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Abstract
Let w = w(xy,...,2,) be a word, i.e. an element of the free group F =
(1,...,2n) On n generators 1, ...,&,. The verbal subgroup w(G) of a group G is

the subgroup generated by the set {w(g1,...,9,)* | g € G, 1 < i < n} of all w-
values in G. We say that a (finite) group G is w-mazimal if |G : w(G)| > |H : w(H)|
for all proper subgroups H of G and that G is hereditarily w-mazimal if every
subgroup of G is w-maximal. In this text we study w-maximal and hereditarily
w-maximal (finite) groups.

1 Introduction

Let p be a prime. In [15], Thompson observed that, if G is a finite p-group such that
|G : |G,G]| > |H : [H, H]| for all proper subgroups H of G, then the nilpotency class
of G is at most 2. This insight prompted Laffey to prove that, for p > 2, the minimum
number of generators d(G) of a finite p-group G is bounded by r, where p" is the maximal
order of a subgroup of exponent p in Gj; see [11].

Properties of what are known as d-maximal p-groups form a key ingredient of Laffey’s
argument; a group G is d-maximal if d(H) < d(G) for all proper subgroups H of G. The
minimum number of generators for a finite p-group G is given by d(G) = log, |G : (G,
where ®(G) = GP[G, G] denotes the Frattini subgroup of G. Hence a finite p-group G
is d-maximal if |G : ®(G)| > |H : ®(H)| for all proper subgroups H of G.

In the context of regular representations of finite groups, Kahn proved, for p > 2,
that every d-maximal finite p-group G has nilpotency class at most 2; see [8]. In fact,
he showed that in such a group G the derived subgroup [G,G] is of exponent p and
contained in the center Z(G) of G. Subsequently properties of d-maximal finite p-groups
were investigated by Kahn as well as Minh, e.g. see [14]. More recently, a similar class of
groups was studied by the first author in order to bound the index of the agemo subgroup
of a finite p-group in terms of the number of elements of order p. In particular, he proved
for p > 2 that, if G is a finite p-group such that |G : GPy,—1(G)| > |H : HPy,—1(H)|
for every proper subgroup H of G, then the nilpotency class of GG is bounded by p — 1;
see [4].

The aim of this paper is to explore this circle of fruitful ideas in a more general
framework. For this we introduce and explore the new concept of a w-maximal group,
which is briefly referred to in [4]. Let w(x) = w(x1,...,z,) be a word, i.e. an element of



the free group F' = (x1,...,x,) on n generators x1,...,x,. The verbal subgroup w(G)
of a group G is the subgroup generated by the set {w(g)*! | g € GM™} of all w-values
in G.

Definition. We say that a group G is w-mazimal if |G : w(G)| > |H : w(H)| for all
proper subgroups H of G.

The classes of groups referred to above are instances of w-maximal groups for the

special words w = [x,y] = 27ty !

zy, w = 2Py, z] and w = Ply1, ..., yp—1], respectively.
Our study of w-maximal groups for more general values of w sheds more light on existing
theorems and leads to a number of new results. Indeed, Thompson’s original theorem
generalises to w-maximal groups for many words w. We also include the outcomes
of our study of hereditarily w-maximal groups, i.e. groups with the property that all
their subgroups are w-maximal. Finally we suggest a range of questions concerning
the structure of w-maximal and hereditarily w-maximal groups, in order to stimulate
further research in this direction. We use a mixture of methods, involving, for instance,
classical results of Iwasawa [6, 7] and techniques from the theory of finite p-groups and

their inverse limits.

The organisation of the paper is the following. In Section 2 we introduce the concept
of w-breadth and a partial ordering on the class of w-maximal groups. We show that,
if w is a commutator word, then every ascending chain of w-maximal finite groups with
respect to the defined ordering becomes stationary; see Corollary 2.4. A key ingredient
is Theorem 2.2 which characterises words w admitting only finitely many (isomorphism
types of) finite groups of any fixed w-breadth. Our results lead to a natural classification
problem. Section 3 focuses on w-maximal finite p-groups. We define and illustrate
the concept of interchangeability. Theorem 3.3 shows that, if w is interchangeable in
a w-maximal finite p-group G, then the verbal subgroup w(G) is central in G. The
proof is based on Thompson’s original argument in [15]. We state various questions, of
which we highlight here the problem of classifying those w which are interchangeable
in every w-maximal finite p-group. We also give some applications of Theorem 3.3.
These provide, in any finite p-group, a lower bound for the maximum size of subgroups
with certain properties in terms of the size of a quotient with similar properties; e.g. see
Propositions 3.7 and Proposition 3.8. Corollary 3.10 is an extension of the result of Laffey
mentioned above. In Section 4, we investigate d-maximal finite p-groups by Lie theoretic
means. For p odd, the abelianisation G/[G,G] and the commutator subgroup [G,G]
of a d-maximal finite p-group G are elementary abelian. We show that, furthermore,
I[G,G]| < pU&)=2 and construct examples which suggest that this bound may be best
possible. In Section 5 we study hereditarily w-maximal groups. Theorem 5.3 provides
examples of non-trivial hereditarily w-maximal finite groups, i.e. hereditarily w-maximal
finite groups G such that w(G) # 1, for the higher derived words w = dj, k > 2. Finally,
in Section 6 we investigate hereditarily d-maximal groups. In order to avoid unwieldy
examples, it is natural to restrict attention to the class of residually-finite groups, which,
in fact, reduces further to the class of finite groups. Theorem 6.6 provides a complete
classification of hereditarily d-maximal finite groups.



