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Abstract

A ternary Permutation-CSP is specified by a subset Π of the symmetric
group S3. An instance of such a problem consists of a set of variables V and
a multiset of constraints, which are ordered triples of distinct variables of V.
The objective is to find a linear ordering α of V that maximizes the number of
triples whose rearrangement (under α) follows a permutation in Π. We prove
that every ternary Permutation-CSP parameterized above average has a kernel
with a quadratic number of variables.

1 Introduction

For maximization problems whose lower bound on the solution value is a monoton-
ically increasing unbounded function of the instance size, the standard parameter-
ization by solution value is trivially fixed-parameter tractable. (Basic notions on
parameterized algorithmics used in this paper are given in Section 2.) Mahajan and
Raman [27] were the first to recognize both practical and theoretical importance of
parameterizing maximization problems differently: above tight lower bounds. They
considered Max Sat with the tight lower bound m/2, where m is the number of
clauses, and the problem is to decide whether we can satisfy at least m/2+ k clauses,
where k is the parameter. Mahajan and Raman proved that this parameterization of
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Max Sat is fixed-parameter tractable by obtaining a kernel with O(k) variables. De-
spite clear importance of parameterizations above tight lower bounds, until recently
only a few sporadic non-trivial results on the topic were obtained [19, 22, 23, 27, 31].

Massive interest in parameterizations above tight lower bounds came with the pa-
per of Mahajan et al. [28], who stated several questions on fixed-parameter tractabil-
ity of maximization problems parameterized above tight lower bounds, some of which
are still open. Several of those questions were answered by newly-developed meth-
ods [1, 9, 10, 20, 21], using algebraic, probabilistic and harmonic analysis tools.
In particular, a probabilistic approach allowed Gutin et al. [20] to prove the exis-
tence of a quadratic kernel for the parameterized Betweenness Above Average
(Betweenness-AA) problem, thus, answering an open question of Benny Chor [29].

Betweenness is just one representative of a rich family of ternary Permutation
Constraint Satisfaction Problems (CSPs). A ternary Permutation-CSP is specified by
a subset Π of the symmetric group S3. An instance of such a problem consists of a set
of variables V and a multiset of constraints, which are ordered triples of distinct vari-
ables of V. The objective is to find a linear ordering α of V that maximizes the number
of triples whose rearrangement (under α) follows a permutation in Π. Important spe-
cial cases are Betweenness [6, 16, 20, 30] and Circular Ordering [15, 17], which
find applications in circuit design and computational biology [8, 30], and in qualitative
spatial reasoning [26], respectively.

In this paper, we prove that every ternary Permutation-CSP has a kernel with a
quadratic number of variables, when parameterized above average (AA), which is a
tight lower bound. This result is obtained by first reducing all the problems to just
one, Linear Ordering-AA, then showing that Linear Ordering-AA has a ker-
nel with a quadratic number of variables and constraints and, thus, concluding that
there is a bikernel with a quadratic number of variables from each of the problems
AA to Linear Ordering-AA. Using the last result, we prove that there is a bikernel
with a quadratic number of variables from every ternary Permutation-CSP to most
ternary Permutation-CSPs. This implies the existence of kernels with a quadratic
number of variables for most ternary Permutation-CSPs. The remaining ternary
Permutation-CSPs are proved to be equivalent to Acyclic Subdigraph-AA (a bi-
nary Permutation-CSP defined in Section 6) and since Acyclic Subdigraph-AA,
as shown in [21], has a kernel with a quadratic number of variables, the remaining
ternary Permutation-CSPs have a kernel with a quadratic number of variables.

The most difficult part of this set of arguments is the proof that Linear Ordering-
AA has a kernel with quadratic numbers of variables and constraints. We can show
that if we want to prove this in a similar way as for Betweenness-AA (that is, elimi-
nate all instances of Linear Ordering-AA whose optimal solution coincides with the
lower bound) we need an infinite number of reduction rules, see Section 8 for details.
So, determining fixed-parameter tractability of Linear Ordering-AA turns out to
be much harder than that for Betweenness-AA. Fortunately, we found a nontrivial
way of reducing Linear Ordering-AA to a combination of Betweenness-AA and
Acyclic Subdigraph-AA. Using further probabilistic and deterministic arguments
for the mixed problem, we prove that Linear Ordering-AA has a kernel with a
quadratic number of variables and constraints.

The rest of the paper is organized as follows. In Section 2, we give some basic
notions on parameterized algorithms and complexity. In Section 3, we define and

2



discuss ternary Permutation-CSPs; we also reduce all nontrivial ternary Permutation-
CSPs AA to Linear Ordering-AA. Some NP-hardness results of this section are
proved in Section 4. In Section 5, we describe probabilistic and harmonic analysis
tools used in the paper. In Section 6, we obtain some results on Betweenness-AA
and Acyclic Subdigraph-AA needed in the following section, where we prove that
Linear Ordering-AA has a quadratic kernel. In Section 7, we also prove our main
result, Theorem 5, that every ternary Permutation-CSs parameterized above average
has a kernel with a quadratic number of variables. In Section 8, we show that Linear
Ordering-AA has an infinite number of natural reduction rules. Finally, in Section 9
we state and discuss open problems for further research.

2 Basics on Parameterized Algorithmics

Parameterized complexity theory is a multivariate framework for a refined analysis of
hard (NP-hard) problems, which was introduced by Downey and Fellows in a series
of ground breaking papers in the 1990s [11, 12]. A parameterized problem is a subset
L ⊆ Σ∗×N over a finite alphabet Σ; L is fixed-parameter tractable if the membership
of an instance (I, k) in Σ∗ × N can be decided in time f(k) · |I|O(1) where f is a
function of the parameter k only [13, 14, 29]. (We would like f(k) to grow as slowly
as possible.)

Given a pair L,L′ of parameterized problems, a bikernelization from L to L′ is a
polynomial-time algorithm that maps an instance (x, k) to an instance (x′, k′) (the
bikernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤ h(k), and
(iii) |x′| ≤ g(k) for some functions h and g. The function g(k) is called the size of the
bikernel. A kernelization of a parameterized problem L is simply a bikernelization
from L to itself and a bikernel is a kernel when L = L′.

The notion of a bikernelization was introduced by Alon et al. [1], who observed
that a decidable parameterized problem L is fixed-parameter tractable if and only if
it admits a bikernelization to a decidable parameterized problem L′. Not every fixed-
parameter tractable problem has a kernel of polynomial size unless NP ⊆ coNP/poly
[3, 4, 2]; low degree polynomial size kernels are of main interest due to applications.

3 Permutation CSPs Parameterized Above Aver-
age

Let V be a set of n variables. A linear ordering of V is a bijection α : V →
[n], where [n] = {1, 2, . . . , n}. The symmetric group on three elements is S3 =
{(123), (132), (213), (231), (312), (321)}. A constraint set over V is a multiset C of
constraints, which are permutations of three distinct elements of V . For each subset
Π ⊆ S3 and a linear ordering α of V , a constraint (v1, v2, v3) ∈ C is Π-satisfied by α if
there is a permutation π ∈ Π such that α(vπ(1)) < α(vπ(2)) < α(vπ(3)). If Π is fixed,
we will simply say that (v1, v2, v3) ∈ C is satisfied by α.

