
Mitigating the Risk of Insider
Threats When Sharing

Credentials

by

Muntaha NourEddin Qasem Alawneh

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

Royal Holloway, University of London

2012

Declaration

These doctoral studies were conducted under the supervision of Dr. Allan Tomlin-

son.

The work presented in this thesis is the result of original research carried out

by myself, in collaboration with others, whilst enrolled in the Information Security

Group as a candidate for the degree of Doctor of Philosophy. This work has not

been submitted for any other degree or award in any other university or educational

establishment.

Muntaha NourEddin Qasem Alawneh

May 2012

i

Abstract

This thesis extends DRM schemes which address the problem of unauthorized pro-

prietary content sharing in home networks to address the problem of unauthorized

confidential content sharing in organizations. In particular it focuses on how to

achieve secure content sharing between employees in a group while limiting con-

tent leakage to unauthorized individuals outside the group. The thesis discusses the

main organization types, process workflow and requirements. Our main interest is

in organizations which consider content sharing between groups of employees as a

fundamental requirement. Achieving secure content sharing requires a deep analy-

sis and understanding of security threats affecting such a fundamental requirement.

We study and analyze one of the major threats which affect secure content sharing,

which is the threat of content leakage. In this thesis we focus on content leakage

which happens when authorized employees share their credentials with others not

authorized to access content, thus enabling unauthorized users to access confidential

content. Leaking content in this way is what we refer to as content leakage through-

out this thesis. We found that to limit the content leakage threat effectively we have

to split it into two main categories: internal leakage and external leakage. In the

thesis we define each category, discuss the intersection between the categories, and

consider how they can be realized.

Next, we analyze and assess existing content protection schemes, which focus on

content sharing and protection from authorized employees misusing their privileges.

These mainly include Enterprise Rights Management (ERM) and Digital Rights

Management (DRM) schemes. Based on the analysis we identify the weaknesses

found in these schemes for mitigating the content leakage threat.

Following that we develop a framework, which we use to mitigate the content

leakage threat. This framework is based on the authorized domain concept which was

first proposed to address DRM threats. We extend the authorized domain concept

so that it consists of a group of devices owned by an organization, whose employees

need to share a pool of content amongst each other, e.g. a group of individuals

working on a project. In other words, we group devices and content together in a

ii

controlled and secure environment. In this thesis, we propose two types of domains:

the global domain and the dynamic domain that we use to address the identified

content leakage threats. The proposed schemes allow secure content sharing between

devices in a dynamic and global domain, and limit the leakage of content to devices

outside the domain.

Next, we extend our study to cover secure information sharing not only within a

single organization but also to cover this important requirement within collaborating

organizations. We then describe and analyze how the content leakage threat can

be realized between collaborating organizations. We propose a scheme to control

content sharing and, simultaneously, to limit the effect of content leakage when an

organization needs to collaborate with other organizations.

iii

Acknowledgements

I would like to thank my supervisor Dr. Allan Tomlinson for his supervision, help,

support, and encouragement. I am grateful to Prof. Keith Martin, Dr. Jason Cramp-

ton, and Prof. Chris Mitchell for their useful discussion and comments. I also wants

to thank my examiners Dr. Andrew Simpson and Dr. Stefan Poslad for their valuable

comments.

I would like to thank my parents, who have always encouraged and supported

me. Finally, I want to thank my husband for his support and patience throughout

the time I have worked on this thesis, as it would have been impossible, without his

help, to have a family and engage in full time study at the same time.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Research Question . 2

1.2 Contributions and Publications . 3

1.2.1 List of Publications . 5

1.3 Organization of the Thesis . 7

I Background and Problem Analysis 8

2 Problem Definition and Organizational Requirements 9

2.1 Introduction . 10

2.2 Problem Definition . 10

2.2.1 Insider Definition . 10

2.2.2 Insider Threats . 14

2.2.3 Content Leakage Overview 15

2.2.4 Motivating Examples . 17

2.2.5 Problem Analysis . 18

2.3 Organization Types . 19

v

CONTENTS

2.4 General Model for an Organization 22

2.5 Requirements . 23

2.6 Conclusion . 25

3 Related Work 26

3.1 Introduction . 27

3.2 Access Control . 27

3.2.1 Server Side Access Control 28

3.2.2 Server and Client Side Access Control 29

3.3 Enterprise Rights Management . 30

3.3.1 Differences and Similarities Between ERM Schemes 33

3.3.2 ERM Abstract Model Analysis 33

3.4 Digital Rights Management . 36

3.4.1 DRM First Generation . 37

3.4.2 DRM Second Generation . 38

3.4.3 DRM Third Generation . 38

3.5 Other Schemes . 41

3.5.1 Trusted Virtualization . 41

3.5.2 Others . 43

3.6 Trusted Computing . 44

3.6.1 Trusted Platform Module . 45

3.6.2 TCG Roots of Trust . 46

3.6.2.1 The Root of Trust for Measurement 46

3.6.2.2 The Root of Trust for Storage 47

3.6.2.3 The Root of Trust for Reporting 47

vi

CONTENTS

3.6.3 TP Main Components . 48

3.6.3.1 The Authenticated Boot Process 48

3.6.3.2 Protected Storage 49

3.6.3.3 Platform Attestation 50

3.6.3.4 Isolated Execution Environment 52

3.6.4 Challenges in TCG Specifications 52

3.6.5 TPM Commands . 54

3.7 Summary . 55

II Proposed Schemes 57

4 The Proposed Framework 58

4.1 Introduction . 59

4.2 The Framework Entities . 59

4.2.1 Content . 59

4.2.2 Employee . 60

4.2.3 Access Rights . 60

4.2.4 Security Administrators . 60

4.2.5 Organization Devices . 61

4.2.6 Certification Authority . 62

4.3 Global and Dynamic Domain Concept 63

4.3.1 Global Domain . 63

4.3.2 Dynamic Domain . 63

4.4 Master Controller . 65

4.5 Our Scheme Required Applications 66

vii

CONTENTS

4.5.1 Master Application Initialization 68

4.5.2 Client Application Initialization 73

4.5.3 Requstor Application Interaction with the Client Application 74

4.6 Assumptions . 76

4.7 Summary . 77

5 The Global Domain 78

5.1 Introduction . 78

5.2 System Workflow . 79

5.2.1 Global Domain Establishment 81

5.2.2 Expanding Global Domain 83

5.2.3 Shrinking Global Domain . 91

5.3 How Global Domain Protects Content 93

5.4 Scenarios . 95

5.5 Summary . 96

6 Dynamic Domains 97

6.1 Introduction . 98

6.2 System Workflow . 99

6.2.1 Dynamic Domain Establishment 99

6.2.2 Adding Devices to a Dynamic Domain 102

6.2.3 Removing a Devices from a Dynamic Domain 105

6.3 Domain Management . 105

6.3.1 Domain Expansion . 106

6.3.2 Domain Shrinking . 106

viii

CONTENTS

6.3.3 Device Changes . 106

6.3.4 Key Revocation . 106

6.4 Key Refreshment . 108

6.5 Binding Content to a Domain . 109

6.6 Summary . 110

III Application 111

7 Collaborating Organizations 113

7.1 Introduction . 113

7.2 Protect Content Between Collaborating Organizations 114

7.3 Process Workflow . 115

7.3.1 Trusted Channel Establishment and Policy Setup 115

7.3.2 Exchanging Content within Collaborating Organizations . . . 120

7.4 Discussion and Conclusion . 126

IV Threat Analysis and Conclusion 128

8 Threat Analysis 129

8.1 Global Domain Scheme . 129

8.2 Dynamic Domain Scheme . 136

8.3 Collaborating Organization Scheme 137

8.4 Summary . 141

9 Discussion, Limitations, and Further Research 142

9.1 Comparison with DRM . 142

ix

CONTENTS

9.1.1 Comparison based on Requirements 144

9.1.2 Comparison based on Functions 144

9.1.2.1 DRM Master Control Device Functions 144

9.1.2.2 Global Domain Master Controller Functions 145

9.1.2.3 Dynamic Domain Master Controller Functions . . . 146

9.1.2.4 Collaborating Organization Master Controller Func-

tions . 147

9.1.3 DRM Authorized Domain vs. Proposed Scheme Domains . . 147

9.2 Proposed Scheme Relation with ERM 148

9.3 System Analysis . 149

9.4 Limitations . 151

9.5 Future Research . 154

Bibliography 156

A Verification 164

A.1 Introduction . 164

A.2 Summary of Used Functions . 166

A.3 Program . 170

A.4 Execution Output . 185

x

List of Figures

1.1 Thesis Structure, Summary and Contributions 5

2.1 Factors Affecting Insiders Definition 12

2.2 Example of a Functional Organization Structure 20

2.3 Example of a Divisional Organization Structure 20

2.4 Example of a Matrix Organization Structure 21

2.5 Generic Organization: Grouping, Project Initiation and Content Flow 23

3.1 Access Control . 28

3.2 ERM Main Entities . 31

3.3 Internal Leakage . 35

3.4 External Leakage . 36

3.5 Leakage between Collaborating Organizations 37

3.6 DRM with an Authorized Domain Model 40

4.1 Global and Dynamic Domains . 64

4.2 Key Hierarchy . 66

4.3 Master Initialization (a) . 71

4.4 Master Initialization (b) . 72

xi

4.5 Administration Registration . 72

4.6 Admin Verification . 73

4.7 Client Initialization . 74

4.8 Requstor Application Interaction with the Client Application 75

5.1 Global Domain Algorithms Sequence 79

5.2 Initialize Global Domain (a) . 84

5.3 Initialize Global Domain (b) . 85

5.4 Join Global Domain (a) . 90

5.5 Join Global Domain (b) . 90

5.6 KC Initialization and Removing Devices 93

6.1 Dynamic Domain Algorithms Sequence 99

7.1 Exchanging Content Scenario . 121

8.1 External Leakage Analysis . 130

8.2 Internal Leakage Analysis . 136

8.3 Collaborating Organization Analysis 138

9.1 DRM and ERM Boundaries . 143

A.1 The TSS Stack . 166

xii

1. Introduction

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.1.1 Research Question . 2

1.2 Contributions and Publications 3

1.2.1 List of Publications . 5

1.3 Organization of the Thesis 7

This chapter gives an overview of the thesis. We provide the motivation for the

research and describe the contributions of this thesis. We also present the overall

structure of the thesis.

1.1 Motivation

Organizations have always faced challenges in protecting confidential information

from being revealed to unauthorized parties. Such challenges are even harder to ad-

dress when an organization needs such confidential content to be shared between its

own employees to achieve a particular task. Threats from outside the organization

are always a major worry; however, organizations cannot ignore the risk of autho-

rized employees, or ‘insiders’, revealing confidential content to unauthorized parties.

This is because insiders may have privileges and know where to obtain confidential

content from within the organization. Thus the risk associated with insider threats

is often greater than the risk of threats originating from outside the organization

1

1. Introduction

[63, 70]. Insiders can use different ways to leak content to unauthorized parties; e.g.

by sharing their credentials with an unauthorized party. Sharing credentials allows

unauthorized users to access content using an authorized employee’s credentials.

This problem is what we refer to as content leakage throughout this thesis (what

we mean by content is defined Section in 4.2.1).

1.1.1 Research Question

Our research question is “Can the content leakage threat be limited when insiders

share their credentials in organizations?”

The problem of content leakage by insiders sharing their credentials is the pri-

mary motivation behind the research presented in this thesis. We start by studying

this problem, and its impact. We then consider current content protection schemes

to assess how they may mitigate this threat. During our research we found that

this problem has been considered in different fields of research for different types

of content. The area of research which focuses on addressing content leakage when

users share the means to access content is Digital Rights Management (DRM). DRM

technology was proposed to address the problem of proprietary content piracy for

home networks [7, 8]. This problem starts when proprietary content with the means

of accessing this content is shared with an uncontrolled number of unauthorized

users.

Organizations often manage the sharing and protection of content by controlling

what authorized employees are allowed to do with confidential content. This is

typically achieved by defining access rights that restrict what authorized employees

can or cannot do with content. Widely discussed access control schemes such as

Discretionary Access Control (DAC) [38] and Mandatory Access Control (MAC)

[69] protect content by enforcing access rights where content is stored. However,

when content is copied to another device, the access rights are not copied with

the content; this means that the access rights are no longer enforceable on other

devices. Such schemes are good enough to satisfy content protection requirements

where content is not transferred between users [70]. However, with conventional

operating system access control systems, once content leaves the device where it is

stored it becomes disassociated from its access rights and thus loses its protection.

The demand for distributing digital content between an organization’s depart-

ments and the need for content to be shared between employees without affecting

its protection motivates the need for schemes which are capable of protecting con-

tent even after it has been distributed or shared. Such schemes are analyzed and

discussed in detail in this thesis, for example Enterprise Rights Management (ERM)

schemes [11, 31, 52, 57]. ERM schemes attempt to expand the policy enforcement

2

1. Introduction

point to cover not only where content is stored, but also where it is subsequently sent

and used. Although there are major differences between traditional access control

schemes and ERM schemes, they both aim to protect content from unauthorized us-

age. Within any organization, traditional access control schemes and ERM schemes

rely on an employee’s credentials to authenticate users and provide them with proper

authorization rights. But what if authorized employees share their credentials with

an unauthorized party? Are these schemes still capable of protecting organizations’

confidential content? During our research we found that neither traditional access

control schemes nor ERM schemes address the problem of protecting content from

authorized employees if they share their credentials with unauthorized parties.

All the above motivates us to consider the potential of applying DRM schemes

within organizations to mitigate the content leakage threat. DRM schemes, as we

discuss in Chapter 3, do not meet some of the organization requirements, e.g. dy-

namic structure and workflow. However, we found that we can modify DRM schemes

so that they can be integrated in organizations to limit the leaking of confidential

content when authorized users share their credentials.

Our proposed scheme can be applied to ERM schemes to limit content leakage by

controlling access to content. This thesis is not concerned with fine-grained access

rights such as the number of times content could be accessed, forwarded or printed.

ERM schemes (see, for example, [11, 31, 52, 57]) focus on rights management which

can be integrated with our proposed schemes to manage access rights for employees

in the organization. We discuss this point in more detail in Chapter 3.

During our research we observed that there are wider applications suffering from

similar content leakage problems. We therefore extended our proposed solution to

address similar leakage problems within wider application domain: collaborating

organizations.

1.2 Contributions and Publications

The proposals in this thesis are different from DRM. However, they build on part of

the work proposed by a previous student’s thesis in DRM and extend this to develop

a framework for controlling access to content within enterprise organizations. This

was accomplished by developing a new set of protocols and a key management

scheme. We now briefly describe the differences and similarities between this thesis

and the DRM work.

Initial DRM schemes were mainly focused on protecting content distributor rights

by binding content to a specific device. However, such schemes ignored many con-

sumer and copyright law requirements (e.g. enabling licence holders to use their

3

1. Introduction

content on their devices using a single licence file similar to the physical media

distribution). To meet this requirement, DRM schemes integrate the authorized

domain concept which was originally proposed in [41]. DRM with Authorized Do-

main schemes focused on satisfying consumer rights; however, there were still some

gaps in satisfying the copyright requirements. This is because the domain was not

bound to the domain owner (i.e. licence holder) and any user can join the domain

to use the copyrighted content. The work of [6, 7, 8, 10] proposed four mechanisms

to strongly bind the domain owner with the authorized domain and to manage the

number of devices within the authorized domain.

The starting point for the work presented in this thesis is built on one of the pre-

viously proposed four mechanisms, namely the Authorized Domain concept, which

uses a master control device. Our work develops the concept of the master control

device and the authorized domain management. As stated earlier, DRM schemes

were proposed for a different environment (i.e. home networks) and different types of

content than ERM schemes. Thus we have two different environments with different

properties which result in the need to change the way DRM with authorized domain

functions so that it can satisfy the requirements for an organizational environment.

In this thesis we have extended the DRM authorized domain concept to the

dynamic domain concept, we have changed the way the master controller is used so

that it can manage the organization domain, and we update the way devices are

bound to the domain. In other words we have used some of the DRM basic entities

to propose a new scheme which reduces the impact of authorized users leaking the

organization’s content by sharing their credentials with unauthorized parties. A

more detailed analysis and discussion about the boundaries between the two areas

— where each starts and ends — is provided in Chapter 3 and Chapter 9.

This thesis includes the following novel contributions (illustrated in Figure 1.1).

1. It proposes content leakage categories (i.e. internal leakage and external leak-

age) and their definitions. This contribution is published in [16].

2. It proposes the dynamic domain concept to limit internal leakage. This con-

tribution is published in [15].

3. It proposes the global domain concept to limit insider leakage. This contribu-

tion is published in [14].

4. It proposes the dynamic domain and global domain schemes workflow which is

used to mitigate the content leakage threat when users share their credentials

in organizations.

4

1. Introduction

Figure 1.1: Thesis Structure, Summary and Contributions

5. It extends the dynamic and global domain schemes to consider content sharing

between collaborating organizations. We provide a scheme to manage the ex-

change of content between two collaborating organizations and to mitigate the

effects of the resulting content leakage threat. This contribution is published

in [14].

1.2.1 List of Publications

A number of publications have contributed to this thesis as follows:

1. Muntaha Alawneh, Imad M. Abbadi: Combining DRM with Trusted Com-

puting for Effective Information Access Management. PTITS 2008 [13].

I made the following contribution which is mainly covered in Chapters 2 and

3.

I proposed the idea of using DRM in other application domains, e.g. to

5

1. Introduction

protect content in organizations and healthcare, and described the DRM

model and how it could possibly be used to protect content.

2. Muntaha Alawneh, Imad M. Abbadi: Sharing but Protecting Content Against

Internal Leakage for Organisations. DBSec 2008: 238-253 [15].

I made the following contributions which are mainly covered in Chapter 6:

I proposed the dynamic domain concept for protecting content in orga-

nization.

I extended the DRM’s master controller and the software applications’

functions to be capable of managing the newly proposed dynamic do-

main. The detailed differences between the DRM master controller and

the new scheme is covered in Chapter 3 and Chapter 9. However, the

description of our master control and the software application functions

are discussed in the chapters where I need to use them, i.e. Chapters 4,

6, 5, and 7.

I also proposed the dynamic domain scheme workflow which is used to

mitigate content leakage threat when users share their credentials in

organizations.

3. Muntaha Alawneh, Imad M. Abbadi: Preventing information leakage be-

tween collaborating organisations. ICEC 2008: 38 [14].

I made the following contributions which are covered in Chapter 7:

I developed the dynamic domain concept to apply to collaborating orga-

nizations.

I also extended the global domain concept to collaborating organizations

to address the problem of insider leakage when users share their creden-

tials.

This work draws upon existing schemes which establish secure channels

(e.g. VPN) by integrating Trusted Computing concepts to establish trust

between organizations end points.

4. Muntaha Alawneh, Imad M. Abbadi: Analyzing Insiders and their Threats

in Organizations. SPIoT 2011 [16].

I made the following contribution which are included in Chapter 2.

6

1. Introduction

I updated current definition of insider and extended it to differentiate

between insiders and malicious insiders. It also defines internal and ex-

ternal leakage.

1.3 Organization of the Thesis

This thesis consists of four main parts: background and problem definition; proposed

schemes; application; and threat analysis and conclusion (Figure 1.1 illustrates these

and emphasizes our contribution).

The first part (i.e. background and problem definition) consists of two chapters:

Chapter 2 defines the thesis problem and the system requirements, while Chapter

3 analyzes the most commonly discussed schemes for secure content sharing and

the DRM related work which we build on. Chapter 3 also provides an overview of

Trusted Computing technology since this forms the basis of our enhanced protection

scheme.

The second part (i.e. the proposed schemes) consists of three chapters: Chapter

4, 5 and 6, which cover my own work as follows. Chapter 4 (the proposed framework)

defines the terms, assumptions, and initialization protocols which are used in the

proposed schemes. Chapter 5 (the global domain) covers the global domain scheme

and Chapter 6 (dynamic domains) covers the dynamic domain scheme. The last

two chapters use the definitions, assumptions, and initialization protocols provided

in Chapter 4.

The third part (i.e. application) consists of Chapter 7 (collaborating organiza-

tions) which provides an application that extends the proposed dynamic and global

domain schemes to cover content leakage threats that arise between collaborating

organizations.

The fourth part (i.e. threat analysis and conclusion) consists of Chapters 8

and 9. Chapter 8 (threat analysis) provides a threat analysis of all the proposed

schemes, Chapter 9 (Discussion, limitations, and further research) concludes the

thesis, provides a comparison between our schemes and DRM schemes, discusses the

thesis limitations, and provides future research directions.

The last part (i.e. the verification) consists of the Appendix. The appendix

proposes, as a proof of concept, a prototype and its execution output for the initial-

ization algorithms and the global domain algorithms discussed in this thesis.

7

Part I

Background and Problem

Analysis

8

Problem Definition and Organizational Requirements

Chapter 2

Problem Definition and

Organizational Requirements

Contents

2.1 Introduction . 10

2.2 Problem Definition . 10

2.2.1 Insider Definition . 10

2.2.2 Insider Threats . 14

2.2.3 Content Leakage Overview 15

2.2.4 Motivating Examples . 17

2.2.5 Problem Analysis . 18

2.3 Organization Types . 19

2.4 General Model for an Organization 22

2.5 Requirements . 23

2.6 Conclusion . 25

In this chapter we start by defining insiders and insider threats. We then define

what we mean by content leakage by insiders when they share credentials. This is

the central problem of our research. Following that we discuss the main types of

enterprise organizations and provide a generic model for such organizations. Based

on this we identify the fundamental requirements for the type of organization we are

interested in.

9

Problem Definition and Organizational Requirements

2.1 Introduction

Enterprises need to trust their employees to carry out the enterprise’s business in

a workflow that achieves their business objectives. Trusting internal employees, in

itself, does not guarantee protection of the enterprise’s confidential assets. Therefore

a robust system should exist to organize the enterprise’s internal assets and, at the

same time, prevent content leaks. These leaks may be caused either accidentally or

deliberately by insiders giving content to unauthorized entities. In this chapter we

explore this problem in detail by first discussing what we mean by ‘insiders’ and

‘content leakage’ in the context of this research. At this stage content is considered

to be any confidential corporate information; a more detailed definition is provided

in Chapter 4.

We believe that finding a practical solution to this problem requires a careful

understanding of different organization types and their requirements. Therefore in

this chapter we describe the main types of enterprise organizations. We conclude

that different organization types have common entities and fundamental require-

ments. Based on this, we provide a generic model for an enterprise organization

that is composed of common entities and which uses a common workflow. In this

we highlight the main organizational requirements that we are interested in.

2.2 Problem Definition

2.2.1 Insider Definition

Insider problems are often cited as one of the most serious security problems and

the most difficult problem to deal with [19]. The most common notion of ‘insiders’

is that they are internal employees working for an organization. However, when we

look at modern enterprise businesses we find that there are many employees working

for an organization who are not direct employees of that organization. For example,

recent technologies enable organizations from different countries to collaborate to

achieve common goals; this is the case with grid and cloud computing. This collab-

oration might enable an employee from one organization to have partial access to

a collaborating organization’s data to achieve a specific task. As another example,

many organizations outsource part of their activities (e.g. IT services), and employ

contractors. Such examples illustrate that it is too simplistic to say that only direct

employees of an organization are the ‘insiders’ [29]. Therefore, we find that we need

a more detailed definition of an ‘insider’.

The Oxford English Dictionary defines an insider as “a person who is within

a society, organization, etc”. Although this is a general definition and it is not

10

Problem Definition and Organizational Requirements

supposed to be used as an information security term, and it stresses that an insider

is an internal user.

Within the academic community we find a diversity of definitions of the term

‘insider’ [22]. The summary of the 2008 Dagstuhl Seminar on countering insider

threats [19] proposes several definitions of an insider as follows.

1. Someone defined with respect to a resource, leading to degrees of ‘insiderness’.

2. Somebody with legitimate, past or present, access to resources.

3. A wholly or partially trusted subject.

4. A system user who can misuse privileges.

5. Someone with authorized access who might attempt unauthorized removal or

sabotage of critical assets or who could aid outsiders in doing so.

While the above definitions may be adequate for a simple self-contained organi-

zation, they have some shortcomings when considering more complex modern enter-

prises. Moreover, there are more complicated cases for insiders which may not be

clear in the previous definitions. For example, when an authorized employee shares

his credentials with an unauthorized individual, the unauthorized individual may

subsequently use the credentials to leak confidential content from the employee’s

organization. In this case, it is not clear whether this is an ‘insider’ attack or an

external ‘masquerade’ attack, and in this case who is considered to be the insider:

the authorized employee or the unauthorized individual? The previous definitions

of insiders need to be refined to cover this and similar cases.

Another, more general, definition of an insider is “someone with access, privilege,

or knowledge of information systems and services”[22]. This definition considers

both external and internal users who possess authorized access or knowledge as

insiders. However this definition is perhaps too general, as it does not explicitly

state the conditions under which the knowledge or information was obtained.

From all these definitions we may deduce that any person who has access to

confidential enterprise content may be considered an ‘insider’. The question then

arises as to the status of employees of an organization who do not normally have

access to confidential content: should they still be considered as ‘insiders’ when

assessing ‘insider threats’?

When an organization requires someone to work on confidential content, it would

typically carry out a background check on the user. The extent of this will depend

on how confidential the content is. The individual may then have to sign some

statement agreeing to behave in a trustworthy manner. The organization would

11

Problem Definition and Organizational Requirements

Internal/External User
Gets Credential

Authorized

 a

Unauthorized

Cause
Harm

2

Does not
Cause Harm

1

Cause
Harm

2

Does not
Cause Harm

1

Result

The way
credential is

obtained

a-1: insider a-2: malicious
insider

b-1: insider b-2: malicious
insider

ba

Figure 2.1: Factors Affecting Insiders Definition

then provide the user with credentials enabling them to access the content required

to carry out their agreed duties. This is the point when an organization should

consider the user as an insider. It is our contention that having valid credentials

is an important requirement when considering whether a user is an insider or not.

This requirement needs to be part of the insider definition.

To extend the previous definitions of an ‘insider’ we consider four main factors.

Figure 2.1 illustrates these in a conceptual diagram, which has the following main

elements.

1. A user’s relation with the organization whilst performing an action on the con-

fidential information or content. The user could be either internal or external

to the organization. In the context of our thesis both internal and external

users could be insiders.

2. The method used to obtain credentials. This could be either authorized or

unauthorized. Authorized means that credentials are granted to the user in

an authorized way. Unauthorized means that the user obtains the credentials

either a) by mistake (e.g. overheard accidentally or sent by mistake) or b)

deliberately (e.g. stolen from somewhere or obtained by social engineering).

3. The result of a user’s access to the organization’s confidential content. What

we mean by this the consequences that are caused by the user when accessing

content using the obtained credentials. This could either cause harm or not.

From Figure 2.1 we can see there are four possible cases to consider.

1. Case I — route from a – to – 1. In this case a user is (a) granted a credential

in an authorized way and (1) when accessing content does not cause harm. An

12

Problem Definition and Organizational Requirements

example of this is internal employees who are granted credentials to perform

their duties. This case applies when employees do their job as expected.

2. Case II — route from a – to – 2. In this case a user is (a) granted a credential

in an unauthorized way and (2) uses it for a purpose other than the one for

which it was originally intended which results in harm. For example, internal

employees who are granted credentials to perform their daily activities, but

when accessing content they intentionally or accidentally misuse their privi-

leges, e.g. update someone’s salary, delete an important file, or leak content

to a competitor.

3. Case III — route from b – to – 1. In this case a user has (b) obtained a

credential in an unauthorized way but (1) does not cause harm. For example,

when a user obtains some credentials by mistake (e.g. sent by mistake) but he

does not act on this knowledge.

4. Case IV — route from b – to – 2. In this case a user has (b) obtained a

credential in an unauthorized way and (2) when accessing content, caused

harm. For example, an unauthorized user obtains credentials from a friend

and uses this to update someone’s salary, delete an important file, or leak

content to a competitor.

After analyzing the above cases we conclude that there are two different concepts:

‘insider’ and ‘malicious insider’. In the following we propose our definition for both

concepts.

Definition 2.2.1. An insider is a user who is granted a credential in an autho-

rized way to access confidential corporate content for a specific purpose defined by

the organization (does not cause harm), or a user who obtains a credential in an

unauthorized way but does not use it to cause harm.

This definition explicitly identifies insiders in Figure 2.1 to include routes (a –

to – 1, and b – to – 1), and explicitly excludes routes (a – to – 2 and b – to – 2).

Definition 2.2.2. A malicious insider is an internal or external user who uses

credentials, obtained by either authorized or unauthorized means, to access confi-

dential corporate content that results in harm to the organization. Such a misuse

could be either accidental or deliberate.

This definition explicitly identifies malicious insiders in Figure 2.1 to include

routes (a – to – 2 and b – to – 2), and explicitly excludes routes (a – to – 1 and b –

to – 1).

Based on these definitions a ‘malicious insider’ could be one of the following.

13

Problem Definition and Organizational Requirements

1. An internal employee who possesses a valid credential to access confidential

content. This access accidentally or deliberately results in harm to the orga-

nization.

2. An external user who possesses valid credentials to access confidential content.

This access accidentally or deliberately results in harm to the organization.

This case includes examples like contractors, third party vendors who have

access to corporate internal information, and employees from collaborating

organizations who have access to each other’s organization’s information.

3. An internal employee who obtained a valid credential, by unauthorized means,

to access confidential content to cause harm.

4. An external user who obtained a valid credential, by unauthorized means, to

access confidential content to cause harm. This case includes anyone who has

gained access to internal resources by masquerading as an authorized internal

employee.

2.2.2 Insider Threats

Having defined what we mean by an ‘insider’ and what cases it includes, we can

now discuss the insider threats that we will focus on in this thesis. Brackney et

al. define an insider threat as “malevolent (or possibly inadvertent) actions by an

already trusted person with access to confidential information and information sys-

tems”[21]. Insiders’ actions could affect information or service availability, integrity,

or confidentiality. In the following we briefly define and provide examples for each

case.

1. Availability is ensuring the content can be accessed any time when requested.

An insider could severely disrupt service availability, for example, by deleting

content or invalidating backup.

2. Integrity is invalidating the integrity of content, for example, by inserting

wrong results, executing a process for granting an employee a bonus, etc.

3. Confidentiality is when an insider reveals confidential content to unautho-

rized parties, which we refer to it as content leakage throughout the thesis, e.g.

retrieving content to a client device and then forwarding it (e.g. using email)

to a competitor.

In this thesis we are mainly concerned about insider threats which affect content

confidentiality — integrity and availability is a planned aspect of future work as

discussed in Chapter 9.

14

Problem Definition and Organizational Requirements

There are several ways allowing malicious insiders to leak content from controlled

resources, which are summarized as follows:

(a) Leaking confidential content by exploiting the analog hole problem.1 This

is defined as: “Once digital information is converted to a human-perceptible

(analog) form, it is a relatively simple matter to digitally recapture that ana-

log reproduction in an unrestricted form, thereby fundamentally circumventing

any and all restrictions placed on copyrighted digitally-distribited work.2 For

example, the analog hole could be recording content, memorizing content, or

conveying content to others via a phone call. In this thesis we do not consider

the analog hole problem.

(b) Leaking confidential content by malicious insiders sending unprotected content

using on-line media (e.g. via the Internet) or by storing and forwarding using

physical media (e.g. printing text files or copying unprotected content to a

USB memory stick).

There are several areas of research which attempt to mitigate this particular

insider threat [7, 8, 37]. This is typically done by protecting content in such

a way that only encrypted content can be exchanged between devices and

unprotected content cannot leave the device. Moreover, recent advances in

trusted computing help in enforcing such control measures [65, 68]. In our

proposed scheme we integrate recent research in DRM for addressing this point

(see for example [8]).