Notation: Short explanations of possibly non-standard notation and terminology are
given in the text. Let G be a group. For n € N we write G for the nth cartesian
power of G, whereas G™ refers to the subgroup generated by all nth powers of elements
of G. If G is a topological group, then invariants such as d(G) or br,(G) are tacitly
defined in terms of closed subgroups; e.g. d(G) is the minimum number of topological
generators.

2 Basic properties of w-maximal groups

Throughout this section, let n € N and let w = w(x) be a fixed word, i.e. an element
of the free group F' = (z1,...,x,). Our first lemma collects two elementary, but useful
properties of w-maximal groups.

Lemma 2.1. Let w be a word and let G be a finite group.
(a) If w(G@) =1, then G is w-mazimal.
(b) If G is w-mazimal and N < G with N C w(G), then G/N is w-mazimal.
Proof. These properties are clear. ]

Based on Lemma 2.1 (b), we introduce a partial ordering on the class of w-maximal
groups. Let G and H be w-maximal groups. We say that H precedes G, in symbols
H =<, G, if there exists an epimorphism f : G — H such that ker f < w(G). The binary
relation =<, defines a partial ordering on the class of w-maximal groups.

For a group G, we define the w-breadth of G as

br,(G) :=sup{|H : w(H)| | H < G}.

The next theorem shows that, if w is a commutator word, then groups of bounded
w-breadth can be controlled.

Theorem 2.2. Let w = w(x) be an element of the free group F = (x1,...,x,). Then
the following assertions are equivalent:

(1) w is a commutator word, i.e. w € [F, F];

(2) for every natural number m there are only finitely many (isomorphism classes of)
finite groups G with bry,(G) < m.

Proof. First suppose that w is a commutator word, and let m be a natural number. If
G is a group with br,(G) < m, then the prime divisors of |G| are less than or equal
to m. Indeed, if S is a non-trivial Sylow p-subgroup of G, then p < |S : w(S)| < m.
Consider now a prime number p less than or equal to m. We claim that there exist
only finitely many (isomorphism classes of) p-groups P with br,(P) < m. This will
show that there is a uniform bound on the sizes of the Sylow p-subgroups of a finite
group G with br,,(G) < m. Consequently, there is a uniform bound on the order of a



finite group G with br,(G) < m, and there are only finitely many finite groups with
this property.

For a contradiction, assume that there exist an infinite number of pairwise non-
isomorphic finite p-groups with w-breadth bounded by m. These groups and the possible
epimorphisms between them give rise to an inverse system. Since the inverse limit of
a non-empty system of finite sets is non-empty, one obtains an infinite pro-p group G
with bry, (G) < m. Since w € [F, F], we have d(H) < log,|H : w(H)| < log, m for every
closed subgroup H of GG. Consequently the group G has finite rank, equivalently G is
p-adic analytic; cf. [1, Chapters 8 and 9]. Therefore there exists a uniformly powerful
open subgroup U of G; see [1, Corollary 4.3]. But in this case, ]Upk : w(Upk)| > |Upk :
L% Pt U”k]| tends to infinity as k tends to infinity. This is in contradiction to br, (G) < m.

Conversely, suppose that w is not a commutator word, i.e. w ¢ [F, F]. Let p be a
prime and consider a free Z,-module M with basis {z1,..., 24}, where Z, denotes the
ring of p-adic integers. Then w(M) is a non-trivial characteristic subgroup of M and
hence w(M) = p"M for some r € Ny. In fact, for all submodules U of M we have
w(U) = p"U and consequently |U : w(U)| < |M : w(M)|. Set m := p" = |M : w(M)|.
Then for every open submodule K of M with K C w(M), the finite quotient M/K
has w-breadth bounded by m. This shows that there are infinitely many (isomorphism
classes of) finite abelian groups G with br,,(G) < m. O

Motivated by the proof of Theorem 2.2, we record

Proposition 2.3. Let w = w(x) be an element of the free group F' = (x1,...,xy). Let
m € N and p a prime. Let G,,(p) denote the class of all pro-p groups G with br,,(G) < m.