For each subset Π ⊆ S3, the problem Π-CSP is to decide whether for a given pair
(V, C) of variables and constraints there is a linear ordering α of V that Π-satisfies
all constraints in C. A complete dichotomy of the Π-CSP problems with respect
to their computational complexity was given by Guttmann and Maucher [25]. For

3



Complexity to Sa-
Π ⊆ S3 Common Problem Name isfy All Constraints

Π0 = {(123)} Linear Ordering polynomial
Π1 = {(123), (132)} polynomial
Π2 = {(123), (213), (231)} polynomial
Π3 = {(132), (231), (312), (321)} polynomial
Π4 = {(123), (231)} NP-complete
Π5 = {(123), (321)} Betweenness NP-complete
Π6 = {(123), (132), (231)} NP-complete
Π7 = {(123), (231), (312)} Circular Ordering NP-complete
Π8 = S3 \ {(123), (231)} NP-complete
Π9 = S3 \ {(123), (321)} Non-Betweenness NP-complete
Π10 = S3 \ {(123)} NP-complete

Table 1: Ternary Permutation-CSPs (after symmetry considerations)

that, they reduced 2|S3| = 64 problems by two types of symmetry. First, two problems
differing just by a consistent renaming of the elements of their permutations are of the
same complexity. Second, two problems differing just by reversing their permutations
are of the same complexity. The symmetric reductions leave 13 problems Πi-CSP,
i = 0, 1, . . . , 12, whose time complexity is polynomial for Π11 = ∅ and Π12 = S3 and
was otherwise established by Guttmann and Maucher [25], see Table 1.

The maximization version of Πi-CSP is the problem Max-Πi-CSP of finding
a linear ordering α of V that Πi-satisfies a maximum number of constraints in C.
Clearly, for i = 4, . . . , 10 the problem Max-Πi-CSP is NP-hard. In Section 4 we
prove that Max-Πi-CSP is NP-hard also for i = 0, 1, 2, 3.

Now observe that given a variable set V and a constraint multiset C over V , for a
random linear ordering α of V , the probability of a constraint in C being Π-satisfied
by α equals |Π|

6 . Hence, the expected number of satisfied constraints from C is |Π|
6 |C|,

and thus there is a linear ordering α of V satisfying at least |Π|
6 |C| constraints (and

this bound is tight). A derandomization argument leads to |Πi|
6 -approximation algo-

rithms for the problems Max-Πi-CSP [6]. No better constant factor approximation
is possible assuming the Unique Games Conjecture [6].

We study the parameterization of Max-Πi-CSP above tight lower bound:

Π-Above Average (Π-AA)
Input: A finite set V of variables, a multiset C of ordered triples of distinct

variables from V and an integer k ≥ 0.
Parameter: k.
Question: Is there a linear ordering α of V such that at least |Π|

6 |C|+ k constraints
of C are Π-satisfied by α?

For example, choose Π = {(123), (321)} for Betweenness-AA. We will call Π0-
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AA the Linear Ordering-AA problem.
Let Π be a subset of S3. Clearly, if Π is the empty set or equal to S3 then the

corresponding problem Π-AA can be solved in polynomial time. The following simple
result allows us to study the Π-AA problems using Π0-AA.

Proposition 1. Let Π be a subset of S3 such that Π /∈ {∅,S3}. There is a polynomial
time transformation f from Π-AA to Π0-AA such that an instance (V, C, k) of Π-AA
is a “yes”-instance if and only if (V, C0, k) = f(V, C, k) is a “yes”-instance of Π0-AA.

Proof. From an instance (V, C, k) of Π-AA, construct an instance (V, C0, k) of Π0-AA
as follows. For each triple (v1, v2, v3) ∈ C, add |Π| triples (vπ(1), vπ(2), vπ(3)), π ∈ Π,
to C0.

Observe that a triple (v1, v2, v3) ∈ C is Π-satisfied if and only if exactly one of the
triples (vπ(1), vπ(2), vπ(3)), π ∈ Π, is Π0-satisfied. Thus, |Π|

6 |C| + k constraints from C
are Π-satisfied if and only if the same number of constraints from C0 are Π0-satisfied.
It remains to observe that |Π|

6 |C| + k = 1
6 |C0| + k as |C0| = |Π| · |C|.

For a variable set V , a constraint multiset C over V and a linear ordering α of
V , the α-deviation of (V, C) is the number dev(V, C, α) of constraints of C that are
Π-satisfied by α minus |Π|

6 |C|. The maximum deviation of (V, C), denoted dev(V, C),
is the maximum of dev(V, C, α) over all linear orderings α of V . Now the problem
Π-AA can be reformulated as the problem of deciding whether dev(V, C) ≥ k.

4 NP-hardness of Max-Πi-CSP for i = 0, 1, 2, 3

The problem Acyclic Subdigraph is, given a directed multigraph D and an integer
k > 0, to decide whether D contains an acyclic subdigraph with at least k arcs.
Acyclic Subdigraph can be reformulated as a problem of verifying whether V has
a linear ordering α in which at least k arcs are satisfied, i.e., for each such arc (u, v)
we have α(u) < α(v). It is well-known that Acyclic Subdigraph is NP-complete.

Theorem 1. For i = 0, 1, 2, 3, problem Max-Πi-CSP from Table 1 is NP-hard.

Proof. We will consider the four cases one by one.

i = 0: Proposition 1 implies, in particular, that Max-Betweenness can be reduced
to Max-Π0-CSP. Thus, Max-Π0-CSP is NP-hard.

i = 1 : Denote constraints of Max-Π1-CSP by (u < min{v, w}). Such a constraint is
Π1-satisfied by a linear ordering α of {u, v, w} if and only if α(u) < min{α(v), α(w)}.
From an instance (D = (U,A), k) of Acyclic Subdigraph, we construct an
instance (V, C, k) of (a decision version of) Max-Π1-CSP by setting V = U∪{z}
and, for each arc (u, v) ∈ A, adding (u < min{v, z}) to C. Observe that, without
loss of generality, an optimal linear ordering of (V, C, k) has z at the end as if it
does not then moving z to the end does not falsify any constraints. Therefore
(u, v) is satisfied in D if and only if (u < min{v, z}) is Π1-satisfied in (V, C, k).

i = 2 : Denote constraints of Max-Π2-CSP by (u, v < w). Such a constraint is Π2-
satisfied by a linear ordering α of {u, v, w} if and only if α(v) < α(w). From
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an instance (D = (U,A), k) of Acyclic Subdigraph, we construct an instance
(V, C, k) of (a decision version of) Max-Π2-CSP by setting V = U ∪ {z} and,
for each arc (v, w) ∈ A, adding constraint (z, v < w) to the constraint set C.
Observe that D has a set of k arcs that form an acyclic subdigraph if and only
if there are k constraints in C that can be Π2-satisfied by a linear ordering of
V . Thus, we have reduced Acyclic Subdigraph to Max-Π2-CSP, implying
that Max-Π2-CSP is NP-hard.

i = 3 : Let us denote a constraint in MAX-Π3-CSP by (max{u, v} ̸< w). This con-
straint is Π3-satisfied by a linear ordering α if and only if w is not the last
element among u, v, w in α. Now consider an instance (V, C1, k) of MAX-Π1-
CSP, which we have shown to be NP-hard. For each constraint (u < min{v, w})
in C1 add (max{u, v} ̸< w) and (max{u, w} ≮ v) to C3. Now we will show that
(V, C1, k) is a ”yes”-instance if and only if (V, C3, |C1| + k) is a ”yes”-instance
of MAX-Π3-CSP. Let α be any linear ordering of V and let α′ be the reverse
ordering. Note that (u < min{v, w}) is Π1-satisfied by α if and only if both
(max{u, v} ̸< w) and (max{u,w} ̸< v) are Π3-satisfied by α′. Furthermore one
of (max{u, v} ̸< w) and (max{u, w} ̸< v) is always Π3-satisfied. Therefore, at
least k constraints of C1 are Π1-satisfied by α if and only if at least 2k+(|C1|−k)
constraints of C3 are Π3-satisfied by α′. So, we have reduced MAX-Π1-CSP to
MAX-Π3-CSP, and we are done.

5 Probabilistic and Harmonic Analysis Tools

We build on the probabilistic Strictly Above Expectation method by Gutin et al. [21]
to prove non-trivial lower bounds on the minimum fraction of satisfiable constraints in
instances belonging to a restricted subclass. For such an instance with parameter k, we
introduce a random variable X such that the instance is a “yes”-instance if and only if
X takes with positive probability a value greater than or equal to k. If X happens to
be a symmetric random variable with finite second moment then P(X ≥

√
E[X2]) > 0;

it hence suffices to prove E[X2] = h(k) for some monotonically increasing unbounded
function h. (Here, P(·) and E[·] denote probability and expectation, respectively.) If
X is not symmetric then the following lemma can be used instead.

