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1 Introduction

Let G be a finitely generated torsion-free metabelian group with finite commutator
quotient. Then G is a Bieberbach group, that is, G is a torsion-free group containing
a normal, maximal abelian subgroup V of finite rank and index. The subgroup V
and the quotient G/V are known as the translation subgroup and the point-group
(or holonomy group) of G, respectively. It is well known that the finiteness of the
commutator quotient of G is equivalent to the triviality of the centre of G [6]. In
Theorem A. of [3], we showed that every Bieberbach group with finite commutator
quotient and point-group isomorphic to Cpn ×Cpm contains a subgroup isomorphic to
a torsion-free quotient of

K(pn, pm) =
〈
a, b | (apn

)t(pm,b), (bpm

)t(pn,a),
[
[a, b], apn]

,
[
[a, b], bpm]

, metabelian
〉
,

where t(s, x) =
∑s−1

i=0 xi and the presentation is written relative to the variety of
metabelian groups. Furthermore, we showed that K(pn, pm) is itself a Bieberbach
group of dimension pn+m − 1, with point-group Cpn × Cpm and commutator quotient
Cpn+m × Cpn+m .

In [5], Gupta and Sidki study the existence of torsion-free metabelian groups with a
finite elementary abelian p-group as commutator quotient. In particular, they showed
that K(p, p) has no proper torsion-free quotients and proved the following theorem.

Theorem 2 of [5] Let G be a metabelian group such that G/G′ is a finite p-group for
some prime p. Suppose furthermore that H is a subgroup of G such that G = G′H.
Then H ′ = G′ ∩H.

They applied the Theorem above and the fact that K(p, p) has no proper torsion-
free quotients to show that a finitely generated torsion-free metabelian group can not
have commutator quotient isomorphic to Cp × Cp, p prime [5]. On working with the
torsion-free quotients of K(pn, pm), we are able to investigate the possibilities for a
2-generated abelian p-group to be the commutator quotient of a finitely generated
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torsion-free metabelian group. In Section 2 we introduce the tools in order to study
such quotients. In Section 3, considering the quotients of K(p, pm), we prove

Theorem A. There exists a finitely generated torsion-free metabelian group G with
commutator quotient isomorphic to Cpn × Cpm if and only if n,m ≥ 2.

In Section 4 we describe the calculations to obtain the torsion-free quotients of
K(p, p2). Furthermore, we present the results obtained in [4] for the groups K(2, 8)
and K(4, 4). Using the list of torsion-free quotients of K(4, 4) we obtain

Theorem B. Let G be a finitely generated, torsion-free metabelian group, with com-
mutator quotient isomorphic to C4 × C4. Then G is isomorphic to

K(2, 2) =
〈
a, b | (a2)1+b, (b2)1+a,

[
[a, b], a2

]
,
[
[a, b], b2

]
, metabelian

〉
,

the fundamental group of the Hantzsche-Wendt manifold.

2 The group K(pn, pm)

We recall the notation introduced in [3]. Let

Fn = 〈x1, . . . , xn|metabelian〉

denote the free group of rank n in the variety of metabelian groups. A finitely gener-
ated metabelian group G is presented as

G = 〈x1, . . . , xn|R1, R2, . . . , Rs, metabelian〉 ∼= Fn/〈R1, R2, . . . , Rs〉Fn .

We define the following polynomials, for s ∈ N:

t(s, x) = 1 + x + . . . + xs−1

d(x) = x− 1

l(s, x) = (t(s, x)− s)/d(x) =
∑s−1

i=1 t(i, x) =
∑s−2

i=0 (s− i− 1)xi.

If g, x1, . . . , xn are elements of a group G, and s1, . . . , sn ∈ Z, then we write

gs1x1+s2x2+...+snxn

for the element (gs1)x1(gs2)x2 . . . (gsn)xn .
Whenever it is convenient, we will write additively in abelian subgroups of G.

When the commutator subgroup G′ of G is abelian, using the module notation, we
write

[x1, x
s
2] = [x1, x2].t(s, x2).

Consider then

K(pn, pm) =
〈
a, b | (apn

)t(pm,b), (bpm

)t(pn,a),
[
[a, b], apn]

,
[
[a, b], bpm]

, metabelian
〉
.
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We recall that the group G = K(pn, pm) is a Bieberbach group of dimension pn+m−1,
with point-group isomorphic to Cpn × Cpm and commutator quotient Cpn+m × Cpn+m .
The commutator subgroup G′ of G is free abelian of rank pn+m − 1, and if we denote
the commutator [a, b] by c and the action of a and b on G′ by A and B, respectively,
it follows that G′ is freely generated by the set

{c.AiBj, 0 ≤ i < pn, 0 ≤ j < pm, (i, j) 6= (pn − 1, pm − 1)}.

Furthermore V = 〈apn
, bpm

, G′〉 is the translation subgroup of G.

Lemma 2.1 Let M be the Q[G
V

]-module defined as M = Q⊗V . Then M decomposes
as a direct sum of

(m− n)pn + (p + 1)
pn − 1

p− 1

irreducible, non-isomorphic submodules.

Proof. It is clear that as Q[G
V

]-module, M is cyclic and it is generated by c. And since
for s ≥ 1, we have gcd(d(x), t(ps, x)) = 1, we are able to write

M = M1 ⊕M2 ⊕M3 ⊕M4,

where
M1 = M.d(A)d(B), M2 = M.t(pn, A)d(B)
M3 = M.d(A)t(pm, B), M4 = M.t(pn, A)t(pm, B).