(1) If w € [F, F|, then Gn(p) consists of finitely many isomorphism classes of finite
P-groups.

(2) If w(F)FP[F,F| = F, then G, (p) consists of all pro-p groups.

k41
[

(3) Suppose that w(F)FP" " [F,F| = F?* [F,F| with k € N. Then Gn,(p) consists of
isomorphism classes of p-adic analytic pro-p groups. Conversely, if G is a p-adic
analytic pro-p group of dimension d and if m > p*¢, then there exists an open
subgroup U of G such that all subgroups of U are contained in G, (p).

Proof. (1) This follows immediately from Theorem 2.2.

(2) Suppose that w(F)FP[F,F| = F. Then w(H) = H for any finite p-group H,
because the w-values in H generate H modulo the Frattini subgroup HP[H, H| = ®(H).
The claim follows.

(3) Let G be in Gy, (p). Since w(F) C FP[F, F], we have d(H) < log,|H : w(H)| <
log,, m for every closed subgroup H of G. Thus G has finite rank and is p-adic analytic.

Conversely, let G be a p-adic analytic pro-p group of dimension d and suppose that
m > p*?. Take for U a uniformly powerful open subgroup of G. A simple collection
process allows us to write w = z7* - - z¢"¢, where e1,...,e, € Z and ¢ € [F, F]. Since
w ¢ [F, F], at least one of the exponents e; is non-zero, and we put e := ged{ey, ..., e, }.
Then F¢ C w(F) and w(F)[F,F] = F°[F,F]. From w(F)FP""'[F,F] = FPF'[F, F) it



follows that p* is the highest p-power dividing e. Hence for any closed subgroup H
of U one has HP" = H¢ C w(H). Moreover, for any closed subgroup H of U, one
has p{h?" | h € H} = p~*u(H), where u denotes the Haar measure on H; see [10,
Lemma 3.4]. Thus |H : w(H)| < |H : Hpk] < p* for any open and, by passing to the
appropriate limit, for any closed subgroup H of U. O

From Lemma 2.1 and Theorem 2.2 one can easily deduce

Corollary 2.4. Let w = w(x) be a commutator word in a free group F = (x1,...,Zy),
i.e. let w € [F, F]. Then every ascending chain

Hl ij2jw---ijijw---

of w-mazimal finite groups is eventually stationary.
In particular, if H is a w-maximal finite group, then there exists a w-maximal finite
group G such that H <, G and G is mazximal with respect to the partial ordering =<,.

Proof. We argue by contradiction. If
Hl ij2 =w ijz jw

is a strictly increasing chain of w-maximal groups, then there exist infinitely many finite
groups whose w-breadth is bounded by |H; : w(H1)| in contradiction to Theorem 2.2. [

This leads to a natural classification problem.

Question 2.5. Let F be the free group on generators z1,...,x,, and let w be a com-
mutator word in F, i.e. let w € [F, F|. Can one classify w-maximal groups of a given
w-breadth m which are maximal with respect to the partial ordering =<,,?

3 Properties of w-maximal p-groups and applications

In this section we focus on w-maximal finite p-groups which are somehow easier to
control than w-maximal finite groups. The following concept will be useful throughout
this section. Let w = w(x) be a word and let G be a finite p-group. We say that w is
interchangeable in G if for every normal subgroup N of G,

[w(N), G] < [N, w(@)] - [w(G), GI[w(G), G, G].

Observe that, if w is interchangeable in GG, then w is interchangeable in every quotient of
G. The next lemma provides a considerable supply of words which are interchangeable
in every finite p-group.

Lemma 3.1. Let G be a finite p-group, and let w be equal to one of the group words

(i) vk = [y1,---,Yk] for some k € N,

(ii) xpi[yl, ..o, yk| for some i,k € N with k <p—1,



(iii) @' [yy, ... ,Yp| for some i € N with i > 2.
Then w is interchangeable in G.

Proof. Let N be a normal subgroup of G.
(i) We start with the case w = v, = [y1,...,yk], where k € N. Then, by [9,
Lemma 4-9], one has

[(k(N), G] < [Gx N] < [(G), N] = [N, w(G)]. (3.1)

(ii) Next suppose that w = 2P’ [Y1, ..., Yk], where i,k € N with £ <p—1. By (i), we
have [v,(N), G] < [N, v£(G)]. For pith powers [2, Theorem 2.4] yields

[N?',G] = [N,G"'] (mod v,11(G)).
Therefore we conclude that
[NP'(N),G] < [N, G 3(G)] - [w(G), G, G).