Lemma 1 (Alon et al. [1]). Let X be a real random variable and suppose that its
first, second and forth moments satisfy E[X] = 0, E[X2] = σ2 > 0 and E[X4] ≤ cσ4,
respectively, for some constant c. Then P(X > σ

2
√

c
) > 0.

We combine this result with the following result from harmonic analysis.

Lemma 2 (Hypercontractive Inequality [5, 18]). Let f = f(x1, . . . , xn) be a poly-
nomial of degree r in n variables x1, . . . , xn with domain {−1, 1}. Define a random
variable X by choosing a vector (ϵ1, . . . , ϵn) ∈ {−1, 1}n uniformly at random and
setting X = f(ϵ1, . . . , ϵn). Then E[X4] ≤ 9rE[X2]2.
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|{ϕ(u), ϕ(v), ϕ(w)}| Relation Value of Yp Prob.

1 ϕ(u) = ϕ(v) = ϕ(w) 0 1/16
2 ϕ(v) ̸= ϕ(u) = ϕ(w) −1/3 3/16
2 ϕ(v) ∈ {ϕ(u), ϕ(w)} 1/6 6/16
3 ϕ(v) is between ϕ(u) and ϕ(w) 2/3 2/16
3 ϕ(v) is not between ϕ(u) and ϕ(w) −1/3 4/16

Table 2: Distribution of Yp for constraint Bp = (v, {u,w}).

6 Betweenness and Acyclic Subdigraph Problems

Let u, v, w be variables. We denote a betweenness constraint “v is between u and w”
by (v, {u,w}), and call a 3-set S of betweenness constraints over {u, v, w} complete
if S = {(u, {v, w}), (v, {u,w}), (w, {u, v})}. Since every linear ordering of {u, v, w}
satisfies exactly one constraint in S, we obtain the following reduction.

Lemma 3. Let (V,B) be an instance of Betweenness and let α be a linear ordering
of V . Let B′ be the set of constraints obtained from B by deleting all complete subsets.
Then dev(V,B, α) = dev(V,B′, α).

An instance of Betweenness without complete subsets of constraints is called re-
duced.

Let (V,B) be an instance of Betweenness, with B = {B1, . . . , Bm}, and let ϕ be
a fixed function from V to {0, 1, 2, 3}. A linear ordering α of V is called ϕ-compatible
if for each pair u, v ∈ V with α(u) < α(v) it holds ϕ(u) ≤ ϕ(v). For a random
ϕ-compatible linear ordering π of V , define a binary random variable yp that takes
value one if and only if Bp ∈ B is satisfied by π (if Bp is falsified by π, then yp = 0).
Let Yp = E[yp] − 1/3 for each p ∈ [m], and let Y =

∑m
p=1 Yp.

Now let ϕ be a random function from V to {0, 1, 2, 3}. Then Y, Y1, . . . , Ym are
random variables. For a constraint Bp = (v, {u,w}), the distribution of Yp as it is
given in Table 2 implies that E[Yp] = 0. Thus, by linearity of expectation, E[Y ] = 0.

The following lemma was proved by Gutin et al. [20] for Betweenness in which
B is a set, not a multiset, but a simple modification of its proof gives us the following:

Lemma 4. For a reduced instance (V,B) of Betweenness, E[Y 2] ≥ 11
768m.

Proof. Observe that E[Y 2] =
∑m

l=1 E[Y 2
l ] +

∑
1≤l ̸=l′≤m E[YlYl′ ]. Using Table 2, it is

easy to see that
∑m

l=1 E[Y 2
l ] = 88

768m.
Let U = {(l, l′) : Bl, Bl′ ∈ B, l ̸= l′} be the set of all ordered index pairs

corresponding to distinct constraints in B. Let U∗ = {(l, l′) ∈ U : vars(Bl) =
vars(Bl′), Bl ̸= Bl′} and U∗∗ = {(l, l′) ∈ U : Bl = Bl′}, where vars(Bl) and
vars(Bl′) are the sets of variables of Bl and Bl′ , respectively. Taking into considera-
tion that |U∗| ≤ m and |U∗∗| ≥ 0, similarly to [20], we obtain that∑

(l,l′)∈U

E[YlYl′ ] ≥ − 66
768

m − 11
768

|U∗| + 22
768

|U∗∗| ≥ − 66
768

m − 11
768

m = − 77
768

m.
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Relation between ϕ(u) and ϕ(v) Value of Xp Prob.

ϕ(u) = ϕ(v) 0 1/4
ϕ(u) < ϕ(v) 1/2 3/8
ϕ(u) > ϕ(v) −1/2 3/8

Table 3: Distribution of Xp for an arc (u, v).

Combining this with
∑m

l=1 E[Y 2
l ] = 88

768m, we get E[Y 2] ≥ 11
768m.

Recall that in the Acyclic Subdigraph problem we are given a directed multi-
graph D = (U,A), with parallel arcs allowed, and ask for a linear ordering π of V
which maximizes the number of satisfied arcs, where an arc (u, v) ∈ A is satisfied
by π if π(u) < π(v). If π is a uniformly-at-random linear ordering of V then the
probability of an arc of D being satisfied is 1/2. Thus, there is a linear ordering π of
V in which the number of satisfied arcs is at least |A|/2. We therefore define, for a
digraph D = (U,A) and a linear ordering π of U , the π-deviation of D as the number
of arcs satisfied by π minus |A|/2, and denote it by dev(V, A, π). In the Acyclic
Subdigraph-AA problem we are given a directed multigraph D = (U,A) and asked
to decide whether there is a linear ordering π of U with π-deviation at least k, where
k is a parameter.

As every linear ordering of U satisfies exactly one of two mutually opposite arcs
(u, v) and (v, u), we obtain the following reduction.

Lemma 5. Let D = (U,A) be a directed multigraph and let π be a linear ordering of
V . Let A′ be the set of arcs obtained from A by deleting all pairs of mutually opposite
arcs. Then dev(V,A, π) = dev(V,A′, π).

A directed multigraph without mutually opposite arcs is called reduced.
Let D = (U,A) be a directed multigraph with A = {a1, . . . , am} as multiset of

arcs, and let ϕ be a fixed function from U to {0, 1, 2, 3}. For a random ϕ-compatible
linear ordering π of U , define a binary random variable xp that takes value one if
and only if ap is satisfied by π. Let Xp = E[xp] − 1/2 for each p ∈ [m] and let
X =

∑m
p=1 Xp.

Now let ϕ be a random function from U to {0, 1, 2, 3}. Then X, X1, . . . , Xm are
random variables. For an arc (u, v), the distribution of Xp as it is given in Table 3
implies that E[Xp] = 0. Thus, by linearity of expectation, E[X] = 0.

We have the following analogue of Lemma 4.

Lemma 6. For reduced directed multigraphs D it holds that E[X2] ≥ 1
32m.

Proof. We write E[X2] as the sum

E[X2] =
m∑

p=1

E[X2
p ] +

∑
1≤p̸=p′≤m

E[XpXp′ ]. (1)

From Table 3 it follows that E[X2
p ] = 3

16 , and hence it remains to bound the second
sum in (1). Consider any ordered pair (ap, ap′) of distinct arcs in D. If ap and ap′ are
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vertex-disjoint, then clearly E[XpXp′ ] = 0. If ap and ap′ have vertices in common, we
define

S1(u) = {(p, p′) | ap = (u, x), ap′ = (u, y), x, y ∈ V }
∪ {(p, p′) | ap = (x, u), ap′ = (y, u), x, y ∈ V }

S2(u) = {(p, p′) | ap = (u, x), ap′ = (y, u), x, y ∈ V }
∪ {(p, p′) | ap = (x, u), ap′ = (u, y), x, y ∈ V }

S3(u, v) = {(p, p′) | ap = (u, v), ap′ = (u, v)} .