(c) Leaking confidential content by malicious insiders when sharing the means

of accessing the content (e.g. their credentials) with unauthorized individu-

als / parties inside or outside the organization enabling them to access pro-

tected resources. This is the main threat which our thesis focuses on.

2.2.3 Content Leakage Overview

We now define the content leakage threat more specifically, based on insider threat

(c) above.

Definition 2.2.3. Content leakage is a threat to secure content sharing which is

realized when malicious insiders share their credentials with unauthorized individu-

als enabling them to access content which they are not authorized to access.

We categorize content leakage into two main subcategories: internal and external

leakage.

1http://en.wikipedia.org/wiki/Analog hole
2http://en.wikipedia.org/wiki/Analog hole

15

Problem Definition and Organizational Requirements

Definition 2.2.4. Internal leakage is a threat to secure content sharing which

is realized when an authorized internal employee shares their credentials with unau-

thorized internal employee(s), enabling them to access confidential content.

Definition 2.2.5. External leakage is a threat to secure content sharing which

is realized when an internal employee shares their credentials with an unauthorized

third party outside the organization, enabling them to access confidential content.

The external leakage threat can be realized by an authorized employee who can

access protected content and who wants to share it with unauthorized parties outside

the organization. In a typical organization, authorized employees can access content

from any device, and from any location, so long as they provide their credentials

and the organization firewall does not prevent access.

Using firewalls to mitigate external leakage requires an organization’s firewall

to prevent employees from transferring content outside the organization. It also

requires preventing employees from using portable media. This is not practical for

many organizations and is discussed at length by the Jericho Forum.3

Moreover, recent ERM schemes consider allowing ‘outsiders’ to interact with

enterprises as an essential requirement to allow modern business functions [52, 57].

If firewall rules allow the transfer of content outside an organization and allow ex-

ternal entities to communicate with the organization’s authentication service, then

an authorized employee can give their credentials to unauthorized third parties to

access confidential content.

While the two types of content leakage defined above apply to a single orga-

nization, when organizations collaborate we find that addressing content leakage

between collaborating organizations requires further analysis. This we refer to as

content leakage between collaborating organizations, which is derived from the above

two types of content leakage and is defined below.

In order to simplify the description of this type we call the organization who owns

the content the ‘source’ organization, and the organization that receives content as

the ‘destination’ organization.

Definition 2.2.6. Leakage between collaborating organizations is a threat to

secure content sharing which is realized when an authorized employee in the source

organization shares their credentials with an unauthorized party in the destination

organization, enabling them to access the source organization’s confidential content.

In practice many organizations need to share content with other organizations.

In some organizations completing a business process requires accessing another orga-

nization’s confidential content. Organizations have a ‘duty of care’ to protect their

3http://www.opengroup.org/jericho/

16

Problem Definition and Organizational Requirements

own confidential content and the confidential content they obtain from individuals

or from other organizations. Thus, organizations need to find ways to prevent the

transfer of their confidential content to unauthorized individuals and third parties

and, at the same time, allow sharing of content with other collaborating organi-

zations. In this situation, authorized employees in the collaborating organizations

often access source organization content from any device so long as they provide

proper authentication credentials. Consequently if an authorized employee in one

collaborating organization shares his credentials with unauthorized users, this will

enable the unauthorized users to access the source organization content, i.e. this

results in content leakage between collaborating organizations.

2.2.4 Motivating Examples

Now we list some examples showing the importance of addressing content leakage

problem in general. Jonathan Pollard,4 who had high-level security clearance, was

arrested for passing tens of thousands of pages of classified U.S. information (e.g.

satellite photographs, weapon and systems data) to Israel. According to the 2008 In-

formation security breaches survey “16% of the worst security incidents were caused

by insiders; 47% in large companies”[30]. According to the 2007 CSI Annual Com-

puter Crime and Security Survey “Insider misuse of authorized privileges or abuse

of network access has caused a great damage and loss to corporate information” [63].

We now list some specific examples on the problem of insider threats when shar-

ing credentials. According to the 2008 Insider Threat Study: Illicit Cyber Activity in

the Government Sector, “42% of incidents, insiders used an account other than their

own in carrying out their malicious activities” [3]. According to the 2008 Insider

Threat Study: Illicit Cyber Activity in the Information Technology and Telecom-

munications Sector, “23% of the insiders used shared accounts to carry out their

activities” [4].

As discussed above, content leakage caused by insiders sharing credentials is a

considerable problem. We argue that more research is needed to bring greater atten-

tion to this problem in relation to other areas of access control. This is because, in

comparison with outsiders, insiders often have better knowledge of internal systems,

and know where to find and how to abuse their organization’s confidential assets.

In our research we focus on limiting the effects of content leakage as defined in

Section 2.2.3. More specifically, we focus on protecting confidential content even if

an authorized user shares their credentials with others, inside or outside the organi-

zation, not authorized to access content.

4http://en.wikipedia.org/wiki/Jonathan Pollard

17

Problem Definition and Organizational Requirements

To investigate this problem without considering organization types nor the dy-

namic nature of organizations would not result in a practical solution. Therefore

in Section 2.3 we describe the main types of organization structures, and define the

organization requirements which we consider within our proposed scheme.

2.2.5 Problem Analysis

When we look at our definition of an insider, and the insider leakage threats, it is

clear that providing a solution which completely mitigates these threats is not going

to be an easy task. This is because insiders have credentials which allow access to

content typically without detection other than via audit logs. While audit logs may

be useful after an incident has taken place, they do not prevent access in the first

place. In practice most access control schemes manage access to content by checking

authorization credentials. Thus, if access to content is controlled by credentials that

the user can share with others, this does not mitigate the threat of leakage due to

insiders sharing credentials.

Sharing credentials or the means of accessing content has caused many breaches

in DRM. Consequently, researchers in DRM have attempted to provide several so-

lutions to this problem. Their initial idea for mitigating this threat was to bind

content with a specific device [5]. However binding content to a specific device has

been publicly criticized since it does not satisfy many consumer and copyright law

requirements. This led to the authorized domain concept in DRM schemes that

allows content to be bound to several devices. Our paper [13] proposes the idea

of using DRM in wider application domains, e.g. it discusses the possibility to use

DRM schemes to protect content in organizations. In this thesis we discuss the

possibility of using DRM schemes to address content leakage problem. We analyze

this point in detail in Chapter 3, where we set the relation and exact boundaries

between our work and DRM.

Many alternative solutions may be proposed to mitigate the threat of insider

leakage in enterprise organizations. However, learning from the DRM experience,

one important point to consider is the acceptance of the solution by organizations

and users. Therefore, proposing any mitigation scheme to meet insider threats re-

quires a good understanding of both the organization’s requirements and the security

requirements.

The problem we face when we attempt to identify a typical organization’s re-

quirements is that there are many types of organization. Each has its own set of

requirements which might be different from other organizations depending on its

structure and process workflow. Thus, we need to specify which type of organi-

zation we are interested in when mitigating the insider leakage problem. In the

18

Problem Definition and Organizational Requirements

next section we start by studying the main types of organization and the different

requirements for each type. We conclude that, although there are many different

organization structures and workflows, most share a common base. Therefore, we

are able to define a generic model for an organization that can be applied to different

organization types.

2.3 Organization Types

Different structures exist for organizations depending on the nature of the orga-

nization’s business [53]. In our research we are mainly interested in non-military

organizations which use dynamic groups of employees and projects to fulfil their

objectives. Most organizations also require the sharing of content and content be-

tween group members and, at the same time, require protection of the content from

the threat of leakage. In the following we outline three main types of organiza-

tional structure: Functional Structure, Divisional Structure (also called Product

Structure), or Matrix Structure.

Functional Structure. The functional structure type of organization, as illustrated

in Figure 2.2, splits employees into role-specific groups. Employees join the

groups based on their roles in the organization.

Divisional Structure. The divisional (or product) structure type of organization,

as illustrated in Figure 2.3, splits employees into division-specific groups based

on product line, customer market and geography. Each division has its own

resources and, hence, can act independently.

Matrix Structure. The third type of organizational structure, as illustrated in Fig-

ure 2.4, is an overlay of a product structure on an existing functional structure.

It splits employees into groups based on both their roles and product lines.

From the above we see that all three types of organization arrange their employees

into groups which interact with each other to achieve the organization’s goals [53].

The nature of the grouping and the interaction between groups is based on the

organization’s process workflow.5 According to Sandhu et al. [67] the relationship

between groups within an organization could be either isolated or connected. Isolated

groups are realized when group operations and employee membership have no impact

5“Workflow may be seen as any abstraction of real work, segregated in workshare, work
split or whatever types of ordering. For control purposes, workflow may be a view on real
work under a chosen aspect, thus serving as a virtual representation of actual work. The
flow being described often refers to a document that is being transferred from one step to an-
other.”[http://en.wikipedia.org/wiki/Workflow]

19

Problem Definition and Organizational Requirements

Staff Staff Staff Staff Staff

Staff Staff Staff Staff Staff

Functional
Manager

Engineering
Product
Design

Research &
Development

Manufacturing Finance

Functional
Manager

Functional
Manager

Functional
Manager

Functional
Manager

Chief Executive
Officer

Project
Co-ordination

Staff Staff Staff Staff Staff

Figure 2.2: Example of a Functional Organization Structure

Divisional
Manager

Chief Executive
Officer

Engineering
Staff

Product
Design
Staff

Research &
Development

Staff

Manufacturing
Staff

Divisional
Manager

Engineering
Staff

Product
Design
Staff

Research &
Development

Staff

Manufacturing
Staff

Divisional
Manager

Engineering
Staff

Product
Design
Staff

Research &
Development

Staff

Manufacturing
Staff

Project
Co-ordination

Figure 2.3: Example of a Divisional Organization Structure

20

Problem Definition and Organizational Requirements

Functional
Manager

Engineering
Product
Design

Research &
Development

Manufacturing Finance

Project-1

Project-2

Project-3

Staff Staff Staff Staff Staff

Staff Staff Staff Staff Staff

Staff Staff Staff Staff Staff

Manager of Project
Managers

P
ro

je
ct

M

an
ag

e
r

P
ro

je
ct

M

an
ag

e
r

P
ro

je
ct

M

an
ag

e
r

Functional
Manager

Functional
Manager

Functional
Manager

Functional
Manager

Chief Executive
Officer

Project
Co-ordination

Figure 2.4: Example of a Matrix Organization Structure

on other groups. On the other hand, in connected groups some impact could arise,

e.g. if groups are mutually exclusive.

Employees’ access rights in either type of group can be of two types: differen-

tiated or undifferentiated. Undifferentiated access rights are when all members of

a group have the same access rights to the same item of content. However, with

differentiated access rights, members of the same group have different access rights

to the same item of content.

Moreover, groups in organizations are not static but dynamic. By dynamic we

mean that a group can be expanded by adding members, can contract by removing

members, can be combined with other groups to form a bigger group, and can

split to form smaller groups. In this thesis we discuss differentiated, isolated and

differentiated, connected groups.

Projects are initiated within an organization to perform specific business tasks.

A project manager manages employees assigned to the project. Project management

and assigning employees to projects is based on the organization’s structure [33, 53].

A project typically has a dynamic group whose members have been selected from

other groups in the organization. In this thesis we are mainly concerned with projects

which require secure content sharing. In other words, employees within a project

need to share the project’s content to achieve the project goals, and, at the same

time, the project’s content should not be available to employees outside the group.

Based on the definitions of the different types of organizational structure, we

make the following observations.

21

Problem Definition and Organizational Requirements

1. There is no specific organization type that can be applied to all organizations.

Also, an organization could be composed of different types if it requires such

a thing.

2. Employees in an organization are grouped according to the organization type

and employee role. Interaction between employees in one group and employees

in different groups is achieved by defining projects that transcend structural

group boundaries.

3. Employees may be involved in multiple projects at the same time. In this case

an employee might have multiple roles based on each project the employee is

member of.

4. Although organizations have various structures, they still have entities in com-

mon. For example, all type of organizations have employees, system adminis-

trators, and project managers. Also, organizations categorize employees into

groups, and initiate projects to fulfill their objectives.

The different types of organization share a common foundation. They all have

groups, projects, and content that need to be shared between groups and project

members. Moreover, this content needs to be protected from access by unauthorized

users. Having such a shared foundation leads us to suggest the following general

model that can be applied to any of the three main organization types.

2.4 General Model for an Organization

In this section we define a general model that includes the common entities from

the previous three organization types. In our research we found that defining such

a general model is a very important step, as it helps to define a set of common

requirements for different organization types. Once we propose a scheme that covers

such common requirements then this scheme can be implemented in any type of

organization i.e. Functional, Divisional, and Matrix.

In our general model, we use the same grouping concept as discussed in the

previous section in which employees are split into groups. Also, we use the project

concept, where projects are initiated within our defined organization model to per-

form particular tasks. Employees assigned to a project are selected from one or

more groups within the organization. The selection is based on the roles required to

fulfill the project’s objectives. Employees may also be assigned to work on multiple

projects. Each employee assigned to a project may also have different rights, i.e.

the project will have differentiated rights. Projects can be dynamic as described

previously.

22

Problem Definition and Organizational Requirements

Figure 2.5: Generic Organization: Grouping, Project Initiation and Content Flow

Figure 2.5 shows our general model of an organization and illustrates the entities

described above. It shows an organization which has three groups of employees

(Group1, Group2 and Group3). These groups may represent different functional

groups in a functional organization structure or different divisions in a divisional

organization structure. Four projects are then initiated in the organization: Project1

undertakes tasks that require employees from Group1. Members of Project2 are

selected from Group2 and Group3. Project3 undertakes tasks that require only

employees from Group3. Project4’s members are one employee from Group2 and

another employee from Group3 who is also a member of Project3.

We argue that to build a successful content protection solution for any type

of organization as described in Section 2.3, we should take into consideration the

fundamental requirements derived from our general model. In the remaining part

of this chapter we summarize the main organizational requirements for our general

model.

2.5 Requirements

Based on the generic organization model described in Section 2.4 we identify the

following requirements that should be in any proposed scheme.

Requirement 1: Support for organization groups and dynamic nature. Any

proposed scheme needs to meet the following conditions in order to meet Re-

quirement 1:

1. Organization grouping structure. Organizations have groups and projects,

which can be created at any time as needed. An employee might par-

23

Problem Definition and Organizational Requirements

ticipate in multiple groups and projects at the same time. Any proposed

scheme must be capable of creating and deleting projects and groups.

2. Organization dynamic nature. Groups and projects within organizations

have a dynamic nature. Groups and Projects can expand and contract.

In addition, organizations may need to re-allocate group members. Any

proposed scheme must allow expansion and contraction of groups. For

example, if an organization requires changing its layout, say after one

year, this might require devices reallocating. When a device is reallocated

to be used by a new project which might require accessing different kind

of content, it can join all dynamic domains where the content is bound.

Requirement 2: Content Sharing. This requirement is about providing the abil-

ity for authorized employees to exchange and access content. It is one of

the fundamental requirements for the kind of organizations we discuss in this

chapter. Members of a project or group typically need to share resources to

achieve their goals. Without content sharing, it will be difficult for projects to

achieve their objectives. Any proposed scheme must allow secure content shar-

ing between groups and projects. For example, for a chief information officer

(CIO) of an organization to be able to access all of an organization’s shared

but protected information, the CIO device needs join all of the organization

dynamic domains. From this we can see how our proposed scheme is able to

provide controlled content sharing.

Content sharing can be classified as of one two main types: centralized sharing

and decentralized sharing.

1. Centralized content sharing provides the ability for authorized users

to share and access content via a central server.

2. Decentralized (or disseminated) content sharing provides the abil-

ity for authorized users to exchange and access content between client

devices without the need to store and retrieve it from a central server.

In this thesis we focus on decentralized content sharing.

Requirement 3. Content protection. In this thesis our main concern is protect-

ing content confidentiality from insiders who share their credentials. This is

the content leakage threat described by Definition 2.2.3. Any scheme that is

proposed to mitigate the content leakage threat must mitigate the two types of

content leakage threats, which are the internal leakage threat and the external

leakage threat.

24

Problem Definition and Organizational Requirements

Requirement 4. Rights management and enforcement. The organization

types described in Section 2.3 require that employees assigned to a project may

not necessarily have unified access rights. Assigning employees access rights

to the project’s content would be subject to the roles required to achieve the

project goals. Therefore, any scheme proposed must provide: (a) a mechanism

to manage employees’ access rights; and (b) a mechanism to enforce access

rights wherever content is transferred between client devices.

We mainly focus on the first three requirements in our proposed scheme. We

rely on existing ERM schemes to meet Requirement 4 as ERM could be integrated

into our scheme.

In addition to the above requirements, there are other important sub require-

ments. These requirements include performance, interoperability, ease of use, and

scalability. Such additional requirements should also be considered as far as possible

in any proposed scheme. The extent to which any proposed scheme supports these

additional requirement will affect how acceptable the scheme is to users.

2.6 Conclusion

In this chapter we have defined the problem and the type of organization this thesis is

focusing on. We started by defining what we mean by an insider and then identified

the main insider threats. Following that, we defined the content leakage problem

and its two main types. We then specified the type of organization our scheme is

proposed to apply to. This was used to define the fundamental requirements for the

type of organization where our content protection scheme will be applied.

We are mainly focusing on mitigating the insider threat on content confidential-

ity when insiders share their credentials in our defined type of organization. This

organization will have dynamic groups and initiate dynamic projects that need to

share content between projects’ and groups’ members and, at the same time, mit-

igate the insider leakage threat. The groups may be either isolated or connected.

Finally, this thesis considers the case when rights are differentiated.

25

Related Work

Chapter 3

Related Work

Contents

3.1 Introduction . 27

3.2 Access Control . 27

3.2.1 Server Side Access Control 28

3.2.2 Server and Client Side Access Control 29

3.3 Enterprise Rights Management 30

3.3.1 Differences and Similarities Between ERM Schemes 33

3.3.2 ERM Abstract Model Analysis 33

3.4 Digital Rights Management 36

3.4.1 DRM First Generation . 37

3.4.2 DRM Second Generation 38

3.4.3 DRM Third Generation . 38

3.5 Other Schemes . 41

3.5.1 Trusted Virtualization . 41

3.5.2 Others . 43

3.6 Trusted Computing . 44

3.6.1 Trusted Platform Module 45

3.6.2 TCG Roots of Trust . 46

3.6.3 TP Main Components . 48

3.6.4 Challenges in TCG Specifications 52

3.6.5 TPM Commands . 54

3.7 Summary . 55

This chapter discusses related work and provides an overview of Trusted Com-

puting technology.

26

Related Work

3.1 Introduction

In this chapter we review the most commonly discussed schemes for secure infor-

mation sharing. We consider three research areas which are related to our work:

(a) research that discusses insider threats, (b) research that discusses group-centric

secure information sharing, and (c) research which extends content protection from

server to client side.

Research which focuses on extending content protection from server to client (i.e.

point (c)) is directly related to our research. This is because policy enforcement at

the client side increases the possibility for authorized users to share their credentials

with unauthorized users to leak content. In other words if there is no enforcement

at the client side users do not really need to share their credentials once content

is transferred to their devices as they can delete the content, copy it, save it, or

even forward it to unauthorized users. Examples of such schemes which attempt to

enforce rights at the client side are ERM and DRM schemes, which we discuss and

analyze in this chapter. The other areas of research (i.e. points (a) and (b)) provide

models to analyze the insider threat and to manage groups and access rights within

organizations. Such models are not directly related to our research problem, i.e. the

leakage problem we defined in Chapter 2. However, these models enrich our research

with good examples and definitions. They also help us to understand the scope and

context of our work and the importance of the problem. These are discussed at the

end of this chapter.

In this chapter, Section 3.2 discusses traditional access control models. We then

discuss ERM schemes in Section 3.3. After that, in Section 3.4 we discuss DRM

schemes. Following this, we discuss in Section 3.5 other research areas which might

support our schemes. We then discuss trusted computing, which is fundamental to

our proposed scheme in Section 3.6. Finally, we conclude this chapter in Section 3.7.

3.2 Access Control

A general model of an access control mechanism is shown in Figure 3.1. In this model

access rights are defined by an access control policy. The users in the organization

are the principals, and subjects act on behalf of these principals. A subject can

be an application or a user agent that runs on the principal’s PC, and subjects

may request access to any resources in the system. Access control schemes use two

main concepts: (a) a policy decision point (PDP) that interprets the defined policy

and decides on how the content should be used; and (b) a policy enforcement point

(PEP) that enforces the decision made by the PDP. These decisions are based on an

access control policy. The policy determines how subjects may access the resource

27

Related Work

principal

subjects
PEP

PDP

Policy

resources

(content)

Authorization
Service

Figure 3.1: Access Control

depending on the rights held by the subject. This authorization service is also

known as a reference monitor and is generally implemented as part of the trusted

computing base (TCB) [49]. In the remaining part of this section we attempt to

identify access control schemes which focus on secure information sharing for the

types of organization described in Chapter 2.

We split our access control discussion based on where it protects content: (a)

schemes which protect content at the server side only, and (b) schemes which extend

content protection to the client side.

3.2.1 Server Side Access Control

Organizations use access control mechanisms to protect their content from being

accessed by unauthorized individuals and to control what an authorized user can

and cannot do with content [61]. We first define what we mean by a server and

a client. A server is the device from where content/access rights are served to

other clients; a client is the device/application that requests content/access rights

from the server. We now provide a scenario in a typical client-server application.

Users would typically retrieve content from a server using a client application that

understands the context of the data and how to interact with a data management

system running on the server. The data management system manages data storage

and security, including access control. When the user (principal) wants to retrieve an

item of content they instruct the client application (subject) to do that. The client

application connects to the server, where the data management system runs. The

server (and/or the data management system) first authenticates the user, typically

using a username/password. If the authentication succeeds, a ‘session’ is established

between the user workstation and the server. The client application sends a request

via the established session to the data management system to retrieve the requested

28

Related Work

data. If the user is authorized, the data management system returns the requested

data to the client application. The user can do whatever they want to the data from

his workstation. However, if the user attempts to update the data on the server, the

data management system checks if the user has update permission for the data. If

so, changes on the data are permanently saved at the server. Otherwise, an error

will be returned to the client application. Examples of server side access control are

the Discretionary Access Control (DAC) [38] and Mandatory Access Control (MAC)

[69] approaches.

The requirement of content protection that we identify in Section 2.5 has the

following vulnerabilities. The above access control mechanisms do not enforce access

rights (i.e. access control policy) on client devices. This is because the PDP and PEP

run on the server where content is stored. In another words, there is no enforcement

on the client side and so authorized users can transfer content to others without the

need to share their credentials.

3.2.2 Server and Client Side Access Control

In this section we focus on schemes that protect content on both server and client

sides, i.e. protecting content wherever it is stored and transferred. We split the

schemes focusing on enforcing rights on the client side into two main categories,

based on the way the subject gets access rights: static or dynamic. Static rights

are those that are predefined by administrators or content creators and stored at

the principal’s devices. Dynamic rights, on the other hand, are centrally stored and

managed access rights. Dynamic rights can be changed at any time with immediate

effect on client devices when they access content associated with dynamic rights.

Case 1: Subject has embedded static rights. In this case, access control mech-

anisms in general assume the following: the subject is an agent on the principal’s

client device, and the authorization service runs on the principal’s device using a

specific application when accessing content. An example of case 1 is content-specific

applications (e.g. Adobe Reader [12]) that are installed with predefined static rights

forcing how the client device can use the content. Another example is customized

applications provided by a third party to access a server side application. In this

case the application could have predefined static access rights that can be enforced

on all content accessed by such an application. This case does not consider the

fundamental organizational requirements, which we identified in Chapter 2. For ex-

ample, employees’ access rights are predefined at a client workstation on all items

of content the user is authorized to access, i.e. it does not provide dynamicity for

rights enforcement and assumes unified access rights for all items of content.

Case 2: Subject obtains dynamic rights to access content from a centralized

29

Related Work

rights server. The main research area that focuses on this type for accessing content

in an organization is Enterprise Rights Management (ERM), which emerged from

Digital Rights Management (DRM).

In subsequent sections we discuss ERM and DRM as they both focus on enforcing

access rights wherever content is stored and transferred.

3.3 Enterprise Rights Management

ERM schemes are proposed to protect an enterprise’s content when exchanged be-

tween devices in organizations, for example, when an employee creates a document

then sends it to his colleagues. The sender wants to ensure that receivers will use

the content based on usage conditions which are defined by himself. To address such

a requirement, ERM schemes provide the ability to allow the sender to define access

rights which are bound to content and which are enforced on client devices.

Most of the current ERM schemes in use today have a common workflow; how-

ever, they vary in the implementation and the usage terminology. In this section

we provide an abstract description of the common workflow for ERM schemes. This

mainly covers Microsoft Windows Rights Management Services (RMS) [52], Oracle

Information Rights Management (IRM) [57], Adobe Rights Management Enterprise

Suite (ES) [11], and the EMC Documentum Information Rights Management (IRM)

[31]. At the end of this section we provide an outline of the main differences between

these schemes, and a security analysis of the common workflow.

The main entities in an ERM scheme would consist of principals, client devices

and a rights management server, which are described as follows (see Figure 3.2).

A principal is an employee working in an organization. The principal can use

only the organization’s devices to access content, for which he is authorized.

A client device is where principals access content from. In ERM schemes

each device is assumed to have subjects, objects and a trusted authorization service

(referred to as a client ERM agent). A subject is an application-specific software

agent that is used in two ways: (1) to create content and assign access rights to

content; and (2) to access content based on the defined access rights associated with

the content. An object can be of either two types: content or a rights objects.

A rights object is a content-specific file which is created by an ERM agent and

contains the content encryption/decryption key and content access rights.

The client ERM agent is the authorization service which implements the PDP

and PEP. It does the following.

(a) Interacts with subjects on the device.

(b) Interacts with the rights management server.

30

Related Work

Figure 3.2: ERM Main Entities

(c) When the subject creates content it creates a content encryption key at the

content creator’s device. It associates the encryption key with content-specific

access rights, and then sends the result in a form of an encrypted rights object

to the rights management server. It also encrypts/decrypts content after it has

been received from a sender and then discards the content-specific key. The

ERM agent is designed to not reveal the content encryption key.

A rights management server is a centralized server responsible for securely

storing and managing rights objects. The rights management server provides rights

objects to the client ERM agent running on a principal’s device, assuming that the

principal has been successfully authenticated. ERM schemes are designed so that

the rights management server consists of rights objects and a server ERM agent.

This is explained as follows. An object is an access rights object. The Server

ERM agent is an authorization service running on the rights management server.

It is in charge of the following.

(a) Interacts with the client devices’ ERM agent.

(b) Stores rights objects.

(c) Grants access rights for successfully authenticated users.

(d) Protects objects from being revealed or altered.

A typical ERM workflow consists of three main phases.

31

Related Work

Phase I. Content and its specific rights object are created in the client device. In

this, ERM assumes the following.

1. Subjects on the client device act on behalf of principals and they rep-

resent the content-specific applications. These subjects need to commu-

nicate with the authorization service (ERM agent) on the client device

when encrypting/decrypting content. The subject in the client device

securely creates content and it will not reveal the content unencrypted

to any applications except the ERM agent (authorization service).

2. When content is created, the subject assigns content-specific access rights

on how content should be used. The authorization service running on

the client device receives the content and the access rights from the

subject. In this stage the authorization service prevents content from

being revealed unencrypted to others.

3. The authorization service creates an encryption key to protect the con-

tent, encrypts the content, and stores the encrypted content on the client

device.

4. The authorization service running on the client device associates the

content encryption key with content-specific access rights (received in

step 2) to form a rights object. It then encrypts the rights object using

the rights management server’s public key. The authorization service

prevents the content encryption key from being revealed unencrypted to

others.

Phase II. The authorization service running on a client device sends the rights

object to the rights management server. In this, ERM assumes the following.

1. The authorization service running on the rights management server se-

curely receives, stores and manages content rights objects.

2. The PEP running in the rights management server manages access to

rights objects according to decisions made by a PDP.

3. The rights management server should have a robust authentication mech-

anism.

Phase III. Protected content is transferred to another client device. The client

device authorization service must obtain the content-specific rights object from

the rights management server. In this, ERM assumes the following.

32

Related Work

1. For a decision to be made, the rights management server authenticates

the user (principal). If authentication succeeds, the rights management

server creates a new rights object for that particular user containing the

content decryption key, an expiry time, and the access rights granted

to the principal for the content. The rights management server then

transfers the rights object to the client device’s authorization service.

2. The authorization service (i.e. the ERM agent running in the client de-

vice) ensures that the content decryption key is discarded after decrypt-

ing content.

3. The authorization service running on the client device enforces content

access rights. More specifically, a PEP manages access to content ac-

cording to decisions made by a PDP. These decisions are based on the

subject’s defined access rights, which are obtained from the rights man-

agement server.

3.3.1 Differences and Similarities Between ERM Schemes

After describing the abstract model for ERM schemes workflow, we now outline the

main differences between the most popular commercial schemes.

(a) Each scheme uses its own terminology describing the above entities; for exam-

ple, Microsoft Windows (RMS) [52] uses the term RMS server and Lockbox

to describe the rights management server and the client device ERM agent re-

spectively. Oracle IRM uses IRM server and Oracle IRM desktop to describe

the same respectively.

(b) Adobe Rights Management ES [11] supports only PDF type of documents.

Other schemes do not impose restrictions on the content type.

(c) All schemes require external users who need to access the organization con-

tent to be enrolled into the organization rights management server. In other

words, organization security administrators need to create a user account for

each external user. Moreover such an external user would need to connect to

the organization rights management server to authenticate to the server and

download content usage license.

3.3.2 ERM Abstract Model Analysis

ERM schemes attempt to meet organizational requirements for content dissemina-

tion as discussed in Section 2.5. In this section we assess how well ERM schemes

address such requirements.

33

Related Work

The ERM model described in the previous section successfully meets the sharing

requirement as defined in Section 2.5. In ERM schemes, content can be created,

stored and exchanged between client devices without the need to store the content

using a centralized server. However, content protection is subject to the following

vulnerabilities.

1. ERM assumes that the PDP and the PEP cannot be subverted, and that the

integrity of the policy and the subjects’ access rights are protected. Failure

of the PDP or PEP will result in failure of the authorization service. If the

authorization service can be subverted, for example by malware, then the

threat of content leakage can be realized.

2. A second vulnerability is that of content leakage caused by authorized users

sharing their credential. In a typical enterprise organization, users have a

degree of freedom. Users may choose to abuse their access privileges, for

example by revealing content or sharing credentials used to access content. If

users abuse their access privileges then the threat of content leakage can be

realized.

Now, we discuss how these vulnerabilities can be exploited in the commercial

schemes we mentioned above.

(a) None of the commercial schemes address the internal leakage problem,

as employees can access content from any device by having a valid cre-

dential. If an employee wants to leak a confidential project’s content

to another employee, the former can provide his credential to the latter

enabling the latter to access the confidential content. Alternatively, if

the employee does not like providing his credentials to others, he can

download a rights object into another unauthorized employee’s device

enabling him to access the content until the downloaded license expires.

In Figure 3.3, we illustrate how this could happen for Windows RMS.

This applies equally to all other schemes.

(b) None of the commercial schemes address the external leakage problem

defined in Section 2.2.3. This is because in all these discussed schemes a

user can access organization content from any device. The client device

needs to install a publicly available client side software agent. For ex-

ample with Windows RMS a device must have a valid Lockbox, which is

included in Windows RMS SP1. Such a step does not require adminis-

trators’ involvement or special authorization. Therefore, in all schemes

34

Related Work

Figure 3.3: Internal Leakage

including Windows RMS, a user with a valid credential can access pro-

tected content from outside the organization enabling any employees to

download valid usage licenses associated with protected content on an

unauthorized third party’s device. This is illustrated in Figure 3.4 for

Windows RMS, and applies equally to all other schemes.