Furthermore we have M.t(pn, A)d(A) = M.t(pm, B)d(B) = 0. Thus the submodule
M4 is central G and is therefore trivial. When s ≥ 2, the polynomial t(ps, x) can be
factored as t(ps−i, x)t(pi, xps−i

), for 1 ≤ i ≤ s− 1. Thus we can write

t(ps, x) = t(p, x)t(p, xp)t(p, xp2

) . . . t(p, xps−1

),

where all the terms are irreducible over Q. Let Uj be the companion matrix of the

polynomial t(p, xpj−1
) and Id be the identity matrix. Since M is generated by c, we

are able to find a basis for M2 such that [A] = Id and

B =


U1

U2

. . .

Um

 .

Similarly, there exists a basis of M3 such that [B] = Id and

A =


U1

U2

. . .

Un

 .
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Therefore M2 and M3 decompose as

M2 =
m⊕

j=1

M2j and M3 =
n⊕

j=1

M3j,

where the submodules M2j and M3j have dimension pj−1(p−1). The actions of a and
b on these submodules are given by the matrices above.

On M1, we have that A and B have t(pn, x) and t(pm, x) as minimal polynomials,
respectively. If we extend the field of rationals Q by B, we obtain the algebra

Q[B] ∼=
m⊕

j=1

Q[Uj].

And if we extend the algebra Q[B] by A, we have

Q[B][A] ∼=
m⊕

j=1

Q[Uj][A] ∼=
m⊕

j=1

n⊕
i=1

Q[UB
j ][UA

i ].

Now we can verify in a straightforward manner that these submodules decompose
as direct sum of irredutible submodules. Furthermore, it should be clear that they
are all non-isomorphic. And it follows from Proposition 2.6 de [7], that describes the
structure of the algebra Q[G

V
], that the number of irreducible submodules of M is

equal to the number of non-trivial cyclic subgroups of Cpn × Cpm . By induction on
(m + n), we can show that Cpn × Cpm has

(m− n)pn + (p + 1)
pn − 1

p− 1

non-trivial cyclic subgroups, and the result follows.

Notice that we have (bpm
)d(b) = [bpm

, b] = e = [apn
, a] = (apn

)d(a). Now, since
ker(d(B)) = M3 and ker(d(A)) = M2, we have

bpm ∈ M3 and apn ∈ M2.

Lemma 2.2 Let G be a Bieberbach group with translation subgroup V . Furthermore
let N1, N2 E G, such that G/N1 and G/N2 are both torsion-free. If Q ⊗ (N1 ∩ V ) ⊆
Q⊗ (N2 ∩ V ), then N1 ≤ N2.

Proof. We denote Q⊗ (Ni ∩V ) by Ri. Since G/N1 and G/N2 are torsion-free, N1 ∩V
and N2 ∩ V are both pure submodules of V and

N1 ∩ V = R1 ∩ V ⊆ R2 ∩ V = N2 ∩ V.

Let [G : V ] = n. If x1 ∈ N1, then xn
1 ∈ N1 ∩ V ⊆ N2 ∩ V . Since G/N2 is torsion-free

and xn
1 ∈ N2 , we must have x1 ∈ N2 and N1 ≤ N2.
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We describe now the method we use to compute the torsion-free quotients of
K(pn, pm). Let N be a non-trivial normal subgroup of K(pn, pm). Then the module
R = Q⊗ (N ∩ V ) is a non-trivial submodule of M . Since M is direct sum of

(m− n)pn + (p + 1)
pn − 1

p− 1
= k

irreducible, non-isomorphic submodules, it follows from the Krull-Schmidt Theorem
that R is equal to the sum of some of them. Thus we have 2k− 1 cases for R to study
(we exclude the trivial one).

Suppose that for a certain possibility for R, we find N E K(pn, pm) and x ∈
K(pn, pm), such that R = Q ⊗ (N ∩ V ) and x 6∈ N , but with xs ∈ N , s ≥ 2.
Then K(pn, pm)/N is not torsion-free but we can define N as the normal closure on
K(pn, pm) of the subgroup 〈N, x〉 and repeat the analysis with the subgroup N . It
is clear that we might have R = Q ⊗ (N ∩ V ) different of R. Also, if x is one of
the generators of K(pn, pm), then the group K(pn, pm)/N is cyclic and finite. For
instance, we have seen that apn ∈ M2 and bpm ∈ M3. Therefore, neither M2 nor M3

can be contained in R, in order to obtain a torsion-free quotient. We should look
for powers of the generators to eliminate some possibilities for R. Furthermore, it
follows from Lemma 2.2 that for any possibility for R being analised, there will be at
most one possible N E K(pn, pm), such that Q ⊗ (N ∩ V ) = R and K(pn, pm)/N is
torsion-free.

If we denote by Λp,n,m the set of representatives of isomorphism types of torsion-
free quotients of K(pn, pm), we can turn Λp,n,m into a partially ordered set if we define
for any Q1, Q2 ∈ Λp,n,m,

Q1 ≥ Q2 ⇐⇒ ∃N E Q1 s.t.
Q1

N
∼= Q2.

Using this method, we compute in Section 4 the list of torsion-free quotients for the
groups K(p, p2), K(2, 8) and K(4, 4), presenting the lattice of Λp,n,m for the last two
cases. In Section 3 we use the torsion-free quotients of K(p, pm) in order to obtain some
general properties of torsion-free metabelian groups with finite commutator quotient.
The problem of extending this method to the general case is due to the exponential
growth of the possibilities of the K(pn, pm)-module R = Q⊗ (N ∩ V ).

3 Quotients of K(p, pm)

As in the previous Section, let V be the translation subgroup of K(p, pm) and Uj

be the companion matrix of the polynomial t(p, xpj−1
). We have seen in Lemma 2.1

that M = Q ⊗ V decomposes as a direct sum of mp + 1 irreducible, non-isomorphic
submodules

M =

p−1⊕
i=1

m⊕
j=1

M1ji

m⊕
j=1

M2j

⊕
M3,
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where M1ji
has dimension pj−1(p − 1), with [A] = U ipj−1

j and [B] = Uj. M2j has
dimension pj−1(p − 1), with [A] = Id and [B] = Uj, and M3 has dimension p − 1,
where [A] = U1 and [B] = Id.