By setting l(u) = |{a ∈ A : a = (u, y), y ∈ V }| and r(u) = |{a ∈ A : a = (x, u), x ∈
V }| it follows that

|S1(u)| = l(u)(l(u) − 1) + r(u)(r(u) − 1),
|S2(u)| = 2l(u)r(u).

Consider a pair (p, p′) ∈ S1(u), with say ap = (u, x), ap′ = (u, y). It is easy to
calculate that out of the 64 functions ϕ : {u, x, y} → {0, 1, 2, 3}, there are 14 functions
in which ϕ(u) < ϕ(x) and ϕ(u) < ϕ(y). Symmetrically, there are 14 functions ϕ in
which ϕ(u) > ϕ(x) and ϕ(u) > ϕ(y). In both cases, XpXp′ = 1

4 , by Table 3. Similarly,
there are 4 functions ϕ in which ϕ(u) < ϕ(x) and ϕ(u) > ϕ(y), and 4 functions ϕ in
which ϕ(u) > ϕ(x) and ϕ(u) < ϕ(y); in both cases XpXp′ = − 1

4 . For all other
functions ϕ we have that XpXp′ = 0, and thus it follows that E[XpXp′ ] = 5

64 for each
pair of arcs (ap, ap′) in S1(u).

Similarly, for each pair (p, p′) ∈ S2(u) it holds that E[XpXp′ ] = − 5
64 , and for each

pair (p, p′) ∈ S3(u, v) it holds that E[XpXp′ ] = E[X2
p ] = 3

16 .
Hence, ∑

1≤p ̸=p′≤m

E[XpXp′ ] =
∑
u∈V

5
64

|S1(u)| − 5
64

|S2(u)| +
∑

u,v∈V

w′|S3(u, v)|,

with 5
64 + 5

64 + w′ = 3
16 , because S3(u, v) = S1(u) ∩ S1(v). Thus, w′ = 1

32 , and we
obtain ∑

1≤p ̸=p′≤m

E[XpXp′ ]

=
5
64

∑
u∈V

l(u)(l(u) − 1) + r(u)(r(u) − 1) − 2l(u)r(u) +
∑

u,v∈V

1
32

|S3(u, v)|

=
5
64

∑
u∈V

(l(u) − r(u))2 − l(u) − r(u) +
∑

u,v∈V

1
32

|S3(u, v)|

≥ − 5
64

∑
u∈V

l(u) + r(u) = −10
64

m,

because each arc contributes exactly one to
∑

u∈V l(u) and one to
∑

u∈V r(u). We
conclude that E[X2] ≥ 3

16m − 10
64m = 1

32m.

The following theorem was proved in [21].

Theorem 2. Acyclic Subdigraph-AA has a kernel with a quadratic number of
vertices and arcs.

9



linear ordering π constraints
of {u, v, w} satisfied by π

uvw (u, v), (v, w), (v, {u, w})
uwv (u, v)
wuv (u, v)
vuw (v, w)
vwu (v, w)
wvu (v, {u,w})

Table 4: Constraints satisfied by π.

7 Kernels for Π-AA Problems

We start from the following key construction of this paper. With an instance (V, C)
of Linear Ordering, we associate an instance (V,B) of Betweenness and two
instances (V,A′) and (V, A′′) of Acyclic Subdigraph as follows: If Cp = (u, v, w) ∈
C, then Bp = (v, {u,w}) ∈ B, a′

p = (u, v) ∈ A′, and a′′
p = (v, w) ∈ A′′.

Lemma 7. Let (V, C, k) be an instance of Linear Ordering-AA and let α be a
linear ordering of V . Then

dev(V, C, α) =
1
2

[dev(V,A′, α) + dev(V,A′′, α) + dev(V,B, α)] .

Proof. For each constraint Cp = (u, v, w) ∈ C, define a binary variable x̂′
p that takes

value one if and only if a′
p is satisfied by α. Similarly, define binary variables x̂′′

p for
arc a′′

p , ŷp for constraint Bp and ẑp for constraint Cp. To show the lemma it suffices
to prove that for each constraint Cp ∈ C and every linear ordering π of {x, y, z} it
holds that

dev(V, {Cp}, π) =
1
2
[
dev(V, {a′

p}, π) + dev(V, {a′′
p}, π) + dev(V, {Bp}, π)

]
,

where dev(V, {Cp}, π) = ẑp−1/6, dev(V, {a′
p}, π) = x̂′

p−1/2, dev(V, {a′′
p}, π) = x̂′′

p−1/2
and dev(V, {Bp}, π) = ŷp−1/3. Thus, it suffices to prove that ẑp = (x̂′

p+x̂′′
p+ŷp−1)/2.

But this expression holds, as can be seen from Table 4: if Cp is satisfied by π then all
three constraints a′

p, a
′′
p , Bp are satisfied by π, whereas if Cp is not satisfied by π then

exactly one of the three constraints a′
p, a

′′
p , Bp is satisfied by π.

Let (V, C, k) be an instance of Linear Ordering-AA, and let ϕ be a function
from V to {0, 1, 2, 3}. For a random ϕ-compatible linear ordering π of V , define a
binary random variable zp that takes value one if and only if Cp is satisfied by π. Let
Zp = E[zp] − 1/6 for each p ∈ [m], and let Z =

∑m
p=1 Zp.

Lemma 8. If Z ≥ k then (V, C, k) is a “yes”-instance of Linear Ordering-AA.

Proof. By linearity of expectation, Z ≥ k implies E[
∑m

p=1 zp] ≥ m/6 + k. Thus, if
Z ≥ k then there is a ϕ-compatible permutation π that satisfies at least m/6 + k
constraints.

10



Relation between ϕ(u), ϕ(v) and ϕ(w) X ′
p X ′′

p Yp Zp

ϕ(u) = ϕ(v) = ϕ(w) 0 0 0 0
ϕ(v) < ϕ(u) = ϕ(w) -1/2 1/2 -1/3 -1/6
ϕ(v) > ϕ(u) = ϕ(w) 1/2 -1/2 -1/3 -1/6
ϕ(v) = ϕ(u) < ϕ(w) 0 1/2 1/6 1/3
ϕ(v) = ϕ(u) > ϕ(w) 0 -1/2 1/6 -1/6
ϕ(u) < ϕ(v) = ϕ(w) 1/2 0 1/6 1/3
ϕ(u) > ϕ(v) = ϕ(w) -1/2 0 1/6 -1/6
ϕ(u) < ϕ(v) < ϕ(w) 1/2 1/2 2/3 5/6
ϕ(u) < ϕ(w) < ϕ(v) 1/2 -1/2 -1/3 -1/6
ϕ(v) < ϕ(u) < ϕ(w) -1/2 1/2 -1/3 -1/6
ϕ(v) < ϕ(w) < ϕ(u) -1/2 1/2 -1/3 -1/6
ϕ(w) < ϕ(u) < ϕ(v) 1/2 -1/2 -1/3 -1/6
ϕ(w) < ϕ(v) < ϕ(u) -1/2 -1/2 2/3 -1/6

Table 5: Values of X ′
p, X

′′
p , Yp, Zp.

Fix a function ϕ : V → {0, 1, 2, 3} and assign variables Yp, X
′
p, X

′′
p , respectively,

to the three instances of Betweenness and Acyclic Subdigraph above.

Lemma 9. For each p ∈ [m], we have Zp = 1
2

[
X ′

p + X ′′
p + Yp

]
.

Proof. Let Cp = (u, v, w) ∈ C. Table 5 shows the values of X ′
p, X

′′
p , Yp, Zp for some

relations between ϕ(u), ϕ(v) and ϕ(w). The values of X ′
p, X

′′
p and Yp can be computed

using Tables 2 and 3. In all cases of Table 5 it holds Zp = 1
2 (X ′

p + X ′′
p + Yp). Thus,

Zp = 1
2 [X ′

p + X ′′
p + Yp] for each possible relation between ϕ(u), ϕ(v) and ϕ(w).