(c) Some of the commercial schemes discussed in this section claim that they

mitigate content leakage between collaborating organizations by requir-

ing system administrators from all participating organizations to register

their employees who need to access the collaborating organizations’ con-

tent in all organizations’ rights management servers. This mechanism

does not address the leakage problem between collaborating organiza-

tions as it mainly binds accessing content to user authentication using

username/password, which can be shared with others, i.e. it has the same

drawbacks as the external leakage described above. This is illustrated in

Figure 3.5 in the case of Windows RMS, and applies equally to all other

schemes. In addition, the schemes’ proposed policy has the following

associated concerns: (1) it raises user account management problems for

users from other organizations (i.e. managing password, rules and users

joining and leaving all collaborating organizations who need to access

shared content with the source organization); and (2) it raises privacy

concerns, as in many cases, organizations do not want other organiza-

35

Related Work

Figure 3.4: External Leakage

tions to know such details about their internal system structure, e.g.

employees who are member in a specific department, or who are working

on a specific project or a task.

ERM provides schemes which achieve rights management and enforcement on

the client side. However these schemes suffer from weaknesses when considering the

type of organization we focus on. We outline these weaknesses in Chapter 9. Despite

the weakness in rights management we can still use these schemes to provide rights

management to our schemes at a latter stage (planned future work is to focus on

this access rights in details).

3.4 Digital Rights Management

Digital Rights Management (DRM) is a term that is used to represent the technolo-

gies and standards that prevent illegal copying and allowing the imposition of fees,

processing of payments, and protection of principal rights and profits [42]. In other

words, DRM is proposed for client-side enforcement of access rights. The question

we raise is whether DRM schemes “as is” can be used in organizations to address

the insider content leakage problem and simultaneously meet the organization re-

quirements defined in Section 2.5.

36

Related Work

Figure 3.5: Leakage between Collaborating Organizations

To answer this question we have to analyze DRM schemes and asses them. DRM

schemes have evolved through three main generations. In the following we analyze

these DRM generations, then, at the end of each DRM generation, we assess whether

it can be applied directly into an organization’s workflow.

3.4.1 DRM First Generation

In the first generation of DRM, content is bound to a specific device which would

mainly require each device to have a specific hardcoded key, where content is en-

crypted using this key.1 Thus, if encrypted content is distributed to others they

cannot access it on their devices. To implement this model in organizations we

would require the binding of downloaded access rights with user identity rather

than payment. Implementing this model in an organization will fail to meet the

organizations’ requirements discussed in Section 2.5. This is because DRM first

generation does not support organization grouping and dynamic structure. DRM

first generation binds content to a specific device. Such binding does not satisfy the

content sharing requirement as defined earlier.

1For example, Apple Fairplay [17]

37

Related Work

3.4.2 DRM Second Generation

In the second generation of DRM content is associated with a specific rights object

defining its access rights [56]. The rights object is defined by the content distributor

based on payment. A device can download content associated with the rights object

after paying the usage fees. The rights object is bound to a specific device. Protected

content can be transferred between devices. Accessing protected content on a new

device requires communicating with the content distributer, paying the usage fees,

and downloading a new rights object bound to the new user device. Unlike DRM first

generation, protected content can now be exchanged between devices. Satisfying all

content sharing requirements would require that devices obtain rights objects from a

centralized server. It also would require replacing payment with user authentication

and authorization in order to obtain rights. Adding such modifications to a DRM

scheme would make it the same as the ERM schemes discussed in Section 3.3

3.4.3 DRM Third Generation

The first two generations of DRM schemes have been widely criticized because they

did not satisfy many consumer and copyright law requirements [5]. For example, such

schemes do not allow proprietary content to be freely transferred between devices

owned by a single individual using the same licence file. This led to the integration of

the authorized domain concept into DRM third generation schemes. An authorized

domain allows content to be shared between a set of devices using a single licence

file. An authorized domain owner (i.e. authorized licence holder) creates a domain

with a specific number of devices in the domain. Domain membership is controlled

by a counter enforcing a limit on the number of devices that can be in a domain.

The limit of this counter is defined by a trusted third party. Joining devices to a

domain is conditional on the domain counter remaining below a predefined limit and

the joining device not being member of another domain. The authorized domain

has a domain key that is shared by all domain devices and is used to protect domain

content. The content is sent to the domain encrypted with a content encryption

key that is stored inside the licence file. Once the domain owner installs the licence

file into a device which is a member of the domain, the content encryption key (as

stored in the licence file) is decrypted, and then re-encrypted using the authorized

domain key. As this key is only shared between domain devices it enables content

sharing between such devices.

DRM authorized domain schemes were proposed to limit content proliferation

when users share the means to access content on a personal network. The latest

DRM third generation work done by Abbadi et al. [7, 8, 10] was specifically proposed

38

Related Work

to strongly bind the authorized domain with the domain owner. Abbadi’s schemes

suggest four mechanisms to achieve such binding as follows: using location-based

services ([6]), using electronic payment systems ([8]), using a mobile phone ([10]),

and using a master control device ([7]). Abbadi then integrates the Authorized

Domain with his proposed strong authentication measures to satisfy copyright law

requirements and simultaneously to allow licence holders to use content on all devices

they have.

After we studied and analyzed the four DRM schemes we found that the scheme

using the master control device is the only one that can be used in an organization

environment. This is because mobile phones and electronic payment systems use

personal equipments (i.e. mobile phone and payment card) for user authentication

and authorized domain management which are inappropriate in organizational con-

text. Location-based services restrict accessing content to specific location but not

to specific users which will not solve the leakage problem. Also, it is not suitable for

organization workflow as organizations might require employees to work from mul-

tiple locations. The master control device, on the other hand, uses a specific device

for user authentication and domain management. This scheme, although designed

for DRM, may be useful in a dressing the problem of content leakage in enterprise

organizations. The concept of the master controller would need to be adapted and

extended to move from managing the number of devices that is allowed to access

content to which devices are allowed to access content. As such we focus on the

DRM-authorized domains using master control device scheme in our analyses.

Research on DRM authorized domains using a master control device [7] focuses

on personal networks which have different requirements, entities, and workflows in

comparison with enterprise networks. For example, in personal networks there is one

domain owner, while in organizations the domain owner concept does not exist at all.

Domains are owned by the organization and managed by security administrators.

Moreover, in DRM there are third parties who are called right issuers who create

licenses for users; however, in an ERM environment there are right objects which are

created in a different way depending on the type of organization. Therefore, using

a DRM scheme in an enterprise network would face challenging problems related to

organizational structure and process workflow.

To answer ‘Can DRM authorized domain schemes using a master control device

be implemented in organizations to limit content leakage when user share their

credentials?’ we need to assess the use of the DRM authorized domain scheme

using master control device “as is” in organizations in relation to the organizational

requirements of Section 2.5.

1. Support for dynamic groups. The DRM scheme does not meet the requirement

39

Related Work

Figure 3.6: DRM with an Authorized Domain Model

for the generic organizational workflow of Section 2.4 for the following reasons:

(a) Organization grouping structure. (a) In our workflow an organization is

split into groups and projects. Therefore, organizations require multiple

domains and groups. DRM in a personal network constitutes only one

specific domain. (b) In DRM, all authorized domains are completely

isolated from each other; however, an organization’s domains might need

to interact based on a predefined policy. (c) In an organization a device

might participate in multiple groups and projects at the same time; but,

in DRM a device can only be in one domain.

(b) Organization dynamic nature. Unlike DRM, which has a fixed number of

devices per domain, in organizations groups are not static but dynamic;

for example, in an organization the workflow might change leading to

groups’ expansion/contraction.

2. Content Sharing. The DRM scheme satisfies the content sharing requirement.

3. Content Protection. The threat of content leakage when authorized users share

their credentials can still be realized in the third generation of DRM. As we

discussed earlier, adding devices to a domain is conditional on the domain

40

Related Work

counter not exceeding a predefined limit. This means the transfer of content

protection key to a device is based on the number of devices in a domain and

not on which devices are allowed to join the domain. Hence, if the DRM

scheme is used for an organization, then any device can join the organization

domain and use the domain content even if this device does not belong to the

organization or to an authorized employee.

4. Rights Management. The DRM scheme assumes that all users in a domain

access each item of content using the same licence file (undifferentiated rights

per item of content). However, in the defined generic organizational model,

employees do not necessarily have unified access rights on project content

(differentiated access rights per item of content). This, in turn, shows that

there is a need to look for a proper access rights management scheme to be

integrated with the DRM scheme if it is going to be used in organizations.

The work presented in this thesis is attempting to solve similar problem to that

addressed by DRM, however, we are concerned with a completely different environ-

ment. We however build our schemes on the DRM authorized domain schemes using

a master control device. In the schemes proposed in this thesis we extend the DRM

master control device scheme so that the new scheme addresses the weaknesses in the

extended DRM scheme when integrating within organizations. The new proposed

schemes have borrowed some of the DRM scheme concepts but use them in different

way to achieve our schemes functions which can then be applied to the organization

environment. As at this stage we haven’t explained our schemes yet, we leave the

detailed comparison of the similarities and differences between our proposed scheme

and the DRM master controller scheme to Chapter 9.

3.5 Other Schemes

There are other research areas which would be beneficial to our work as they extend

our view to insider threats and dynamic domain management. They also can be

integrated to our research to extend our work to address other features. These areas

are briefly outlined in this section.

3.5.1 Trusted Virtualization

Machine virtualization is a hot topic which is based on concepts that were started

in the 1950s. Originally it was proposed to partition expensive mainframes to share

resources by hosting different applications shared by many users. The recent adop-

tion of virtualization is to provide multiple execution environments on the same

41

Related Work

hardware platform. There are many advantages associated with the use of virtual

machines, such as process isolation and resource consolidation; however, it is also

associated with weaknesses which have been discussed widely (see, for example,

[27, 36, 54, 72]). In our thesis we build our work at this stage on physical devices

and do not consider the application of our scheme in a virtualization environment.

The main reason is that machine virtualization is associated with many proper-

ties that require careful analysis when considering it in a solution. Specifically, the

migration property requires careful analysis as it allows virtual machines to move

between physical devices.

The work of [23, 37] discusses the usage of Trusted Virtual Domains (TVD) to

provide process isolation that governs the interaction between independent tasks

on a user workstation. We next use the TVD definition from a recent publication

[24]: “TVD is a coalition of virtual machines that trust each other, share a com-

mon security policy and enforce it independently of the particular platform they are

running on. Moreover, the TVD infrastructure contains the VMM and the physical

components on which the virtual machines rely to enforce the policy. In particular,

the main features of TVDs and the TVD infrastructure are:

• Isolation of execution environments. The underlying VMM provides contain-

ment boundaries to compartments from different TVDs, allowing the execution

of several different TVDs on the same physical platform.

• Trust relationships. A TVD policy defines which platforms (including VMM)

and which virtual machines are allowed to join the TVD. For example, plat-

forms and their virtualization layers as well as individual virtual machines can

be identified via integrity measurements taken during their start-up.

• “Transparent policy enforcement. The Virtual Machine Monitor enforces the

security policy independently of the compartments.

• “Secure communication channels. Virtual machines belonging to the same

TVD are connected through a virtual network that can span over different

platforms and that is strictly isolated by the virtual networks of other TVDs.”

Although both this thesis scheme and the TVD scheme have used the domain

keyword, both schemes address different areas. For example, the TVD scheme does

not discuss the insider threat problem and it does not discuss the content leakage

when authorized users share their credentials. TVD focuses on controlling infor-

mation flow amongst virtual machines. Our scheme, on the other hand, focuses on

using physical devices to limit the content leakage threat and we do not consider

virtual infrastructure at this stage. The TVD scheme could be integrated with ours

42

Related Work

to provide additional features, as in the case of process isolation between different

applications running on different virtual machines.

3.5.2 Others

The work of [46, 67] presents a set of models for secure information sharing that sup-

ports ad-hoc patterns of sharing. The authors refer to such a mode of information

sharing as group-centric secure information sharing (g-SIS), which mainly focuses

on (what the authors refer to as) the containment challenge. This is to ensure that

protected information is accessible on the recipient’s computer only as permitted

by the policy, including inability to make unprotected or less-protected copies. In

g-SIS, users can access information by forming a group. Users join the group and

information is made available to members of the group by adding the information

to the group. The model discusses all possible cases for accessing information con-

sidering the timing of when users join and leave the group, and the time at when

information is added or removed from a group. The model also discusses the cases

that result in restricting information access when users join multiple groups under

predefined conditions, e.g. groups that are mutually exclusive. In the simplest case,

multiple groups can be isolated or independent in that membership in one group has

no impact on what a user can do in another group, whereas with coupled or con-

nected groups such impact can occur. Looking within a group, g-SIS distinguishes

undifferentiated versus differentiated groups. In an undifferentiated group, user au-

thorizations are undifferentiated once users are admitted into the group. Specifically,

authorizations do not depend on attributes other than group membership. Combin-

ing these two characteristics, g-SIS would have four possible cases for g-SIS models:

(isolated, undifferentiated), (isolated, differentiated), (connected, undifferentiated),

and (connected differentiated). The g-SIS research undertaken so far has mainly

focused on the (isolated, undifferentiated) and (isolated, differentiated) cases, and

the model is still under development with further research ongoing in this area.

g-SIS is a generic high level model that does not propose schemes for model

enforcement and implementation. Therefore, it assumes that an adequate level of

assurance is available in the hardware and software components. The g-SIS does not

discuss the insider problem and content leakage. These differentiate our research

from the g-SIS. The g-SIS model is of great interest of us as we use it as guidance

for future research when working on domain management, managing domain rights,

and managing the interaction between domains.

The work in [28, 29] provides “an analysis of the insider threat problem and

formulates a set of requirements for next-generation access-control systems, whose

realization might form part of an overall strategy to address the insider problem

43

Related Work

[28].” This work provides an addition to our research in understanding the wider

picture of the insider threat in general and provides examples of insider threats. It

also helps us to more accurately define the insider threat. This work does not focus

on insider threats that can be caused when authorized employees share credentials.

Logging and auditing mechanism enable recording and monitoring system ac-

tivities. Some schemes attempt to decrease the probability of the content leakage

threat by proposing a method for monitoring the activities action on content. The

work of Park et al. [59] “provides scalable and reusable mechanisms to monitor insid-

ers’ behavior in organizations, applications, and operating systems based on insiders’

current tasks”. This is achieved by monitoring if an authorized user is performing

an abnormal activity on content. The creation of logging that relates user actions,

events or conditions is the standard practice for documenting activities that may be

part of an attack or that may increase the risk of a future attack [29]. Although this

method attempts to detect information leakage, it does not provide a mechanism for

preventing content leakage. We believe that preventing information leakage should

come before detecting a leakage. This is not to reduce the importance of detection,

which should follow the prevention as there is nothing like a 100% secure system.

Such a mechanism could be integrated with our proposed scheme to achieve other

objectives.

PERMIS [25] is an authorization infrastructure enabling the distributed man-

agement of credentials across multiple domains (as in the case of grid computing).

Their method controls credential and policy management across different security

domains. This method again does not focus on content leakage once the content is

in the hands of authorized users.

3.6 Trusted Computing

The proposed schemes in this thesis rely upon trusted computing concepts to securely

manage the schemes’ keys. This section presents the necessary background about

trusted computing and its functions which are required to understand the schemes of

the thesis. The material in this section is mainly derived from [34, 35, 65, 74, 75, 76].

TCG specifications require Trusted Platforms (TPs) to have the following func-

tionalities [35].

1. An authenticated boot process.

2. Platform attestation to external entities.

3. Protected storage functionality.

44

Related Work

4. A secure boot process.

5. Process isolation.

TCG identifies three “roots of trust”, which are used to help in providing TP

functionalities. These roots of trust are: (1) Root of Trust for Measurement (RTM);

(2) Root of Trust for Storage (RTS); and (3) Root of Trust for Reporting (RTR).

The reminder of this chapter starts by discussing the core component in TCG

specifications (i.e. the Trusted Platform Module). We then briefly discuss the three

roots of trust. Next, we outline the five main TP components. Finally we discuss

the main criticisms raised by researchers on using TPs.

3.6.1 Trusted Platform Module

The core component to establishing trust in an IT system based on TCG speci-

fications is the Trusted Platform Module (TPM) [74, 75, 76]. TPM is generally

implemented as a component which must be physically bound to a platform. A

TPM must be tamper-evident, i.e. it must provide a limited degree of protection

against physical attack.

A TPM incorporates various functional components and features including the

following.

I. A cryptographic processor that supports the following operations: asymmetric

key generation, asymmetric encryption, digital signing capabilities, hashing,

and random number generation. The asymmetric keys that are generated by

a TPM could be either migratable or non-migratable. Migratable keys can be

transmitted to other TPs if authorized by both a selected trusted authority

and the TPM owner. A non-migratable key, on the other hand, is bound to

the TP that created it, and cannot be moved.

II. A SHA-1 engine.

III. Protected Storage Capabilities. Once a TPM has been assigned an owner, it

generates a new Storage Root Key (SRK), which is an asymmetric key pair.

Each TPM has an SRK, which is securely stored inside the TPM and never

leaves it. Other TPM objects (key objects or data objects) are protected using

keys that are ultimately protected by the SRK in a tree hierarchy. Each object

protected by a TPM includes an optional secret 20 bytes of authorization

data, which is known as AuthData. Proving the knowledge of the value of the

AuthData associated with an object grants access to that object.

45

Related Work

IV. Non-volatile and volatile memory. Non-volatile memory is needed to store data

inside the TPM that should not be removed when the platform loses power or

reboots such as the SRK.

V. Platform configuration registers (PCRs) are special purpose registers for only

storing platform state. Each PCR is a 20-byte register securely present in a

TPM; TCG specifications require that a TPM must contain a minimum of 16

PCR registers. PCR values are reset every time the platform restarts.

Each TPM is associated with a statistically unique asymmetric encryption key

pair called an endorsement key pair (EK), which can be generated either internally

or using an external key generator at the time of manufacturing. The EK is used

only for encryption/decryption purposes. The EK is stored in the TPM at the

time of production by the manufacturer. The private decryption endorsement key

is known only to the TPM and never revealed outside the TPM. The EK is used

when assigning TPM ownership.

3.6.2 TCG Roots of Trust

We now briefly discuss the three TCG roots of trust that we introduced in Section

3.6.

3.6.2.1 The Root of Trust for Measurement

The RTM is a computing engine capable of making reliable measurements of TP

running components, with these reliable measurements is known as an integrity

measurement.

Definition 3.6.1. Integrity Measurement is a cryptographic digest or hash of

a platform component, e.g. a piece of software executing on a platform [50].

In order to ensure that an unlimited number of measurements can be stored in

the limited number of PCRs in a TPM, the concept of integrity metric has been

raised, which is defined as follows.

Definition 3.6.2. Integrity Metric is a hashed value of integrity measurements.

It is calculated by concatenating a new integrity measurement with the existing

content of a PCR, and hashing the resulting string. Following that, the resulting

integrity metric replaces the old value of the PCR. This is known as “extending”

the PCR value.

The RTM is controlled by a particular instruction set, which is known as the

core root of trust for measurement (CRTM). On a PC, the CRTM may be contained

46

Related Work

within the BIOS, and is executed by the platform when it is acting as the RTM.

The CRTM must be protected against software attack. The CRTM first measures

the first piece of software to be executed during system boot. Next, it passes the

measurement result to the RTS that records the result in the TPM PCRs, and then

passes control to the next piece of software to be executed, which has a measurement

agent (MA) embedded within it. This MA measures the next piece of software

to be executed, passes the result to the RTS that records the result in the TPM

PCRs, and passes control to the next piece of software to be executed, and so

on. MAs are used to build up a chain of trust in the form of a series of integrity

measurements. The results of integrity measurements made by the CRTM and

MAs are known as measurement events; these are made up of two classes of data:

measured values, which are representations of embedded data or program code, and

measurement digests, which are hashes of the measured values. The measurement

digests are stored in the TPM PCRs. The measurement values are stored in the

stored measurement log (SML), which is stored outside the TPM.

3.6.2.2 The Root of Trust for Storage

The RTS is a collection of capabilities which must be trusted if storage of data in

a platform is to be trusted [60]. The RTS uses TPM components to achieve its

functions. These main functions are as follows.

• Maintaining the integrity measurements made by the RTM by generating the

integrity metrics.

• Provides confidentiality and integrity protection to keys and data.

3.6.2.3 The Root of Trust for Reporting

The RTR is a collection of capabilities that must be trusted if reports of integrity

metrics are to be trusted (platform attestation) [60]. The RTR works in conjunction

with the RTM and the RTS for the implementation of platform attestation.

The RTR enables a TPM to reliably report information about its identity and

the current state of the TPM host platform. This is achieved using a set of keys

and certificates which are signed by a variety of third parties that must be trusted

if the state of the platform is to be trusted. These certificates are as follows.

1. An endorsement credential contains the public EK belonging to a particular

TPM. This credential is signed by a trusted platform module entity (TPME),

which attests that a particular TPM is genuine. The TPME is likely to be the

TPM manufacturer.

47

Related Work

2. A conformance credential is signed by a conformance entity (CE) to attest the

TP design, i.e. the design of the TPM and other trusted platform building

blocks, when integrated into a particular design of platform, meets the TCG

specifications.

3. A platform credential is signed by a platform entity (PE) to attest that a

particular platform is an instantiation of a TP design, as described in specified

conformance credentials. The PE may be the equipment manufacturer.

4. A validation certificate is signed by a validation entity (VE) to certify software

components’ integrity measurements. The integrity measurements correspond

to a correctly functioning platform component (i.e. a piece of software). These

validation certificates are used by a challenger wishing to evaluate the state of

a challenged TP. The VE is typically the component supplier.

There are also an important set of keys which provide anonymity and simulta-

neously attest that a particular platform is genuine. These set of keys are called

Attestation Identity Keys (AIKs). AIKs (which are signature key pairs) function as

aliases for the EK; they are generated by the TPM, and the public part is included

in a certificate known as an Identity Credential. The identity credential asserts that

the (public part of the) AIK belongs to a TP with specified properties, without

revealing which TP the key belongs to. The first generation of TPM (i.e. V1.1) re-

quires a privacy certification Authority (Privacy CA) for certifying AIKs, i.e. signing

the AIK Credential confirming that it belongs to a genuine TP.

Before generating an AIK credential, the privacy CA verifies a series of signed

credentials belonging to the platform, including the endorsement credential, confor-

mance credential and platform credential. AIKs are used to sign data generated

inside the TPM, including the values of PCRs which hold measurements of platform

state. AIKs can also be used to sign other keys.

3.6.3 TP Main Components

In this section we discuss the TP main components.

3.6.3.1 The Authenticated Boot Process

Establishing trust in a TP starts by having an initial trusted state. Achieving this

requires the assurance of the trustworthiness of a platform whilst the platform starts

up during the boot process, i.e. during the authenticated boot process. The authen-

ticated boot process requires the interaction amongst two main TCG components,

48

Related Work

namely, the RTM and the RTS. We now illustrate this in a form of an example for

currently available PCs.

1. The CRTM first measures itself and the rest of the BIOS. The result is then

passed to the RTS.

2. The RTS hashes the CRTM output and stores it in PCR 0. The measurement

values (i.e. prior to hashing) are stored in the stored measurement log (SML),

which is stored outside the TPM. Control is then transferred to the POST

BIOS.

3. The POST BIOS measures the host platform configuration, the option ROM

code, and the OS loader. The results are then passed to the RTS.

4. The RTS hashes the POST BIOS output and stores these in PCR 1-5. The

measurement values are stored in the SML. The RTS then passes the output

to the POST BIOS. Control is then transferred to the OS loader.

5. The OS loader measures the OS.

6. At each stage the result of measuring is passed to the RTS, that hashes and

then store it. Control is then passed again to the next components, exactly as

discussed above, until the OS is loaded.

3.6.3.2 Protected Storage

The protected storage is a fundamental function provided by TPM, which mainly

relies on the RTS component to ensure not only data confidentiality and integrity

when stored on untrusted devices, but also to bind the usage of the protected data

to a specific platform when its execution status in a specific predefined state. In this

section we discuss this in detail.

As we discussed earlier each TPM has a specific asymmetric encryption key pair

known as SRK. The private key is securely generated and stored inside the TPM and

is never released outside it. SRK is the root of the TPM’s protected object hierarchy,

which is used to protect all objects underneath it. TPM’s protected objects could

be of either of two types: key object or data object, both of which are discussed

below.

Key Object. A TPM incorporates a functional component that supports the

protected storage capability, which is a cryptographic co-processor. Part of

the cryptographic co-processor’s function is generating asymmetric key pairs,

where the private part of the key is associated with a data structure contain-

ing a set of constraints controlling key usage, for example, forcing the private

49

Related Work

key to be used only on a specific TPM (i.e. the private key is never exported

unencrypted outside the TPM), and forcing the key to be used only when the

platform on a specific predefined state.

Data Objects can be either data or symmetric keys that are used to protect bulk

data using the platform main processor. A TPM protects a data object’s confi-

dentiality by encrypting it using a key at a higher layer of the hierarchy. It also

implicitly protects a data object’s integrity by associating 20 bytes authoriza-

tion data (AuthData) with the data object before encryption. When a data

object is decrypted, the AuthData is requested and then is compared with the

recovered value. If both values do not match, then the decrypted key object

will not be released to the caller. On the other hand, if the values match, then

the value could be released based on the key storage type. More specifically,

TP provides sealing functionality, which only enables the decryption of data

objects using the same TPM that encrypted it, and only when the host plat-

form is in a predefined state. This is achieved by associating three additional

values with the encrypted data object: (1) tpmProof, which is a TPM-specific

secret value forcing which TPM can successfully decrypts the data object; (2)

digest at creation, which represents the state of the host platform when the

data was sealed enabling the verifier to validate the state of the host platform

to ensure that the data was not sealed by a rogue software; and (3) digest

at release, which specifies required platform state for releasing the decrypted

data object.

3.6.3.3 Platform Attestation

Establishing trust in a TP is based on the mechanisms used for measuring, storing,

reporting and verifying platform integrity metrics, i.e. it relies on the following

TP components: RTM, RTS, and RTR. Platform attestation is a method to show

to a remote party (the verifier) the status and the running environment of a local

platform at the time of attestation. The remote party needs to trust the attestator

to reliably measure and report its configuration.

The TCG defines integrity management as “the management of component-

information throughout the supply chain to ensure their integrity (tamper-free state)

and also to the management of the runtime integrity of the entire TP through the

correct management of its components, both at load-time and at runtime” [73]. As

described in Section 3.6.2, TP measurements are performed using the RTM, which

measures software components running on a TP. The RTS stores these measurements

inside TPM-shielded locations. Next, the RTR mechanism allows TP measurements

50

Related Work

to be reliably communicated to an external entity in the form of an integrity re-

port. The integrity report is signed using an AIK private key, and is sent with the

appropriate identity credential. This enables a verifier to be sure that an integrity

report is bound to a genuine TPM. The term measurement is used in various ways,

as described below.

Loadtime measurements refer to integrity measurements of TP components made

whilst the platform is booting-up.

Runtime measurements refer to integrity measurements of TP components that are

generated during the operation of the platform, i.e. after the end of a boot-up

sequence.

Reference measurements refer to a collection of digest values of TP components,

each of which must be collected from the component manufacturer. This

provides an authoritative source of component integrity information, which

can be read by a verifier of the state of a TP.

Platform attestation works as follows when a requestor, for example, is seeking

a service from a verifier.

1. The requestor sends a request to the verifier.

2. The verifier sends a challenge to the requestor, which includes a nonce, to

perform an integrity measurement of the entire platform.

3. The requestor returns a platform integrity report to the verifier (using the

RTR). The returned reports include the current platform state reflected in

integrity metrics associated with the sent nonce. This is then signed using the

platform AIK private key, and is associated with SML and the appropriate

identity credential.

4. The verifier first needs to verify the TPM’s signature and the AIK credential.

5. The verifier then needs to verify if it is safe to trust all or part of the soft-

ware environment running on the platform. This is achieved by getting the

reference measurements for each component of the requestor’s platform from

its manufacturer. The integrity metric provider, e.g. the hardware manufac-

turer or software vendor, makes these reference measurements accessible. In

this way, the verifier knows both the current integrity-status of the component

making-up the requestor’s platform, as well as the source-authenticity of those

components (as coming from the manufacturer).

51

Related Work

6. The verifier needs to identify each component of the requestor’s platform and

compare the reported measurement against the expected reference measure-

ment value (for each component). If the result is positive, the verifier can

provide the requested service.

3.6.3.4 Isolated Execution Environment

An isolated execution environment requires the host platform to provide the follow-

ing services [50].

1. Whilst a program being executed it should be protected from external inter-

ference, for example, by being accessed using Direct Memory Access.

2. Executed programs on the same machine can only communicate via a secure

and controlled interprocess communication.

3. Executed programs on different machines (hardware or virtual machine) must

communicate via a secure communication channel.

4. Executed programs must communicate with I/O devices via a secure commu-

nication channel.

Most proposed mechanisms for providing software isolation are mainly focused on

Virtual Machine Monitor (VMM) technology to provide an isolated secure execution

environment, and, also, on the use of new processor generation provided, for example,

by AMD SVM and Intel’s TXT initiative [39, 51, 55].

The virtual machine approach supports multiple operating systems from different

vendors that, under the control of VMM, utilizes the hardware of a single machine.

The hypervisor presents a virtual machine interface to the operating system and

arbitrates requests from the operating system in the virtual machines. Thus, the

hypervisor can support the illusion of multiple machines, each of which can run a

different operating system image.

3.6.4 Challenges in TCG Specifications

The TCG specifications are large, complex and are based on certain assumptions.

In addition to its complexity, building a system that can satisfy such assumptions

using today’s hardware devices and operating systems is a technical challenge, and

is the subject of ongoing research [35, 65]. The following list, based on that given

by Gallery and Mitchell [35] and by Sadeghi [65], summarizes these challenges.

• The DAA protocol adapted in TCG specifications is subject to anonymity

attack by a malicious DAA issuer, as discussed by Rudolph [64].

52

Related Work

• Smyth, Ryan and Chen [71] have pointed out a possible privacy vulnerability in

the implementation of the DAA protocol, described as Corrupt Administrator

Attacks. In this the verifier with the help of a corrupt DAA issuer can identify

a trusted platform.

• The TCG specifications assume that platform configurations cannot be ma-

nipulated after the corresponding hash values have been computed and stored

in the TPM’s PCRs. Satisfying this assumption requires a secure operating

system that is especially designed to consider this requirement. Currently

available operating systems can easily be modified, e.g. by exploiting security

bugs.

• The deployment and use of trusted computing based on the TCG specifica-

tions requires a fully functioning trusted computing PKI, which is currently

unavailable.

• As discussed earlier in this chapter, a verifier can determine the trustworthi-

ness of code from hash values (binary measurements of running code). Such a

binary-based attestation mechanism has the following shortcomings: i) It re-

veals information about the platform’s hardware and software configuration to

a verifier, ii) It allows remote parties to exclude certain system configurations,

iii) It requires the verifier to know all possible trusted configurations of all plat-

forms, and iv) Most importantly, updates in firmware or software, or hardware

migrations, result in changed hash values for the updated components. This,

in turn, prevents access to data bound to the previous configuration.

In principle, attestation should only determine whether a system/component

configuration has a desired property. Several methods have been proposed to

meet this requirement, such as property-based attestation [2, 47, 66], anony-

mous property-based attestation [26], and semantic remote attestation using

language-based trusted virtual machines [40].