(iii) Finally suppose that w = 2P’ [Y1,...,Yp], where i € N with ¢ > 2. Again
[Yp(N),G] < [N,7,(G)]. Since i > 2, we conclude from [2, Theorem 2.4] that

[N?',G] = [G”,N]  (mod ypy1(G)Ppsa(G)).
This yields

NP4, (N), G < [GP'7,(G), N] - [3(G), GIP - [7(G), G, G).

L]
Example 3.2. Let p be a prime, and let H = () X A be the pro-p group of mazimal
class, where (o) = Cp, A = (x1,...,Tp-1) = Zg_l, and the action of o on A is given by
0
[zi,a) =1 for 1 <i<p—2, and [zp_1,a]= ij 7.
j=1

Let G := H/[HP, HIP[HP, H, H]. Then G is a finite p-group of order pP*? and the word
P is not interchangeable in G.

Indeed, consider the image N of A in G. Since |G/NP| = pP, we have v,(G/NP) = 1.
Hence G/NP is reqular and G/NP has exponent p. This shows that NP = GP. Now one
easily verifies that [NP, G] = [GP, G| is a non-trivial central cyclic subgroup of G. This
shows that

[N?,G] £ 1 =[N, GP||G*, G]P|G?, G, G].

We are ready to prove the main result of this section.

Theorem 3.3. Let w be a word, and let G be a w-maximal finite p-group such that w
is interchangeable in G. Then one has w(G) < Z(G).



Proof. For a contradiction, assume that G is a minimal counterexample. Then [w(G), G|
is cyclic of order p and contained in the centre Z(G) of G, i.e. [w(G), G]P[w(G),G,G] =1
Consider the following characteristic subgroups of G:

Ny = {z € G| [z,w(G)] =1} = Calw(@)),
Ny :={z € w(Q) | [z,G] = 1} = Z(G) Nw(G).

We observe that No < Nj. Since w is interchangeable in G, we conclude that
[w(N7),G] < [N, w(G)] = 1. In particular w(N;) < Na.

Next we define (,) : G/Ni x w(G)/Ny — [w(G),G] = F,, given by (xNi,yNa) =
[z,y]. This map (,) is a pairing of abelian p-groups, and hence |G : Ni| = |w(G) : Na|.
Therefore [Ny : w(Ny)| > |N1 : No| = |G : w(G)|, and G is not w-maximal, the desired
contradiction. O

Of course, Question 2.5 specialises to

Question 3.4. Let F be the free group on generators z1,...,z,, and let w be a com-
mutator word in F, i.e. let w € [F, F]. Can one classify w-maximal p-groups of a given
w-breadth m which are maximal with respect to the partial ordering =<7

Other natural questions arising from our discussion are
Question 3.5. Characterise words which are interchangeable in all w-maximal p-groups.

Question 3.6. Let w be a word and let G be a w-maximal group. If w is interchangeable
in all w-maximal p-groups, we know from Theorem 3.3 that w(G) is contained in the
center Z(G) of G. Can one describe properties of the inclusion of w(G) C G in other
situations?

Next we give some applications of w-maximal p-groups which allow us to translate,
in any finite p-group G, information about the size of quotients with certain properties to
information about the maximal size of subgroups with similar properties. Indeed, Propo-
sition 3.7 guarantees the existence of large subgroups of comparatively small nilpotency
class, i.e. of order at least |G : 7.(G)| and class at most ¢. In a similar vein, Proposi-
tion 3.8 shows that there exist subgroups of nilpotency class 2 and exponent p’ which
are of size at least |G : G’ [G,G]|. Corollary 3.10 is an extension of the result of Laffey,
which we quoted in the introduction; see [11].

Proposition 3.7. Let G be a finite p-group and ¢ € N. Then there exists a subgroup H
of G of nilpotency class at most ¢ such that |H| > |G : v.(G)|.

Proof. Clearly, there exists a v.-maximal subgroup H of G such that |G : 7.(G)| < |H :
Ye(H)|. From Lemma 3.1 and Theorem 3.3 we deduce that v.11(H) = 1. O

Proposition 3.8. Let G be a finite p-group and let i € N with i > 2 if p=2. Pute:=0
if pis odd, and € := 1 if p = 2. Then there exists a subgroup H of G of nilpotency class
at most 2 and exponent pite such that |H| > |G : G |G, G]|.



Proof. Put w = 2P’ [y, z]. By induction on the order of G we may assume that G is
w-maximal. Recall the notation ;(G) := (z € G | #*' = 1). Consider first the case
when p is odd. Lemma 3.1 and Theorem 3.3 show that [G,G,G] = 1. Therefore G is a
regular p-group, and , ,

GGG, G < |G 6P| = (),
where H := Q;(G) = {z € G | 2" = 1} is a subgroup of G of exponent p’ and nilpotency
class at most 2; see [5, Kapitel III §10].