Let X =
∑m

p=1[X
′
p + X ′′

p ], let Y =
∑m

p=1 Yp and let ϕ be a random function from
V to {0, 1, 2, 3}. Then X,X ′

1, . . . , X
′
m, X ′′

1 , . . . , X ′′
m, Y, Y1, . . . , Ym, Z, Z1, . . . , Zm are

random variables. From E[X ′] = E[X ′′] = E[Y ] = 0 it follows that E[Z] = 0.
We will be able to use Lemma 2 in the proof of Lemma 12 due to the following:

Lemma 10. The random variable Z can be expressed as a polynomial of degree 6 in
independent uniformly distributed random variables with values −1 and 1.

Proof. Consider Cp = (u, v, w) ∈ C. Let ϵu
1 = −1 if ϕ(u) = 0 or 1 and ϵu

1 = 1,
otherwise. Let ϵu

2 = −1 if ϕ(u) = 0 or 2 and ϵu
2 = 1, otherwise. Similarly, we can

define ϵv
1, ϵ

v
2, ϵ

w
1 , ϵw

2 . Now ϵu
1 ϵu

2 can be seen as a binary representation of a number
from the set {0, 1, 2, 3} and ϵu

1 ϵu
2 ϵv

1ϵ
v
2ϵ

w
1 ϵw

2 can be viewed as a binary representation of
a number from the set {0, 1, . . . , 63}, where −1 plays the role of 0. Then we can write
Zp as the polynomial

1
64

63∑
q=0

(−1)sqWq · (ϵu
1 + cuq

1 )(ϵu
2 + cuq

2 )(ϵv
1 + cvq

1 )(ϵv
2 + cvq

2 )(ϵw
1 + cwq

1 )(ϵw
2 + cwq

2 ),
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where cuq
1 cuq

2 cvq
1 cvq

2 cwq
1 cwq

2 is the binary representation of q, sq is the number of digits
equal −1 in this representation, and Wq equals the value of Zp for the case when the
binary representations of ϕ(u), ϕ(v) and ϕ(w) are cuq

1 cuq
2 , cvq

1 cvq
2 and cwq

1 cwq
2 , respec-

tively. The actual values for Zp for each case are given in the proof of Lemma 9. The
above polynomial is of degree 6. It remains to recall that Z =

∑m
p=1 Zp.

Let us consider the following natural transformation of our key construction intro-
duced in the beginning of this section. Let (V, C) be an instance of Linear Order-
ing and (V,B), (V, A′) and (V, A′′) be the associated instances of Betweenness and
Acyclic Subdigraph. Let b be the number of pairs of mutually opposite arcs in
the directed multigraph D = (V, A′ ∪A′′) that are deleted by our reduction rule, and
let r = 2(m − b). Let t be the number of complete 3-sets of constraints in B whose
deletion from B eliminates all complete 3-sets of constraints in B and let s = m− 3t.

Lemma 11. We have E[Z2] ≥ 11
3072 (r + s).

Proof. Let A = A′ ∪ A′′ = {a1, . . . , a2m} and D = (V,A). Fix a function ϕ :
V →{0, 1, 2, 3}. For a random ϕ-compatible linear ordering π of V , define a binary
random variable xi that takes value one if and only if ai is satisfied by π. Analogously,
define a binary random variable yi that takes value one if and only if Bi is satisfied by
π. Let Xi = E[xi]− 1/2 for all i = 1, . . . , 2m, let Yj = E[yj ]− 1/3 for all j = 1, . . . ,m

and let X =
∑2m

i=1 Xi, Y =
∑m

i=1 Yi. Recall that b is the number of deleted pairs of
mutually opposite arcs from D, and t is the number of complete 3-sets deleted from
B. Assume, without loss of generality, that the remaining arcs are a1, . . . , ar and the
remaining betweenness constraints are B1, . . . , Bs. Then X =

∑2m
i=1 Xi =

∑r
i=1 Xi,

Y =
∑m

i=1 Yi =
∑s

i=1 Yi and, by Lemma 9, Z = X + Y/2. Now let ϕ be a random
function from V to {0, 1, 2, 3}. We have the following:

E[Z2] = E[X2 + XY + Y 2/4] = E[X2] + E[Y 2]/4 + E

( r∑
i=1

Xi

) s∑
j=1

Yj


= E[X2] + E[Y 2]/4 +

r∑
i=1

s∑
j=1

E[XiYj ].

We will show that E[XiYj ] = 0 for any pair (i, j). Let ϕ′ : V →{0, 1, 2, 3} be defined
as ϕ′(x) = 3 − ϕ(x) for all x. Let Xi(ϕ) be the value of Xi when considering ϕ-
compatible orderings and define Xi(ϕ′), Yi(ϕ) and Yi(ϕ′) analogously. From Table 2
we note that Yj(ϕ) = Yi(ϕ′), and from Table 3 we note that Xj(ϕ) = −Xi(ϕ′). From
E[XiYj ] = 1

4|V |

∑
ϕ Xi(ϕ)Yj(ϕ) it follows that

2E[XiYj ] = 2

 1
4|V |

∑
ϕ

Xi(ϕ)Yj(ϕ)

 =
1

4|V |

∑
ϕ

[Xi(ϕ)Yj(ϕ) + Xi(ϕ′)Yj(ϕ′)] = 0.

Therefore, E[Z2] = E[X2]+E[Y 2]/4. It follows from Lemmas 4 and 6 that E[X2] ≥
r/32 and E[Y 2] ≥ 11

768s. We conclude that E[Z2] ≥ 11
3072 (r + s).
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Lemma 12. There is a constant c > 0 such that if r + s ≥ ck2, then (V, C, k) is a
“yes”-instance of Linear Ordering-AA.

Proof. By Lemmas 10 and 2, we have E[Z4] ≤ 96(E[Z2])2. As E[Z] = 0, it follows

from Lemma 1 that P
(

Z >

√
E[Z2]

2·93

)
> 0. By Lemma 11, E[Z2] ≥ 11

3072 (r+s). Hence,

P
(

Z >

√
11

3072 (r+s)

2·93

)
> 0. Therefore if r + s ≥ ck2, where c = 4 · 96 · 3072/11, then

by Lemma 8 (V, C, k) is a “yes”-instance of Linear Ordering-AA.

After we have deleted mutually opposite arcs from D and complete 3-sets of
constraints from B we may assume, by Lemma 12, that D has an arc multiset
A = {a1, . . . , ar} left, with r = O(k2), and B now contains s = O(k2) constraints
B1, . . . , Bs. By Lemma 7, dev(V, C) = maxπ[(dev(V, A, π) + dev(V,B, π))/2], where
the maximum is taken over all linear orderings π of V .

We now create a new instance (V ′, C′, k) of Linear Ordering-AA as follows.
Let ω be a new variable not in V . For every ai = (ui, vi) add the constraints
(ω, ui, vi), (ui, ω, vi) and (ui, vi, ω) to C′. For every Bi = (ai, {bi, ci}) add the
constraints (bi, ai, ci) and (ci, ai, bi) to C′. Let V ′ be the set of variables that ap-
pear in some constraint in C′. Then (V ′, C ′) is an instance of Linear Order-
ing with O(k2) variables and constraints. Now the number of constraints in C′

satisfied by any linear ordering α of V ′ equals the number of arcs in D satisfied
by α plus the number of constraints in B satisfied by α. As the average number
of constraints satisfied in (V ′, C′) equals (3r + 2s)/6 = r/2 + s/3, it follows that
dev(V, C) = maxπ[(dev(V, A, π) + dev(V,B, π))/2] = dev(V ′, C ′)/2. Hence, (V ′, C ′, k)
is a kernel of Linear Ordering-AA with O(k2) variables and constraints. We have
established the following theorem.

Theorem 3. Linear Ordering-AA has a kernel with O(k2) variables and con-
straints.

Using Proposition 1 and Theorem 3 we can prove the following:

Theorem 4. There is a bikernel with O(k2) variables from Πi-AA to Πj-AA for
each pair (i, j) such that 0 ≤ i ≤ 10 and 0 ≤ j ≤ 10 but j ̸∈ {2, 7}.