• The TCG specifications implicitly require the establishment of secure channels

between hardware components. TPM chips integrated into currently available

devices are connected to the I/O board with an unprotected interface that

can be eavesdropped upon and manipulated [48]. Secure channels between

hardware components can be established using cryptographic mechanisms sup-

ported by an appropriate PKI.

• Currently available trusted platforms come pre-equipped with a TPM chip;

however they do not have isolation technology and CRTM. Therefore, platform

53

Related Work

state cannot be reliably measured. This undermines the effect of sealing and

platform attestation techniques.

• As discussed in [35], current generation of TC has usability and conformance

problems. For example, (a) the TC platform owner when enables a TPM must

understand BIOS settings; (b) the TC platform owner is also required to set

a TPM owner password; and (c) there are password management issues, as

unique passwords may be associated with the TPM owner as well as with data

and keys protected by a TPM.

Considering the above problems, it is not to say that TC is far from being

realized in practical; great support for TC technology is emerging from the open

source community, and from collaborative research projects (e.g. OpenTC2). Open

source trusted virtualization layers are being developed by both the Xen and L4

communities [18]. Considering that, and, in addition, enterprises infrastructure are

more advanced and more managed in comparison with home network environments,

it is likely that the technology will first emerge in enterprises rather than in home

networks.

3.6.5 TPM Commands

In this section we briefly define the main commands which we use throughout the

thesis. These are extracted from [76].

TPMGetRandom returns the next requested bytes from the random number gen-

erator.

TPMCreateWrapKey both generates and creates a secure storage bundle for asym-

metric keys. The newly created key can be locked to a specific PCR value by speci-

fying a set of PCR registers.

TPMLoadKey2 loads a key into the TPM for further use (before the TPM can

use a key to wrap, unwrap, unbind, seal, unseal, sign or perform any other action,

it needs to be present in the TPM). The TPM assigns the key handle. The TPM

always locates a loaded key by use of the handle. The assumption is that the

handle may change due to key management operations. It is the responsibility of

upper level software to maintain the mapping between the handle and any label

used by external software. The load command must maintain a record of whether

any previous key in the key hierarchy was bound to a PCR using parentPCRStatus.

The flag parentPCRStatus enables the possibility of checking that a platform passed

through some particular state or states before finishing in the current state.

2http://www.opentc.net/

54

Related Work

TPMSeal allows software to explicitly state the future “trusted” configuration

that the platform must be in for the secret to be revealed. It also implicitly includes

the relevant platform configuration (PCR-values) when the SEAL operation was

performed. The TPMSeal uses the tpmProof value to BIND the sealed blob to an

individual TPM.

TPMUnSeal operation will reveal TPMSealed data only if it was encrypted on this

platform and the current configuration (as defined by the named PCR contents) is

the one named as qualified to decrypt it. Internally, TPMUnSeal accepts a data blob

generated by a TPMSeal operation. TPMUnSeal decrypts the structure internally,

checks the integrity of the resulting data, and checks that the PCR named has

the value named during TPMSeal. Additionally, the caller must supply appropriate

AuthData for blob and for the key that was used to seal that data. If the integrity,

platform configuration and authorization checks succeed, the sealed data is returned

to the caller; otherwise, an error is generated.

TPMCertifyKey operation allows one key to certify the public portion of another

key.

TPMSign operation signs data and returns the resulting digital signature.

3.7 Summary

In this chapter we have reviewed and assessed various content protection schemes

which focus on secure information sharing and protection. Based on the analysis we

have considered how suitable these schemes would be to address the content leakage

threat defined in Chapter 2. We also considered the organizational requirements

and how well those schemes meet the requirements defined in Section 2.5. We

conclude that the means for accessing content needs to be strongly bound not only

to the user who is authorized to access the content but also to the device(s) where

the user is permitted to work. An organization’s security administrators control

the type of content each device can access. This is based on an organization’s

business requirement. In addition, most of the discussed solutions do not use trusted

devices, and they mainly rely upon software-only techniques to protect their secrets.

Software-only techniques cannot provide a high degree of protection for secret keys

stored in a device. This and other problems raise the need for a trusted computing

technology to be integrated which can enforce access control rights which could be

used to help build a secure application.

This chapter also outlines the main functionality of trusted platforms based on

the TCG specifications. The TPM, which is the core component of a TCG-compliant

platform, can be conveniently integrated into consumer devices as it is not expensive,

55

Related Work

does not result in increased device size, and does not introduce new vulnerabilities

into end user computing equipment. Moreover, in this chapter we outlined the

mechanisms behind platform integrity reporting and validation. This chapter also

outlines the main challenges underneath the TCG specifications.

At the end of the first part of this thesis we defined the content leakage problem,

the organizational requirements, and we discuss why current mechanisms do not

address this problem. In our discussion we explained why we consider the DRM

with master control device to be a starting point for our work. In the next part

we propose our schemes which attempt to address the content leakage problem. In

doing this, we start by introducing our scheme framework which provides our scheme

entities, definitions, assumptions, and initialization protocols which are going to be

used for the following chapters. Following that, we propose the global and dynamic

domain schemes.

56

Part II

Proposed Schemes

57

The Proposed Framework

Chapter 4

The Proposed Framework

Contents

4.1 Introduction . 59

4.2 The Framework Entities 59

4.2.1 Content . 59

4.2.2 Employee . 60

4.2.3 Access Rights . 60

4.2.4 Security Administrators . 60

4.2.5 Organization Devices . 61

4.2.6 Certification Authority . 62

4.3 Global and Dynamic Domain Concept 63

4.3.1 Global Domain . 63

4.3.2 Dynamic Domain . 63

4.4 Master Controller . 65

4.5 Our Scheme Required Applications 66

4.5.1 Master Application Initialization 68

4.5.2 Client Application Initialization 73

4.5.3 Requstor Application Interaction with the Client Application 74

4.6 Assumptions . 76

4.7 Summary . 77

This chapter discusses the framework which is required to support the proposed

schemes. It covers the common elements, assumptions and definitions which are

required in subsequent chapters. It starts by describing the main entities and then

introduces the global and dynamic domain concepts, which are discussed in detail in

58

The Proposed Framework

subsequent chapters. Next, we describe the common initialization steps; specifically

we discuss the master controller functionality and the applications that would need

to be installed on devices used within the organization to implement the proposed

scheme.

4.1 Introduction

This chapter forms the base for the schemes proposed in this thesis. It introduces all

the shared entities, definitions, assumptions and initialization steps. The proposed

schemes’ entities are repeated in each scheme (e.g. employee, device, and security

administrators) and they have the same definitions, requirements, and assumptions

in each scheme. In this chapter we have defined these common entities and we

set the assumptions and the requirements that are needed in following chapters.

The next two chapters, which are based on this chapter, propose the global and

dynamic domain schemes. We start with the global domain chapter before the

dynamic domain chapter as the global domain represents the parent domain which

is composed of dynamic domains. In other words, all devices in an organization are

member of the global domain; however, a dynamic domain is composed of selected

devices from the global domain. After that, we describe the common initialization

steps which are required in subsequent chapters; specifically, we discuss the master

controller functionality and the master application that would need to be installed

on the master controller and devices used within the organization to implement the

proposed scheme.

4.2 The Framework Entities

In this section we define the main roles which are used in our scheme. Other

implementation-specific roles will be introduced when needed.

4.2.1 Content

Definition 4.2.1. Content: we are mainly interested in digitized content which

needs to be exchanged between client workstations. The nature of content could be

text files, images, or executable files. The content could be created by a project’s

employees, created by a project manager, and/or created by others and then as-

signed to the project. Content needs to be exchanged between a predefined set of

employees who are working on a specific project. In this workflow, content must

be protected from being accessed by unauthorized employees. However, we do not

address continuously streaming content such as pay TV, as it uses broadcasting

59

The Proposed Framework

principle which are not used by the types of organizations we are focusing on and,

in addition, it is related to copyrighted content that DRM solutions focus on.

Assumption 4.2.2. We assume that content could be either stored in a centralized

server or at client devices.

4.2.2 Employee

Definition 4.2.3. An employee is a user working for an organization to achieve a

set of functions defined by the organization. Each employee has a set of authorization

privileges based on his role. We require that each employee is assigned a device from

where (s)he is authorized to access organization content. An employee is an insider

and could also be a malicious insider.

4.2.3 Access Rights

Definition 4.2.4. Access rights are content-specific access rights specific to each

employee who requires access to content. Rights could be any fine-grained access

conditions which need to be enforced when an employee attempts accessing content.

Example of access rights are read, write, execute, and forward.

Assumption 4.2.5. We assume that members of the organization would be granted

access rights on project’s content within the system, and that a mechanism is avail-

able to manage access rights.

4.2.4 Security Administrators

Definition 4.2.6. A security administrator is a member of an organization

who has high privileges and who is responsible for implementing security policies

and procedures. In the proposed scheme the security administrator is responsible

for initializing the organization’s master controller (defined later in Section 4.4.1),

creating domains, and adding/removing devices to/from the dynamic and global

domain, as described in Chapter 5. As the security administrators are the main

parties who implement the scheme this might overload them. To ease their job an

organization might allocate sufficient security administrators to manage the scheme

components. Different components might be managed by different administrators

for security reasons and to not overload the allocated administrators.

Definition 4.2.7. Authentication Credential: The organization grants security

administrators authentication credentials enabling them to access the system. The

nature of this credential could be something you know (e.g. password), something

you have (e.g. smart card) or something you are (e.g. biometric). We require M

60

The Proposed Framework

out of N security administrators to be authenticated before performing an action,

where M is less than N. This provides a dual control by ensuring that more than

one security administrator comes to agreement before authorizing an action.

Security administrators are insiders who could also be malicious insiders. Each

organization should have its own procedures to verify security administrators’ trust-

worthiness. An example of such procedures are as follows.

1. Following hiring best practices, such as reference checks, background investi-

gation, criminal history, employment termination, and gap periods.

2. Requiring M out of N security administrators to be authenticated before per-

forming an action, where M is less than N. This provides a dual control by

ensuring that more than one security administrator come to agreement before

authorizing an action.

3. Ensuring that only legitimate security administrators are accessing the scheme

confidential devices by using CCTV, which records/tracks devices when moved

inside/outside an organization.

4.2.5 Organization Devices

Definition 4.2.8. A device is a personal computer or a server platform that is

owned by the organization, and which is capable to of achieving our requirements

and assumptions (as described in the following).

In our proposed scheme we require each device to have the following.

1. Software-only techniques do not provide an adequate foundation for building a

high-assurance trusted platform [65, 70]. Hence, we require that each devices’

hardware is enhanced with trusted computing technology described in Chap-

ter 3. Trusted computing technology can be used to enforce access control

policies in such a way that an employee cannot bypass these policies [65].

2. Each device within the organization is required to run a client application,

which is trusted to implement the scheme correctly, as discussed in Section 4.5.

Each device can verify that the client application is running correctly on an-

other device, using remote attestation discussed in Chapter 3.

3. Each device is required to securely generate for each domain a specific content

protection key, which is used to protect the domain content’s confidentiality

and integrity whilst stored in the device. In this we assume that the encryp-

tion algorithm provides authenticated encryption. Authenticated encryption

61

The Proposed Framework

techniques (for example, OCB 2.0 or Key Wrap [45]) can be used to provide

data confidentiality, data integrity, and data origin authentication services. A

mechanism of this type typically involves either a combination of a MAC algo-

rithm and a symmetric encryption scheme, or uses an encryption algorithm in

a special way so that it provides both integrity and confidentiality protection

[45].

4. We also require each device within the organization to have a certified At-

testation Identity Key (AIK). We also require that each device within the

organization to have a copy of the master controller AIK certificate.

Definition 4.2.9. A device content protection key kC is a symmetric key that

is securely generated and stored by the TPM of the device. Each device generates

a specific kC for each domain it joins. The key kC is used to protect content whilst

stored in the device. kC is not available in the clear even to the device’s authorized

user and it cannot be copied between devices. Chapter 5 describes the key generation

process when a device joins the global domain and Chapter 6 describes the key

generation process when a device joins a dynamic domain.

Assumption 4.2.10. We assume that each device is used only by a specific em-

ployee.

Assumption 4.2.11. We assume that devices’ hardware is enhanced with trusted

computing technology described in Chapter 3.

Assumption 4.2.12. We assume that each device has an authentication mechanism

that ensures only authorized employees can have access to their assigned devices

i.e. authentication/authorization techniques should be integrated with the proposed

scheme to verify whether the employee accessing a device is an authorized employee

or not; see, for example, [32, 58, 59, 68].

4.2.6 Certification Authority

A scheme-specific certification authority (CA) could be distributed across multiple

locations and needs to be trusted by internal organization domain devices, and across

collaborating organizational devices in the case of collaborating organizations. The

CA is required to maintain and disseminate a revocation list. In the case of a single

organization, the CA could be the organization itself; in the case of a collaborating

organizations the CA could a member organization which is trusted by all other

member organizations.

62

The Proposed Framework

4.3 Global and Dynamic Domain Concept

Definition 4.3.1. A domain, for the purposes of this thesis, is defined to be a

set of organization devices sharing a secret key. The shared key is used to protect

content confidentiality and integrity whilst in transit between the domain devices.

Each device within the domain possesses a copy of the shared key that enables only

such devices to access the domain assigned content.

In our scheme we use two types of domains: the first we refer to as the global

domain and the second, which is a subset of the global domain, we refer to as the

dynamic domain. The following is a brief description of each domain type.

4.3.1 Global Domain

Definition 4.3.2. A global domain is an organization-specific domain, which

consists of all devices owned by the organization. The global domain has a unique

identifier iG, a unique shared symmetric key kG, and a public key list (PKLg) com-

posed of the public keys of all devices in the domain. Each device in the organization

would have a copy of the global domain key kG. The key kG is used to protect con-

tent in transit that needs to be shared between all devices within an organization,

and it is also used to prove a device’s ownership to an organization. Each device

is required to securely generate a global domain symmetric key kC , which is used

to protect the global domain content when stored in the device. The detail of the

global domain proposed workflow are provided in Chapter 5.

Definition 4.3.3. The global domain credentials include the global domain

unique identifier iG, the global domain unique symmetric key kG, and the public

key list (PKLg) which is composed of the public keys of all devices in the domain.

The global domain credentials are discussed in detail in Chapter 5.

4.3.2 Dynamic Domain

Definition 4.3.4. A dynamic domain represents the group of devices that need

to share a pool of content. The dynamic domain devices are part of the global

domain. Each dynamic domain has a unique identifier iD, a shared unique key

kD, and a specific PKLd composed of all devices in the dynamic domain. kD is

shared by all authorized devices in a dynamic domain and is used to protect the

dynamic domain content whilst in transit. This key is only available to devices that

are members of the domain. Thus only such devices can access the pool of content

bound to the domain. As in the case of a global domain, each device is required

to securely generate for each dynamic domain a symmetric key kC , which is used

63

The Proposed Framework

Figure 4.1: Global and Dynamic Domains

to protect the dynamic domain content when stored in the device (see Definition

4.2.9). The dynamic domain is discussed in detail in Chapter 6.

A device can join multiple dynamic domains to access content bound to these

domains. By referring to our example in Section 2.4 (where an organization has a

group of employees that requires its devices to access a specific pool of content and

it does not want that pool of content to leak to other groups) the organization can

create a dynamic domain consisting of all devices used by this group of employees,

and bind the pool of content to this dynamic domain. Authorized employees, who use

devices that are members of a specific dynamic domain, can access the protected

content bound to that domain. On the other hand, employees cannot access the

protected content from devices that are not members of this domain even if they

have a copy of the protected content. Devices that are not members of the domain

do not possess a copy of kD, and hence cannot decrypt the domain-specific content.

Definition 4.3.5. The dynamic domain credentials: each dynamic domain

possesses the following credentials: the dynamic domain key (kD), its identifier (iD),

and public keys for all devices member in the dynamic domain (PKLd). The dynamic

domain credentials are discussed in detail in Chapter 6.

Definition 4.3.6. System credentials include the administrators credentials,

the global domain credentials, and the dynamic domain credentials.

64

The Proposed Framework

4.4 Master Controller

The framework requires each organization to have a master controller as defined

below.

Definition 4.4.1. A master controller is an organization-specific trusted de-

vice. The master controller is a dedicated server device (e.g. has high performance

capabilities) which is in charge of managing the proposed scheme. The security

administrators use the master controller to manage the membership of devices in

the global and dynamic domain. Moreover, the master controller enforces organi-

zational policies for domain membership. It runs a trusted master application that

is in charge of performing the master controller’s main functions as explained in

Section 4.5. It is the most important entity that needs to be protected.

We require that the master controller is located in a physically secure environ-

ment ensuring that it cannot be stolen and that it is bound to work at a specific

location (e.g. bound with a desk). This can be achieved, for example, by binding

its execution to a specific location as has been discussed in [9]. We also require

that the master controller is monitored by CCTV, and cannot be moved out of the

organization’s premises. In our schemes the master controller has to have auditing

and logging facilities.

The master controller functions are scheme-specific. The global domain master

controller functions are included in the dynamic domain master controller func-

tions. Analogously, the dynamic domain master controller functions (which covers

the global domain) are included in the collaborating organization master controller

functions. We now list the common master controller functions (the details of this

are described in Chapters 5 and 6 for the global and dynamic domains respectively).

1. It authenticates the security administrators and securely protects their cre-

dentials (where authentication credential is defined in Definition 4.2.7).

2. It creates and manages global and dynamic domains. This includes the fol-

lowing. (a.) Securely generating and storing the global and dynamic domain

credentials; (b.) Challenges each device whilst joining a domain to attest to

its execution environment status. The master controller then verifies the at-

testation to ensure that the device is trusted to securely store domain shared

keys, securely generates and stores for each domain a content encryption key,

protect organization content and execute as expected; (c.) Upon successful

attestation, adding devices to a domain by releasing the domain-specific keys

(i.e. kG and kD); and (d.) Challenges a device which needs to be removed from

a domain to attest to its execution environment status. The master controller

65

The Proposed Framework

Figure 4.2: Key Hierarchy

then verifies the attestation to ensure that the device is trusted to remove the

domain key. Upon successful attestation removing a device from a domain by

instructing the device to remove the domain credentials from its storage.

3. It manages domain content by assigning each pool of content to the domain

which it belongs to. It then protects the domain content with the correspond-

ing domain key.

4.5 Our Scheme Required Applications

The proposed schemes require software applications to run on clients and servers.

We now provide the definition of the scheme applications.

Definition 4.5.1. The Scheme applications act as a reference monitor that are

required to implement the proposed scheme. These applications would need to be

installed into organization devices including the organization master controller. In

our schemes there are two types of application which organizations must implement.

The first type (referred to as master application) is used by the master controller

for implementing its functions; the second type (referred to as client application)

is used by client devices when interacting with the master controller for joining a

domain, for domain management, for contentcreation, and for binding the content to

a domain. The master application must provide the functions that the organization

requires. For example, if the organization has a dynamic domain, then the master

application should be capable of supporting dynamic domain functions.

Figure 4.2 illustrates the key hierarchy which is used by the scheme applications.

66

The Proposed Framework

• tpmProof is “a random number that each TPM maintains to validate blobs in

the SEAL and other processes. The default value is manufacturer-specific.”

[75] This is mainly used to bind a key blob with a specific TPM, which makes

the key blob non-migratable, as explained below.

• KEY USAGE is assigned the value TPM KEY STORAGE, which indicates

the encrypted key blob is a storage key [75]. Usage is explained below.

• AuthData is the authorization session digest for inputs and keyHandle. This

means the AuthData value when sealing the blob must match the provided

AuthData for unsealing the blob [75].

In this figure a TPM using the SRK seals a private key Pr of an asymmetric key

pair (Pr, Pu) to the scheme applications in a form of a non-migratable key blob.

The sealing assures that the non-migratable key blob can only be accessed inside

the device TPM by the scheme applications when it works as expected. These are

assured as follows.

The value of the tpmProof inside the non-migratable key blob is known only

to a specific TPM. Therefore, other TPMs cannot access the key encrypted in

the blob.

The integrity measurement (digest at release) stored inside the blob is com-

pared against the platform integrity measurement when unsealing the blob.

Only if values match is access to the unsealed blob revealed to the requestor

application.

Content protection keys (i.e. kC , kD and kG) are sealed using Pr, i.e. only the

trusted scheme applications can decrypt and access content protection keys.

Assumption 4.5.2. We assume that the scheme application software is designed

in such a way that it will not reveal the content protection keys kD and kC in the

clear, it does not transfer content protection keys to others, and it does not transfer

confidential content unprotected to others. TCG-compliant hardware using the seal-

ing mechanism ensures that the only means to access protected content is through

the trusted application.

The client application is responsible for ensuring that access to protected con-

tent is granted only to specific requestor applications running on authorized devices

when their execution environment is trusted. The specific requestor applications re-

quiring access to content would need to communicate with the device-specific client

application to get access to clear text content. In this case, the client application

67

The Proposed Framework

first verifies the requestor application is trusted, and, if so, it decrypts content and

then releases the content to the application. This is described in Section 4.5.3. In

the next two subsections we discuss the two main types of applications.

4.5.1 Master Application Initialization

This section describes the protocol of initializing the master application. The main

objective of this protocol is to prepare the master controller to implement the pro-

posed scheme and manage domain membership. This includes the following:

(1) The security administrators install the master application on the master con-

troller device. The master application installation includes generating a non-

migratable key pair (Pr, Pu) to protect system credentials.

(2) The master application retrieves the security administrators’ credentials (as

defined in Definition 4.2.7), then securely stores them to be used whenever the

administrators’ needs to authenticate themselves to the master controller.

The first time the security administrators run the master application on the

master controller, it performs the following initialization steps (as described by al-

gorithm 1). The objective of this algorithm is to initialize the master application.

The master application executes and sends a request to the master controller TPM

to generate a non-migratable key pair, which is used to protect system credentials

(as defined by Definition 4.3.6). The TPM then generates this key and seals it to

be used by the master application when the platform execution status is trusted.

The master controller then needs to ensure that only the security administrators

can use the master application. For this, the master application running on the

master controller instructs security administrators to provide their authentication

credentials (e.g. password/PIN), as described by Algorithm 2. The objective of this

algorithm is to enroll security administrators into the master controller. The master

application then instructs the TPM to store the authentication credentials of the

organization’s security administrators associated with its trusted execution environ-

ment state (i.e. the integrity measurement, which is stored in the TPM’s PCR as

described in Chapter 3) in the master controller protected storage. We mean ‘sealing

data’ is storing data in a protected storage so that the data can only be accessed

by the trusted master application, as described in Section 3. The authentication

credential is used to authenticate security administrators before using the master

application; see Algorithm 3. The objective of this algorithm is to verify the secu-

rity administrators. This algorithm is used every time security administrators want

to create, expand, shrink or change a global domain and/or dynamic domains, as

explained later in this chapter.

68

The Proposed Framework

Given the definitions and the assumptions above, the protocol is described by

Algorithms 1, 2, and 3. The relationships between these algorithms and their rela-

tionship to the overall scheme is illustrated in Figure 5.1 and 6.1. The following are

the notations used in the provided protocols.

• M is the master application running on the master controller.

• TPMM is the TPM on the master controller.

• SM is the platform state at release as stored in the PCR inside the TPMM .

• (PuM , PrM) is a non-migratable key pair such that the private part of the key

PrM is bound to TPMM , and to the platform state SM .

• The following protocol functions are defined in Section 3.6.5: TPMCreateWrapKey,

TPMLoadKey2, TPMSeal, and TPMUnseal.

Algorithm 1 Master Application Initialization (steps need to be applied in order)

1. M → TPMM : TPMCreateWrapKey.

2. TPMM : generates a non-migratable key pair (PuM , PrM).

PrM is bound to TPMM , and to the required platform state SM at release, as

stored in the PCR inside the TPMM .

3. TPMM → M : TPM KEY12M [PuM , Encrypted PrM ,

TPM KEY STORAGE, tpmProof=TPMM (NON-MIGRATABLE), SM ,

Auth data]

Algorithm 2 Administrators Registration (steps need to be applied in order)

1. M → Administrators: Request security administrator’s authentication creden-

tials.

2. M → TPMM : TPMLoadKey2(PrM).

Loads the private key PrM in the TPM trusted environment, after verifying

the current PCR value matches the one associated with PrM (i.e. SM). If the

PCR value does not match SM , M returns an appropriate error message.

3. M → TPMM : TPMSeal(Authentication Credential). Where Authentica-

tion Credential is defined in Definition 4.2.7.

69

The Proposed Framework

Algorithm 3 Administrator Verification (steps need to be applied in order)

1. M → Administrators: Request for authentication credentials.

2. M → TPMM : TPMLoadKey2(PrM). TPM on M loads the private key PrM in

the TPM trusted environment, after verifying the current PCR value matches

the one associated with PrM (i.e. SM). If the PCR value does not match SM ,

M master application returns an appropriate error message.

3. M → TPMM : TPMUnseal(Authentication Credential).

4. TPMM : Decrypts the string Authentication Credential and passes the result

to M .

5. M : Verifies the administrators using the recovered authentication credentials.

If authentication fails, M returns an appropriate error message.

If either of the above algorithm fails, an appropriate error message will be re-

turned which the administrators would need to address before re-executing the al-

gorithm.

Proof of concept code was implemented to verify the protocols; the details of the

hosting environment and the code itself are given in Appendix A. The execution

output is illustrated in screen-shots 4.3, 4.4, 4.5, and 4.6 for algorithms 1, 2, and 3.

Figures 4.3 and 4.4 show the master initialization process as described by Al-

gorithm 1 and shows the non migratable keys Pu, Pr, and AIK being generated.

The values of the keys Pu and AIK are printed out after the generation steps. The

process took just over 6 seconds which would vary based on the capabilities of the

used device.

Figures 4.5 and 4.6 show the administrator’s registration and the administrator’s

verification described by Algorithms 2 and 3. As illustrated in the screen-shots our

proposed scheme requires more than one administrator to be registered. This pro-

vides a dual control by ensuring that more than one security administrator comes

to agreement before authorizing an action. In the provided screen-shots every time

three administrators are authenticated before the application is enabled. The ad-

ministrators registration took nearly 24 seconds, and the administrator verification

took just nearly 14.5 seconds. Note that the administrator registration required

much longer time as there are delays caused when waiting for administrator’s input.

Also, these times would vary based on the running environment.

70

The Proposed Framework

Figure 4.3: Master Initialization (a)

71

The Proposed Framework

Figure 4.4: Master Initialization (b)

Figure 4.5: Administration Registration

72

The Proposed Framework

Figure 4.6: Admin Verification

4.5.2 Client Application Initialization

This section describes the protocol for initializing the client application on devices.

The goal of this protocol is to prepare a client device to join a domain. The protocol

is described by Algorithm 4. The objective of this algorithm is to install at each

device a copy of the client application, which generates a non-migratable key to

protect system credentials (as defined in Definition 4.3.6) on the client side.

The following are the notations used in the provided protocol.

• D is the client application running on a client device.

• TPMD is the TPM on a client device.

• SD is the platform state as stored in the PCR inside the TPMD.

• (PuD, PrD) is a non-migratable key pair such that the private part of the key

PrD is bound to TPMD, and to the platform state SD.

Algorithm 4 Client Application Initialization (steps need to be applied in order)

1. D → TPMD: TPMCreateWrapKey.

2. TPMD: generates a non-migratable key pair (PuD, PrD).

3. TPMD → D: TPM KEY12D[PuD, Encrypted PrD, TPM KEY STORAGE,

tpmProof=TPMD (NON-MIGRATABLE), SD, Auth data]

73

The Proposed Framework

Figure 4.7: Client Initialization

We have provided in Appendix A a possible implementation of the above algo-

rithm. The execution output of the client initialization algorithm is also illustrated

in Figure 4.7. This took 21 seconds on the hardware mentioned previously.

4.5.3 Requstor Application Interaction with the Client Application

In this section we briefly outline how applications can access protected content.

When an application requests access to a specific item of content it should commu-

nicate with the client application running on the user device. The client application

first checks to which domain the item of content belongs. Content is stored pro-

tected using a specific domain’s content protection key kC . kC is stored protected

using the client application specific key (Pr as in Figure 4.2), which is protected by

the SRK. The SRK is protected inside the device-specific TPM. Both SRK and Pr

are not revealed outside the TPM.

The following is the sequence of steps that is performed by the client application

when an requstor application wants to access a specific item of content (see Figure

4.8).

1. The client application on the device sends a request to the device-specific TPM

to load its own key Pr. The TPM decrypts the client application key using

the SRK, and then verifies the client application execution status is as stored

inside the key blob. This is done as follows:

Client application→ TPMD: TPMLoadKey2(Pr);

74

The Proposed Framework

Figure 4.8: Requstor Application Interaction with the Client Application

loads the private key Pr in the TPM trusted environment, after verifying

the current PCR value matches the PCR value at release associated with

Pr.

2. The client application instructs the TPM to decrypt domain key kC using the

client application key. This is done as follows:

Client application→ TPMD: TPMUnseal(kC).

3. If the client application execution status is as stored inside the key blob the

TPM then decrypts kC . It then releases kC to the client application.

TPMD → Client application: kC

4. The client application instructs the TPM to unload its key. This is done as

follows:

Client application→ TPMD: TPMEvictKey

5. When an application requests access to a protected document, it sends a re-

quest to the client application.

75

The Proposed Framework

6. The client application verifies the trustworthiness of the requestor application.

If it is trusted, the client application decrypts the content using kC and sends it

to the requestor application. This is done as follows: (a.) the client application

extracts the PCR value of the running application; (b.) the client application

also gets the authoritative information, i.e. the Reference Measurements, for

the running application from its manufacturer (e.g. software vendor, makes

these Reference Measurements accessible in some way); and (c.) the client

application now knows both the current integrity-status of the application,

as well as the source-authenticity of this (as coming from the manufacturer).

The client application then compares the reported measurement against the

expected reference measurement value. If the result is positive, the client

application can provide the content to the requestor application.

4.6 Assumptions

In this section we re-list our assumptions as follows:

1. Assumption 4.2.2: we assume that content could be either stored in a central-

ized server or at client devices.

2. Assumption 4.2.5: we assume that members of the organization would be

granted access rights on a project’s content within the system, and that a

mechanism is available to manage the access rights.

3. Assumption 4.2.10: we assume that each device is only used by a specific

employee.

4. Assumption 4.2.11: we assume that devices’ hardware is enhanced with trusted

computing technology described in Chapter 3.

5. Assumption 4.2.12: we assume that each device has an authentication mecha-

nism that ensures only authorized employees can have access to their assigned

devices i.e. authentication/authorization techniques should be integrated with

the proposed scheme to verify whether the employee accessing a device is an

authorized employee or not; see, for example,[32, 58, 59, 68].

6. Assumption 4.5.2: we assume that the scheme application is designed in such

a way that it will not reveal the content protection keys kD and kC in the

clear, it does not transfer content protection keys to others, and it does not

transfer confidential content unprotected to others. TCG-compliant hardware

using the sealing mechanism ensures that the only means to access protected

content is through the trusted client application.

76

The Proposed Framework

4.7 Summary

This chapter describes the common entities and workflow that are used as a base

for subsequent chapters. It starts by defining the main roles which are used in

our scheme. This is followed by defining the global and dynamic domain concepts,

which are the most important concepts that we used throughout the remaining of this

thesis to reduce the effect of information leakage and, simultaneously, limit the effect

of content leakage. Next we defined the master controller and its main functions.

Finally, we defined the scheme applications and their functions for implementing the

core components of the proposed scheme.