Lemma 3.1 Following the terminology above, we have that

(abk)pm ∈ M11i
,

for 1 ≤ i ≤ p− 1 and k + i = pm, and

(abkpj−1

)pm ∈ M21 ⊕ . . .⊕M2(j−1) ⊕M1ji
,

for 1 ≤ i ≤ p− 1, 2 ≤ j ≤ m and k + i = pm−j+1.

Proof. We will show that ((abk)pm
)(a−br) = e if k + r = pm. Since both (abk)pm

and
bpm

are contained in V , they must commute. Thus (abk)pm
commutes with

bpm

(abk)−1 = bpm−ka−1 = bra−1,

and we have
((abk)pm

)(1−bra−1) = e.

We can conjugate the above expression by a, and we obtain

((abk)pm

)(a−br) = e

if k + r = pm.
Now let r = ipj−1, where 1 ≤ i ≤ p− 1. By the decomposition we obtained for M ,

we have
ker(A−Bipj−1

) = M21 ⊕ . . .⊕M2(j−1) ⊕M1ji

when 2 ≤ j ≤ m, and
ker(A−Bi) = M11i

when j = 1. In fact, A acts as Bipj−1
on M1ji

and as Id on M2s, 1 ≤ s ≤ m.
Furthermore, B acts as the companion matrix of t(p, xps−1

) on M2s. Therefore, for
1 ≤ s ≤ j − 1, Bipj−1

also acts as Id.
Thus we have

(abk)pm ∈ ker(A−Bi) = M11i

for 1 ≤ i ≤ p− 1 and k + i = pm, and

(abkpj−1

)pm ∈ ker(A−Bipj−1

) = M21 ⊕ . . .⊕M2(j−1) ⊕M1ji

for 1 ≤ i ≤ p− 1, 2 ≤ j ≤ m and k + i = pm−j+1.

Remark : Notice that from the factorization of the polynomial t(ps, x) as

t(ps, x) = t(ps−i, x)t(pi, xps−i

),

we can conclude that the group K(pn, pm) has a torsion-free quotient isomorphic to
K(pn′ , pm′

), for any 1 ≤ n′ ≤ n and 1 ≤ m′ ≤ m.
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Proposition 3.2 For any 2 ≤ i, j ≤ m + 1, the group K(p, pm) has a torsion-free
quotient with commutator quotient isomorphic to Cpi × Cpj .

Proof. We use induction on m. If m = 1, then i = j = 2 and the Proposition is true,
since K(p, p) itself has commutator quotient isomorphic to Cp2 × Cp2 .

Let m ≥ 2. Since K(p, pm) has a torsion-free quotient isomorphic to K(p, pm−1), by
induction we have that K(p, pm) has a torsion-free quotient with commutator quotient
isomorphic to Cpi × Cpj , for all 2 ≤ i, j ≤ m. Because the commutator quotient of
K(p, pm) is isomorphic to Cpm+1×Cpm+1 , we have only to find Nk E K(p, pm), such that
K(p, pm)/Nk is torsion-free with commutator quotient Cpk × Cpm+1 , for 2 ≤ k ≤ m.

For 2 ≤ k ≤ m, let Nk be the normal closure on K(p, pm) of the subgroup generated
by

(ap)t(pk−1,bpm+1−k
).

It is clear that Nk is contained in the translation subgroup V of K(p, pm), and
K(p, pm)/Nk has commutator quotient Cpk × Cpm+1 . Then it remains to show that
K(p, pm)/Nk is torsion-free.

We have seen that ap ∈ M2 and that B acts as the companion matrix of t(p, xpj−1
)

on M2j. Since t(pk−1, bpm+1−k
) can be factored as

t(pk−1, bpm+1−k

) = t(p, bpm+1−k

) . . . t(p, bpm−2

)t(p, bpm−1

),

we have
ker(t(pk−1, Bpm+1−k

)) = M2(m+2−k) ⊕ . . .⊕M2m,

and the element (ap)t(pk−1,bpm+1−k
) is contained in M21 ⊕M22 ⊕ . . .⊕M2(m+1−k), with

non-trivial components in all these submodules. Therefore

Q⊗Nk = M21 ⊕M22 ⊕ . . .⊕M2(m+1−k)

and Nk has rank
∑m−k

i=0 pi(p− 1) = pm+1−k − 1.
Then consider

(ap)t(pk−1,bpm+1−k
) = ap(ap)bpm+1−k

. . . (ap)(bpm+1−k
)pk−1−1

= pk−1ap + c.t(p, A)t(pm+1−k, B)l(pk−1, Bpm+1−k
)

= pk−1ap + c.(1 + . . . + Ap−1)(1 + . . . + Bpm+1−k−1)((pk−1 − 1)+

+ . . . + (Bpm+1−k
)pk−1−2).

It is clear that the set

{(ap)t(pk−1,bpm+1−k
)bi

, 0 ≤ i ≤ pm+1−k − 2}

is a basis of Nk. Therefore the elements of Nk can be expresssed as

(ap)t(pk−1,bpm+1−k
)f(b),
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where f(b) ∈ Z[b], of degree at most pm+1−k − 2. If we compute the Smith Normal
Form for the matrix of generators of V/Nk, we can verify in a straightforward manner
that V/Nk is torsion-free. We illustrate these calculations with the group K(2, 8) and
with N2 being the normal closure on K(2, 8) of the subgroup generated by (a2)t(2,b4) =
(a2)1+b4 .

The subgroup N2 is abelian of rank 3, with free generators

(a2)1+b4 , (a2)b+b5 , (a2)b2+b6 .