Proof. By Proposition 1, it suffices to prove this theorem for i = 0 and 0 ≤ j ≤ 10
but j ̸∈ {2, 7}. The case j = 0 follows from Theorem 3. Let us consider the remaining
cases.

Part 1: j = 5. From the proof of Theorem 3, we know that any instance (V, C, k)
of Linear Ordering-AA can be reduced, in polynomial time, to a mixed instance
consisting of an instance D = (V, A) (|A| = r = O(k2)) of Acyclic Subdigraph
and an instance (V,B) (|B| = s = O(k2)) of Betweenness such that the answer to
(V, C, k) is “yes” if and only if there is a linear ordering of V satisfying, in total, at
least r/2+s/3+k arcs and constraints of the mixed instance. Let V ∗ be the set of all
variables and vertices in constraints of B and arcs of A. Observe that |V ∗| = O(k2).

Construct an instance (V ′,B′, k′) of Betweenness-AA as follows. Set V ′ =
V ∗ ∪ {y, z} and initialize B′ by setting B′ = B. Add to B′ (r + s + 1) copies of the
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constraint (x, {y, z}) for each x ∈ V ∗ and one copy of the constraint (v, {u, z}) for
each arc (u, v) ∈ A. Observe that |V ′| = O(k2). The total number of constraints in
the multiset B′ is p = (|V ∗|+ 1)(r + s + 1)− 1 and recall that the average number of
constraints satisfied in an instance of Betweenness with p constrains is p/3. We may
assume that p is divisible by 3 as otherwise we can add one or two more constraints of
the type (x, {y, z}) to B′. Let d = (r+s)−⌈r/2+s/3+k⌉ and let k′ = 2p

3 −d. Observe
that the answer to (V ′,B′, k′) is “yes” if and only if there is a linear ordering of V ′ that
falsifies at most d constraints of B′. Since d ≤ r+s, to falsify at most d constraints of
B′, a linear ordering α of V ′ must satisfy all constraints of the form (x, {y, z}) and at
least r/2 + s/3 + k other constraints. Since α must satisfy all constraints of the form
(x, {y, z}), we have {α−1(1), α−1(|V ′|)} = {y, z}. Without loss of generality, we may
assume that α−1(|V ′|) = z. Then α satisfies at least r/2+ s/3+k other constraints if
and only if it satisfies at least r/2+s/3+k arcs and constraints of the mixed instance.
Thus, (V ′,B′, k′) is equivalent to (V, C, k), and since k′ is bounded by a function of
k, we are done.

Part 2: j = 1. Denote constraints of Π1-AA by (u < min{v, w}). Such
a constraint is satisfied by a linear ordering α of {u, v, w} if and only if α(u) <
min{α(v), α(w)}. Consider the instance (V ′,B′, k′) built in Part 1. Construct an in-
stance (V ′′, C1, k1) of Π1-AA as follows. Let V ′′ = V ′ ∪ {z′}, where z′ ̸∈ V ′. For each
constraint (v, {u,w}) of B′, let C1 have two copies of (u < min{v, w}), two copies of
(w < min{u, v}) and one copy of (v < min{w, z′}) and one copy of (v < min{u, z′}).
Thus, C1 has 6p constraints and note that the average number of constraints satisfied
in an instance of Π1-AA with 6p constraints is 2p. Let k1 = p− d, where p and d are
defined in Part 1.

Let α be a linear ordering of V ′′ and assume that α satisfies the maximum number
of constraints in C1 and this number is at least 2p+k1 = 3p−d. We may assume that
α(z′) = |V ′′| as moving z′ to the last position in the linear ordering will not falsify
any constraint of C1. Observe now that if α satisfies (v, {u,w}), then it satisfies
exactly three constraints of C1 from the six constraints generated by (v, {u,w}) and if
α falsifies (v, {u,w}), it satisfies exactly two constraints of C1 from the six constraints
generated by (v, {u,w}). Therefore, α satisfies exactly 3t + 2(p− t) constraints of C1,
where t is the number of constraints in B′ satisfied by α. Hence, t ≥ p − d.

Now assume that a linear ordering α of V ′ satisfies at least p − d constraints of
B′. We extend α to V ′′ by setting α(z′) = |V ′′|. Similarly to the above we can
show that α satisfies at least 2p + k1 = 3p − d constraints in C1. Thus, (V ′, C1, k1) is
equivalent to (V ′,B′, k′) and, therefore by Part 1, to (V, C, k), an instance of Linear
Ordering-AA. Clearly, |V ′′| = O(k2) and k1 is bounded by a function of k.

Part 3: j = 3. In Part 2, we have proved that for any instance (V, C, k) of Lin-
ear Ordering-AA there is an equivalent instance (V ′, C1, k1) of Π1-AA with O(k2)
variables and distinct constraints (and k1 is bounded by a function of k). Recall
that (V ′, C1, k1) has 6p constraints. Let α be a linear ordering of V ′ and let α′ be
the reverse ordering. As in the proof of Case i = 3 of Theorem 1, construct from
(V ′, C1, k1) an instance (V ′, C3, k3) of Π3-AA such that C3 has 12p constraints and
at least q constraints of C1 are satisfied by α if and only if at least 2q + (|C1| − q)
constraints of C3 are satisfied in α′. Let q = 2p + k1 and k3 = k1. Assume that
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(V ′, C1, k1) is a “yes”-instance certified by α. Then α′ satisfies at least 8p + k3 con-
straints of (V ′, C3, k3) and (V ′, C3, k3) is a “yes”-instance. Similarly, if (V ′, C3, k3) is
a “yes”-instance, then (V ′, C1, k1) is a “yes”-instance, too.

Part 4: j = 4, 8, 9, 10. For each j = 4, 8, 9, 10 the proof is similar to Part 2 and,
thus, we will only describe how to transform the instance (V ′,B′, k′) built in Part 1
into an instance (V ′, Ci, k

′) of Πi-AA for every i = 4, 8, 9, 10, and observe how the fact
that a constraint B of (V ′,B′, k′) is satisfied or falsified corresponds to the number of
satisfied constraints in the instance of Πi-AA generated by B. Then it is not hard to
check that (V ′,B′, k′) and (V ′, Ci, k

′) are equivalent.

Case j = 4. Denote constraints of Π4-AA by (u ∥{v < w})). Such a constraint is
Π4-satisfied by a linear ordering α of {u, v, w} if and only if α(v) < α(w) and α(u) is
not between α(v) and α(w). Construct an instance (V ′, C4, k4) of Π4-AA as follows.
For each constraint (v, {u,w}) of B′, let C4 have four constraints: (u ∥{v < w})),
(u ∥{w < v})), (w ∥{u < v}) and (w ∥{v < u}). It is easy to check that if (v, {u,w})
is satisfied by a linear ordering α of V ′, then two of the four constraints are satisfied
by α and if (v, {u,w}) is falsified by α, then only one of the four constraints is satisfied
by α.

Case j = 8. Denote constraints of Π8-AA by (v < u < w or w < v). Such
a constraint is satisfied by a linear ordering α of {u, v, w} if and only if either
α(v) < α(u) < α(w) or α(w) < α(v). For each constraint (v, {u,w}) of B′, let
C8 have two constraints: (w < v < u or u < w) and (u < v < w or w < u). It is
easy to check that if (v, {u,w}) is satisfied by a linear ordering α of V ′, then both
constraints generated by (v, {u,w}) are satisfied by α and if (v, {u,w}) is falsified by
α, then only one of two constraints is satisfied by α.

Case j = 9. Denote constraints of Π9-AA by (v ∥{u,w})). Such a constraint is
satisfied by a linear ordering α of {u, v, w} if and only if α(v) is not between α(u) and
α(w). Construct an instance (V ′, C9, k9) of Π9-AA as follows. For each constraint
(v, {u,w}) of B′, let C9 have two constraints: (u ∥{v, w})) and (w ∥{u, v})). It is
easy to check that if (v, {u,w}) is satisfied by a linear ordering α of V ′, then both
constraints generated by (v, {u,w}) are satisfied by α and if (v, {u,w}) is falsified by
α, then only one of two constraints is satisfied by α.