77

The Global Domain

Chapter 5

The Global Domain

Contents

5.1 Introduction . 78

5.2 System Workflow . 79

5.2.1 Global Domain Establishment 81

5.2.2 Expanding Global Domain 83

5.2.3 Shrinking Global Domain 91

5.3 How Global Domain Protects Content 93

5.4 Scenarios . 95

5.5 Summary . 96

In this chapter we describe the scheme which presents the global domain concept.

This scheme involves managing a global domain using an organization-specific mas-

ter controller. We then discuss how the proposed scheme prevents external leakage

(as defined by Definition 2.2.5) whilst allowing authorized users to access organiza-

tion’s confidential information from inside or outside an organization’s premises.

5.1 Introduction

In this chapter we propose a scheme for the global domain, introduced in Chapter 4.

The proposed scheme mainly focuses on protecting content in such a way that if it is

transferred, it cannot be accessed except on devices authorized by the organization’s

security administrators. In other words, accessing content is restricted to devices

owned by the same organization and authorized by security administrators. There-

fore, authorized users cannot disclose protected information to others not authorized

to access such information.

78

The Global Domain

Global Domain
Workflow

(Chapter 5)

Global Domain
Establishment

Algorithm 5:
kG and iG

generation

Algorithm 6:
kG and iG

Sealing

Expanding
Global

Domain

Algorithm 7:
D and M
Mutual

Authentication

Algorithm 8:
Transferring
kG and then
seal it on D

Algorithm 9:
kC generation
and sealing on

D

Shrinking
Global

Domain

Algorithm 10:
Removing a device from

the Global Domain

Initialization Steps
(Chapter 4)

Algorithm 1:
MC

initialization

Algorithm 2:
Administrators

Registration

Algorithm 3:
Authentication

Verification

Algorithm 4:
Client

initialization

Algorithm 3:
Authentication

Verification

Algorithm 3:
Authentication

Verification

Algorithm 3:
Authentication

Verification

Sequance

Inheretance

Protocol
name

Algorithm
name

Figure 5.1: Global Domain Algorithms Sequence

This chapter is organized as follows. Section 5.2 describes the proposed solution

and the process workflow. Section 5.3 describes how the proposed scheme controls

domain membership. Section 5.4 describes the importance of the proposed scheme

in the context of a scenario. Section 5.5 provides conclusions.

5.2 System Workflow

The global domain was introduced in Chapter 4 . In this section we provide details

of the proposed workflow. Figure 5.1 illustrates the sequence of algorithms which are

required in this chapter. The figure illustrates three main domain workflow proto-

cols, i.e. global domain establishment, expanding the global domain, and shrinking

the global domain. For each protocol, the figure illustrates the algorithms associ-

ated with the protocol and their order of execution. For example, the global domain

establishment protocol involves executing Algorithms 3, 5, and then 6 in order. The

arrows in the figure indicate the sequence/dependencies of events. For example,

both expanding the global domain and shrinking the global domain depends on the

global domain establishment. A failure in any algorithm would require a rollback

of all dependent algorithms. In such cases the system administrators would need to

check the reasons for failures before proceeding to re-run the protocol.

79

The Global Domain

In this section we require that the scheme applications have already been in-

stalled on devices, exactly as described in Section 4.5. This includes installing both

master application and the client application, which interact with their correspond-

ing devices’ TPM to generate a non-migratable key pair which can be only used by

the scheme applications. This key pair is used to protect global domain credentials

including the global domain unique identifier iG, the global domain unique symmet-

ric key kG, and the public key list of the global domain (PKLg). In the following we

define each credential.

Definition 5.2.1. A global domain public key list (PKLg) is a list that is

composed of the public keys of all devices in the organization. The PKLg is securely

stored in the master controller and is managed by security administrators using the

master application.

Public key list management (PKLg) is a data structure whose integrity and

confidentiality need to be protected. We protect PKLg confidentiality to stop at-

tackers from understanding the organization domain’s structure. PKLg is managed

by security administrators via the master application. Security administrators fol-

low organization requirements and policy when deciding on devices that should be

in the domain, i.e. added to PKLg. When a client device requests to join a domain,

the master controller asks the joining device to attest to the trustworthiness of the

client device, as discussed in Section 5.2.2. If the client device is trusted then the

master controller should ensure that the public key of the client device is in the

PKLg. Each public key in PKLg represents a client device specific application pub-

lic key. The client device is designed to generate the key as a non-migratable key,

and to seal this key to when a client device requests “joining work” with the client

application when it runs as expected, as discussed in Chapter 4. By this we can be

assured that the public key cannot be sent to other devices enabling such devices to

pretend as one of the domain devices.

Definition 5.2.2. A global domain identifier iG is a random number that is

securely generated and stored by the TPM of the master controller. iG is used to

identify the global domain whenever a device needs to join the global domain or

encrypt content with the global domain key, as described in Section 5.2.1.

Definition 5.2.3. A global domain key kG is a symmetric key that is securely

generated and stored by the TPM of the master controller as described in Section

5.2.1. kG is not available in the clear even to the domain security administrators and

it cannot be directly copied between devices. The key kG is only transfered from

the master controller to a device when a device joins the global domain. The key

80

The Global Domain

kG is used to protect content which needs to be shared between the global domain

devices (i.e. all devices within an organization) whilst in transit, and it is also

used to prove a device’s ownership to an organization.

A device proves membership of a global domain by proving possession of kG; this

is because the device can only obtain kG from the master controller: kG is transferred

from the master controller to all devices in the organization after verifying the client

application running on devices performs as expected, as discussed in Section 4.5.

This means the client application will not reveal kG in the clear, and will not transfer

kG to others. Devices that are not owned by the organization will fail to have a copy

of kG, unless security administrators have agreed for these devices to become part of

the global domain and then add them to the PKLg. This is because kG can only be

copied from the master controller to joining devices after successfully authenticating

security administrators and checking that the device public key is in the PKLg.

Each device generates a unique kC which is used to protect global domain content

while being stored on the client device, as defined in Definition 4.2.9. The key kC

generation process is described in Section 5.2.1.

5.2.1 Global Domain Establishment

The master controller defined in Section 4.4 is responsible for setting up the global

domain. The master controller initiates the global domain creation process using

the following protocol. The objective of this protocol is to initialize global domain

credentials at the master controller, which include the global domain key, identifier

and the PKLg. These are protected by the master controller, which manages domain

membership.

The following notations are used in the protocol.

• M is the master application running at the master controller.

• TPMM is the TPM on the master controller.

• SM is the platform state at release as stored in the PCR inside the TPMM .

• (PuM , PrM) is non-migratable key pair such that the private part of the key

PrM is bound to TPMM , and to the platform state SM .

• The functions TPMCreateWrapKey, TPMLoadKey2, TPMSeal, TPMSign and

TPMUnseal are defined in Section 3.6.5.

The establishment of a global domain proceeds as follows.

81

The Global Domain

1. The security administrators instruct the master controller to create the orga-

nization’s global domain.

2. The master controller authenticates security administrators as described in

Algorithm 3.

3. If the authentication succeeds, M instructs security administrators to provide

the public keys of all devices in the organization in the form of a public key

list (PKLg).

4. The master application interacts with the TPM to securely generate a global

domain-specific secret key kG and a global domain specific identifier iG as

follows.

Algorithm 5 kG and iG generation (steps need to be applied in order)

(a) M → TPMM : TPMGetRandom;

Generates a random number to be used as a global domain key kG

(b) TPMM →M : kG

(c) M → TPMM : TPMGetRandom;

Generates a random number to be used as a global domain identifier iG

(d) TPMM →M : iG

If Algorithm 5 fails the credentials will not be created, an appropriate error

message will appear, and algorithm 6 will not run.

5. The global domain credentials kG, iG, and PKLg are stored in the master

controller protected storage, and sealed to the master application so that only

the master application can access these credentials when its execution status

is trusted. This is achieved as follows.

82

The Global Domain

Algorithm 6 kG and iG sealing (steps need to be applied in order)

(a) M → TPMM : TPMLoadKey2(PrM);

M loads the private key PrM in the TPM trusted environment, after verifying

the current PCR value matches the one associated with PrM (i.e. SM). If the

PCR value does not match SM , M returns an appropriate error message.

(b) M → TPMM : TPMSeal(kG||iG||PKLg).

TPMM securely stores the string kG||iG||PKLg using the platform protected

storage, such that they can only be decrypted on the current platform by M ,

and only if the platform runs as expected (when the platform PCR values

matches the ones associated with PrM , i.e. SM).

Algorithms 5 and 6 were implemented in Java code which is given in Appendix A.

Figures 5.2 and 5.3 show screen-shots of running algorithms. These algorithms were

executed on the environment as described in Appendix A and they took around 10

seconds. In these screen-shots we generate the global domain credentials (ii, kg,

PKLg). We then print their values and finally we seal them to the device.

5.2.2 Expanding Global Domain

This section describes the process of expanding a global domain by adding a device

to an organization-specific global domain. We require that a global domain has

been established in the master controller, as described in the previous section. We

also require that the client application has already been installed on the device as

described in Algorithm 4.

The following notation is used in the protocol.

• D is the client application running on a client device.

• M is the master application running on the master controller.

• TPMD is the TPM on a client device.

• TPMM is the TPM on the master controller.

• SD is the platform state at release as stored in the PCR inside the TPMD.

• SM is the platform state at release as stored in the PCR inside the TPMM .

• (PuD, PrD) is a non-migratable key pair such that the private part of the key

PrD is bound to TPMD and to the platform state SD.

83

The Global Domain

Figure 5.2: Initialize Global Domain (a)

84

The Global Domain

Figure 5.3: Initialize Global Domain (b)

• (PuM , PrM) is a non-migratable key pair such that the private part of the key

PrM is bound to TPMM and to the platform state SM .

• CertM is the master controller’s AIK certificate.

• CertD is the joining device’s AIK certificate.

• AM is an identifier for the master controller included in CertM .

• AD is an identifier for a device included in CertD.

• PrMAIK is the private key of the master controller AIK.

• PrDAIK is the private key of the device AIK.

• N1 is a randomly generated nonce.

• N2 is a randomly generated nonce.

• ePuD
(Y) denotes the asymmetric encryption of data Y using key PuD, and

where we assume that the encryption primitive in use provides non-malleability,

as described in [44].

• SHA1 is a one way hash function.

85

The Global Domain

• The protocol functions TPMCreateWrapKey, TPMLoadKey2, TPMSeal, TPMSign

and TPMUnseal are defined in Section 3.6.5.

The client device sends a join domain request to the master controller to install

the domain specific key kG. This request includes the global domain specific identifier

iG and is achieved as follows.

1. D →M : Join Global Domain

Three algorithms are then initiated to add the device to the global domain, which

are discussed below.

The first algorithm involves the master controller and the joining device to mu-

tually authenticate each other conforming to the three-pass mutual authentication

protocol [43]. The objective of this algorithm is to establish a trusted communication

channel between the master controller and the client device. The master controller

sends an attestation request to the joining device to prove its trustworthiness then

the device sends the attestation outcome to the master controller. These steps are

achieved using the following algorithm.

86

The Global Domain

Algorithm 7 D and M mutual authentication (steps need to be applied in order)

1. M → TPMM : TPMGetRandom.

2. TPMM →M : Generates a random number to be used as a nonce N1.

3. M → TPMM : TPMLoadKey2(PrMAIK);

M loads the master controller AIK in the TPM trusted environment, after

verifying the current PCR value matches the one associated with PrMAIK .

4. M → TPMM : TPMSign(N1).

5. TPMM →M → D: N1||CertM ||SignM (N1).

6. D verifies CertM , extracts the signature verification key of M from CertM , and

checks that it has not been revoked, e.g. by querying an OCSP service. D then

verifies message signature. If the verifications fail, D returns an appropriate

error message.

7. D → TPMD: TPMGetRandom.

8. TPMD → D: Generates a random number N2 that is used as a nonce.

9. D → TPMD: TPMLoadKey2(PrDAIK);

D loads the private key PrDAIK in the TPM trusted environment, after veri-

fying the current PCR value matches the one associated with PrDAIK .

10. D → TPMD: TPMCertifyKey(SHA1(N2||N1||AM ||iG),PuD). TPMD attests

to its execution status by generating a certificate for the key PuD.

11. TPMD → D: N2||N1||AM |D||SD||iG||SignD(N2||N1||AM ||iG||PuD||SD).

12. D →M : N2||N1||AM ||PuD||SD||iG||CertD||SignD(N2||N1||AM ||iG||PuD||SD).

13. M verifies CertD, extracts the signature verification key of D from the cer-

tificate, and checks that it has not been revoked, e.g. by querying an OCSP

service. M then verifies message signature, message freshness by verifying the

value of N1, and then verifies it is the intended recipient by checking the value

of AM . M determines if D is executing as expected by comparing the plat-

form state given in SD with the predicted platform integrity metric. If these

validations fail, then M returns an appropriate error message.

If Algorithm 7 fails the secure channel will not be established between the master

controller and the device. In addition, an appropriate error message will be returned

87

The Global Domain

which the administrators would need to address before executing the algorithm

again.

If the joining device execution environment is trusted, the master controller

checks if the device’s public key is included in the public key list for the global

domain. If so, it securely releases the global domain specific key kG to the device as

follows.

The second algorithm for adding a device into the global domain starts upon

successful completion of the above algorithm. The objective of this is to securely

transfer the domain key kG to the joining device D. The key are sealed on D, so

that it is only released to the client application when its execution environment is

as expected.

Algorithm 8 Transferring kG and then seal it on D (steps need to be applied in

order)

1. M → TPMM : TPMLoadKey2(PrM).

The TPM on M loads the private key PrM into the TPM trusted environment,

after verifying the current PCR value matches the one associated with PrM

(i.e. SM). If the PCR value does not match SM , the master application returns

an appropriate error message.

2. M → TPMM : TPMUnseal(kG||iG||PKLg).

3. TPMM →M : decrypts the string kG||iG||PKLg and passes the result to M .

4. M verifies iG matches the recovered global domain identifier and PuD is in-

cluded in the PKLg. If so M encrypts kG using the key PuD as follows

ePuD
(kG).

5. M → TPMM : TPMCertifyKey(SHA1(N2||AD||ePuD
(kG)),PuM).

6. TPMM → M : attests to its execution status by generating a certificate for

the key PuM , and sends the result to M .

7. M → D: N2||AD||PuM ||SM ||ePuD
(kG)||SignM (N2||AD||ePuD

(kG)||PuM ||SM).

8. The device D verifies message signature, it is the intended recipient by checking

the value of AD, and verifies message freshness by checking the value of N1. If

verifications succeed, D stores the string ePuD
(kG) in its storage.

If Algorithm 8 fails the global domain key will not be transfered, an appropriate

error message will be returned which the administrators would need to address before

88

The Global Domain

re-executing the algorithm.

The third algorithm for adding a device into the global domain starts upon

successful completion of the above algorithm. The objective of the protocol is to

securely generate content encryption key kC for the domain. The keys are sealed on

D, so that they are only released to client application when its execution environment

is as expected.

Algorithm 9 kC generation and sealing it on D (steps need to be applied in order)

The device D securely generates kC , and then backs up kC at the master

controller. This is done as follows.

1. D → TPMD: TPMGetRandom.

2. TPMD → D: Generates a random number to be used as a key kC .

3. D then seals kC to the client application exactly as it does for kG. Because kG

and kC are encrypted using PuD it means the keys are stored using the platform

protected storage mechanism and sealed to TPMD, such that they only can

be decrypted when the platform PCR values matches the ones associated with

PrD (i.e. SD).

4. D → M : D sends a Backup Request to the master controller M to keep a

copy of C. The request is as follows ePuM
(kC).

5. M stores ePuM
(kC) in its protected storage.

If Algorithm 9 fails the device key kC will not be created and sealed, and an

appropriate error message will be returned which the administrators would need to

address before re-executing the algorithm.

Algorithms 7 and 8 were implemented in Java code which is given in Appendix A.

Figures 5.4 and 5.5 illustrate screen-shots of the running algorithms. Executing

these algorithms on the environment as described in Appendix A took just over

6.5 seconds. Algorithm 9 was also implemented in Java code which is given in

Appendix A. Figures 5.6 shows a screen-shot of the running algorithm. Executing

these algorithms on the environment as described in Appendix A took just over 0.8

seconds.

At the successful completion of the above protocol the joining device D and the

master controller establish a secure communication channel that is used to transfer

the global domain key to the device. This path provides the assurance to the master

controller about the device current state, and also forces the use of the key when

89

The Global Domain

Figure 5.4: Join Global Domain (a)

Figure 5.5: Join Global Domain (b)

90

The Global Domain

the device is on a specific state. The device D is now part of the global domain, as

it possesses a copy of the keys kG and kC and its public key matches the one stored

in the master controller.

All devices in the organization need to perform the previous steps to become

members of the global domain. Member devices of the global domain can access the

global-domain associated pools of content, and hence such pools of content are now

shared by all organization devices.

5.2.3 Shrinking Global Domain

There are two cases in which the device may need to be removed from the organi-

zation, which are as follows. (1) The device has a problem that might affect the

security of the keys stored in the device. In this case, the device needs to be removed

and the keys stored on the device need to be revoked. The key revocation procedure

and the steps which must be followed are discussed in Section 6.3.4. (2) The device

has no problem and it is still trusted to securely remove the keys from its storage.

This case applies, for example, when the global domain needs to be shrunk, or a

new device is replacing an existing device. In such cases, the organization should be

given the flexibility to update its global domain. The way to remove a device from

the global domain is as follows.

1. The organization’s security administrators instruct the master controller to

remove a device from the domain.

2. M authenticates security administrators as described in Algorithm 3 and in-

structs them to provide the device public key.

3. M and D mutually authenticate each other’s trustworthiness, exactly as de-

scribed in Algorithm 7 to validate the device is trusted to remove the key PrD

from its storage.

4. The master controller instructs the leaving device to delete PrD from its storage

as described in Algorithm 10. The objective of this algorithm is to remove a

device from the global domain.

5. The master controller then removes this device’s public key from the public

key list of the global domain.

91

The Global Domain

Algorithm 10 Removing a device from a global domain (steps need to be applied

in order)

1. M → TPMM : TPMLoadKey2(PrM).

The TPM on M loads the private key PrM in the TPM trusted environment,

after verifying the current PCR value matches the one associated with PrM

(i.e. SM). If the PCR value does not match SM , the master application returns

an appropriate error message.

2. M → TPMM : TPMUnseal(kG||iG||PKLg).

3. TPMM →M : decrypts the string kG||iG||PKLg and passes the result to M .

4. M instructs D to delete PrD.

5. M → D: Leave Global Domain||AD||SignM (Leave Global Domain||AD).

6. D: verifies message signature and that it is the intended recipient by checking

the value of AD.

If verifications succeed, D removes the private key (PrD), which disables the

device from accessing the global domain and all other dynamic domain cre-

dentials.

D →M Remove Succeeds.

6. Once M receives the Remove Succeeds message it removes PuD from the

PKLg.

On the other hand, if the execution status of the device is not trusted or the

device is not available (as in the case of device hardware failure), each organization

should define their policies on how to handle such cases. For example, an organi-

zation might have a revocation list for this purpose, where non-responsive removed

devices are added to this list. Other devices before interacting amongst each other

should regularly check the revocation list when dealing with other devices’ member-

ship of a domain. This will exclude such devices from receiving new content. The

key revocation procedure is explained in detail in Section 6.3.4.

Algorithm 10 was implemented in Java code which is given in Appendix A.

Figures 5.6 shows a screen-shot of the running algorithm. Executing this algorithms

on the environment as described in Appendix A took just over 5.7 seconds.

92

The Global Domain

Figure 5.6: KC Initialization and Removing Devices

5.3 How Global Domain Protects Content

As we described earlier, encrypting content alone does not necessary mean it is

protected. Robust content protection requires ensuring that the environment where

content is accessed, stored and transferred is secure and protected. In this section,

we cover the roles of the main entities in the proposed system which help in achieving

content protection. The main point in this scheme is ensuring that content can be

accessed using only authorized devices; this is achieved as follows.

1. Creating a global domain. In the proposed solution we create a global

domain consisting of all devices in an organization. This domain has a domain-

specific key kG and a content protection key kC . kG is shared by all devices

in the organization and is used to encrypt content, whilst in transit, which is

required to be shared between all organizational devices. kC is a device-specific

key that is used to encrypt content whilst stored on a device. Only devices

that possess the key kG can decrypt the protected content after receiving the

content from other devices. A device must join the organization global domain

to receive the key kG. Only an authorized device can join the global domain.

2. Authorized Devices. A device is considered an authorized device after

satisfying the following conditions.

(a) The device public key is listed in the public key list for the global domain.

93

The Global Domain

(b) It has been verified that the device is trusted, as described in Section 5.2.2

(i.e. the client application running on the device performs as expected,

e.g. does not reveal kG/kC in the clear, does not transfer kG/kC to others,

and does not transfer confidential content unprotected to others).

After a device satisfies the above conditions of being an authorized device it

can join the organization domain, and receive a copy of the shared domain

key kG.

3. The keys kG and kC . The successful operation of this scheme requires

controlling, managing and securely protecting the keys kG and kC . This is

ensured as follows.

(a) The key kG can only be transferred from the trusted master controller

to an authorized device, and it cannot be copied between devices.

(b) After an authorized device receives the key kG, it securely generates kC

and stores both kG and kC in its protected storage sealed to a specific

trusted environment configuration state, so that only the client applica-

tion can access these keys. This is to ensure that these keys can only be

released to the client application if the running execution status of the

machine matches the one associated with the stored key.

When a device wants to share content so that it is accessible to all organization

devices it must encrypt content using the key kG. Protected content (en-

crypted using kG) can be freely moved to other devices; however, only devices

that possess a copy of the key kG, i.e. devices member in the same organization,

can decrypt and then access the content.

4. Protected content. Content requiring protection must be stored protected

inside devices using key kC and must not leave organization devices unpro-

tected. This is achieved by the client application, which is designed to store

content that requires protection encrypted using kC . When a device wants to

transfer content to another device, the client application decrypts the content

and re-encrypts it using the shared key kG, as discussed in Chapter 4. Thus

devices which receive such protected content cannot access such protected con-

tent without having the key kG. This in turn means that these devices have

joined the domain and have been verified as authorized device.

94

The Global Domain

5.4 Scenarios

In this section we provide different scenarios for information leakage and how they

are addressed by the proposed scheme. It is very important to make it clear that

in our proposed scheme we do not address information leakage that results from

the following cases: an authorized user renders content on an authorized device

with the physical presence of another unauthorized user; and an authorized user

memorizes/writes/records content and then transfers it to others.

Let us assume that an organization has a domain, consisting of all devices that

require to access confidential content i.e. a global domain. The global domain

membership is controlled by a domain-specific master-controller. The organization

has a large confidential content C, which is protected against leakage using the global

domain, as described in this chapter. Andrew who works for the same organization

is authorized to access C on a device provided by his organization at work. Simon

who works for another competitive organization and knows Andrew well, needs to

get a copy of C. Andrew transfers C (encrypted using kG) via the Internet or copies

it (encrypted using kC) into a CD-ROM, and then gives it to Simon, e.g. using the

Internet. Simon could not access C because his device is not a member of Andrew’s

organization domain, and so he does not have a copy of the domain key. Andrew

tried to transfer the key via the Internet or copy it into a CD-ROM then give it

to Simon, but the client application running on Andrew’s device does not allow the

domain key to be transferred or coped. So the only way for Simon to have the key

is to join the global domain to have a copy of the key kG.

Andrew brings Simon’s device to his work and attempts to add it into the organi-

zation domain. The master controller refused that, as Simon’s device’s public key is

not in the domain public key list. After this, Andrew thought why not add Simon’s

device’s public key to the domain public key list? This idea did not work because for

any changes in the domain credentials, the master controller requires the security

administrators’ credentials and Andrew does not know the security administrators’

authentication credentials. Andrew’s final resort is to print the content and hand it

over to Simon. The client application running on Andrew’s device is configured not

to allow printing for content C. Eventually Simon has failed to access C.

Sue is a maintenance engineer from an external company. Whilst she was fixing a

problem in Andrew’s device she directly copied a protected version of C (via secret

and illegal means) from Andrew’s hard-drive into her USB memory stick. Later

on, Sue executed the client application on her device to access C; however, the

client application was not capable of accessing C, as Sue’s device does not have the

device-specific content protection key kC , which is used to encrypt C at Andrew’s

95

The Global Domain

device.

Faye is a manager that needs to work from home and access the organization’s

content. The organization can provide Faye a laptop that is a member in the or-

ganization global domain. Alternatively, Faye can bring her private laptop to the

organization premises in a legitimate way (i.e. with the knowledge of the security

officers and security administrators), and then security administrators can add her

laptop to the organization domain. Thereby, Faye’s laptop gets a copy of the orga-

nization’s content protection key kG, and hence can access content from her laptop

at home.

5.5 Summary

This chapter proposes a solution for the protection of confidential digital content

from being leaked to unauthorized parties. The basis of the solution is group-

ing an organization’s devices into a specific global domain. Domain membership

is controlled by a master controller, which only allows authorized devices to join

this domain after authenticating security administrators and verifying devices are

trusted. Content can be accessed only by authorized employees using authorized

devices that are members of the domain, and if an unethical employee attempts

leaking such content to third parties, the content will not be accessible. This is

because a device which does not belong to the organization does not have a copy of

the content decryption key (the global domain key kG). In other words, the global

domain provides the environment to transfer confidential content to devices that are

members of a specific organization and, simultaneously, ensures content is protected

against being illegally accessed by other devices, i.e. the usage of the global domain

covers requirement number 2 (Content sharing) and 3 (Content protection).

96

Dynamic Domains

Chapter 6

Dynamic Domains

Contents

6.1 Introduction . 98

6.2 System Workflow . 99

6.2.1 Dynamic Domain Establishment 99

6.2.2 Adding Devices to a Dynamic Domain 102

6.2.3 Removing a Devices from a Dynamic Domain 105

6.3 Domain Management . 105

6.3.1 Domain Expansion . 106

6.3.2 Domain Shrinking . 106

6.3.3 Device Changes . 106

6.3.4 Key Revocation . 106

6.4 Key Refreshment . 108

6.5 Binding Content to a Domain 109

6.6 Summary . 110

In this chapter we describe a scheme framework of the dynamic domains concept

introduced in Chapter 4. This chapter proposes a mechanism for internal employ-

ees to share and simultaneously guard information assets from one another. This

scheme involves managing dynamic domains using an organization-specific master

controller. The master controller itself is controlled by the organization’s security

administrators. We then discuss how the proposed scheme prevents internal leakage

whilst allowing authorized employees to access confidential content from inside or

outside organizational premises.

97

Dynamic Domains

6.1 Introduction

In this chapter we propose the dynamic domain scheme introduced in Chapter 4.

The dynamic domain helps in mitigating the internal leakage, as defined in Definition

2.2.4. When an authorized employee sends content to others they will not be capable

of accessing content except on devices that are members of the predefined group;

thus internal leakage is prevented when using such a technique.

As outlined in Chapter 4, a dynamic domain consists of devices that must be

members of the global domain. Each dynamic domain has a unique identifier, iD, a

unique shared symmetric key, kD, and, for each device, a unique domain symmetric

key, kC . kD is used to protect the dynamic domain-specific pool of content whilst in

transit; it can only be accessed by the dynamic domain-specific set of devices. This

key is only available inside the domain, thus only domain devices can access the pool

of content bound to the domain. kC is used to protect the dynamic domain-specific

pool of content whilst stored in a device and can only be accessed by that specific

device. The dynamic domain creation process is performed by the organization’s

authorized security administrators, who choose devices that need to be bound to a

dynamic domain based on the organization’s requirements.

Definition 6.1.1. A dynamic domain identifier iD is a unique random number

that is securely generated and stored by the TPM of the master controller. iD is used

to identify the dynamic domain whenever a device needs to join the dynamic domain

or encrypt content with the dynamic domain key. This is described in Section 6.2.

Definition 6.1.2. A dynamic domain key kD is a symmetric key that is securely

generated and stored by the TPM of the master controller as described in Section 6.2.

kD is not available in the clear even to the domain security administrators and it

can not be copied between devices. The key kD is only transferred from the master

controller to a device when a device needs to join the dynamic domain. The key kD

is used to protect the dynamic domain content whilst in transit.

Definition 6.1.3. A dynamic domain public key list (PKLd) is a list that

is composed of the public keys of the group of devices that perform the dynamic

domain. The PKLd is a subset from the global domain PKLg defined in Section

5.2.1. The PKLd is securely stored in the master controller and is managed by

security administrators using the master application.

PKLg management follows the same process as described in Section 5.2.

98

Dynamic Domains

Dynamic Domain
Workflow

(Chapter 6)

Dynamic
Domain

Establishment

Algorithm 12:
kD and iD

sealing

Adding
devices to a

dynamic
domain

Algorithm 13:
Join dynamic

domain request

Algorithm 14:
Verify iD and device

public key is authorized
to join the domain

Algorithm 15:
M releases kD

to D

Removing
Device from a

Dynamic
Domain

Algorithm 18:
Removing D

from a domain

Algorithm 11:
Verify dynamic domain
public keys are in the

global domain

Algorithm 16:
D securely
stores kD

Algorithm 17:
D securely
generates

stores, and
backup kC

Key Revocation

Algorithm 19:
Replace an old

domain key

Algorithm 20:
Updating domain
keys on devices

Initialization Steps
(Chapter 4)

Algorithm 1:
MC

initialization

Algorithm 2:
Administrators

Registration

Algorithm 3:
Authentication

Verification

Algorithm 4:
Client

initialization

Algorithm 3:
Authentication

Verification

Algorithm 3:
Authentication

Verification

Algorithm 3:
Authentication

Verification

Algorithm 3:
Authentication

Verification

Sequance

Inheretance

Protocol
name

Algorithm
name

Figure 6.1: Dynamic Domain Algorithms Sequence

6.2 System Workflow

Figure 6.1 illustrates the sequence of algorithms which are required in this chapter.

The figure illustrates four main domain workflow protocols, i.e. dynamic domain es-

tablishment, adding devices to a dynamic domain, removing devices from a dynamic

domain, and key revocation. For each protocol the figure illustrates the algorithms

associated with the protocol and their order of execution. For example, the dynamic

domain establishment protocol involves executing Algorithms 3, 11, and then 12 in

order. The arrows in the figure indicate the sequence/dependencies of events. A

failure in any algorithm would require a rollback of all dependent algorithms. In

such a case the system administrators would need to check the reasons of failures

before proceeding and re-running the protocol. The following sections discuss the

workflow algorithms.

6.2.1 Dynamic Domain Establishment

In this section we require that the master application running on the master con-

troller has been initialized and the global domain has been established, as discussed

in Chapters 4 and 5, respectively (Figure 6.1 illustrates the sequence of algorithms

required in this chapter). As we discussed in Chapter 4 the master application

99

Dynamic Domains

includes the dynamic domain additional functions. The additional functions are

mainly related to validating that a dynamic domain is a subset of the global do-

main. Whenever an organization wishes to share a pool of content with a group of

employees in such way that the content can only be accessed by devices member in

the group, it needs to create a dynamic domain consisting of devices used by the

employees. The process of creating a dynamic domain is as follows.

The organization decides how many devices need to access a specific type of

content. The organization also decides which devices will access this type of content.

This should be based on organizational needs. For example, a dynamic domain could

consist of devices used by managers’ levels, devices used by accounts department,

etc. For a device that is chosen to be in a dynamic domain, its public key should be

included in the dynamic domain public key list.

The security administrators instruct the master controller to create a new dy-

namic domain. The master controller then authenticates the organization security

administrators, e.g. using a password, as described in Algorithm 3.

If authentication succeeds, the master controller instructs the security admin-

istrators to provide the public keys of devices that will be in the dynamic domain

PKLd.