If we write the elements above in terms of the basis of V , and construct the matrix
of generators of V/N2, we get 2 0 1 1 1 1 1 1 1 1 0 0 0 0 0

2 0 2 2 1 1 1 1 1 1 1 1 0 0 0
2 0 2 2 2 2 1 1 1 1 1 1 1 1 0

 .

Notice that the last non-zero entry in the last row is equal to 1, and is contained in a
column that has all other entries equal to zero. Therefore we can perform elementary
column operations and obtain a new matrix, whose last row has only one non-zero
entry, which is equal to 1, with all the other rows remaining unchanged. Then we can
repeat this procedure with the other rows, until we reach a matrix, equivalent to the
above, of the form 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 .

Thus V/N2 is torsion-free. The general case is similar to the above, with the rows
of the matrix of generators of V/Nk presenting the same characteristics as of the one
above, which allows us in the same manner to conclude that V/Nk is torsion-free.
Therefore, to show that K(p, pm)/Nk is torsion-free, it remains to show that there
exists no g ∈ K(p, pm)\V , such that gpm ∈ Nk.

We should recall that the elements pmap and pbpm
are contained in the commutator

subgroup of K(p, pm), and therefore these can be expressed in terms of the basis of
K(p, pm)′. Indeed, we have pmap = −c.t(p, A)l(pm, B) and pbpm

= c.t(pm, B)l(p, A),
and we can write

c.Ap−1Bpm−2 = −pmap − c.(t(p, A)l(pm, B)− Ap−1Bpm−2)

and
c.Ap−2Bpm−1 = pbpm − c.(t(pm, B)l(p, A)− Ap−2Bpm−1).

Every g ∈ K(p, pm) can be written as g = aibjv, where 0 ≤ i ≤ p− 1, 0 ≤ j ≤ pm − 1
and v ∈ V . Then

gpm
= (aibjv)pm

= ipm−1ap + jbpm − c.t(j, B)t(i, A)
pm−1∑
k=1

t(k, Ai)Bjk + v.t(pm, AiBj)
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and we should verify if the equation

ipm−1ap + jbpm − c.t(j, B)t(i, A)
pm−1∑
k=1

t(k, Ai)Bjk + v.t(pm, AiBj) =

= pk−1(ap)f(b) + c.t(p, A)t(pm+1−k, B)l(pk−1, Bpm+1−k
)f(B)

has non-trivial solutions. Since f(b) has degree at most pm+1−k − 2, the term in

(ap)t(pk−1,bpm+1−k
)f(b) with the highest sum of exponents would be c.Ap−1Bpm−3, and

therefore the term bpm
will not appear in the expression

pk−1(ap)f(b) + c.t(p, A)t(pm+1−k, B)l(pk−1, Bpm+1−k

)f(B).

Then p must divide j, since if the term bpm
appears in the expression

−c.t(j, B)t(i, A)

pm−1∑
k=1

t(k,Ai)Bjk + v.t(pm, AiBj),

its coefficient would be a multiple of p. Therefore g = aibj′pv and

gpm−1

= ipm−2ap +j′bpm−c.t(j′p, B)t(i, A)

pm−1−1∑
k=1

t(k,Ai)Bj′kp +v.t(pm−1, AiBj′p) ∈ V.

We can repeat the argument above m times and conclude that pm divides j. Then
g = aiv′, with v′ ∈ V , and gp ∈ V . Thus the equation can be written for gp as

gp = iap + v′.t(p, Ai) = pk−1(ap)f(b) + c.t(p, A)t(pm+1−k, B)l(pk−1, Bpm+1−k

)f(B),

and using the same argument, now with ap, we finally conclude that p divides i and
thus arrive at g ∈ V . Thus K(p, pm)/Nk is torsion-free, of dimension

rk(V )− rk(Nk) = pm+1 − 1− (pm+1−k − 1) = pm+1 − pm+1−k = pm+1−k(pk − 1).

The quotient K(p, pm)/Nk has also point-group isomorphic to Cp × Cpm , since it is
not isomorphic to a quotient of K(p, pm−1).

Remark : We have seen that the group K(pn, pm) has a torsion-free quotient isomor-
phic to K(pn′ , pm′

), for any 1 ≤ n′ ≤ n and 1 ≤ m′ ≤ m. In particular, when working
with the group K(p, pm), we have that if Nm′ is the normal closure on K(p, pm) of the
subgroup

〈(ap)t(pm′
,b), (bpm′

)t(p,a), [c, bpm′

]〉,
then K(p, pm)/Nm′ ∼= K(p, pm′

). In this case, for 1 ≤ m′ ≤ m− 1, we have

Rm′ = Q⊗ (Nm′ ∩ V ) =

p−1⊕
i=1

m⊕
j=m′+1

M1ji

m⊕
j=m′+1

M2j.
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Proposition 3.3 The group K(p, pm) has no torsion-free quotient with commutator
quotient isomorphic to Cp × Cpm.

Proof. Let V be the translation subgroup of K(p, pm), M be the module Q⊗V and N
be a non-trivial normal subgroup of K(p, pm). Then R = Q⊗ (N ∩V ) is a non-trivial
submodule of M , and it should be the sum of some of the mp+1 submodules obtained
in the decomposition of M . Suppose that K(p, pm)/N is torsion-free. It follows from
Lemma 3.1 that M3, M11i

6⊆ R. We divide the possibilities for R in 2 cases.
First suppose that M21 6⊆ R. Then it follows from Lemma 2.2 and the previous

remark that K(p, pm)/N has a torsion-free quotient isomorphic to K(p, p). Since
K(p, p) has commutator quotient isomophic to Cp2 ×Cp2 , it is clear that K(p, pm)/N
can not have commutator quotient isomorphic to Cp × Cpm .