Case j = 10. Denote constraints of Π10-AA by (not u < v < w). Such a constraint
is satisfied by a linear ordering α of {u, v, w} if and only if we do not have α(u) <
α(v) < α(w). For each constraint (v, {u, w}) of B′, let C10 have four constraints:
(not v < u < w), (not v < w < u), (not u < w < v) and (not w < u < v). It is
easy to check that if (v, {u,w}) is satisfied by a linear ordering α of V ′, then all four
constraints generated by (v, {u,w}) are satisfied by α and if (v, {u,w}) is falsified by
α, then only three of the four constraints are satisfied by α.

Part 5: j = 6. Denote constraints of Π6-AA by (u < v < w or w, {u, v}).
Such a constraint is satisfied by a linear ordering α of {u, v, w} if and only if either
α(u) < α(v) < α(w) or α(w) is between α(u) and α(v). Consider the instance
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(V ′,B′, k′) built in Part 1. Construct an instance (V6, C6, k6) of Π6-AA as follows.
Let V6 = V ′ ∪ {a, b}, where {a, b} ∩ V ′ = ∅. Initiate C6 by adding to it, for each

x ∈ V ′, 6p + 1 copies of (x < b < a or a, {x, b}) and 6p + 1 copies of (x < a <
b or b, {x, a}). For each (v, {u,w}) ∈ B′, add to C6 the following constraints: two
copies of (u < w < v or v, {u,w}), two copies of (w < u < v or v, {u,w}), a copy of
(b < v < u or u, {v, b}), and a copy of (b < v < w or w, {b, v}). Recall that B′ has
p constraints and note that C6 has 6p + 2(6p + 1)|V ′| constraints. Observe that the
average number of satisfied constraints, in an instance of Π6-AA with 6p+2(6p+1)|V ′|
constraints, is 3p + (6p + 1)|V ′|. Let k6 = (6p + 1)|V ′|+ (2p− 3d), where d is defined
in Part 1.

Then (V6, C6, k6) is a “yes”-instance if and only if there is a linear ordering α of V6

that satisfies at least 2(6p + 1)|V ′| + (5p − 3d) constraints. For α to satisfy so many
constraints, it must satisfy all constraints of the forms (x < b < a or a, {x, b}) and
(x < a < b or b, {x, a}), implying that a and b must be the last two variables in α, and
at least 5p−3d constraints generated by B′. Observe that if α satisfies (v, {u,w}) ∈ B′

then exactly five constraints of C6 generated by (v, {u,w}) are satisfied by α and if
α falsifies (v, {u,w}) ∈ B′ then exactly two constraints of C6 generated by (v, {u,w})
are satisfied by α. Thus, α satisfies at least 5p−3d constraints generated by B′ if and
only if α satisfies at least p−d constraints of B′. Therefore, (V ′,B′, k′) and (V6, C6, k6)
are equivalent.

Using Theorems 2 and 4 we can prove the following:

Theorem 5. All ternary Permutation-CSPs parameterized above average have ker-
nels with O(k2) variables.

Proof. By Theorem 4, it suffices to prove that the problems Πj-AA, j = 2, 7, have
kernels with quadratic number of variables.
Case j = 2. Denote constraints of Π2-AA by (u, v < w). Such a constraint is satisfied
by a linear ordering α of {u, v, w} if and only if α(v) < α(w). Consider the instance
(V, C, k) of Π2-AA and construct an instance (V,A, k) of Acyclic Subdigraph-
AA as follows: if (u, v < w) ∈ C then (v, w) is added to A. Clearly, (V, C, k) and
(V, A, k) are equivalent. By Theorem 2, in polynomial time, (V, A, k) can be trans-
formed into an equivalent instance (V ′, A′, k′) of Acyclic Subdigraph-AA such
that |V ′| = O(k2) and k′ is bounded by a function of k (in fact, k′ = k). As in the
proof of Case i = 2 of Theorem 1, from (V ′, A′, k′) we can construct an equivalent
instance (V ∗, C∗, k′) of Π2-AA such that |V ∗| = |V ′| + 1 = O(k2). Observe that
(V ∗, C∗, k′) is the required kernel.

Case j = 7. Denote constraints of Π7-AA by ⟨u, v, w⟩. Such a constraint is satisfied
by a linear ordering α of {u, v, w} if and only if either α(u) < α(v) < α(w) or
α(v) < α(w) < α(u) or α(w) < α(u) < α(v). Consider the instance (V, C, k) of Π7-
AA and construct an instance (V, A, k) of Acyclic Subdigraph-AA as follows: if
⟨u, v, w⟩ ∈ C then (u, v), (v, w) and (w, u) are added to A. Let α be a linear ordering of
V and observe that if ⟨u, v, w⟩ is satisfied by α then exactly two of the three arcs of A
generated by ⟨u, v, w⟩ are satisfied by α and if ⟨u, v, w⟩ is falsified by α then exactly one
of the three arcs of A generated by ⟨u, v, w⟩ is satisfied by α. Thus, α satisfies at least
|C|/2 + k constraints of C if and only if α satisfies at least 2(|C|/2+ k)+ (|C|/2− k) =
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3|C|/2 + k = |A|/2 + k arcs of A. By Theorem 2, in polynomial time, (V, A, k) can
be transformed into an equivalent instance (V ′, A′, k′) of Acyclic Subdigraph-AA
such that |V ′| = O(k2) and k′ is bounded by a function of k (in fact, k′ = k).

Now construct an instance (V ′′, C′, k′) of Π7-AA by setting V ′′ = V ′ ∪{z}, where
z ̸∈ V ′, and C′ = {⟨u, v, z⟩ : (u, v) ∈ A′}. Let α be a linear ordering of V ′′ satisfying
at least |C′|/2 + k′ constraints of C′. We may assume that α(z) = |V ′′| as moving the
last element of an ordering to the front of the ordering does not falsify any constraint,
and so by repeatedly doing this we will move z′ to the last position in our ordering.
Thus, α satisfies at least |A′|/2 + k′ arcs of A′. Now let α be a linear ordering of
V ′ satisfying at least |A′|/2 + k′ arcs of A′. Extend α to V ′′ by setting α(z) = |V ′′|
and observe that α satisfies at least |C′|/2 + k′ constraints in C′. Hence, (V ′′, C′, k′)
is equivalent to (V ′, A′, k′) and, thus, to (V, C, k) implying that (V ′′, C′, k′) is a kernel
of Π7-AA.

8 Normal Reduction Rules for Linear Ordering-AA

We call a reduction rule normal if it removes a number of constraints which will always
have the average number of constraints satisfied no matter what ordering is used. Note
that all reduction rules for Betweenness-AA and Acyclic Subdigraph-AA are
normal.

Theorem 6 below implies that infinite number of instances of Linear Ordering
cannot be reduced by any normal reduction rule, except the one that removes all
constraints in the instance. Therefore, no finite set of normal reduction rules can
guarantee that one always gets either the empty instance or an instance where one can
do better than the average. For both Betweenness-AA and Acyclic Subdigraph-
AA we only needed one normal reduction rule to get such a guarantee. This is another
indication that Linear Ordering-AA is a more difficult problem.

Let us describe a directed graph Gi with vertex set Vi and a decomposition, Ci,
of the arc set of Gi into directed 3-cycles. When i = 0 we have V0 = {x1, x2, x3} and
C0 = {x1x2x3x1, x3x2x1x3}. Note that the arc set of Gi is always the set of arcs used
in Ci.