The master controller then verifies that the provided PKLd are included in the

global domain public key list PKLg, which is defined in Chapter 5. This is to ensure

that the joining devices are owned by the organization. The protocol for this is as

follows.

The following notation is used in the provided protocol.

• M is the master application.

• TPMM is the TPM on the master controller.

• SM is the platform state at release as stored in the PCR inside TPMM .

• (PuM , PrM) is a non-migratable key pair such that the private part of the key

PrM is bound to TPMM , and to the platform state SM .

• PKLd is the dynamic domain public key list.

• iD is the dynamic domain identifier.

• kD is the dynamic domain symmetric key.

100

Dynamic Domains

Algorithm 11 Verify dynamic domains’ public keys are in global domain (steps

need to be applied in order)

1. M → TPMM : TPMUnseal(kG||iG||PKLg).

2. TPMM →M : decrypts the string kG||iG||PKLg and passes the result to M .

3. M verifies that PKLd entries are included in PKLg.

If the verification succeeds, the master controller securely generates a shared

dynamic domain specific symmetric key kD and a dynamic domain specific identifier

iD. kD and iD are associated with the public key list PKLd and then stored in the

master controller protected storage and sealed to a trusted execution environment.

The algorithm for these steps is as follows.

Algorithm 12 kD and iD Sealing (steps need to be applied in order)

1. M → TPMM : TPMGetRandom;

2. TPMM → M : generates a random number to be used as a shared dynamic

domain key kD and sends it back to M .

3. M → TPMM : TPMGetRandom;

The TPM on M (TPMM) generates a random number to be used as a dynamic

domain identifier iD

4. TPMM →M : iD

5. M → TPMM : TPMLoadKey2(PrM);

M loads the private key PrM into the TPM trusted environment, after verifying

the current PCR value matches the one associated with PrM (i.e. SM). If the

PCR value does not match SM , M returns an appropriate error message.

6. M → TPMM : TPMSeal(kD||iD||PKLd).

TPMM securely stores the string kD||iD||PKLd using the platform protected

storage mechanism bound to TPMM , such that they can only be decrypted on

the current platform by M , and only if the platform runs as expected (when

the platform PCR values matches the ones associated with PrM , i.e. SM).

Proof of concept code was not produced for the dynamic domain protocols. This

is because it is similar (with some minor changes) to those provided in the global

domain.

101

Dynamic Domains

6.2.2 Adding Devices to a Dynamic Domain

This section describes the process for adding a device into a dynamic domain.

The following notation is used in the provided protocol.

• D is the client application.

• M is the master application.

• TPMD is the TPM on a client device.

• TPMM is the TPM on the master controller.

• SD is the platform state at release as stored in the PCR inside the TPMD.

• SM is the platform state at release as stored in the PCR inside the TPMM .

• (PuD, PrD)is a non-migratable key pairs such that the private part of the key

PrD is bound to TPMD and to the platform state SD.

• (PuM , PrM) is a non-migratable key pairs such that the private part of the

key PrM is bound to TPMM and to the platform state SM .

• CertM is the master controller AIK certificate.

• CertD is the joining device AIK certificate.

• AM is an identifier for the master controller included in CertM .

• AD is an identifier for a device included in CertD.

• PrMAIK is the private key of the master controller AIK.

• PrDAIK is the private key of the device AIK.

• N1 is a randomly generated nonce.

• N2 is a randomly generated nonce.

• ePuD
(Y) denotes the asymmetric encryption of data Y using key PuD, and

where we assume that the encryption primitive in use provides non-malleability,

as described in [44].

• SHA1 is a one way hash function.

102

Dynamic Domains

To add a device to a dynamic domain the client application sends a join domain

request to the master application to install the dynamic domain specific key. This

request includes the dynamic domain specific identifier iD, which is achieved as

follows.

Algorithm 13 join dynamic domain request (steps need to be applied in order)

1. D → TPMD: TPMLoadKey2(PrD).

TPM on D loads the private key PrD in the TPM trusted environment, after

verifying the current PCR value matches the one associated with PrD (i.e.

SD). If the PCR value does not match SD, the client application exits with

an appropriate error message.

2. D → TPMD: TPMGetRandom.

TPMD generates a random number N1 that is used as a nonce, and returns

the result back to D.

3. D →M : Join Dynamic Domain (N1||CertD||AM ||iD)||SignD(N1||AM ||iD).

4. M verifies CertD, extracts the signature verification key of D from the cer-

tificate, and checks that it has not been revoked, e.g. by querying an OCSP

service. M then verifies message signature, and verifies it is the intended

recipient by checking the value of AM .

The master controller and the joining device mutually authenticate each other

and attests to each other’s trustworthiness in the same way as discussed in Sec-

tion 5.2.2.

Upon successful authentication, the master controller checks if iD represents a

valid domain and if the device’s public key is included in the dynamic domain PKLd,

as follows:

Algorithm 14 Verifies iD and device’s public key is authorized to join the domain

(steps need to be applied in order)

1. M → TPMM : TPMUnseal(kD||iD||PKLd).

2. TPMM →M : decrypts the string kD||iD||PKLd and passes the result to M .

3. M verifies iD matches the recovered dynamic domain identifier and PuD is

included in the PKLd.

If the result is positive, the master controller releases the dynamic domain specific

103

Dynamic Domains

key kD to the device encrypted using the device’s public key.

Algorithm 15 M releases kD to D (steps need to be applied in order)

M → D: ePuD
(kD);

M encrypts kD using the key PuD and sends it to D.

The device stores the dynamic domain key in its protected storage.

Algorithm 16 D securely stored kD (steps need to be applied in order)

1. D stores the string ePuD
(kD), such that it only can be decrypted when the

platform PCR values matches the ones associated with PrD (i.e. SD).

The device securely generates a symmetric key kC , which is used to encrypted

the dynamic domain content whilst in storage. Then the device stores kC in its

protected storage. Finally, the device stores a copy of kC , as a backup, at the

master controller.

Algorithm 17 D securely generates, stores, and backup kC (steps need to be applied
in order)

1. D → TPMD: TPMGetRandom;

2. TPMD → D: generates a random number to be used as a symmetric key kC
for encrypting the domain content in the device. D encrypts kC using the key
PuD as follows ePuD

(kC). D stores the string ePuD
(kC) using the platform

protected storage mechanism and bound to TPMD. This is done as follows.

3. D → TPMD: TPMSeal(ePuD
(kC)).

4. D → M : D sends a Backup Request to the master controller M to keep a
copy of C. The request is ePuM

(kC).

5. M stores ePuM
(kC) in its protected storage.

This device is now part of the dynamic domain, as it possesses a copy of the

dynamic domain key and its public key is included in PKLd as stored in the master

controller.

All devices in the PKLd should follow the above steps to join the dynamic do-

main. All member devices of the domain can access the encrypted pool of content

associated with that domain. All these devices have a copy of the shared dynamic

domain-specific key kD. Therefore, these devices can access the domain-specific con-

tent as protected using the key kD.

104

Dynamic Domains

As we stated earlier proof of concept code was not produced for the dynamic

domain protocols. This is because it is similar (with some minor changes) to those

provided in the global domain.

6.2.3 Removing a Devices from a Dynamic Domain

The organization’s security administrators instruct the master controller M to re-

move a device from the dynamic domain, as identified by domain identifier iD. M

authenticates security administrators as described in Algorithm 3. Then M and

D mutually authenticate each other’s trustworthiness, exactly as described in Sec-

tion 5.2.2. Upon successful authentication, the following algorithm is executed.

Algorithm 18 Removing D from a domain (steps need to be applied in order)

1. M → TPMM : TPMLoadKey2(PrM). TPM on M loads the private key PrM in

the TPM trusted environment, after verifying the current PCR value matches

the one associated with PrM (i.e. SM). If the PCR value does not match SM ,

the master application returns an appropriate error message.

2. M → TPMM : TPMUnseal(kD||iD||PKLd).

3. TPMM →M : decrypts the string kD||iD||PKLd and passes the result to M .

4. M instructs D to remove the dynamic domain key from itself.

5. M → D: Leave Dynamic Domain||iD||AD||SignM (Leave Dynamic Domain||iD||AD).

6. D verifies message signature and it is the intended recipient by checking the

value of AD. If verifications succeed, D removes the dynamic domain cre-

dentials as identified by id iD from its protected storage. D then sends Re-

move Succeed message to M .

7. Once M receives Remove Success message it removes PuD from the PKLd.

6.3 Domain Management

We believe that in order for a solution to be accepted and be widely used, it should

adapt with organizations’ dynamic nature; for example, an organization might need

to change its strategy, layout, business workflow, and/or replace its own devices.

This requires that the solution can adapt to employee and device changes which

we discuss in this section, i.e. replacing, adding and removing employees’ devices

from/to a dynamic domain.

105

Dynamic Domains

6.3.1 Domain Expansion

An organization can expand a dynamic domain, for example, when adding more

employees to perform a new business requirement or to help existing employees if

business expands. In this case, the master controller instructs security administra-

tors to provide the public keys of the new devices. The master controller securely

updates the public key list, and finally it allows the new devices to join the domain

as described in Section 6.2.2.

6.3.2 Domain Shrinking

An organization might need to remove certain devices from a dynamic domain for

several reasons, such as changes in business requirements (e.g. the employees using

these devices are no longer working on a project constituting the domain or the

project work is completed and the organization does not want those employees to

keep accessing the project content). In such a case the organization should be given

the flexibility to remove domain devices as discussed in Section 6.2.3.

6.3.3 Device Changes

An organization might need to change certain devices from a dynamic domain for

several reasons, such as changes in business requirements, e.g. an organization wants

to replace its devices with the ones of the latest technology. In such a case the

organization should be given the flexibility to update domain devices. This could be

done by removing unwanted devices and adding replacement devices as discussed in

Sections 6.2.3 and 6.2.2 respectively.

6.3.4 Key Revocation

In this section we describe the main steps that security administrators could follow to

revoke a domain key. Our solution protects domain credentials using TPM functions.

TPM is tamper evident and so it is not easy for the protected keys to get hacked

in normal circumstances. Some organizations might decide to be extra cautious and

revoke a domain key for every suspicious event. For this, it is the organization policy

that decides when to revoke a domain key. Hacking a dynamic domain specific key

only affects the dynamic domain-specific pool of content. Security administrators

could revoke the dynamic domain key and generate a new domain key, which can

be done as follows.

1. The security administrators instruct the master controller to change the key

for a specific dynamic domain.

106

Dynamic Domains

2. The master controller then authenticates the organization’s security adminis-

trators.

3. If authentication succeeds, the master controller generates a new domain-

specific key, and then replaces the old copy of the domain key with the new

domain key in its protected storage. The protocol for this is as follows.

Algorithm 19 Replace an old domain key (steps need to be applied in order)

(a) M → TPMM : TPMGetRandom;

(b) TPMM → M : generates a random number to be used as a replacement dy-

namic domain key kD2 and sends it back to M .

(c) M → TPMM : TPMLoadKey2(PrM); loads the private key PrM in the TPM

trusted environment, after verifying the current PCR value matches the one

associated with PrM (i.e. SM). If the PCR value does not match SM , M

returns an appropriate error message.

(d) M → TPMM : TPMUnseal(kD||iD||PKLd).

(e) TPMM →M : decrypts the string kD||iD||PKLd and passes the result to M .

(f) M → TPMM : TPMSeal(kD2||iD||PKLd). TPMM securely replaces the old

key with the new key in the format kD2||iD||PKLd and using the platform

protected storage mechanism bound to TPMM , such that they can only be

decrypted on the current platform by M , and only if the platform runs as

expected (when the platform PCR values matches the ones associated with

PrM , i.e. SM).

4. The master controller reinstalls this key on domain devices; the master con-

troller identifies devices using their public keys, which are securely stored inside

the master controller PKLd for the revoked domain key, as described in the

previous step protocol. For each device, the master controller releases the new

value of the domain key encrypted using the device’s public key. The device,

once it receives the key, replaces the domain key with the new value in its pro-

tected storage and binds it to the same execution environment used for the old

key, as it has already been verified as trusted; see Section 6.2.2. The protocol

for this steps is as follows (we do not include the detailed steps of establishing

mutual authentication channels, as we discuss it in detail in previous protocol

steps).

107

Dynamic Domains

Algorithm 20 Updating domain key on devices (steps need to be applied in order)

(a) The master controller sends a Replace Domain key request to each device in

PKLd. The request includes iD and KD2.

(b) The device replaces the stored kD in its protected storage with kD2, as follows.

i. D → TPMD: TPMLoadKey2(PrD). TPM on D loads the private key

PrD in the TPM trusted environment, after verifying the current PCR

value matches the one associated with PrD (i.e. SD). If the PCR value

does not match SD, the client application exits with an appropriate error

message.

ii. D → TPMD: TPMSeal(ePuD
(kD2)).

iii. D seals the string ePuD
(kD2) and bound to TPMD, such that it only can

be decrypted when the platform PCR values matches the ones associated

with PrD (i.e. SD).

Now, if the whole device is hacked, then security administrators could assume

that intruders can possibly get access to all keys inside the device. In this case, and

based on the organizational policy, security administrators could revoke all domain

keys the device is a member of by following the above procedure for each domain

key.

6.4 Key Refreshment

In this section we discuss domain key refreshment. The domain keys could be

associated with a timer or a counter specifying when the key must get re-validated.

For example, an organization might regularly update kD/kG, respectively. This can

be done using either a push or a pull mechanism. A pull mechanism means each

device must regularly check with the master controller for key updates. A push

mechanism, on the other hand, means the master controller, “when change any of

the keys”, pushes the new value to all devices member in the domain.

This procedure is useful in many cases, for example, if a device leaves an orga-

nization without communicating with its master controller, as in the case of hacked

devices. In this case, the device can only use the content for a short period (con-

trolled using an associated counter or a time-stamp). In Section 6.3.4 we provide

the protocol for updating a domain key using a push mechanism.

108

Dynamic Domains

6.5 Binding Content to a Domain

As we have described in this thesis, there are different kinds of organizations, with

each having its own requirements and process workflow. Such requirements and

process workflow determine who would create content, and how content should be

bound to a domain. Usually departments in organizations create their own content

by a group of employees in the organization. These employees might be in one

department or split across defferent departments. For simplicity we consider a single

case, which could be easily altered to adapt to work for other kinds of organizations.

We now assume that an organization has defined a group of devices that need to

be in a domain to share a specific pool of content. Security administrators instruct

the master controller to create a dynamic domain for this group, as described in

Sections 6.2.1 and 6.2.2. Once a domain is established and devices have been assigned

to the domain, employees using these devices can add content to the domain by

using a content-specific application that interacts with the client application to add

content to the domain. The client application is used to encrypt content and bind

it to a specific dynamic domain. Authorized employees (who are allowed to access

the trusted client application) have the ability to create content and assign it to the

domain.

We now describe the process for binding content to a domain in the context of a

particular scenario. Assume an organization needs to work on a new project. This

project requires the sharing of a specific pool of content. Employees working on this

project need to share the pool of content in such a way the content is protected

against internal leakage. In this case, the organization’s security administrators

create a dynamic domain identified by an identifier iD. This dynamic domain con-

sists of all devices that need to share the pool of content specific for this project.

Content can be added to the project by either employees who are members of the

domain or by authorized employees outside the domain. Authorized employees who

are not members of the project domain transfer the created content associated with

the domain identifier iD to the master controller. The master controller identifies

the dynamic domain using iD, and then encrypts the received content with the dy-

namic domain-specific key. The encrypted content could be either sent to a list of

employees or stored in a dynamic domain-specific location.

Employees who are members of the domain can assign content directly to the

domain, as their devices possess the domain key. In either way, each domain could

be associated with a usage rights policy controlling this process.

Next, each member device in a dynamic domain can download the protected

content belonging to this domain, typically from a dynamic domain-specific location

109

Dynamic Domains

or receive it from another device. In this case, only member devices in the same do-

main, i.e. those that hold a copy of the dynamic domain-specific key kD, can decrypt

and then access the dynamic domain content. As we described earlier, different de-

partments/groups in an organization, sometimes require sharing also but have to

protect information. Our solution considers this requirement by allowing devices

which need to share content with other departments or other dynamic domains to

be able to join multiple dynamic domains. Therefore, a single device could join, for

example, three domains and so have three dynamic domain-specific keys enabling it

to access these dynamic domains content.

If someone copied such content he/she will not be able to access it except on

devices holding the content-specific dynamic domain key, i.e. member devices in the

content-specific dynamic domain.

6.6 Summary

In this chapter we propose a solution for protecting content against internal leakage

in organizations. The proposed solution uses dynamic domains, consisting of devices

owned by an organization. Devices can be dynamically reallocated between dynamic

domains based on the organization needs. This protects content against leakage and

simultaneously allows content to be shared amongst devices in the same domain.

The dynamic domain provides organizations with the flexibility to form groups and

projects, transfer confidential content between the devices member of such groups

and projects, and ensure a project/group content is protected against being illegally

accessed by devices that are not members of the project/group devices. In other

words, the usage of the dynamic domain covers requirement numbers 1, 2 and 3.

110

Part III

Application

111

112

Collaborating Organizations

Chapter 7

Collaborating Organizations

Contents

7.1 Introduction . 113

7.2 Protect Content Between Collaborating Organizations . 114

7.3 Process Workflow . 115

7.3.1 Trusted Channel Establishment and Policy Setup 115

7.3.2 Exchanging Content within Collaborating Organizations . . 120

7.4 Discussion and Conclusion 126

In this chapter we extend our solution for preventing insider and internal leakage

to cover content leakage within collaborating organizations. This involves proposing

a scheme facilitating information workflow management and, simultaneously, pro-

tecting information that would need to be shared within organizations for achieving

their objectives. We then discuss how the proposed scheme prevents content leakage

whilst allowing controlled content flow within collaborating organizations.

7.1 Introduction

Many organizations need to share information with other organizations; for example,

in some organizations completing a business process requires accessing another orga-

nization’s confidential information. An example of this is the passport agency in the

UK, which issues British passports to citizens. In order for the passport agency to

provide this service, it must validate citizens’ private information that is submitted

in application forms. This is achieved by collaborating with other organizations such

as the Home Office and the Metropolitan Police Service to check that the provided

information in the passport application is correct. Also, these organizations check

that there is no restriction for issuing a passport for a particular citizen. Another

113

Collaborating Organizations

common example is embassies, which are located in different countries around the

world. Embassies are required to share information with many government orga-

nizations located in the country they represent, enabling embassies to provide the

right service to their citizens, and, also, the right service to citizens of the country

they serve in.

Users who provide their private information to an organization and agree that the

organization will keep their private information assume that their records are pro-

tected based on the Data Protection Act [1]. Also, they expect that their records will

not be leaked accidentally or intentionally to third parties, and it only can be trans-

ferred to other organizations with their prior consent. Organizations have a ‘duty of

care’ to protect their own confidential information and the confidential information

they obtain from individuals or from other organizations. Thus, organizations need

to find possible ways for preventing the transfer of their confidential information to

unauthorized individuals and third parties, while simultaneously allowing sharing of

content with other organizations.

7.2 Protect Content Between Collaborating Organiza-

tions

When an organization wants to transfer part of its confidential information to an-

other organization, such confidential information needs to be protected at three

stages. The first is protecting content whilst being transferred between collaborat-

ing organizations. The second is protecting content in the destination organization,

in such a way it cannot be leaked outside it. The last, and the most complex to

achieve, is restricting confidential information to be accessed by a group of users or a

specific department in a destination organization. In the last case, the system should

ensure that the confidential information can be accessed only by the intended users

who are members of a group/department which is specified by the source organiza-

tion, and if anyone attempts leaking such information to another department/group,

the information will not be accessible. For example, if organization1 transfers confi-

dential information to the accounts department in organization2, then only members

of the accounts department should be able to access this information.

For the first case, there are many solutions addressing this point, such as using

Virtual Private Networks (VPNs) [20], which typically define organizations’ bound-

aries. In the proposed scheme we use a similar technique to the one used by VPN;

however, in the proposed solution we integrate trusted computing concepts into it for

ensuring that endpoints of communication are running (see Section 7.3 for details).

After we analyzed the second and the third cases, we found that proposing a

114

Collaborating Organizations

solution begins with organizing the internal information system for collaborating

organizations so that they have a systematic information flow. If collaborating

organizations implement an organized information system and process workflow,

then this would ease the communication amongst them and help in ensuring that

content is transferred to the right department and the right user. In addition, having

an organized internal information system increases the mutual level of trust across

collaborative organizations. This, in turn, reduces the likelihood of content leakage.

On the other hand, the lack of an organized information system or a systematic

information flow increases the likelihood of content leakage. After this is achieved

(i.e. organizing the internal information flow), a secure system should be proposed to

help in protecting content from being leaked to unauthorized users inside or outside

the collaborating organization. In our proposed scheme, we use the global domain

and the dynamic domain concept to limit content leakage between collaborating

organizations. We use the global domain concept to protect content from getting

leaked to unauthorized users outside the collaborating organization, and the dynamic

domain content to protect content from getting leaked to unauthorized users inside

the collaborating organization (see Section 7.3 for details).

7.3 Process Workflow

This section describes the process workflow for secure information sharing between

collaborating organizations and its corresponding protocols.

In this section we require that each collaborating organization has a specific

master controller, which is initialized as discussed in Section 4.5.1. We also require

that each organization has defined its own global and dynamic domains as discussed

in Chapters 5 and 6. As we discussed in Chapter 4 the master application includes

the collaborating organizations’ additional functions. The additional functions are

mainly related to the trusted channel establishment and policy setup.

7.3.1 Trusted Channel Establishment and Policy Setup

In real life, employees working in an organization collaborating with other organi-

zations should at least have a basic understanding of the general structure and the

functionality of departments of other organizations collaborating with their organi-

zation. This is required to enable users to understand where information should be

sent and bound in the corresponding organization. This is achieved when the collab-

orating organizations’ master controllers exchange a customized list of each other’s

departments/groups. Whenever either organization changes its layout it would need

to re-push this list, via its master controller, to the corresponding organization’s

115

Collaborating Organizations

master controller. This list needs to be accessible by devices which need to send

content to a collaborating organization.

When organizations, say organization1 (O1) and organization2 (O2), collaborate

and wish to exchange confidential content, certain initialization steps need to be

done. In this subsection we explain our proposed scheme for initiating a secure com-

munication channel. This is to setup necessary policies and rules, and to establish

a trusted channel that is used for protecting the transferred content.

The following notation is used in the provided protocol for initiating a secure

communication channel.

• O1 and O2 are organization1 and organization2, respectively.

• M1 and M2 are the master controllers for O1 and O2, respectively.

• TPMM1 and TPMM2 are TPMs on O1 and O2 master controllers, respectively.

• SM1 and SM2 are the platform states as stored in the PCR inside TPMM1 and

TPMM2 , respectively.

• (PuM1 , PrM1) is a non-migratable key pair such that the private part of the

key PrM1 is bound to TPMM1 , and to the platform state SM1 .

• (PuM2 , PrM2) is a non-migratable key pair such that the private part of the

key PrM2 is bound to TPMM2 , and to the platform state SM2 .

• CertM1 is the master controller AIK certificate for O1.

• CertM2 is the master controller AIK certificate for O2.

• AM1 is an identifier for O1’s master controller included in CertM1 .

• AM2 is an identifier for O2’s master controller included in CertM2 .

• PrM1AIK is the private key of O1’s master controller AIK.

• PrM2AIK is the private key of O2’s master controller AIK.

• SHA1 is a one way hash function.

1. M1 and M2 authenticate their security administrators, exactly as described in

Algorithm 3.

2. If authentications succeed, both M1 and M2 instruct their security administra-

tors to enter their corresponding collaborating organization’s master controller

public key. The security administrators of O1 provide M1 with the public key

116

Collaborating Organizations

of M2, and similarly security administrators of O2 provide M2 with the pub-

lic key of M1. Once the keys are entered, each organization-specific master

controller stores the corresponding organization public key in its protected

storage. This is to ensure that the keys cannot be tampered with. The as-

sumption here is that the public keys are not manipulated when transferred

from O1 to O2.

3. The master application running on either organization-specific master con-

troller, say O1, sends a create trusted channel request to the master controller

of O2. Then both master controllers mutually authenticate each other con-

forming to the three-pass mutual authentication protocol described in [43].

During this mutual authentication both master controllers attest to the ex-

ecution environment of each other and validates their trustworthiness. The

protocol for this is as follows.

I. M1 → TPMM1 : TPMGetRandom.

TPMM1 : generates a random number to be used as a nonce N1.

II. TPMM1 →M1: N1.

III. M1 →M2: Establish Secure Channel request including N1.

IV. M2 → TPMM2 : TPMGetRandom.

TPMM2 : generates a random number to be used as a nonce N2.

V. TPMM2 →M2: N2.

VI. M2 → TPMM2 : TPMLoadKey2(PrM2AIK); loads the private key PrM2AIK

in the TPM trusted environment, after verifying the current PCR value

matches the one associated with PrM2AIK .

VII. M2 → TPMM2 : TPMCertifyKey(SHA1(N2||N1||AM1),PuM2).

VIII. TPMM2 →M2: generates a certificate for the key PuM2 and then sends

the following string to M2: N2||N1||AM1 ||PuM2 ||SM2 ||SignM2(N2||N1||AM1 ||PuM2 ||SM2).

IX. M2 →M1: N2||N1||AM1 ||PuM2 ||SM2 ||CertM2 ||SignM2(N2||N1||AM1 ||PuM2 ||SM2).

X. M1 verifies CertM2 , extracts the signature verification key of M2 from

CertM2 , and checks that it has not been revoked, e.g. by querying an

OCSP service. M1 then verifies message signature, verifies M2 is trusted

by checking the value of SM2 , and PuM2 matches the one defined by

M1 security administrators. It also verifies the value of N1 and it is the

117

Collaborating Organizations

intended recipient by validating the value of AM1 . If verifications fail, the

master application running on M1 returns an appropriate error message.

XI. M1 → TPMM1 : TPMLoadKey2(PrM1AIK); loads the private key PrM1AIK

in the TPM trusted environment, after verifying the current PCR value

matches the one associated with PrM1AIK .

XII. M1 → TPMM1 : TPMCertifyKey(SHA1(N2||AM2),PuM1).

XIII. TPMM1 →M1:

Generates a certificate for the key PuM1 , and then sends the following

string to M1: N2||AM2 ||PuM1 ||SM1 ||SignM1(N2||AM2 ||PuM1 ||SM1).

XIV. M1 →M2: N2||AM2 ||CertM1 ||PuM1 ||SM1 ||SignM1(N2||AM2 ||PuM1 ||SM1).

M2 verifies CertM1 , extracts the signature verification key of M1 from

CertM1 , and checks that it has not been revoked, e.g. by querying an

OCSP service. M2 then verifies the freshness of the message by checking

the value of N2, verifies its intended recipient by checking the value of

AM2 , and verifies that PuM1 matches the one defined by M2 security

administrators. M2 also verifies M1 is trusted by checking the value of

SM1 . If so, M2 verifies message signature. If the verifications fail, M2

returns an appropriate error message.

4. If the mutual authentication succeeds and the execution environment of both

master controllers are trusted, then both master controllers set up a secure au-

thenticated channel with each other using standard techniques [62], whereby

both master controllers agree on a specific secure key kO to be used for protect-

ing messages exchanged between each other. This key could be established, for

example, based on Diffie-Hellman key exchange protocol [62] or by exchang-

ing a common key encrypted using the corresponding master controller public

encryption key.

Definition 7.3.1. The master controllers trusted channel key kO is a

symmetric key that is securely generated by the TPM of either master con-

troller in the collaborating organizations. Both master controllers require to

agree on the key kO as described in the following section. The key kO is

used to protect messages exchanged between master controllers. kO is part

of the system credentials defined in Section 4.3.6, which means both master

controllers store it in their protected storage, and bind it to be used by the

master application when the host platform state is trusted exactly as described

in Section 4.5.

118

Collaborating Organizations

The protocol for generating the key kO and store it is as follows.

I. M2 → TPMM2 : TPMGetRandom. TPMM2 generates a random number

to be used as a secret shared key kO, and returns it back to M2.

II. M2 → TPMM2 : TPMLoadKey2(PrM2). Loads the private key PrM2 in

the TPM trusted environment, after verifying the current PCR value

matches the one associated with PrM2 (i.e. SM2). If the PCR value

does not match SM2 , the master application returns an appropriate error

message.

III. M2 →M1: N1||ePuM1
(kO)||SignM2(N1||ePuM1

(kO)).

IV. M1 verifies message signature and verifies freshness by checking the value

of N1.

If so, M1 decrypts the string ePuM1
(kO) and securely associates kO with

Policy and stores the result using the platform protected storage mech-

anism, as follows.

5. Both M1 and M2 instruct their security administrators to enter their organi-

zation policy governing their interaction. Examples of policies in O1’s master

controller could be: “an email should be generated and sent to the duty manger

whenever content is transferred from a specific department to any department

in O2”; “content sent from the finance department must always be bound to the

finance department in O2”; “the maximum number of devices that can receive

content from senior accountants must not exceed 5 devices and must always

be bound to senior accountant in O2”; and “content can be transferred to O2

between 8:00am-6:00pm”.

6. Once the policy is defined, each organization-specific master controller stores

this policy in its protected storage and seals it to a trusted environment exe-

cution state. This is to ensure that the policy cannot be tampered with, and

only revealed to the master application when the execution status of the ma-

chine matches the one associated with the stored policy, i.e. when the master

controller is in a trusted state. The protocol for this is as follows.

I. M1storeePuM1
(Policy||kO).

II. M2storeePuM2
(Policy||kO). .

119

Collaborating Organizations

7. By now, a trusted channel is established between the organizations’ master

controllers and a security policy is defined for each organization in its spe-

cific master controller. The organization-to-organization specific key kO is

used for encrypting/decrypting exchanged traffic between two specific organi-

zations. Also, master controllers enforce the defined security policy. Now, all

devices that are member of both organizations can exchange messages across

each other subject to a predefined security policy, which is enforced by each

organization master controller. As discussed in Section 4.5, the master con-

troller TPM ensures that accessing and using kO, and accessing and enforcing

the security policy, are only available to the master application running on

the organization-specific master controller only if the master controller is in a

particular predefined trusted state.

7.3.2 Exchanging Content within Collaborating Organizations

In this section we describe the process for transferring confidential content between

collaborating organizations. For simplicity, in this section we describe the process

in a series of three scenarios: the first scenario requires binding content to a group

of devices constituting an existing dynamic domain in the destination organization;

the second scenario requires binding content to a group of devices that do not form

a domain; and the last is for binding content so that it can be accessed by all devices

in the destination organization.

We require that a trusted channel is established and the policy is defined for the

collaborating organizations, as described in Section 7.3.1. We also require that both

global and dynamic domains are established within collaborating organizations, as

described in Chapters 5 and 6.

The first scenario, which is illustrated in Figure 7.1, assumes a user Andrew

working on device1 in O1 wants to transfer content to O2, so that the content

can only be accessed by ‘account department’ (Andrew could obtain the list of O2

layout from a specific location in his organization). Andrew wants to ensure that

the content will not leak to other departments/groups of users in O2. The process

proceeds as follows.

1. Device1 sends a transfer content request to the O1-specific master controller.

This request includes the confidential content associated with meta data en-

abling the master controller to know where content should be sent and to

which domain it should be bound. The meta data, for example, could be

the destination organization name/identifier and the destination organization’s

department/group (in our scenario this corresponds to the group of account

120

Collaborating Organizations

Figure 7.1: Exchanging Content Scenario

department in O2).

The following is a list of three possible techniques for protecting the infor-

mation exchanged from device1 to the O1-specific master controller (these are

based on how the content is protected in device1).

(a) The first is encrypting content using the O1-specific global domain key

kG, assuming that the content is bound to O1’s global domain.