Suppose now that M21 ⊆ R. If m = 1, then K(p, pm)/N is not torsion-free, since
ap ∈ M21. Consider then m ≥ 2. We ask which of the submodules M12i

, M22 are
contained in R. It follows from Lemma 3.1 that M12i

can not be contained in R, since
(abkp)pm ∈ M21 ⊕M12i

for 1 ≤ i ≤ p − 1 and k + i = pm−1. If M22 ⊆ R, we repeat
this analisys, this time with the submodules M13i

, M23, and so on. Since ap ∈ M2,
there exists 2 ≤ s ≤ m, such that M21 ⊕ . . . ⊕M2(s−1) ⊆ R, and M1si

, M2s 6⊆ R, for
1 ≤ i ≤ p− 1.

Now we apply Proposition 3.2 to the group K(p, ps). If N2 is the normal closure on

K(p, ps) of the subgroup generated by (ap)t(p,bps−1
), then H = K(p, ps)/N2 is torsion-

free and has commutator quotient isomorphic to Cp2×Cps+1 . However it follows again
from Lemma 2.2 and the previous remark that K(p, pm)/N has a torsion-free quotient
isomorphic to H, and therefore can not have commutator quotient Cp × Cpm .

We are now able to prove Theorem A.

Theorem A. There exists a finitely generated torsion-free metabelian group G with
commutator quotient isomorphic to Cpn × Cpm if and only if n,m ≥ 2.

Proof. By the result of Proposition 3.2, it remains to show that there is no finitely
generated, torsion-free metabelian group with commutator quotient isomorphic to
Cp × Cpm , for m ≥ 1. Suppose that there exists a metabelian group of this type. If
x, y ∈ G are the generators of G modulo G′ and H = 〈x, y〉, then it follows from
Theorem 2 of [5] that H is a 2-generated, metabelian Bieberbach group, with

H

H ′
∼=

G

G′
∼= Cp × Cpm .

Furthermore, if we denote by VH the translation subgroup of H, we have that H ′ ≤ VH ,
and Theorem A. of [3] tells us that H is isomorphic to a torsion-free quotient of
K(p, pm). However, it follows from the previous Proposition that K(p, pm) does not
have a torsion-free quotient of this type, and we reach a contradiction.
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We now compute the torsion-free quotients for some other groups K(pn, pm), using
the method described in Section 2. We illustrate this method with the calculations
for K(p, p2). In [4], one can find the calculations for K(2, 8) and K(4, 4).

4 Torsion-free quotients of K(p, p2)

Let

K(p, p2) =
〈
a, b | (ap)t(p2,b), (bp2

)t(p,a), [[a, b], ap] ,
[
[a, b], bp2

]
, metabelian

〉
.

The group K(p, p2) is a Bieberbach group of dimension p3 − 1, with point-group
isomorphic to Cp × Cp2 and commutator quotient isomorphic to Cp3 × Cp3 . Let V
denote once more the translation subgroup of G = K(p, p2) and c = [a, b]. It follows
from Section 2 that the module M = Q⊗V decomposes as a sum of 2p+1 irreducible,
non-isomorphic submodules

M =

p−1⊕
i=1

2⊕
j=1

M1ji

2⊕
j=1

M2j

⊕
M3,

where M11i
, M21, M3 have dimension p − 1 and M12i

, M22 have dimension p(p − 1).
The actions of a and b on these submodules were described in the previous Section.

We have that bp2 ∈ M3 and ap ∈ M2. Furthermore, (ap)t(p,bp) ∈ M21 and (ap)t(p,b) ∈
M22, and both are non trivial. It follows from Lemma 3.1 that

(abk)p2 ∈ M11i

for 1 ≤ i ≤ p− 1 and k + i = p2, and

(abkp)p2 ∈ M21 ⊕M12i

for 1 ≤ i ≤ p− 1 and k + i = p. For the last case, we have

((abkp)p)t(p,bp) = (ap)t(p,bp) + kpbp2 − c.t(kp, B)
p−1∑
i=1

t(i, A)(Bkp)it(p, Bkp)

= (ap)t(p,bp) + kpbp2

−c.(1 + Bp + . . . + Bp(k−1))t(p, B)t(p, Bp)
p−1∑
i=1

t(i, A)(Bkp)i

= (ap)t(p,bp) + kpbp2 − kc.t(p2, B)l(p, A)
= (ap)t(p,bp) ∈ M21,

and 0 6= ((abkp)p)t(p,b) ∈ M12i
.
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Lemma 4.1 For 1 ≤ i ≤ p− 1, we have (bp)t(p,ai) ∈ M22⊕M12k
, where ik ≡ 1mod p.

Proof. On writing additively, we have

(bp)t(p,ai) = bp2 − c.t(p, B)t(i, A)

p−1∑
j=1

t(j, Ai)Bp(p−1−j).

If we show that (bp)t(p,ai)(a−1)(a−bkp) = 0, then (bp)t(p,ai) ∈ M21 ⊕ M22 ⊕ M12k
would

follow. First we calculate

(bp)t(p,ai)(a−1) = (bp2
)a−1 − c.t(p, B)(Ai − 1)

∑p−1
j=1 t(j, Ai)Bp(p−1−j)

= −c.t(p2, B)− c.t(p, B)
∑p−1

j=1(A
ij − 1)Bp(p−1−j)

= −c.t(p2, B) + c.t(p, B)t(p, Bp)− c.t(p, B)
∑p−1

j=0 AijBp(p−1−j)

= −c.t(p, B)
∑p−1

j=0 AijBp(p−1−j).