When i > 0 we will construct Gi, Vi and Ci recursively. So assume that Gi−1,
Vi−1 and Ci−1 have been constructed and let G′

i−1 be another copy of Gi−1 on vertex
set V ′

i−1 and with decomposition C ′
i−1. Let Vi = Vi−1 ∪ V ′

i−1 and note that |Vi| =
2|Vi−1|. Let c = xaxbxcxa be any directed 3-cycle in Ci−1 and let c′ = x′

dx
′
ex

′
fx′

d be
any directed 3-cycle in C ′

i−1. Let Ci contain all directed 3-cycles in Ci−1 \ {c} and
C ′

i−1 \ {c′} and the following six directed 3-cycles:

c1 = xaxbx
′
fxa, c2 = xbxcx

′
exb, c3 = xcxax′

dxc,

c4 = x′
dx

′
excx

′
d, c5 = x′

ex
′
fxbx

′
e, c6 = x′

fx′
dxax′

f .

A directed graph D = (V, A) is symmetric if (u, v) ∈ A implies (v, u) ∈ A.

Lemma 13. We have that |Vi| = 3 × 2i and that Gi is a symmetric digraph with no
parallel arcs for all i ≥ 0. Furthermore if C∗

i is a proper nonempty subset of Ci then
the arcs of C∗

i do not form a symmetric digraph.
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Proof. Since |V0| = 3 and |Vi| = 2|Vi−1| we have |Vi| = 3×2i for all i ≥ 0. Clearly G0

is symmetric with no parallel arcs. Assume that Gj is symmetric with no parallel arcs
for each 0 ≤ j < i and consider Gi, i > 0. It is not difficult to see that by deleting the
arcs in c and c′ and adding the arcs in c1, c2, . . . , c6 we obtain a symmetric digraph
with no parallel arcs, which completes the proof of the first part of the lemma.

The second part of the lemma clearly holds when i = 0, so assume that i > 0 and
that the second part holds for each 0 ≤ j < i. If C∗

i ∩ {c1, c2, c3, c4, c5, c6} = ∅ then
we are done by induction as either C∗

i ∩Ci−1 or C∗
i ∩C ′

i−1 is non-empty and therefore
induces a non-symmetric subdigraph.

So we may assume that C∗
i ∩ {c1, c2, c3, c4, c5, c6} ̸= ∅. Suppose that the arcs of

of C∗
i form a symmetric digraph. Due to the connection between xa and x′

f we note
that c1 ∈ C∗

i if and only if c6 ∈ C∗
i . Analogously, c1 ∈ C∗

i if and only if c5 ∈ C∗
i (due

to x′
fxb), c2 ∈ C∗

i if and only if c4 ∈ C∗
i (due to x′

exc), c2 ∈ C∗
i if and only if c5 ∈ C∗

i

(due to x′
exb), c3 ∈ C∗

i if and only if c6 ∈ C∗
i (due to x′

dxa), and c3 ∈ C∗
i if and only

if c4 ∈ C∗
i (due to x′

dxc). Thus, if C∗
i ∩ {c1, c2, c3, c4, c5, c6} ̸= ∅ and the arcs of C∗

i

form a symmetric digraph then we must always have c1, c2, c3, c4, c5, c6 ∈ C∗
i .

As C∗
i is a proper subset of Ci we may without loss of generality assume that

there is a directed 3-cycle in Ci−1 \ {c} (otherwise it is in C ′
i−1 \ {c′}) which does

not belong to C∗
i and by induction the arc set of ({c} ∪ C∗

i ) ∩ Ci−1 does not form a
symmetric digraph. Therefore the arcs of C∗

i do not form a symmetric digraph either,
a contradiction. This completes the proof of the lemma.

For each i ≥ 0 we construct an instance (Vi,Ki) of Linear Ordering-AA as
follows. For every directed 3-cycle in Ci, say uvwu, add the following three constraints
(u, v, w), (v, w, u) and (w, u, v) to Ki. Let (Vi,Bi) be the instance of Betweenness-
AA which we associate with (Vi,Ki) in Section 7 and let (Vi, A

′
i) and (Vi, A

′′
i ) be the

two instances of Acyclic Subdigraph-AA which we also associate with (Vi,Ki)
there. By Lemma 7, the following holds for all linear orderings α of Vi:

dev(Vi,Ki, α) =
1
2

[dev(Vi, A
′
i, α) + dev(Vi, A

′′
i , α) + dev(Vi,Bi, α)] . (2)

Theorem 6. We have dev(Vi,Ki) = 0 and if K∗
i is a nonempty proper subset of Ki

then we can always satisfy more than |K∗
i |/6 constraints of K∗

i .

Proof. As a directed 3-cycle uvwu in Ci gives rise to the betweenness constraints
(v, {u,w}), (w, {v, u}) and (u, {w, v}) in Bi we can only satisfy |Ci| constraints in Bi.
Furthermore, a directed 3-cycle uvwu in Ci gives rise to two copies of the constraints
(u, v), (v, w) and (w, u) in A′

i ∪A′′
i . Thus, we can think of an arc, uv, in Gi as giving

rise to two copies of the acyclic subdigraph constraint (u, v). As Gi is symmetric this
means that every constraint (u, v) can be paired with a constraint (v, u) so we can
only satisfy half the constraints in A′

i∪A′′
i . As we can only satisfy the average number

of constraints in both A′
i ∪A′′

i and Bi, (2) implies that dev(Vi,Ki) = 0, which proves
the first part of the lemma.

For the sake of contradiction assume that K∗
i is a nonempty proper subset of

Ki and that dev(Vi,K
∗
i ) = 0. Let (Vi,B∗

i ) be the instance of Betweenness-AA
which we associate with (Vi,K

∗
i ) in Section 7 and let (Vi, A

∗
i ) and (Vi, A

∗∗
i ) be the

two instances of Acyclic Subdigraph-AA which are also associated with (Vi,K
∗
i ).

Let Z, Y and X be the random variables associated with (Vi,K
∗
i ), (Vi,B∗

i ) and
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(Vi, A
∗
i ∪ A∗∗

i ), respectively. Note that dev(Vi,K
∗
i ) = 0 is equivalent to E[Z2] = 0,

which by the proof of Lemma 11 implies that E[X2] = 0 and E[Y 2] = 0. Observe that
by Lemma 4 this implies that if (u, {v, w}) ∈ B∗

i then (w, {v, u}), (v, {u,w}) ∈ B∗
i .

So, if (u, v, w) ∈ K∗
i , then (v, w, u), (w, u, v) ∈ K∗

i . Therefore, K∗
i can be thought of

as being obtained from a proper subset, C∗
i , of the directed 3-cycles Ci. Observe that

by Lemma 13 some arc (u, v) belongs to a directed 3-cycle in C∗
i , but the arc vu does

not belong to such a directed 3-cycle. However, this implies that (u, v) ∈ A∗
i ∪ A∗∗

i ,
but (v, u) ̸∈ A∗

i ∪ A∗∗
i . Thus, E[X2] > 0 by Lemma 6. This contradiction completes

the proof.

9 Further Research

It is natural and easy to extend the definition of Π-AA to a fixed arity r > 3. Similar
to Proposition 1, it is easy to prove that, for each fixed r every Π-AA can be reduced
to Π0-AA, where Π0 is Linear Ordering of arity r. However, it appears technically
very difficult to extend results of obtained for arities r = 2 and 3 to r > 3. We
conjecture that for each fixed r all problems Π-AA are fixed-parameter tractable.

We have parameterized Linear Ordering of any arity r using the average as a
tight lower bound. Similarly, we can parameterize Linear Ordering below a tight
upper bound and the number of constraints m can be set as a tight upper bound. So,
the problem is whether there is a bijection α : V → [n] which satisfies at least m− k
constraints of an instance (V, C) of Linear Ordering, where k is the parameter. It
is easy to show that for k = 0 the problem is polynomial-time solvable, but it seems
to be a difficult question to determine parameterized complexity of this problem for
any arity r ≥ 2.

Note that for arity r = 2 the corresponding problem is Directed Feedback
Arc Set parameterized below the number m of arcs in a given directed graph. The
parameterized complexity of the last problem was an open question for many years
[24] and, only in 2008, Chen et al. [7] proved that the problem is fixed-parameter
tractable. (It is still unknown whether the last problems admits a polynomial-size ker-
nel.) For every fixed arity r ≥ 3, the parameterized complexity of Linear Ordering
parameterized below m is unknown.
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