups S_{1} and S_{2} have point-group $C_{4} \times C_{4}$, commutator quotient $C_{8} \times C_{16}$, and dimensions 14 and 13, respectively.

The groups $S_{3}, S_{4}, S_{5}, S_{6}, S_{7}, S_{8}, S_{9}, S_{10}, S_{11}, S_{12}, S_{13}$ and S_{14} have all pointgroup $C_{4} \times C_{4}$ and commutator quotient $C_{8} \times C_{8}$, with dimensions $13,12,11,11,12$, $11,10,10,9,9,9$ and 7 , respectively.

The group S_{15} has point-group isomorphic to $C_{4} \times C_{4}$, commutator quotient $C_{4} \times C_{8}$ and dimension 8.

The groups S_{16}, S_{17}, S_{18} and S_{19} are quotients of $K(2,4)$ and have already been described.

It follows from the lattice of $\Lambda_{2,2,2}$ (Figure 2)that the groups S_{7}, S_{8}, H_{1} and $K(2,2)$ have no proper torsion-free quotients.

From the list of quotients of $K(4,4)$, we can obtain the following characterization of $K(2,2)$.

Theorem B. Let G be a finitely generated, torsion-free metabelian group, with commutator quotient isomorphic to $C_{4} \times C_{4}$. Then G is isomorphic to

$$
\left.K(2,2)=\langle a, b|\left(a^{2}\right)^{1+b},\left(b^{2}\right)^{1+a},\left[[a, b], a^{2}\right],\left[[a, b], b^{2}\right], \text { metabelian }\right\rangle,
$$

the fundamental group of the Hantzsche-Wendt manifold.
Proof. Let $a, b \in G$ be the generators of G modulo G^{\prime} and $H=\langle a, b\rangle$. Then $G=H G^{\prime}$ and it follows from Theorem 2 of [5] that H is a 2-generated torsion-free metabelian group, with

$$
\frac{H}{H^{\prime}} \cong \frac{G}{G^{\prime}} \cong C_{4} \times C_{4} .
$$

Furthermore, both G and H are Bieberbach groups. We denote by V_{H} the translation subgroup of H. Since $H^{\prime} \leq V_{H}$, then it follows from Theorem A of [3] that H is isomorphic to a torsion-free quotient of $K(4,4)$. Now, by the list of torsionfree quotients of $K(4,4)$ given above, the only torsion-free quotient of $K(4,4)$ with commutator quotient isomorphic to $C_{4} \times C_{4}$ is $K(2,2)$. Thus $H \cong K(2,2)$.

Furthermore, we can repeat part of the proof of Proposition 2.3 of [3] and show that $G^{\prime}=\left[G^{\prime}, H\right] H^{\prime}$. Then we define the normal subgroup $N=\left(G^{\prime}\right)^{2} H^{\prime}$, and since G is finitely generated, we have that $\frac{G}{N}$ is a finite 2 -group. Now we can compute the second and third terms of the lower central series of $\frac{G}{N}$

$$
\Gamma_{2}\left(\frac{G}{N}\right)=\left[\frac{G}{N}, \frac{G}{N}\right]=\frac{G^{\prime} N}{N}=\frac{G^{\prime}}{N}
$$

and

$$
\Gamma_{3}\left(\frac{G}{N}\right)=\left[\frac{G^{\prime}}{N}, \frac{G}{N}\right]=\frac{\left[G^{\prime}, G\right] N}{N}=\frac{\left[G^{\prime}, G^{\prime} H\right] N}{N}=\frac{\left[G^{\prime}, H\right] H^{\prime}\left(G^{\prime}\right)^{2}}{N}=\frac{G^{\prime}}{N}
$$

Thus $\Gamma_{2}\left(\frac{G}{N}\right)=\Gamma_{3}\left(\frac{G}{N}\right)$, and because $\frac{G}{N}$ is nilpotent, $G^{\prime}=N=\left(G^{\prime}\right)^{2} H^{\prime}$. Now we can show that

$$
\operatorname{dim}(H)=\operatorname{rk}\left(H^{\prime}\right)=r k\left(G^{\prime}\right)=\operatorname{dim}(G) .
$$

Thus G is also a 3-dimensional Bieberbach group, with commutator quotient isomorphic to $C_{4} \times C_{4}$. By [1], we have that G is isomorphic to the fundamental group of the Hantzsche-Wendt manifold, that is, $G \cong K(2,2)$.

Figure 1: $\Lambda_{2,1,3}$

Figure 2: $\Lambda_{2,2,2}$

References

[1] H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, "Crystallographic groups of four-dimensional space", Wiley, New York, 1978
[2] L. Charlap, "Bieberbach Groups and Flat Manifolds", Springer-Verlag 1986
[3] C. Cid, Bieberbach groups with finite commutator quotient and point-group $C_{p^{n}} \times C_{p^{m}}$, Journal of Group Theory 3 (2000), 113-125
[4] C. Cid, Tese de Doutorado, Universidade de Brasília, 1999
[5] N. Gupta and S. Sidki, On Torsion-free metabelian Groups with Commutator Quotients of Prime Exponent, International Journal of Algebra and Computation Vol. 9, No. 5 (1999), 493-520
[6] H. Hiller and C. Sah, Holonomy of flat manifolds with $b_{1}=0$. Quart.J.Math.Oxford 37 (1986), 177-187
[7] S. Sehgal, "Topics in Group Rings", Marcel Dekker, Inc. 1978