Now we write s = p− 1− j. Then

(bp)t(p,ai)(a−1)(a−bkp) = −c.t(p, B)(A−Bkp)
∑p−1

j=0 AijBp(p−1−j)

= −c.t(p, B)
∑p−1

s=0 Ai(p−1−s)+1Bps+

+c.t(p, B)
∑p−1

s=0 Ai(p−1−s)Bp(s+k),

and after reordering the terms of c.t(p, B)
∑p−1

s=0 Ai(p−1−s)Bp(s+k), we have

c.t(p, B)
∑p−1

s=0 Ai(p−1−s)Bp(s+k) = c.t(p, B)
∑p−1

s=0 Ai(p−1−s)Bp(s+k)

= c.t(p, B)
∑p−1

s=0 Ai(p−1−s+k)Bps

= c.t(p, B)
∑p−1

s=0 Ai(p−1−s)+1Bps,

since ik ≡ 1mod p. Thus (bp)t(p,ai)(a−1)(a−bkp) = 0 and

(bp)t(p,ai) ∈ M21 ⊕M22 ⊕M12k
.

To prove that (bp)t(p,ai) ∈ M22 ⊕M12k
, it is enough to show that (bp)t(p,ai)t(p,bp) = 0.

Then

(bp)t(p,ai)t(p,bp) = pbp2 − c.t(p, B)t(p, Bp)t(i, A)
∑p−1

j=1 t(j, Ai)Bp(p−1−j)

= pbp2 − c.t(p2, B)t(i, A)
∑p−1

j=1 t(j, Ai)

= pbp2 − c.t(p2, B)t(i, A)l(p, Ai).

Now we have

c.l(p, Ai)(Ai − 1) = c.(t(p, Ai)− p) = c.(t(p, A)− p) = c.d(A)l(p, A)

and therefore
c.(l(p, Ai)t(i, A)− l(p, A))d(A) = 0,
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and c.l(p, Ai)t(i, A)− c.l(p, A) ∈ M2. Thus

c.l(p, Ai)t(i, A) = c.l(p, A) + m2,

where m2 ∈ M2. However, since m2.t(p
2, B) = 0, we have

(bp)t(p,ai)t(p,bp) = pbp2 − c.t(p2, B)t(i, A)l(p, Ai)

= pbp2 − c.t(p2, B)l(p, A) = 0,

and therefore, for 1 ≤ i ≤ p− 1, we have (bp)t(p,ai) ∈ M22⊕M12k
, where ik ≡ 1mod p.

Furthermore, we can easily verify that the components of it in both submodules are
non-trivial.

Proposition 4.2 The group K(p, p2) has 2p−2
p

+2 proper, non-isomorphic torsion-free
quotients.

Proof. Let N E G = K(p, p2). Then R = Q ⊗ (N ∩ V ) is sum of some of the 2p + 1
submodules obtained in the decomposition of M . Therefore we have 22p+1−1 cases to
study (we exclude the trivial case). It follows from Lemma 2.2 that for any possibility
for R being studied, there will be at most one possible N E K(p, p2), such that
Q⊗ (N ∩ V ) = R and K(p, p2)/N is torsion-free.

Since bp2 ∈ M3 and (abk)p2 ∈ M11i
, where k + i = p2, we have that M3, M11i

6⊆ R.
Thus we have 2p+1− 1 cases to study. If M21 ⊆ R, it follows from Lemma 3.1 that no
other submodule of M can be contained in R.

Let N = 〈(ap)t(p,bp)〉G. It is clear that Q ⊗ N = M21. Now, in Proposition 3.2 in
showed that

G

N
∼=

〈
a, b | (ap)t(p,bp), (bp2

)t(p,a), [[a, b] , ap] ,
[
[a, b] , bp2

]
, metabelian

〉
is a Bieberbach group of dimension p3− 1− p+1 = p3− p, point-group isomorphic to
Cp × Cp2 and commutator quotient Cp2 × Cp3 . Notice that this group has no proper
torsion-free quotients. We denote it by TM .

Now R can be equal to the sum of any of the submodules M12j
and M22. Thus

we have 2p − 1 cases to study. Once we find N E V , such that Q ⊗ N = R and V
N

is torsion-free, that must be enough, since it follows from Lemma 2.2 and the remark
before Proposition 3.3 that the group G

N
will have a quotient isomorphic to K(p, p),

with the kernel of the epimorphism contained in V
N

.
Let R be equal to one of these submodules, for instance M22. If N = 〈(ap)t(p,b)〉G,

then Q ⊗ N = M22 and if we compute the Smith Normal Form for the matrix of
generators of V

N
, we can show in a similar manner to the proof of Proposition 3.2, that

V
N

is torsion-free. Thus

G

N
∼=

〈
a, b | (ap)t(p,b), (bp2

)t(p,a), [[a, b] , ap] ,
[
[a, b] , bp2

]
, metabelian

〉
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is a Bieberbach group of dimension p3−1−p2 +p = (p2 +1)(p−1). It also has point-
group isomorphic to Cp × Cp2 and commutator quotient isomorphic to Cp2 × Cp3 .
All the remaining cases for R being equal to one of the submodules M12j

, M22 is
isomophic to the group above, by the isomorphism induced by the automorphism of
K(p, p2) given by a 7→ abp, b 7→ b; see [3]. We denote this group by T1.

Now suppose R is sum of two of the submodules M12j
, M22. If p = 2, then

G
N
∼= K(2, 2). If p is odd, then we have

(
p
2

)
possibilities in this case, but using once

more the isomorphism defined above, we can suppose that M22 ⊆ R and we have
1
p

(
p
2

)
= p−1

2
cases to study. We have seen that

(bp)t(p,ai) ∈ M22 ⊕M12k
,

where ik ≡ 1mod p. Let Nk = 〈(ap)t(p,b), (bp)t(p,ai)〉G, for 1 ≤ k ≤ p−1
2

. We can show
again that V

Nk
is torsion-free, since Nk is a pure submodule of V . And because G

Nk
has

a quotient isomorphic to K(p, p), with the kernel contained in V
Nk

, we have that

G

Nk

∼=
〈
a, b | (ap)t(p,b), (bp)t(p,ai), (bp2

)t(p,a), [[a, b] , ap] ,
[
[a, b] , bp2

]
, metabelian

〉
is a Bieberbach group of dimension p3 − 1 − 2(p2 − p), point-group isomorphic to
Cp×Cp2 and commutator quotient Cp2 ×Cp2 . There are p−1

2
groups and applying the

Theorem 2.2, Chapter III of [2], we can show that they are all non-isomorphic, since
there is not a semi-linear homomorphism (f, σ) between their translation subgroups,
such that f(m.AiBj) = f(m).σ(AiBj). We denote these groups by T21, T22, . . . , T2i2 ,
where i2 = p−1

2
.