(b) The second case applies if the content is bound to a specific dynamic

domain. Content then should be encrypted using the dynamic domain

specific key kD. For example, if Andrew is an accountant in O1, then

his device must be a member in the account domain, and hence pos-

sesses a copy of the account domain-specific key. All content bound to

the mangers domain can only be transferred encrypted to other devices.

Therefore, Andrew can only send content to the master controller en-

crypted using the account domain-specific key. The master controller, as

we explained earlier, possesses a copy of all dynamic domains keys of a

specific organization, and hence it can decrypt content.

(c) The last case is encrypting the content using the master controller public

key or an agreed symmetric key between the master controller and the

device, assuming that content in this case is not bound to any domain.

The protocol to transfer content is as follows.

121

Collaborating Organizations

I. D1 → TPMD1 : TPMGetRandom;

Generates a random number to be used as a nonce N1.

II. D1 → TPMD1 : TPMLoadKey2(PrD1AIK);

Loads D1 AIK in the TPM trusted environment, after verifying the cur-

rent PCR value matches the one associated with PrD1AIK .

III. D1 → TPMD1 : TPMSign(N1||AM1).

IV. D1 →M1: Transfers Content request (N1||AM1 ||CertD1 ||SignD1(N1||AM1)).

V. M1 verifies CertD1 , extracts the signature verification key of D1 from the

certificate, and checks that it has not been revoked, e.g. by querying an

OCSP service. M1 then verifies the message signature and verifies it is

the intended recipient by checking the value of AM1 . If verifications fail

M1 returns an appropriate error message.

VI. M1 → TPMM1 : TPMGetRandom;

Generates a random number to be used as a nonce N2.

VII. M1 → TPMM1 : TPMLoadKey2(PrM1AIK);

Loads the master controller AIK in the TPM trusted environment, af-

ter verifying the current PCR value matches the one associated with

PrM1AIK .

VIII. M1 → TPMM1 : TPMSign(N1||N2||AD1).

IX. M1 → D1: N1||N2||AD1 ||CertM1 ||SignM1(N1||N2||AD1)

X. D1 verifies CertM1 , extracts the signature verification key of M1 from the

certificate, and checks that it has not been revoked, e.g. by querying an

OCSP service. D1 then verifies the message signature, verifies message

freshness by checking the value of N1, and verifies it is the intended

recipient by checking the value of AD1 . If verification succeeds D1 sends

content C to M1 associated with sender and receiver details, as follows.

XI. D1 → TPMD1 : TPMSign(N2||ekD1
(C)||iD1 ||ACCOUNT); where AC-

COUNT is the domain identifier for at O2.

XII. D1 →M1: N2||ekD1
(C)||iD1 ||ACCOUNT||SignD1(N2||ekD1

(C)||iD1 ||ACCOUNT).

XIII. M1 verifies the message signature and verifies message freshness by check-

ing the value of N2. If verifications succeed M1 needs to check if D1 is

122

Collaborating Organizations

authorized to do this action and if any specific policy needs to be fol-

lowed. This is described in the next step.

2. The O1 master controller M1 checks the policy ensuring existing rules do not

restrict the transfer of content from device1 to the account group in O2. For

example, a policy could state that device1, which is used by Andrew, is not

authorized to transfer content to O2, or device1 can only transfer content to

the account department in O2. In such cases the transfer process is rejected

with an appropriate error message. Also, the policy could state that trans-

actions should be recorded in a specific log file, and/or an email is sent to

the duty manager in O1 informing him about the transfer request. The log

information could, for example, state the sender name, device IP address, re-

cipient details, date and time of sending content, etc. The logging information

must be protected from tampering, for example, by storing the log-files in a

protected storage so that they can only be accessed by the master application

after verifying its execution status as expected. Also, users activities associ-

ated with accessing content could be monitored to check for abnormal events,

as has been extensively discussed by Park et al. [59]. The protocol for this

step is as follows.

I. M1 → TPMM1 : TPMUnseal(Policy||PuM2 ||kO).

TPMM1 verifies M1 master application is trusted. If so it decrypts the

string Policy||PuM2 ||kO and provide it to the master application running

on M1. M1 enforces the policy rules which are related to this action. If

the verification succeed M1 proceeds to next step.

3. If there is no restriction on transferring the content, M1 loads the trusted

channel specific key kO. As explained in Section 7.3.1, this key is sealed so

that only the master application can access this key when the platform state

is as expected. The master application encrypts content using kO, and then

transfers the encrypted content to O2-specific master controller. The protocol

for this step is as follows.

I. M1 loads KD1 as follows.

M1 → TPMM1 : TPMUnseal(kD1 ||iD1 ||PKLD1).

M1 verifies that PuD1 is a member in dynamic domain iD1 by checking

PKLD1 . It then decrypts C using kD1 , and then re-encrypts it using kO

as ekO(C). M1 now can start the process for transferring the encrypted

123

Collaborating Organizations

content to the destination organization. M1 verifies CertM2 that is stored

in M1, extracts the signature verification key of M2 from the certificate,

and checks that it has not been revoked, e.g. by querying an OCSP

service.

II. M1 → TPMM1 : TPMGetRandom;

The TPM on M1 generates a random number to be used as a nonce N3

and sends it back to M1

III. M1 →M2: N3||AM2 ||CertM1 ||SignM1(N3||AM2)

IV. M2 verifies CertM1 matches the one stored in M2 storage, extracts the

signature verification key of M1 from the certificate, and checks that it

has not been revoked. M2 then verifies message signature and verifies it

is the intended recipient by checking the value of AM2 . If verifications

succeed M2 generate a random number as follows.

V. M2 → TPMM2 : TPMGetRandom;

The TPM on M2 generates a random number to be used as a nonce N4

and sends it back to M1 as follows

VI. M2 →M1: N3||N4||AM1 ||SignM2(N3||N4||AM1)

VII. M1 verifies message signature, message freshness by checking the value

of N3, and verifies it is the intended recipient by checking the value of

AM1 . If verifications succeed M1 sends encrypted C to M2 associated

with sender and receiver details, as follows.

VIII. M1 →M2: N4||ekO(C)||ACCOUNT||SignM1(N4||ekO(C)||ACCOUNT).

4. M2 checks the message signature and verifies message freshness by checking the

value of N4. If verifications succeed, M2 loads the key kO. It then decrypts C

and verifies that the targeted group (i.e. account department in our scenario),

constitutes an existing domain. If so, M2 enforces the organization policy on

the transferred content, exactly as described above for M1 case. Then the

master controller loads the dynamic domain-specific key, and re-encrypts the

content using this key. The protocol for this is as follows.

I. M2 loads KD2 as follows.

M2 → TPMM2 : TPMUnseal(kD2 ||iD2 ||PKLD2). M2 encrypts C using

kD2 as ekD2
(C).

124

Collaborating Organizations

5. Next, M2 stores this content in a centralized location or sends it directly

to device members in the targeted domain (i.e. the account domain in our

scenario). The way this is organized is based on the organization defined policy

that is stored and enforced by the master controller. This organization policy

in turn would be based on who will receive the content and what operations

would be performed on the content. For example, protected content could

be stored in a central database management system, where authorized users

from a specific set of devices regularly check for newly arriving content, for

example, by using a specific software application. The software application, in

turn, processes the content in a controlled manner. Alternatively, protected

content could be sent directly, for example, via email to the intended recipients.

6. Only authorized users from devices that are member of the account domain in

O2 can access the protected content. This is ensured as the content is encrypted

using the account’s domain-specific key. This key is only available in device

members of the account’s domain, and hence only those devices can decrypt

and access content bound to this dynamic domain. Therefore, if anyone copied

the content they will not be able to access it except on devices possessing

the content-specific dynamic domain key, i.e. devices that are member of the

domain where the content is bound.

For the second scenario, Andrew who works on device1 in O1, wants to transfer

content to O2, so that the content can only be accessed by a set of users in O2, who

do not appear to constitute a specific group of users or an existing department as

per the list provided by O2. Also, Andrew wants to ensure that the content will not

leak to other users in O2. This scenario runs in a similar way to the first scenario

described above; however, it requires Andrew to ask his own organization’s security

administrators to send a request to the security administrators of O2 to establish a

dynamic domain for this group of users that are required to share the confidential

information. Once O2’s security administrators receive this request they initially

verify that these users do not form an existing domain, then they check O2’s policy

and make sure that there are no restrictions on this group of users to perform a new

dynamic domain. If so, the security administrators creates a new dynamic domain

and then add devices that are used by the specified users to the new domain. The

way this is implemented is described in Chapter 6. The master controller of O2

then updates its domain list and pushes it to O1’s master controller, which, in turn,

stores it, as described in Section 7.3.1, point (8). Now, Andrew can send content to

the newly established domain in O2, exactly as described in the first scenario.

For the third and last scenario, Andrew, who works on device1 in O1, wants to

125

Collaborating Organizations

transfer content to O2. Andrew requires the content to be accessed by all devices

in O2; however, content must not leak to devices that are not member of O2, i.e.

if the content is transferred deliberately or accidentally to devices outside O2 then

the content should not be accessible. This scenario runs in a similar way to the first

scenario described above. However, this scenario differs in the following: device1

instructs the master controller in O1 to send the content so that it is bound to O2’s

global domain. Also, the master controller in O2 decrypts the protected content

received from O1’s master controller and then re-encrypts it using O2-specific global

domain key. All devices in O2 possess a copy of the global domain key, and hence

can access this content.

7.4 Discussion and Conclusion

Our solution attempts to protect content which needs to be shared between collab-

orating organizations. For achieving content protection between any collaborating

organizations we need two important elements: the first is mutual trust between

pairs of organizations that need to collaborate, and the second is having a secure

system. For the first element, in practical life collaborating organizations mutually

trust each other for protecting shared information, e.g. a collaborating organization

policy makers will not deliberately authorize leaking information. Without having

this level of trust, organization cannot rely on secure system alone to prevent content

leakage. For the second element, collaborating organizations require a secure system

which allows these collaborating organizations to specify their own security policies

for shared content, and which allows enforcing these policies, and so preventing

unethical employees from leaking organizations’ content.

In this chapter we propose a system for protecting confidential information

against leakage whilst being shared by collaborating organizations. As discussed

in Section 7.2, when an organization wants to transfer part of its confidential in-

formation to another organization, the confidential information must be protected

at three stages. The first is protecting content whilst being transferred between

collaborating organizations. The second is protecting content in the destination or-

ganization, in such a way it cannot be leaked outside it. The third case is protecting

content when it is restricted to be accessed by a group of users or a specific de-

partment in the destination organization. For the latter, the system should ensure

that the confidential information only can be accessed by the intended users in a

group/department, which are specified by the source organization.

In our proposed scheme we addressed the first problem by integrating the trusted

computing features into the current VPN schemes to ensure that endpoints of com-

126

Collaborating Organizations

munication are running as expected.

We address the leakage problem in the second case by creating a global do-

main in the destination organization; the global domain allows content to be shared

between all devices member of the destination organization, and simultaneously it

protects content from being leaked outside the destination organization. This is

ensured as only member devices in the destination organization possess a copy of

the global domain key. This key is not available in the clear even to users working

on their devices or to security administrators, so it cannot be transferred from the

organization’s devices to devices outside the organization. The client application in

organizational devices will not release the content unprotected to any other device,

even to devices member of the same global domain. Therefore, if an employee in the

destination organization attempts leaking content outside an organization they will

fail as he is not capable of transferring unprotected content to others. Even if they

transferred protected content to a device outside the organization, this device will

not be able to access the content, as it does not possess a copy of the organization

domain’s key.

For the third case (i.e. protecting shared content to only be accessible by a specific

group in the destination organization) the proposed solution is based on dynamic

domains. Each dynamic domain consists of a specific group of devices. Each device

possesses a copy of the dynamic domain-specific key that is used to protect content

bound to that domain. Therefore, other devices cannot access the dynamic domain-

specific content, as they do not possess a copy of this key. This is ensured in the

same way as described for the first problem.

127

Part IV

Threat Analysis and Conclusion

128

Threat Analysis

Chapter 8

Threat Analysis

Contents

8.1 Global Domain Scheme . 129

8.2 Dynamic Domain Scheme 136

8.3 Collaborating Organization Scheme 137

8.4 Summary . 141

In this section we analyze the threats, services, and mechanisms for all the

schemes discussed in this thesis, i.e. the global domain mechanism, the dynamic

domain mechanism, and the collaborating organization scheme discussed in Chapters

5–7.

8.1 Global Domain Scheme

In this section we consider the threats, services, and mechanisms that apply to the

global domain scheme discussed in Chapter 5. We focus on the threats, services and

mechanisms that apply to digital content and the global domain credentials.

We split the system into six main cases to simplify the security analysis, as

illustrated in Figure 8.1. Each case includes all the threats which might break

the security of the system. After each case we explain how the threats can be

mitigated. Some of the threats are addressed using the security services which can

be provided using either trusted platform functionality, as discussed in Chapter 3,

or using standard cryptographic mechanisms. Other threats are addressed using our

provided proposed scheme.

I. Case 1: Security administrators when interacting with the master controller

raise two main threats.

129

Threat Analysis

Figure 8.1: External Leakage Analysis

1. One or more security administrators violate their privileges in either of

two ways: (a) Sharing their credentials with others who are not autho-

rized to use the system to enable unauthorized parties to add unautho-

rized devices to a domain; or (b) One or more security administrators

authorize adding unauthorized devices to a domain.

2. An unauthorized party steals security administrators authentication cre-

dentials to add an unauthorized device into a domain.

Security services and mechanisms provided to cover threats in Case 1

are as follows:

1. Security administrators authorization violation threat. The effect of this

can be mitigated by combining different measures as discussed in Chap-

ter 4, for example: (a) requiring that N out of M administrators success-

fully authenticate themselves directly to the master controller for request

authorization; (b) using logging and auditing mechanisms that could de-

tect abnormalities in the system; and (c) using the policy of separation

of duty, for example, prevent security administrators from accessing log

files, which are routinely examined by auditors.

2. An unauthorized party attempts to steal a security administrator’s au-

thentication credentials. i.e. someone steals the administrators’ smart

130

Threat Analysis

card or tries to watch the keyboard when they enter the credentials.

This can be mitigated by using strong authentication measures which

involve a combination of “something the security administrator has” e.g.

a smart card; “something the security administrator is”, e.g. biometric

verification; and/or “something the security administrator knows”, e.g.

a password or PIN.

II. Case 2: The organization master controller raises the following threats when

processing and storing system credentials.

System credentials include only the administrators’ credentials and the global

domain credentials defined in Chapter 4. The threats are as follows.

1. Unauthorized manipulation of system credentials during use in the mas-

ter controller.

2. Unauthorized manipulation of system credentials whilst stored in the

master controller.

Security services and mechanisms provided to cover threats in Case 2

are as follows:

1. Confidentiality and integrity protection of system credentials during ex-

ecution in a master controller. Providing this service requires process

isolation techniques, in which applications run in isolation, free from be-

ing observed or compromised by other processes running in the same

protected partition, or by software running in any insecure partition, as

discussed in Chapter 3.

2. Confidentiality and integrity of system credentials whilst stored in the

master controller. Providing this service requires protected storage, as

discussed in Chapter 3.

III. Case 3: The interaction between a device joining a domain and the master

controller raises the following threats to the global domain key kG whilst in

transit.

1. Unauthorized reading or alteration of kG whilst in transit.

2. The master controller wittingly/unwittingly sending kG to a malicious

entity.

3. A device wittingly/unwittingly receiving kG from a malicious entity.

131

Threat Analysis

4. Replay of communications between the master controller and a device.

Security services and mechanisms provided to cover threats in Case 3

are as follows:

1. Confidentiality and integrity of kG whilst in transit. As discussed in

Section 5.2.2, this service is provided by the use of asymmetric encryp-

tion and we assume that the encryption primitive in use provides non-

malleability.

2. Entity authentication of a device to an organization master controller.

This service involves a protocol exchange between the device and the

master controller, as discussed in Section 5.2.2. It is initiated when the

master controller and the joining device mutually authenticate to each

other. This mutual authentication attests to the scheme applications

execution status and whether the platform is trusted, as discussed in

Section 5.2.2. By this the master application can only communicate

with a trusted entity, and so cannot unwittingly send kG to a malicious

entity. Similarly, the client application, if it is not operating properly,

cannot get kG and so it cannot wittingly send kG to a malicious entity.

3. Entity authentication of a master controller to a device. Same as point

(2) above.

4. Prevention of replay of communications between a master controller and

a device. This is provided by the inclusion of nonces in protocol messages

(see Section 5.2.2).

IV. Case 4: Domain devices raise the following threats to the processing and

storage of kG and content.

1. Unauthorized reading or alteration of kG during use in the device.

2. Unauthorized reading or alteration of kG whilst stored in the device.

3. Unauthorized reading or alteration of content during use in the device.

4. Unauthorized reading or alteration of content whilst stored in the device.

Security services and mechanisms provided to cover threats in Case 4

are as follows:

132

Threat Analysis

1. Confidentiality and integrity of kG during execution on a device is pro-

vided as discussed in Case 2, point (1) above.

2. Confidentiality and integrity of kG whilst stored in a device is provided

exactly as discussed in Case 2, point (2) above.

3. Confidentiality and integrity of domain content during execution on a

device is provided partially as discussed in Case 2, point (1) above. In ad-

dition to that, the content-specific application needs to be implemented

not to release unprotected content.

4. Confidentiality and integrity of domain content whilst stored on a device.

Content is encrypted using the secret key kC . The symmetric encryption

technique in use is assumed to provide authenticated encryption [45].

The encryption key kC is bound to the device’s trusted environment, as

discussed in Section 5.2.

V. Case 5: Interaction between domain member devices when exchanging con-

tent raises the following threats.

1. Unauthorized reading or alteration of content while in transit.

2. Transfer of content to an unauthorized entity.

3. A device receiving content from a malicious entity.

4. Replay of communications between devices.

Security services and mechanisms provided to cover threats in case -

5 are as follows:

1. Confidentiality and integrity protection of content whilst in transit. This

service is provided by encrypting content using an authenticated encryp-

tion technique [45].

2. Entity authentication of the destination device whilst transferring con-

tent. A source device does not need to validate destination device. This

is because when in transit content is always encrypted using the key kD,

which is known only to domain devices. kD is a domain-specific key that

is revealed only to the client application in a trusted environment con-

figuration state. If content is leaked to an unauthorised party it cannot

be accessed as it does not possess the key kD.

133

Threat Analysis

3. Entity authentication of the source device whilst receiving content. A

destination device does not need to validate the source device. This

is because content is always sent encrypted using the key kD, which

is known only to domain devices. As above, kD is a domain-specific

that is revealed only to the client application in a trusted environment

configuration state, i.e. a malicious entity does not have a copy of kD

and so it cannot send content encrypted using this key.

4. Prevention of replay of communications between devices is provided by

nonces exactly as discussed in Case 3, point(4) above.

VI. Case 6: Organization-authorized employees raise the following main threats.

1. An authorized user may make content accessible to an unauthorized

party (content leakage). This can be performed using different mecha-

nisms such as:

(a) Transferring digital content in the clear using physical media (e.g.

USB memory stick) or communication media (e.g. the Internet) to

unauthorized users.

(b) Transferring encrypted digital content and the means for accessing

it (e.g. encryption key) to unauthorized users.

(c) An employee share his credentials with others who are not autho-

rized to access content enabling them to have access to the content

or to get the means to access the content in an unauthorized way.

2. An authorized user attempts to add an unauthorized device to the global

domain.

3. An unauthorized user attempts to steal employee’s authentication cre-

dentials enabling unauthorized access to content.

Security services and mechanisms provided to cover threats in case 6

are as follows:

1. Prevent content being accessible by unauthorized entities is provided by

our proposed scheme as follows.

(a) Prevent an authorized user from transferring content in the clear.

When being transferred, content is always encrypted using the key

134

Threat Analysis

kG which is only available to the trusted client application. The

client application decrypts content and reveals it to trusted re-

questor applications. As we assumed in Section 4.5.2 the client

application and content-specific applications are designed to not

transfer unencrypted content to other entities. We rely on trusted

computing functions described in Chapter 3 to make sure that the

c;oemt application and the requestor applications will behave as

expected.

(b) Prevent an authorized user from transferring content encryption

key kG to unauthorized users. The key kG is only available to the

trusted client application and it is not available to the users/em-

ployees. This is achieved as follows: the key kG is sealed with

the client application integrity measurements. Trusted computing

functions described in Chapter 5 will make sure that the key is re-

leased only to the client application when it behaves as expected.

As we assumed in Section 4.5.2 the client application is designed

to not transfer content protection key to other entities.

(c) An employee shares his credentials with others who are not autho-

rized to access content. This is to enable them to get a copy of

the domain key then access content in an unauthorized way. To

address this problem we bind the key with the device’s public key.

Therefore, even if users share their credentials they cannot access

content except on a specific set of devices associated with a single

employee.

2. Prevent adding unauthorized device to the global domain and prevent

transferring kG to unauthorized entities. This is achieved by different

ways as discussed in previous points. For example, only the master con-

troller can release kG to joining devices after ensuring the device is a

trusted authorized device. This requires verifying the devices status is

trusted. Each domain has a predefined public key list (PKL) which spec-

ifies which devices can join the domain and have a copy of the domain

key. Adding devices to a domain, is controlled by security administra-

tors. The master controller needs to check that the device public key is

included in the PKL, as defined by the security administrator’s before it

goes into the steps for releasing the key for devices request joining the

domain.

135

Threat Analysis

Figure 8.2: Internal Leakage Analysis

3. An unauthorized user attempts to steal employees authentication cre-

dentials enabling unauthorized access to content is mitigated exactly as

discussed in Case 3, Case 1, point(2) above.

8.2 Dynamic Domain Scheme

In this section we consider the threats, services, and mechanisms that apply

to the dynamic domain scheme discussed in Chapter 6. We mainly focus on

the threats, services and mechanisms that apply to digital content and domain

credentials. A dynamic domain credential consists of public keys of all devices

that are members of the domain number of devices in the domain, the dynamic

domain key and its identifier.

We split the system into eight main components to simplify the security anal-

ysis, as illustrated in Figure 8.2. The first six cases are similar to the same

cases described in the previous section. Therefore, in this section we will only

cover the last two cases.

VII. Case 7: An employee’s device that is a member of multiple domains

raises the following threats.

1. An authorized employee member of multiple domains can cause an

unauthorized data-flow between these domains. For example, an

employee who is a member of domains D1 and D2 can read D1

content and save it as D2 content. This would enable employees

who are member of D2 but are not members in D1 to access D1’s

content in unauthorized way.

136

Threat Analysis

Security services and mechanisms provided to cover threats in

Case 7 are as follows:

1. Controlling data-flow between domains subject to each domain-

specific policy. Providing this service requires process isolation

techniques, as discussed in Chapter 3.

VIII. Case 8: An employee who is a member of a domain when interacting

with another employee member of another domain raises the following

threats.

1. An authorized employee who is a member of one domain transfers

unprotected content to another employee who is a member of a

different domain.

2. An authorized employee who is a member of one domain trans-

fers protected content and the means for accessing it to another

employee who is a member of a different domain.

Security services and mechanisms provided to cover threats in

Case 8 are as follows:

1. Protecting content whilst used by a device. Content is encrypted

using the dynamic domain key kD. The encryption key kD can

only be released to the trusted client application when the device

execution environment is trusted, as discussed in Section 4.5. The

trusted client application does not allow transferring unprotected

content to others. This prevents authorized employees transferring

unprotected content to others.

2. Binding access to content to specific devices. The proposed scheme

binds access to content to specific devices. Therefore, an authorized

user cannot transfer the means to access content to others.

8.3 Collaborating Organization Scheme

In this section we consider the threats, services, and mechanisms that apply

to the collaborating organization scheme discussed in Chapter 7. We mainly

focus on the threats, services and mechanisms that apply to digital content.

137

Threat Analysis

Figure 8.3: Collaborating Organization Analysis

The threats, services and mechanisms that apply to domain credentials are

provided exactly as discussed in the previous schemes.

We split the system into six main components to simplify the scheme security

analysis, as illustrated in Figure 8.3. In this section we do not cover the cases,

which are discussed in the previous two schemes.

I. Case 1: A source organization device raises the following threats when

interacting with the KnowledgeBase.

1. A source organization device communicates with a malicious Knowl-

edgeBase.

2. Unauthorized alteration of collaborating organization layout whilst

in transit from the KnowledgeBase to the device.

Security services and mechanisms provided to cover threats

in Case 1 are as follows:

1. Entity authentication of KnowledgeBase to a device. This is pro-

vided as described in Section 8.1, Case 3, point (2).

2. Integrity protection of KnowledgeBase reply whilst in transit. This

service is provided by using digital signatures.

II. Case 2: A source organization device raises the following threats when

processing content metadata.

138

Threat Analysis

1. Unauthorized reading or alteration of metadata during use in the

device.

Security services and mechanisms provided to cover threats in

Case 2 are as follows:

1. Confidentiality and integrity of content metadata during execution

on a device. This is provided as described in Section 8.1, Case 2,

point (1).

III. Case 3: A source device raises the following threats when sending con-

tent associated with metadata to the master controller.

1. Unauthorized reading or alteration of content and/or metadata on

transit.

2. A device unwittingly sending content and/or metadata to a mali-

cious entity.

3. The master controller unwittingly receiving content and/or meta-

data from a malicious entity.

4. Replay of communications between the master controller and a

device.

Security services and mechanisms provided to mitigate threats

in Case 3 are as follows:

1. Confidentiality and integrity protection of content and/or meta-

data on transit. This is provided exactly as described in Section

8.1, Case 5, point (1).

2. Entity authentication of the master controller to the device. A

source device does not need to validate the master controller iden-

tity and trustworthiness. This is because communication is sent en-

crypted using the key kD, which is shared between member domain

devices and the master controller. Also, kD is bound to trusted en-

vironment configuration state, i.e. kD is revealed only to the client

application in a trusted environment configuration state.

3. Entity authentication of a device to the master controller, is pro-

vided as described in the previous point.

139

Threat Analysis

4. Prevention of replay of communications between a master con-

troller and a device. This is provided exactly as described in Sec-

tion 8.1, Case 3, point (4).

IV. Case 4: The source master controller raises the following threats when

processing content and associated metadata.

1. Unauthorized reading or alteration of content and metadata during

use in the master controller.

Security services and mechanisms provided to cover threats in

Case 4 are as follows:

1. Confidentiality and integrity protection of content and metadata

during use in the master controller is provided exactly as discussed

in Section 8.1, Case 4, point (3).

V. Case 5: The interaction between the source organization master con-

troller MS and destination organization master controller MD raise the

following threats.

1. Unauthorized reading or alteration of content and/or metadata on

transit.

2. MS unwittingly sending content and/or metadata to a malicious

entity.

3. MD unwittingly receiving content and/or metadata from a mali-

cious entity.

4. Replay of communications between MS and MD.

Security services and mechanisms provided to cover threats in

Case 5 are as follows:

1. Confidentiality and integrity protection of content and metadata

on transit is provided as described in Section 8.1, Case 5, point (1).

2. Entity authentication of MD to MS . MS does not need to validate

MD identity or trustworthiness. This is because communication

is sent encrypted using the key kO, which is shared between MS

and MD. Also, kO is bound to trusted environment configuration

state, i.e. kO is revealed only to the client application in a trusted

environment configuration state.

140

Threat Analysis

3. Entity authentication of MS to MD is provided exactly as described

in the previous point.

4. Prevention of replay of communications between MS and MD is

provided as discussed in Section 8.1, Case 3, point (4).

VI. Case 6: The destination master controller raises the following threats

when processing content and associated metadata including binding con-

tent to the destination domain.

1. Unauthorized reading or alteration of content and metadata during

use in the master controller.

2. The master controller unwittingly sending content to a malicious

entity

Security services and mechanisms provided to cover threats in

Case 6 are as follows:

1. Confidentiality and integrity protection of content and metadata

during use on MD is provided as described in Section 8.1, Case 2,

point (1).

2. Entity authentication of the receiving domain’s devices to MD.

MD does not need to verify destination domain devices identity

and trustworthiness. This is because MD encrypts content using

the recipient domain key, which is available only to member domain

devices when their execution environment is as expected.

8.4 Summary

In this chapter we have provided a detailed informal threat analysis of the

schemes, which were discussed throughout the thesis. We show how our

schemes mitigate the risk of data leakage from insiders in enterprises. This

is achieved based on the way we designed the system using combination of

standard cryptographic mechanisms and trusted computing technology.

141

Discussion, Limitations, and Further Research

Chapter 9

Discussion, Limitations, and

Further Research

Contents

9.1 Comparison with DRM 142

9.1.1 Comparison based on Requirements 144

9.1.2 Comparison based on Functions 144

9.1.3 DRM Authorized Domain vs. Proposed Scheme Do-

mains . 147

9.2 Proposed Scheme Relation with ERM 148

9.3 System Analysis . 149

9.4 Limitations . 151

9.5 Future Research . 154

This chapter starts with a comparison between the DRM scheme and the scheme

proposed in this thesis. Next it provides an analysis of our scheme and dis-

cusses the limitations. Finally, it gives some directions for further research.

9.1 Comparison with DRM

As discussed in Chapter 3 the work presented in this thesis is built upon

part of the DRM work proposed by Abbadi et al. [7, 8, 10]. Figure 9.1

illustrates the boundaries between the work presented here and the DRM work.

This figure starts from the bottom by stating the problem that DRM and our

scheme focuses on. DRM schemes prevent content proliferation when users

142

Discussion, Limitations, and Further Research

Problem: stop content proliferations when users
share the means of accessing content.

Problem: content leakage when users share their credentials.

Electronic
Payment
System
Scheme

Location
Based

Services
Scheme

Mobile
Phone

Scheme

Master
Control
Device

Scheme

DRM Propose four methods to strongly
bind licenses with license holder

DRM Authorized Domain (Updated the
Original Authorized Domain Concept)

Internal
Leakage

External
Leakage

Leakage between
Collaborating
Organizations

Our Schemes Master Controller

Proposed Schemes to address each type of leakage problemProposed Schemes to address the problem

Our Scheme Domain
(updates on the DRM Authorized Domain)

Global
Domain
Scheme

Dynamic
Domain
Scheme

Collaborating
Domain
Scheme

Extended to

Extended to

DRM Our Schemes
DRM
End

Our
Scheme

Start

Our Scheme Master Controller

Global
 Domain,
Dynamic
Domain

and
Additional
Functions

Global and
Dynamic
Domain

Functions

Global
Domain

Functions

Figure 9.1: DRM and ERM Boundaries

share the means of accessing content, while our scheme focuses on limiting

content leakage when users share their credentials. This figure also illustrates

the four methods proposed by DRM to strongly bind licence holders with

the authorized domain. These are electronic payment system, location-based

services, mobile phone, and master control device. Figure 9.1 illustrates how

our scheme extends one DRM scheme (i.e. the master control device) as it

is more suitable for organizational context. This is extended to the master

controller which is used in our schemes. The master controller provides the

global domain scheme, the dynamic domain scheme, and the collaborating

organization scheme functions. The figure also illustrates that we extend the

authorized domain concept to a new updated authorized domain. This is

used in the dynamic domain, global domain and collaborating domain schemes

proposed in this thesis.

As indicated above, our schemes extended two DRM proposed concepts: the

master controller and the authorized domain; however, the schemes proposed

in this thesis change the way these components work. Now we will discuss

the main differences between our schemes and the DRM with master control

device scheme. We start by discussing the similarities and differences of re-

quirements between DRM master control device and the master controller, we

then discuss the similarities and differences of functions between DRM mas-

ter control device and the master controller for each proposed scheme in this

thesis. Finally, we explain the differences in the Authorized Domain concept.