Now suppose that p = 2. Since GG is w-maximal, Lemma 3.1 and Theorem 3.3
yield [¢,G,G] = 1 and [G,G)* = [G¥,G] = 1. By the Hall-Petrescu identity we
2t 27 for all x,y € G; see [5, Kapitel III, Satz 9.4]. Therefore
0: G-z is a surjective homomorphism with kernel Q;,1(G) = {x €
G | 2¥" =1}, Hence |Qi1(G)] = |G : G¥T'| > |G : GTT[G, G|, and Qi41(G) is a
subgroup of G of exponent 271 and nilpotency class at most 2. O

i+1
= 2"y
2i+1

have (zy)

A result of Glauberman [3] allows us to deduce the existence of normal subgroups

with similar properties.

Corollary 3.9. Let G be a finite p-group and let i € N. Suppose that p > 7. Then there
exists a normal subgroup H of G of nilpotency class at most 2 and exponent p' such that

|H| = min{|G : G*'"[G, G]|, pl@p+D/3]1

Corollary 3.10. Let G be a finite p-group. Let p* be the mazimal order of a subgroup
of G of nilpotency class 2 and exponent p, if p is odd, nilpotency class 2 and exponent
8, if p=2. Then G can be generated by k elements, i.e. d(G) < k.

Proof. The claim follows from d(G) = log,|G : GP[G, G]| and Proposition 3.8. O

4 d-Maximal finite p-groups and Z,-Lie rings

For any group G, let d(G) denote the minimal number of elements required to generate
G, possibly co. Throughout this section let p be a prime. As noted in the introduction
a finite p-group G is d-maximal, i.e. satisfies d(H) < d(G) for all proper subgroups H
of G, if and only if it is w-maximal for w = 2P[y, z]. The following proposition (cf. [8])
is an easy consequence of Theorem 3.3.

Proposition 4.1. Let p be an odd prime and let G be a d-mazimal finite p-group. Then
G/|G,G] and |G, G are elementary abelian p-groups. If |G| > p, then |[G, G]| < p™&)—2,

Proof. Since G is d-maximal, G/[G,G] is also d-maximal and therefore an elementary
abelian p-group. By Lemma 3.1 and Theorem 3.3, one has [G,G, G| =1 and [G,GP =
[GP,G] = 1. Hence [G,G] is an elementary abelian p-group.

Suppose that |G| > p, and put d := d(G). Since G is d-maximal, we have |[G,G]| <
p?~1. For a contradiction, assume that |[G,G]| = p?~!. The map 7 : G/[G,G] — [G, G],
x +— P is a homomorphism between elementary abelian p-groups. Since |G/[G,G]| >
|[G, G]|, the map 7 is not injective. Suppose that 1 # y € ker 7. Then y is an element of
order pin G and y ¢ [G,G|. Put H = ({y} U[G,G]). Then H is an elementary abelian
p-group of order p® which is strictly contained in G, a contradiction. O



For p odd, Theorem 3.3 and Proposition 4.1 show that every d-maximal finite p-
group G has nilpotency class at most 2 and exponent p?. Conversely, finite p-groups
of nilpotency class at most 2 and exponent p need not be d-maximal; for instance, the
Heisenberg group over the finite field F, is not d-maximal. Interesting examples of
d-maximal finite p-groups can be constructed by Lie methods as follows.

The Lazard correspondence, which operates via functors exp and log, is a correspon-
dence between finite p-groups of nilpotency class smaller than p and finite Z,-Lie rings
of nilpotency class smaller than p; see [9, § 10.2]. Suppose that p is odd, and consider
a finite p-group G whose nilpotency class is bounded by 2. Put L := log(G). Then the
group G is d-maximal if and only if L is d-maximal, in the sense that for any Lie subring
M of L one has |M : pM + [M, M|vie| < |L : pL + [L : L]iel-

Example 4.2. Let L = span(z,y,z | pr = py = p*z = 0) = Cp x Cp, x Cp2 be and
abelian p-group, and extend |x, z]rie = [y, 2|Lie = 0 and [z, y]Lie = pz bi-additively to L.
Then (L, +,[,]1ic) is a finite d-mazimal Z,-Lie ring. The finite p-group G = exp(L) is
d-mazimal such that d(G) =3 and |[G,G]| = p.

We continue to work under the hypothesis that p > 2 and consider a finite p-group G
of nilpotency class 2 and of exponent p. Then L :=log(G) is an Fp-Lie algebra and, as
an Fy-vector space, L decomposes as L = V @ [L, L]pie. Put k := dimp, [L, L]rie. Since
[L, Ll1ie € Z(L), the Lie product on L is determined by its restriction to V' x V| which
can be written as

VxV— [L, L]Liea [U, w]Lie = fl(v,w)zl +...+ fk(v,w)zk, (4.1)

where {z1,...,2,} is an F,-basis of [L, L] and f;, 1 < i < k , is a collection of
antisymmetric bilinear forms on the vector space V.