If R is equal to sum of n submodules, 3 ≤ n ≤ p−1, then using the automorphism
defined above, we can suppose that M22 ⊆ R and there are 1

p

(
p
n

)
= in non-isomorphic

torsion-free quotients (using again Theorem 2.2, Chapter III of [2]), defined as follow-
ing :

For each n, we obtain Rk, 1 ≤ k ≤ in, and define Nk = V ∩Rk. Then Nk is a pure
submodule of V and V

Nk
is torsion-free, Since G

Nk
has quotient isomophic to K(p, p),

with kernel contained in V
Nk

, we have that G
Nk

is a Bieberbach group, of dimension

p3 − 1 − n(p2 − p). Furthermore, G/Kk has point-group isomorphic to Cp × Cp2

(otherwise it would be isomorphic to K(p, p)) and commutator quotient isomorphic
to Cp2 ×Cp2 . Indeed, they are all quotients of some of the T2j defined above and have
K(p, p) as quotient. And of course these groups have commutator quotient isomophic
to Cp2×Cp2 . For each n, we have in = 1

p

(
p
n

)
quotients, that we denote by Tn1, . . . , Tnin .

And finally, if R is sum of p submodules M22, M12j
, we have G

N
isomorphic to

K(p, p). Thus we have a total of 2p−2
p

+2 proper, non-isomorphic quotients of K(p, p2).

Notice that TM and K(p, p) are the only ones that have no proper torsion-free quo-
tient.
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In particular, when p = 2, the group K(2, 4) has 3 proper, non-isomorphic torsion-
free quotients, given by:

H1 = 〈a, b | (a2)1+b2 , (b4)1+a, [[a, b], b4], [[a, b], a2], metabelian〉
H2 = 〈a, b | (a2)1+b, (b4)1+a, [[a, b], b4], [[a, b], a2], metabelian〉
K(2, 2) = 〈a, b | (a2)1+b, (b2)1+a, [[a, b], b2], [[a, b], a2], metabelian〉,

where H1 and H2 have dimension 6 and 5, respectively. Both have point-group iso-
morphic to C2 × C4 and commutator quotient C4 × C8.

We should notice that eventhough for p odd, we found torsion-free quotients with
point-group Cp ×Cp2 and commutator quotient Cp2 ×Cp2 , this did not happen when
p = 2.

5 Torsion-free quotients of K(2, 8) and K(4, 4)

Using the method of the previous Section, we are able to produce the following com-
plete list of torsion-free quotients of K(2, 8) and K(4, 4); the proof can be found in [4].

Proposition 4.4 of [4] The group K(2, 8) has 12 proper, non-isomorphic torsion-free
quotients.

Q1 = 〈a, b | (a2)(1+b2)(1+b4), (b8)t(2,a), [[a, b], b8], [[a, b], a2], metabelian〉
Q2 = 〈a, b | (a2)(1+b)(1+b4), (b8)t(2,a), [[a, b], b8], [[a, b], a2], metabelian〉
Q3 = 〈a, b | (a2)t(8,b), (b8)t(2,a), ((ab2)4)1+b, [[a, b], b8], [[a, b], a2], metabelian〉
Q4 = 〈a, b | (a2)t(4,b), (b8)t(2,a), [[a, b], b8], [[a, b], a2], metabelian〉
Q5 = 〈a, b | (a2)1+b, (b8)t(2,a), [[a, b], b8], [[a, b], a2], metabelian〉
Q6 = 〈a, b | (a2)1+b2 , (b8)t(2,a), [[a, b], b8], [[a, b], a2], metabelian〉
Q7 = 〈a, b | (a2)1+b4 , (b8)t(2,a), [[a, b], b8], [[a, b], a2], metabelian〉
Q8 = 〈a, b | (a2)t(4,b), (b8)t(2,a), ((ab2)4)1+b, b8[a, b](1+b)(a−b4), [[a, b], b8], [[a, b], a2], metab.〉
Q9 = K(2, 4)

Q10 = H1 = 〈a, b | (a2)1+b2 , (b4)t(2,a), [[a, b], b4], [[a, b], a2], metabelian〉
Q11 = H2 = 〈a, b | (a2)1+b, (b4)t(2,a), [[a, b], b4], [[a, b], a2], metabelian〉
Q12 = K(2, 2).

The groups Q1, Q2, Q3 and Q4 have point-group isomorphic to C2 × C8 and
commutator quotient C8 × C16, with dimensions 14, 13, 13 and 11, respectively.

The groups Q5, Q6 and Q7 have point-group isomorphic to C2×C8 and commutator
quotient C4 × C16, with dimensions 9, 10 and 12, respectively.

The group Q8 has point-group isomorphic to C2×C8, commutator quotient C8×C8

and dimension 9.
The groups Q9, Q10, Q11 and Q12 are quotients of K(2, 4) and have already been

described.
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It follows from the lattice of Λ2,1,3 (Figure 1) that Q7, H1 and K(2, 2) have no
proper torsion-free quotients.

Proposition 4.5 of [4] The group K(4, 4) has 19 proper, non-isomorphic torsion-free
quotients.