In order to check whether the p-group G is d-maximal, it is enough to check whether
the IF)-Lie algebra L is d-maximal. Clearly, for this is suffices to check whether for any
Lie subalgebra M of L containing [L, L]rie one has |M : [M, M| < |L : [L, L]riel-
Equivalently, one needs to test whether for any proper subspace W of V,

k
dim(W) + k — dimp, (span(Z filv,w)z; | v,w e W}) < dimg, V. (4.2)
i=1

One can easily compute the dimension of spam(Zf:1 fi(v,w)z | v,w € W) by studying

the space generated by the antisymmetric bilinear forms f1, ..., fi in the exterior algebra
W AW.

Lemma 4.3. Let W be an F,-vector space, let fi,..., fi be a collection of antisymmetric
bilinear forms on W, and let {z1,...,2;} be a basis of Fl;. Let U denote the vector

subspace generated by f1,..., fr in the exterior algebra W AW. Then

k
dimg, U = dimg, (span(Z filv,w)z | v,w e W)) . (4.3)

i=1



Proof. For A := (\,...,\;) € F’; define @, : IF’; — Fp, Zle TiZi Zle Aiz;. Then
Zle Aifi = 0 is a linear dependency relation in W A W if and only if for all v,w € W,
PA(CE fiv,w)z) = 0. O

Example 4.4. Suppose that p is odd. Let V = span(ey,...,e4) be the standard 4-
dimensional IFy,-vector space and consider the antisymmetric bilinear forms f1 and fo on
V', represented by the matrices

0 1 0 O 0 0 0 1
-1 1
F1 = 0 0 0 and F2 = 0 0 N (44)
0 0 0 1 -1 0 1
0 0 -1 0 -1 0 -1 0

with respect to the basis (e1,...,es4). Then the 6-dimensional Fy-Lie algebra L =V @
span(z1, z2), defined by [v, w]Lie = fi(v,w)z1+ fa(v,w)z2, is of nilpotency class 2. Based
on Lemma 4.3, a short computation shows that L is d-mazimal. The finite p-group

G = exp(L) is d-mazimal such that d(G) = 4 and |[G,G]| = p*.

Examples 4.2 and 4.4 suggest that, perhaps, the bound in Proposition 4.1 is the best
possible. We record

Question 4.5. Does there exist for every integer k£ > 2 a d-maximal finite p-group G
such that |G : ®(G)| = p* and |[G, G]| = p*—2?

5 Hereditarily w-maximal groups

Let w = w(x) be a fixed word, i.e. an element of the free group F' = (x1,...,x,) on n
generators. We say that a group G is hereditarily w-mazimal if all subgroups of G are
w-maximal.

Proposition 5.1. Let w be an element of the free group F = (x1,...,xy) and let G be
a hereditarily w-mazimal finite group.

(1) If G is a p-group, then w(G) = 1.
(2) If w is equal to ™ or vy, = [x1,...,xk], for some m,k € N, then w(G) =1

Proof. (1) We argue by induction on the order of G. Suppose that G is a non-trivial
p-group. Let H be a maximal subgroup of G, i.e. a subgroup of index p in G. Since
H is hereditarily w-maximal, induction shows that w(H) = 1. From |G : w(G)| > |H :
w(H)| = |H|, we conclude that w(G) = 1.

(2) If w = 2™ for some m € N, then for every g € G, the cyclic subgroup (g) is
x"-maximal, and hence ¢ = 1.

Next suppose that w = v, = [z1,...,z] for some k € N. If G is nilpotent, then
it is a direct product of its Sylow p-subgroups and the claim follows from (1). For a
contradiction, assume that G is not nilpotent. By induction, we may assume that all
proper subgroups of GG are nilpotent of class at most £ — 1. By a classical result of
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Iwasawa (see [6]), G = C x @ where C' is a cyclic p-group and @ is a g-group with p and
q prime. There are two cases.

Case 1: [G,G] < Q. Then there exist subgroups H; and Hs of index p and ¢, and
these are nilpotent of class at most k — 1. Since |G : v(G)| > |H; : v.(H;)| = |H;| for
i € {1,2}, we conclude that v;(G) = 1.

Case 2: [G,G] = Q. In this case, since C is cyclic, [G,G] = [G,Q] = Q. Therefore
(G) = Q and |G : % (G)| = |G : Q| = |C| = |C : v(C)|, a contradiction. O

The following example shows that there is no direct analogue of Proposition 5.1 for
the second commutator word w = [[z1, z2], [y1, y2]]-

Example 5.2. Consider the quaternion group Qg = {%1,+i,+j, +k} of order 8 and
a cyclic group C3 = (a) of order 3. Take the semidirect product G = Cs x Qg with
respect to the natural action, given by i® = j, j* = k and k* = i. We have G? =
[[G,G],[G,G)] = {£1}. This shows that |G : G®| = 12, and since G has no proper
subgroup of order larger than or equal to 12, the group G is [[x1,z2], [y1, yo]]-mazimal.
But G is not metabelian.

We show that the special example 5.2 generalises to higher commutator words. The
standard derived words are defined recursively as

01 = [l‘, y] and 5k+1 = [(5k(x1, ce ,xgk), 6k(y1, ce ,ka)] for k € N.
Accordingly, a group G is soluble of derived length at most & if and only if §x(G) = 1.

Theorem 5.3. Let k € N. Then there exists a finite group G which is dgy1-mazximal,
soluble of derived length k + 2, but satisfies 0x11(G) # 1.

Proof. Let p,q be prime numbers with 2¥ < p < ¢, and let m be the order of p in
(Z/qZ)*. Then F)(¢) = Fpm, where ( is a gth root of unity.

Let L be the free nilpotent Lie algebra of nilpotency class 2* over pond:=2m
generators xi,...,xq. Recall that the derived series of L is a subseries of the lower
central series: d;(L) = 79;(L) for all j € Ny. Hence L has derived length k + 1, with
0k (L) = 96 (L) # 0 central in L.

Let V := Fpx1 + ... + Fpag so that L = V @ y2(L) as an Fp-vector space. Write
V =Vie V. with V; = F,(() for i € {1,—1} and choose zy € GL(V) of prime
order ¢, acting on V; as multiplication by ¢’ for i € {1,—1}. Since L is free, any
vector space automorphism of V' lifts uniquely to a Lie algebra automorphism of L. We
denote the lift of 2y, to Aut(L) by zy. Clearly, ¢ and (! are among the eigenvalues
of the automorphism zy of V. For later use we observe that the Fj(zy)-module V is
completely reducible with irreducible submodules V; and V_;. In particular, V' does not
admit any zy-invariant subspaces of co-dimension 1.

Clearly, zy, acts on the Fp-vector space d;(L) and we denote the restriction of zj,
to 6,(L) = var (L) by 25,(1)- The eigenvalues of z5, (1) are products of length 2% in the
eigenvalues of zy/; among the latter are ¢ and (~!. This shows that 1 is an eigenvalue of
Z5,(L)- Since the Fy(z5, 1))-module 6 (L) is completely reducible, we find a subalgebra
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Z of co-dimension 1 in d(L), which is zp-invariant. Since 0y (L) lies in the centre of L,
the subalgebra Z is, in fact, an ideal of L.

As p > 2F, Lazard’s correspondence yields a finite p-group N := exp(L/Z) (of
exponent p) with a natural action of (2) = C, on N, where z = zr. Under this
correspondence, V = (V 4 Z)/Z is isomorphically mapped to a complement of v2(N) in
N; we denote this complement also by V so that N = V x 75(N). We claim that the
semidirect product G := (z) X N is dg41-maximal, while dj41(G) # 1.

Indeed, since zy does not admit 1 as an eigenvalue, we have N D 01(G) D [V,a] = V.
As N = (V), it follows that 0;(G) = N, and hence 6;4+1(G) = 0k (NN), which is associated
under the Lazard correspondence to dx(L/Z), is a cyclic group of order p and hence non-
trivial. This implies that |G : 6x+1(G)| = |G : N||N : 6x(N)|= |G|/p.

Now suppose that H is a subgroup of G with |H : di1(H)| > |G : 6p+1(G)]. A
fortiori we have |H| > |G|/p. Since g > p is prime, this implies that H Z N and
HN = G. Then [N : HN N| < p, and consequently (H N N)~v2(NN) has index at most p
in N/y2(N) 2 V. Since V does not admit any z-invariant subspaces of co-dimension 1,
we must have (H N N)v2(NN) = N. This implies that HNN = N, and H = G. Thus G
is 04 1-maximal. O

We finish this section by proving that, for many words w, finite groups which are
hereditarily w-maximal are necessarily soluble. In particular, the proposition shows that
a hereditarily dx-maximal groups are solvable.

Proposition 5.4. Let w be an element of the free group F = (x1,...,x,) and let G
be a hereditarily w-mazimal finite group. Then w vanishes on every composition factor

of G.

Proof. Consider a descending chain G = Nog > Ny > ... > N = 1 of subnormal
subgroups of G such that N;_;/N; is simple for each i € {1,...,k}. By induction on the
composition length it is enough to prove that w vanishes on G/N;. For a contradiction,
assume that w does not vanish on G/Nj so that, in particular G = w(G)N;. Then
|G - w(G)] = |N1 : NiNw(G)| < |N1 @ w(Ny)|, which contradicts the w-maximality
of G. [

Question 5.5. Is there a uniform bound on the derived length of a hereditarily ds-
maximal group, where do = [[z1, z2], [y1, y2]]?