S1 = 〈a, b | (a4)1+b2 , (b4)t(4,a), [[a, b], b4], [[a, b], a4], metabelian〉
S2 = 〈a, b | (a4)1+b, (b4)t(4,a), [[a, b], b4], [[a, b], a4], metabelian〉
S3 = 〈a, b | (a4)1+b2 , (b4)1+a2

, [[a, b], b4], [[a, b], a4], metabelian〉
S4 = 〈a, b | (a4)1+b2 , (b4)1+a, [[a, b], b4], [[a, b], a4], metabelian〉
S5 = 〈a, b | (a4)1+b, (b4)1+a, [[a, b], b4], [[a, b], a4], metabelian〉
S6 = 〈a, b | (b4)1+a, ((a2b)4)1+a, (a2)(1+b).(1+b2), [[a, b], b4], [[a, b], a4], metabelian〉
S7 = 〈a, b | (a4)1+b2 , (b4)1+a2

, ((ab)4)1+a2
, [[a, b], b4], [[a, b], a4], metabelian〉

S8 = 〈a, b | (a4)1+b2 , (b4)1+a2
, ((ab)4)1+a, [[a, b], b4], [[a, b], a4], metabelian〉

S9 = 〈a, b | (a4)1+b2 , (b4)1+a, ((a2b)4)1+a, (a2)(1+b).(1+b2), [[a, b], b4], [[a, b], a4], metabelian〉
S10 = 〈a, b | (a4)1+b2 , (b4)1+a, ((ab)4)1+a, [[a, b], b4], [[a, b], a4], metabelian〉
S11 = 〈a, b | (a4)1+b, (b4)1+a, ((a2b)4)1+a, (a2)(1+b).(1+b2), [[a, b], b4], [[a, b], a4], metabelian〉
S12 = 〈a, b | (a4)1+b, (b4)1+a, ((ab)4)1+a, [[a, b], b4], [[a, b], a4], metabelian〉
S13 = 〈a, b | (a4)1+b, (b4)1+a, ((ab3)4)1+a, [[a, b], b4], [[a, b], a4], metabelian〉
S14 = 〈a, b | (a4)1+b, ((ab)4)1+b, (b4)1+a, ((a2b)4)1+a, (a2)(1+b).(1+b2), [a, b]1+b+a3+ab,

[[a, b], b4], [[a, b], a4], metabelian〉
S15 = 〈a, b | (a2)1+b2 , (a4)t(4,b), (b4)1+a, [[a, b], b4], [[a, b], a4], metabelian〉
S16 = K(2, 4) = 〈a, b | (a2)t(4,b), (b4)1+a, [[a, b], b4], [[a, b], a2], metabelian〉
S17 = H1 = 〈a, b | (a2)1+b2 , (b4)1+a, [[a, b], b4], [[a, b], a2], metabelian〉
S18 = H2 = 〈a, b | (a2)1+b, (b4)1+a, [[a, b], b4], [[a, b], a2], metabelian〉
S19 = K(2, 2) = 〈a, b | (a2)1+b, (b2)1+a, [[a, b], b2], [[a, b], a2], metabelian〉.

The groups S1 and S2 have point-group C4 × C4, commutator quotient C8 × C16,
and dimensions 14 and 13, respectively.

The groups S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13 and S14 have all point-
group C4×C4 and commutator quotient C8×C8, with dimensions 13, 12, 11, 11, 12,
11, 10, 10, 9, 9, 9 and 7, respectively.

The group S15 has point-group isomorphic to C4×C4, commutator quotient C4×C8

and dimension 8.
The groups S16, S17, S18 and S19 are quotients of K(2, 4) and have already been

described.
It follows from the lattice of Λ2,2,2 (Figure 2)that the groups S7, S8, H1 and K(2, 2)

have no proper torsion-free quotients.
From the list of quotients of K(4, 4), we can obtain the following characterization

of K(2, 2).
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Theorem B. Let G be a finitely generated, torsion-free metabelian group, with com-
mutator quotient isomorphic to C4 × C4. Then G is isomorphic to

K(2, 2) =
〈
a, b | (a2)1+b, (b2)1+a,

[
[a, b], a2

]
,
[
[a, b], b2

]
, metabelian

〉
,

the fundamental group of the Hantzsche-Wendt manifold.

Proof. Let a, b ∈ G be the generators of Gmodulo G′ and H = 〈a, b〉. Then G = HG′

and it follows from Theorem 2 of [5] that H is a 2-generated torsion-free metabelian
group, with

H

H ′
∼=

G

G′
∼= C4 × C4.

Furthermore, both G and H are Bieberbach groups. We denote by VH the trans-
lation subgroup of H. Since H ′ ≤ VH , then it follows from Theorem A of [3] that
H is isomorphic to a torsion-free quotient of K(4, 4). Now, by the list of torsion-
free quotients of K(4, 4) given above, the only torsion-free quotient of K(4, 4) with
commutator quotient isomorphic to C4 × C4 is K(2, 2). Thus H ∼= K(2, 2).

Furthermore, we can repeat part of the proof of Proposition 2.3 of [3] and show
that G′ = [G′, H]H ′. Then we define the normal subgroup N = (G′)2H ′, and since
G is finitely generated, we have that G

N
is a finite 2-group. Now we can compute the

second and third terms of the lower central series of G
N

Γ2

(
G

N

)
=

[
G

N
,
G

N

]
=

G′N

N
=

G′

N

and

Γ3

(
G

N

)
=

[
G′

N
,
G

N

]
=

[G′, G]N

N
=

[G′, G′H]N

N
=

[G′, H]H ′(G′)2

N
=

G′

N
.

Thus Γ2(
G
N

) = Γ3(
G
N

), and because G
N

is nilpotent, G′ = N = (G′)2H ′. Now we can
show that

dim(H) = rk(H ′) = rk(G′) = dim(G).

Thus G is also a 3-dimensional Bieberbach group, with commutator quotient iso-
morphic to C4 × C4. By [1], we have that G is isomorphic to the fundamental group
of the Hantzsche-Wendt manifold, that is, G ∼= K(2, 2).
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