6 Hereditarily d-maximal groups

More definitive results can be obtained for hereditarily d-maximal groups which we
define as follows. A group G is said to be hereditarily d-maximal, if every subgroup H
of G is d-maximal. Of course, a finite p-group G is hereditarily d-maximal if and only if
G is hereditarily w-maximal for w = aP[y, z].

Lemma 6.1. Let G be a d-mazimal group. Then G is finitely generated, and for every
mazximal subgroup M of G we have d(G) = d(M) + 1.
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Proof. If G is trivial there is nothing to show. Now suppose that M is a maximal
subgroup of G. Since G is d-maximal, the inequality d(G) > d(M) + 1 holds and in
particular d(M) is finite. On the other hand, if g € G\ M, then the maximality of M
implies (M U {g}) = G, thus d(G) < d(M) + 1. O

Lemma 6.2. Let G be a hereditarily d-maximal group. Then G is equichained of finite
length, i.e. there exists a finite chain 1 = My S My S ... S M, = G, where M; is
maximal in M; 1 for all indices i, and all such chains have the same length. Moreover
this length is equal to d(QG).

Proof. This follows by induction from Lemma 6.1. O

The existence of so-called Tarski groups, i.e. infinite groups all of whose non-trivial
proper subgroups have prime order p, indicates that it may be difficult to classify hered-
itarily d-maximal groups in general; see [12, 13] for a construction of such groups.

In order to avoid these problems we choose to restrict our attention to residually-
finite groups. Note that every non-trivial residually-finite group has at least one max-
imal subgroup of finite index. Thus, if G is a residually-finite d-maximal group, then
Lemma 6.1 and an easy induction on d(G) show that G is in fact finite. It remains to
present a classification of finite hereditarily d-maximal groups.

For n € N let v(n) denote the number of prime divisors, counting repetitions, of
n. By a classical result of Iwasawa, a finite group is equichained if and only if it is
supersoluble; see [5, Satz VI1.9.7] or [7]. This gives

Proposition 6.3. Let G be a finite group. Then G is hereditarily d-maximal if and only
if d(G) = v(|G]).

Proof. Suppose that G is d-maximal. Then Iwasawa’s characterisation of finite equi-
chained groups and Lemma 6.2 imply that G is supersoluble and d(G) = v(|G|).

Now suppose that d(G) = v(|G|). Then for every subgroup H < G we have d(H) =
v(|H|). It follows that G is hereditarily d-maximal. O

Corollary 6.4. Every quotient of a finite hereditarily d-mazximal group is hereditarily
d-mazimal.

Lemma 6.5. Let G be a finite nilpotent group. Then G is hereditarily d-maximal if and
only if G is elementary abelian.

Proof. Suppose that G is hereditarily d-maximal. Being nilpotent, the group G is the
direct product of its Sylow subgroups, G = Py X ... x P, say. Then d(G) = max{d(F;) |
1 < i < r}, and since G is d-maximal, this implies that G is a p-group for a suitable
prime p. Proposition 6.3 asserts that log,|G/®(G)| = d(G) = v(|G]) = log,|G|, so G is
equal to its Frattini quotient, thus an elementary p-group.

It is clear that elementary abelian groups are hereditarily d-maximal. O

Theorem 6.6. Let G be a finite group. Then G is hereditarily d-maximal if and only
if one of the following holds:

13



(1) there exist primes p,q such that G = (x) X Q where (x) = C), Q is an elementary
q-group and x acts on Q as a non-trivial scalar;

(2) there exists a prime p such that G is an elementary p-group.

Proof. 1t is clear that the groups given in the list are hereditarily d-maximal. For the
opposite direction, suppose that G is hereditarily d-maximal. In the proof of Propo-
sition 6.3 it was seen that G is supersoluble. This implies that the derived subgroup
D :=[G,G] of G is nilpotent. Corollary 6.4 and Lemma 6.5 show that G/D and D are
elementary abelian, i.e. G/D = C, and D = (7 for primes p,q and r, s € Np.

If D = 1, there is nothing more to prove. So assume that r, s > 1. Choose generators
x1,...,x, for G modulo D. Proposition 6.3 gives d(G) = v(|G|) = r+s, which has strong
consequences:

(i) every non-trivial element of G has order p or g;

(ii) the group H := (z1,...,2,) has order p", in particular G = H x D is a split
extension of D by H;

(iii) for every y € D\ {1} the group (y) = C, is normal in G and its centraliser Cg ((y))
in H is trivial; consequently H = (z1) = C, and z; acts as a non-trivial scalar on
D.

O
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