143

Discussion, Limitations, and Further Research

9.1.1 Comparison based on Requirements

We now set the similarities and differences between the master control device

requirements as discussed in [7] and the proposed scheme master controller

requirements discussed in Chapter 4.

The master controller in our scheme is similar to the DRM master control

device in [7] in the following ways: i) both schemes require the master con-

troller to be a trusted device, and ii) both require a trusted software agent to

implement the master controller functions.

The master controller in our scheme is different to the DRM master control

device in the following ways: i) in the DRM scheme the master control device

does not need to be a dedicated device — it could be any device (e.g. a mobile

phone); our scheme, on the other hand, requires the master controller to be a

dedicated high performance server device, ii) in the DRM scheme the master

control device can be moved anywhere with the domain owner; the master

controller in our scheme, on the other hand, cannot leave the organization

premises and is bound to work at a specific physical location and it must be

monitored by CCTV. In addition, in our schemes the master controller has to

have auditing and logging capabilities.

9.1.2 Comparison based on Functions

We now compare the DRM master control device functions (as discussed in [7])

against our scheme master controller device functions. The master controller

in both schemes (i.e. global domain and DRM) use similar function names,

but with different implementations.

9.1.2.1 DRM Master Control Device Functions

The main function of the master control device in DRM [7] is to bind propri-

etary content’s license with the license holder as follows:

• Bind the usage of the master control device functions to be used by a

single user (i.e. the license holder). Two methods of authentication were

discussed password/PIN and/or biometric authentication.

• Bind devices of the license holder to the authorized domain. This is

achieved by creating an authorized domain with a domain key that is

securely generated and transmitted from the master controller to joining

144

Discussion, Limitations, and Further Research

devices after satisfying four main conditions: successfully authenticating

the domain owner; ensuring that the joining device is within a physical

proximity to the master control device; validating the number of devices

do not exceed a predefined limit; and validating the number of devices

that have ever joined the domain do not exceed a predefined limit.

• It adds, removes and revokes devices in the domain.

• It communicates with a trusted third party to retrieve and update the

certificate defining domain counter limits.

9.1.2.2 Global Domain Master Controller Functions

The global domain master controller functions proposed in this thesis include

the common functions which are repeated in the other schemes (i.e. the dy-

namic and the collaborating schemes). The rest of the schemes have additional

functions that are explained later in this chapter in each scheme’s master

controller functions. The global domain master controller functions are the

following:

i) Create domain function. Although both this scheme and the DRM [7] scheme

create a domain-specific symmetric key, they have a different implementation

of this function. In DRM the create domain function associates the symmetric

key with the domain owner authentication credentials and with two counters

controlling domain limits. Our scheme creates domain function, and associates

the symmetric key with the security administrators’ authentication credentials

and the domain-specific public key list.

ii) Join domain function. Although both this scheme and the DRM [7] scheme

send the domain-specific symmetric key to joining devices after performing

validations, they both have different validation requirements. In DRM the

validation includes checking that the two domain counters are within the lim-

its, checking physical proximity, and authenticating the domain owner. In our

scheme the validation includes checking that the device public key is included

in the domain-specific public key list, and it also requires authenticating secu-

rity administrators. In other words, DRM binds content with the number of

devices while our schemes bind content with the identity of devices. This is

one of the most important differences between both schemes as it contributes

in addressing the content leakage problem.

iii) Remove device function. Both this scheme and the DRM [7] scheme would

need to validate the status of the device to be trusted and then instruct the

145

Discussion, Limitations, and Further Research

device to remove the domain-specific key from protected storage. In the DRM

scheme removing a device would also require decrementing the counter of num-

ber of devices in the domain. On the other hand, removing a device from the

global domain requires removing the device public key from the global domain

public key list. The global domain also requires removing the device from

all dynamic domains the device is part of, which we discuss it latter in this

section.

The master controller in the global domain has additional functions in com-

parison with the DRM scheme as follows:

i) It binds content to the domain by encrypting content with a domain specific

key and it would then either store the encrypted content in a centralized server

or distribute it to all member devices. On the other hand, in the DRM scheme

the rights issuer binds content with any domain trusted device, which in turn

binds the content to its specific domain.

ii) In the work presented in this thesis the master controller manages and

securely stores the global domain public key list. On the other hand, the

DRM scheme does not have a public key list to be managed.

iii) In the work presented in this thesis the master controller provides domain

expand and shrink functions. On the other hand, in the DRM scheme the

domain is static and not dynamic.

9.1.2.3 Dynamic Domain Master Controller Functions

The similarities, differences and additional functions which we discuss for the

global domain master controller also apply to the dynamic domain master

controller functions. However, the master controller in the dynamic domain

also has additional functions which are not required for DRM [7].

i) For the create domain function. In addition to the differences and similar-

ities of this function in the global domain scheme, we require an additional

validation step in the dynamic domain scheme which checks that the dynamic

domain is subset of the global domain. This is done by checking that the

dynamic domain public key list is included in the global domain public key

list.

ii) For the expand domain function. When adding a device to a dynamic

domain the expand function checks that the device public key exists in the

global domain public key list.

146

Discussion, Limitations, and Further Research

iii) For the remove domain function. Removing a device could require only

removing it from a specific dynamic domain. However, this could also require

removing it from multiple dynamic domains, or removing it from all dynamic

domains and the global domain. This would depend on the reason for the

removal, and would be decided by the security administrators.

iv) Manage multiple numbers of dynamic domains.

9.1.2.4 Collaborating Organization Master Controller Functions

The similarities, differences and additional functions which we discuss for the

global and the dynamic domains’ master controller applies to the collaborating

organization master controller when managing the collaborating organizations’

global and dynamic domains. However, the master controller in the collaborat-

ing organization domain (as discussed in Chapter 7) has additional functions

as follows.

i) The master controller must initialize a trusted secure channel between master

controllers of collaborating organizations.

ii) The master controller manages the policy of collaborating organizations.

iii) The master controller manages the processes of secure exchanging of con-

tent between collaborating organizations.

DRM, on the other hand, does not have the collaborating domain concept,

i.e. one of the foundation of DRM is to stop content sharing between different

domains.

9.1.3 DRM Authorized Domain vs. Proposed Scheme Do-

mains

DRM requires each person to have their own specific authorized domain which

includes all devices that need to access the proprietary content. Our schemes,

on the other hand, require the organization to have two types of domains: the

global domain and the dynamic domain. The organization would have a sin-

gle global domain containing all devices that belong to the organization and

multiple dynamic domains. A dynamic domain is a subgroup of the global

domain which means that its devices must be members of the global domain.

The DRM authorized domain is static, i.e. the number of devices is fixed and

the relationship between devices and domains is many-to-one. Our scheme do-

mains, on the other hand, are dynamic where the relationship between devices

147

Discussion, Limitations, and Further Research

and domains are many-to-many and we do not worry about number of devices

in a domain. The DRM schemes manage the domain by using two counters:

the first controls the number of devices in the domain and the second controls

the number of devices that have ever joined the domain. The last counter was

introduced to stop domain owners from keeping adding and then removing

devices from a domain. Our schemes, on the other hand, manage domains by

using a domain-specific public key list to validate a devices identity in the do-

main. This is because in our scheme we care about the devices identity rather

than the number of devices in a domain. A key point in DRM schemes is to

strongly bind the domain to its owner. Our schemes, on the other hand, do

not bind the domain to a specific user, i.e. the organization policy and process

workflow controls the users who can access the domain content.

All these differences introduce major differences in our scheme functions and

protocols in comparison with the DRM [7] scheme functions and protocols.

9.2 Proposed Scheme Relation with ERM

ERM schemes as we discussed in Chapter 3 provide rights management solu-

tions for organizations to manage and enforce content access rights wherever

content is transferred and used. At this stage we rely on these schemes to

provide rights management to our schemes. However, ERM does not address

content leakage when users share their credentials. The schemes proposed in

this thesis restrict accessing content to a group of selected devices, whereby

content is accessed subject to predefined fine-grained access rights associated

with the content. In other words, associating our schemes with ERM assures

organizations that if users share their credentials, content cannot be accessed

even with valid rights object on any unauthorized device. To conclude, com-

bining our scheme with ERM provides organizations with rights management

and enforcement solution together with addressing the content leakage prob-

lem when users share their credentials. In addition, it helps in managing the

dynamic nature of organizations by the usage of the dynamic domain concept.

Our planned future work (as discussed in Section 9.5) is to enhance the rights

management part of the ERM to address the weaknesses in ERM. We then

integrate the enhanced right managements scheme in our schemes to mange

the dynamic and global domain’s rights.

148

Discussion, Limitations, and Further Research

9.3 System Analysis

In this section we discuss the proposed scheme based on the organizational

requirements, which we identified in Section 2.5. We consider how the proposed

scheme meets each of our requirements.

Requirement 1: Support for organization dynamic groups. To achieve this

requirement, our scheme proposes the dynamic domain concept which covers

the following two points.

• Organization grouping structure. A dynamic domain groups devices and

content together to facilitate secure content sharing between devices. In

our proposed scheme, organizations can create groups and projects in

the form of dynamic domains which can be created or diminished at

any time as needed. An employee might participate in multiple dynamic

domains at the same time.

• Organization dynamic nature. In our proposed scheme, a dynamic do-

main can be created, expanded, and/or diminished any time when needed.

In addition, an organization can dynamically move devices between dy-

namic domains based on its needs.

Requirement 2: Content Sharing. Our proposed scheme provides the capa-

bilities to authorized employees to exchange and access content. Authorized

employees who are members of a dynamic/global domain can transfer content

between each other and share it. Devices that require access to shared content

must join all dynamic domains where shared content is bound.

Requirement 3: Content protection. The dynamic and global domain in

our proposed scheme limits the effects of insiders on content confidentiality.

It moves the fundamental access control assumption from “the need to trust

authorized users to not share their credentials” (not necessarily trustworthy

and cannot measure their trustworthiness) to “the need to trust authorized de-

vices”, where trustworthiness can be measured and attested. This is achieved

in our scheme by binding content with an organization’s authorized trusted

devices. This in turn provides stringent controls on sharing content with unau-

thorized users when authorized users attempt sharing their credentials.

Our proposed scheme limits the internal and external leakage defined in Chap-

ter 2 as follows.

Limit the internal leakage threat: Our proposed scheme limits content

leakage accidentally or deliberately to unauthorized employees. We achieve

149

Discussion, Limitations, and Further Research

this requirement by binding content to dynamic domain devices where au-

thorized employees can access content. Each device in the dynamic domain

possesses a copy of the domain key, which is used to protect a pool of content

that needs to be shared between the dynamic domain devices. In the pro-

posed solution we ensure that the domain key is only released to authorized

devices which behave as expected and whose public keys exist in the dynamic

domain public key list. The domain key is a very important key that needs

to be protected from being revealed to unauthorized devices. In our scheme,

we achieve this by securely generating, transferring, and storing the dynamic

domain key. Content cannot be transferred unprotected to other devices in

the organization because the application is trustworthy, which means devices

will always receive protected content. In this case the recipient device either

could be an authorized device for accessing content or it could be a device

that is not authorized to access the content. Authorized devices can decrypt

the content because they already possess a copy of the content protection key.

However, unauthorized devices are not able to access the content because they

do not have a copy of the key. By this, our proposed scheme limits the threat

of internal content leakage.

Limit the external leakage threat: Our proposed scheme limits content

leakage accidentally or deliberately to unauthorized employees outside the or-

ganization. We meet this requirement by binding content to global domain

devices where authorized employees can access content. How global domain

protects content is the same way as the dynamic domain does which is dis-

cussed above.

Requirement 4. Rights management and enforcement. The organization

types that we described in Section 2.3 do not necessarily require employees

who are members of a project to have a unified access rights, i.e. employees

could have different access rights in comparison with each other. Assigning

employees access rights on a project’s content would be subject to the roles

required to achieve the project functions. Therefore, any scheme proposed for

this kind of organization will require: (a.) a mechanism to manage employees’

access rights, and (b.) a mechanism to enforce access rights wherever content is

transferred and moved between client devices. ERM schemes provide dynamic

rights management which is achieved by having a centralized right manage-

ment server. Client devices interact with the rights management server and

download content access rights. Although ERM schemes have weaknesses in

managing access rights when addressing the type of organization we are work-

ing on; however, at this stage of our research we still rely on ERM to manage

150

Discussion, Limitations, and Further Research

access right of users in organizations that wish to implement our schemes.

Such integration is a planned area of future work that is highlighted later in

this chapter.

In addition to the above requirements there are other important sub require-

ments. These include performance, interpretability, ease of use, and scalability.

Assessing these requirements would be based on the scheme’s implementation.

The additional requirement are as follows.

Performance. The performance of the dynamic and global domain manage-

ment functions (i.e. domain establishment, and adding devices to and remov-

ing devices from a domain) is implementation-dependent. The scheme requires

content to be encrypted using a symmetric technique. Symmetric encryption

techniques are simple and fast to compute by comparison with asymmetric

techniques.

Interpretability. The framework does not require use of a particular device

type. For example, content can run on any device in a dynamic and global

domain, as long as the device satisfies the platform properties described in

Section 4.2.5, which are based on TCG specifications.

Ease of use. Domain establishment involves initializing a domain, adding de-

vices to a domain, and removing devices from a domain. The details of these

phases are implementation-dependent. Unlike home users, the scheme pro-

posed in this thesis is expected to be used by highly professional individuals.

This is because the scheme has been proposed to be implemented in organiza-

tional environment in which they have specialized employees to perform their

job.

Resilience and Scalability. These important properties ensure that the sys-

tem functions are maintained in case of a single point of failure or increased

load. The main component that should provide these features in our scheme

is the master controller. Our scheme can work by having multiple fully coor-

dinated master controllers (i.e. a single master controller and multiple slave

controllers), as discussed in [5]. This type of architecture would address these

features.

9.4 Limitations

The limitations of our scheme are as follows.

• The proposed scheme requires trusted computing technology. We dis-

151

Discussion, Limitations, and Further Research

cussed this point in Section 3.6.4, and conclude that trusted computing

is not far from being applied in practice. Great support for trusted

computing technology is emerging from the open source community,

and from collaborative research projects (e.g. OpenTC1 and EMSCB2).

Open source trusted virtualization layers are being developed by both

the Xen and L4 communities [18]. Moreover given that enterprise infras-

tructure is more advanced and more managed in comparison with home

network environments it seems likely that the technology will succeed

first in enterprise settings rather than for home use.

• The proposed scheme does not address the analog hole problem. We

have the following comments on this point.

(a) Organizations could implement physical measures, which may pro-

vide some limitations on the freedom a user can have to share

content. The more an organization cares about its content, the

more physical protection measures it could provide to mitigate the

analog hole problem (e.g. CCTV, stronger authentication, and em-

ployees organizations in different offices so that employees assigned

to different projects cannot interact with each other).

(b) We cannot deny that there are threats coming from the analog hole

problem. However threats arising from transferring digital content

are likely to have more of an impact. This is because copying analog

content is typically more time consuming. On the other hand,

transferring digital content can be done quickly and easily. This

could affect a large amount of content as users in some cases can

transfer thousands of files, pictures, or designs. Most importantly,

executable files cannot be exploited by the analog hole threat.

• Our proposed scheme requires binding content to devices. This might

have an impact with mobile users who want to work from a distance

and for users who use portable devices to access data. In our scheme

content is bound with a domain of devices and not to a specific single

device. This in turn would enable mobile users to add their devices to all

domains they are authorized to access. Some might argue that by doing

so a user can give his portable device to a third party to access content.

Although this is true, we reduce the probability of this as follows.

1http://www.opentc.net/
2http://www.emscb.com/

152

Discussion, Limitations, and Further Research

(a) Content will still be bound to the device and will not be transferred

to a third party’s device. The user may not leave his device with

the third party for long, as his company will likely discover that.

The device must regularly communicate with a master controller

to refresh key values. In other words, if a device is hacked it will

not be able to access content for long because administrators take

devices off the list.

(b) Organizations which work with confidential content just allow the

devices that are really needed to work from outside the organization

and not all devices.

• As we assume in Section 4.2.10 each device is assigned a specific user.

This might impose limitations for organizations that require employees

to share a specific device. We acknowledge this problem, and are working

on developing our scheme further to bypass this limitation.

• The last point is that our scheme relies on trusting the administrators

to implement and manage the proposed scheme. One might argue that

the proposed scheme still relies in some point on trusting users instead

of devices. For this point we have the following comments:

(a) In our scheme we reduce the need to trust all employees, to the need

to trust a very small and specific group of employees, i.e. the secu-

rity administrators. This will reduce the impact of content leakage

when authorized employees attempt to share their credentials.

(b) As long as the administrators are the only party who are allowed to

manage the scheme and secure auditing mechanisms are in place,

these will act as deterrent measures. This is because if any breach

occurs, administrators will be the first to be asked and their detec-

tion will be easier.

(c) We acknowledge that in any scheme there should be a starting

point of trust. In our scheme (as discussed in Section 4.2.4) we

recommend adding restrictions on the administrators which reduce

their privileges (i.e. in our scheme we require the presence of N out

of M of administrators to perform any administrative activity).

Thus the root of trust does not reside with a single administrator.

153

Discussion, Limitations, and Further Research

9.5 Future Research

We conclude this thesis by noting some areas for further research. One im-

portant issue that is not addressed in the proposed schemes is access rights

management in the domain schemes. This is an important area which we are

aiming to work on in the near future. ERM schemes have rights management

weaknesses in addressing the type of organization we are working on as follows.

(a) ERM requires defining, for every item of content, a specific set of access

rights and a specific content protection key. An employee within a project

most likely would have unified access rights for the project content. Therefore,

the content creator in ERM schemes would need to associate with each item of

content specific access rights for each user. Similarly, an employee would also

need to download, for all project content, each item of content access rights.

This would affect system ease-of-use and performance. This is especially the

case in our organization definition as each employee would have unified access

rights on all project content. However, in our scenario different employees

might have different access rights. To show the effect of this in a simple

example, an employee might participate in multiple projects, each consisting

of many items of content. Assume an organization has a project that consists

of 10 employees, and that the project has 1000 items of content. This would

mean that the content creator needs to assign 1000 * 10 access rights objects for

this project. Also, updating or revoking the access rights for a single employee

would require updating 1000 rights objects.

(b) ERM schemes require employees to either be always connected online or

periodically sync all rights objects stored on their devices. Such a process

would affect network performance. This is especially the case in large organi-

zations consisting of thousands of employees working on tens of thousands of

items of content.

(c) Moreover, Adobe Rights Management ES is restricted to PDF type of

document, limiting interpretability. An organization would possess different

type of documents, e.g. Microsoft Word. Also, executable content are not

protected in this scheme. For example, software products are not protected

using Adobe Rights Management ES.

We are planning to update the master application proposed in our scheme to

provide access rights management, and the client application proposed on our

scheme to enforce the access rights. For example, to address the weaknesses

of rights object is bounded with each item of content we plan to bind rights

154

Discussion, Limitations, and Further Research

objects with a pool of content which is allowed to be accessed by each user.

We are working on these details and we have finished an initial draft of a paper

discussing this.

The proposed protocols have only been subjected to informal analysis, and

security vulnerabilities may remain. Therefore, a more formal security analysis

of the security protocols would be highly desirable.

I have produced proof of concept of the main blocks of the proposed schemes.

Full prototyping of the overall scheme would enable the practicality of the

schemes to be tested, and would also enable an assessment of their performance

characteristics.

Another important area is adapting our schemes to work in a virtualized envi-

ronment. Virtual machines are associated with important and desirable prop-

erties (e.g. migration); however, such a property requires careful consideration

when adapting schemes. This is because we bind accessing content to physical

platforms with certain properties. Moving to a virtual machine which could

move between physical platforms might break our solution if not considered

carefully.

Finally, we are planning to focus on mitigating insider impact on content

integrity and availability.

155

BIBLIOGRAPHY

Bibliography

[1] Data Protection Act, 1998. http://www.opsi.gov.uk/ACTS/acts1998/19980029.htm.

[2] Property attestation–scalable and privacy–friendly security assessment of

peer computers. Technical report, RZ 3548, IBM Research, May 2004.

[3] Insider threat study: Illicit cyber activity in the government sector, 2008.

www.cert.org/archive/pdf/insiderthreat gov2008.pdf.

[4] Insider threat study: Illicit cyber activity in the infor-

mation technology and telecommunications sector, 2008.

www.cert.org/insider threat/study.html.

[5] Imad M. Abbadi. Digital rights management for personal networks. Tech-

nical Report RHUL-MA-2008-17, Royal Holloway, University of London.

[6] Imad M. Abbadi. Authorised domain management using location based

services. In Adrian David Cheak, Peter H J Chong, Winston Seah, and

Shum Ping, editors, Mobility ’07: proceedings of the 4th International

Conference on Mobile Technology, Applications & Systems, pages 288–

295. ACM Press, NY, September 2007.

[7] Imad M. Abbadi. Digital rights management using a master control de-

vice. In I. Cervesato, editor, ASIAN ’07: Proceedings of the 12th Annual

Asian Computing Science Conference Focusing on Computer and Net-

work Security, volume 4846 of Lecture Notes in Computer Science, pages

126–141. Springer-Verlag, Berlin, December 2007.

[8] Imad M. Abbadi and Muntaha Alawneh. DRM domain authentication

using electronic payment systems. In ICEC ’08: Proceedings of the tenth

international conference on Electronic commerce, pages 185–194. ACM

Press, NY, August 2008.

156

BIBLIOGRAPHY

[9] Imad M. Abbadi and Muntaha Alawneh. Preventing insider information

leakage for enterprises. In Proceedings of the Second International Confer-

ence on Emerging Security Information, Systems and Technologies, pages

99–106. IEEE, 2008.

[10] Imad M. Abbadi and Chris Mitchell. Digital rights management using a

mobile phone. In ICEC ’07: Proceedings of the ninth international con-

ference on Electronic commerce, pages 185–194. ACM Press, NY, August

2007.

[11] Adobe. LiveCycle ES Services, July 2008.

http://help.adobe.com/en US/livecycle/8.2/services.pdf.

[12] Adobe Reader, 2010. http://www.adobe.com/products/reader.

[13] Muntaha Alawneh and Imad M. Abbadi. Combining DRM with trusted

computing for effective information access management. In Proceedings

of the 2008 workshop on Practice and Theory of IT Security (PTITS),

2008.

[14] Muntaha Alawneh and Imad M. Abbadi. Preventing information leakage

between collaborating organisations. In ICEC ’08: Proceedings of the

tenth international conference on Electronic commerce, pages 185–194.

ACM Press, NY, August 2008.

[15] Muntaha Alawneh and Imad M. Abbadi. Sharing but protecting content

against internal leakage for organisations. In DAS 2008, volume 5094

of Lecture Notes in Computer Science, pages 238–253. Springer-Verlag,

Berlin, 2008.

[16] Muntaha Alawneh and Imad M. Abbadi. Defining and analyzing insiders

and their threats in organizations. In Proceedings of the 2011 International

Workshop on Security and Privacy in Internet of Things (SPIoT 2011),

pages 785 – 794. IEEE, 2011.

[17] Apple Inc. Apple Fairplay, 2006.

http://www.apple.com/lu/support/itunes/authorization.html.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the

art of virtualization. In SOSP ’03: Proceedings of the nineteenth ACM

symposium on operating systems principles, pages 164–177, New York,

NY, USA, 2003. ACM.

157

BIBLIOGRAPHY

[19] Matt Bishop, Dieter Gollmann, Jeffrey Hunker, and Christian W. Probst.

Countering insider threats. In Dagstuhl Seminar Proceedings 08302, pages

1–18. RAND Corp., Santa Monica, California, 2008.

[20] Vijay Bollapragada, Mohamed Khalid, and Scott Wainner. IPSec VPN

Design. Cisco Press, 2005.

[21] Richard C. Brackney and Robert H. Anderson. Understanding the insider

threat. In Proceedings of a March 2004 Workshop, pages 1–110. RAND

Corp., Santa Monica, California, 2004.

[22] Glenn Bruns, Daniel S Dantas, and Michael Huth. A simple and ex-

pressive semantic framework for policy composition in access control. In

FMSE ’07: Proceedings of the 2007 ACM workshop on Formal methods

in security engineering, pages 12–21, New York, NY, USA, 2007. ACM.

[23] Luigi Catuogno, Hans Lhr, Mark Manulis, Ahmad-Reza Sadeghi, Chris-

tian Stble, and Marcel Winandy. Trusted virtual domains: Color your

network. Datenschutz und Datensicherheit - DuD, 34:289–294, 2010.

10.1007/s11623-010-0089-0.

[24] Luigi Catuogno, Hans Löhr, Mark Manulis, Ahmad-Reza Sadeghi, and

Marcel Winandy. Transparent mobile storage protection in trusted vir-

tual domains. In Proceedings of the 23rd conference on Large installation

system administration, LISA’09, pages 12–12, Berkeley, CA, USA, 2009.

USENIX Association.

[25] David Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde, Linying

Su, and Tuan Anh Nguyen. PERMIS: a modular authorization infras-

tructure. Concurr. Comput. : Pract. Exper., 20(11):1341–1357, 2008.

[26] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-

Reza Sadeghi, and Christian Stüble. A protocol for property-based attes-

tation. In STC ’06: Proceedings of the first ACM workshop on Scalable

trusted computing, pages 7–16, New York, NY, USA, 2006. ACM.

[27] Peter M. Chen and Brian D. Noble. When virtual is better than real. In

Proceedings of the Eighth Workshop on Hot Topics in Operating Systems,

pages 133–138, Washington, DC, USA, 2001. IEEE Computer Society.

[28] J. Crampton and M. Huth. Detecting and countering insider threats:

Can policy-based access control help? In Proceedings of 5th International

Workshop on Security and Trust Management, 2009.

158

BIBLIOGRAPHY

[29] J. Crampton and M. Huth. Towards an access-control framework for

countering insider threats. In M. Bishop, D. Gollmann, J. Hunker, and

C. Probst, editors, Insider Threats in Cybersecurity – And Beyond, pages

173–196. Springer, 2010.

[30] Enterprise & Regulatory Reform Department for Busi-

ness. Information security breaches survey, 2008.

http://www.pwc.co.uk/pdf/BERR ISBS 2008sml.pdf.

[31] EMC. EMC Documentum Information Rights Management, De-

cember 2006. http://www.emc.com/collateral/software/white-

papers/h3395 irm tech overview wp.pdf.

[32] D. Ferraiolo, R. Chandramouli, and R. Kuhn. Role-Based Access Control.

Artech House, Norwood, MA, USA, 2003.

[33] J. Davidson Frame. Managing projects in organizations: how to make the

best use of time, techniques, and people. 3rd edition.

[34] Eimear Gallery. An overview of trusted computing technology. In Chris J.

Mitchell, editor, Trusted Computing, chapter 3, pages 29–113. IEE, 2005.

[35] Eimear Gallery and Chris J. Mitchell. Trusted computing: Security and

applications. Cryptologia, 33(3):217–245, 2009.

[36] Tal Garfinkel and Mendel Rosenblum. When virtual is harder than real:

security challenges in virtual machine based computing environments. In

Proceedings of the 10th conference on Hot Topics in Operating Systems -

Volume 10, pages 20–20, Berkeley, CA, USA, 2005. USENIX Association.

[37] Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, Mar-

cel Winandy, Rani Husseiki, and Christian Stüble. Flexible and secure

enterprise rights management based on trusted virtual domains. In STC

’08: Proceedings of the 3rd ACM workshop on Scalable trusted computing,

pages 71–80, New York, NY, USA, 2008. ACM.

[38] G. Scott Graham and Peter J. Denning. Protection: principles and prac-

tice. In AFIPS ’72 (Spring): Proceedings of the May 16-18, 1972, spring

joint computer conference, pages 417–429, New York, NY, USA, 1972.

ACM.

[39] David Grawrock. Dynamics of a Trusted Platform. Intel, 2008.

159

BIBLIOGRAPHY

[40] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote

attestation: a virtual machine directed approach to trusted computing.

In VM’04: Proceedings of the 3rd conference on Virtual Machine Re-

search And Technology Symposium, pages 3–3, Berkeley, CA, USA, 2004.

USENIX Association.

[41] Chris Hibbert. A copy protection and content management system

from the DVB, 2002. http://www.dvb.org/documents/newsletters/DVB-

SCENE05CopyProtectionArticle.pdf.

[42] Seong Oun Hwang, Ki Song Yoon, Kyung Pyo Jun, and Kwang Hyung

Lee. Modeling and implementation of digital rights. Journal of Systems

and Software, 73(3):533–549, April 2003.

[43] International Organization for Standardization. ISO/IEC 9798-3, Infor-

mation technology — Security techniques — Entity authentication — Part

3: Mechanisms using digital signature techniques, 2nd edition, 1998.

[44] International Organization for Standardization. ISO/IEC 18033-2, In-

formation technology — Security techniques — Encryption algorithms —

Part 2: Asymmetric ciphers, 2006.

[45] International Organization for Standardization. ISO/IEC FCD 19772, In-

formation technology — Security techniques — Authenticated encryption

mechanisms, 2007.

[46] Ram Krishnan, Ravi Sandhu, Jianwei Niu, and William H. Winsborough.

Foundations for group-centric secure information sharing models. In SAC-

MAT ’09: Proceedings of the 14th ACM symposium on Access control

models and technologies, pages 115–124, New York, NY, USA, 2009. ACM.

[47] Ulrich Kühn, Marcel Selhorst, and Christian Stüble. Realizing property-

based attestation and sealing with commonly available hard- and software.

In STC ’07: Proceedings of the 2007 ACM workshop on Scalable trusted

computing, pages 50–57, New York, NY, USA, 2007. ACM.

[48] Klaus Kursawe, Dries Schellekens, and Bart Preneel. Analyzing trusted

platform communication. In CRASH Workshop: CRyptographic Ad-

vances in Secure Hardware, 2005.

[49] Butler W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8:18–24,

January 1974.

160

BIBLIOGRAPHY

[50] P. England M. Peinado and Y. Chen. An overview of ngscb. In Chris J.

Mitchell, editor, Trusted Computing, pages 115–141. IEE, 2005.

[51] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam

Datta, Virgil D. Gligor, and Adrian Perrig. Trustvisor: Efficient TCB

reduction and attestation. In IEEE Symposium on Security and Privacy,

pages 143–158, 2010.

[52] Microsoft Corporation. Microsoft Windows Rights Management Ser-

vices, 2005. http://download.microsoft.com/download/8/d/9/8d9dbf4a-

3b0d4ea1905b92c57086910b/RMSTechOverview.doc.

[53] Raymond E. Miles and Charles C. Snow. Organizational Strategy, Struc-

ture and Process. Stanford University Press, 2003.

[54] Karissa Miller and Mahmoud Pegah. Virtualization: virtually at the desk-

top. In Proceedings of the 35th annual ACM SIGUCCS fall conference,

SIGUCCS ’07, pages 255–260, New York, NY, USA, 2007. ACM.

[55] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. Improving

xen security through disaggregation. In Proceedings of the fourth ACM

SIGPLAN/SIGOPS international conference on Virtual execution envi-

ronments, pages 151–160, New York, NY, USA, 2008. ACM.

[56] Open Mobile Alliance. DRM Specification — Version 2.0, 2006.

[57] Oracle. Information rights management — manag-

ing information everywhere it is stored and used, June

2008. http://www.oracle.com/technology/products/content-

management/irm/IRMtechnicalwhitepaper.pdf.

[58] Joon S. Park, Keith P. Costello, Teresa M. Neven, and Josh A. Dio-

somito. A composite RBAC approach for large, complex organizations.

In SACMAT ’04: Proceedings of the ninth ACM symposium on Access

control models and technologies, pages 163–172, New York, NY, USA,

2004. ACM.

[59] Joon S. Park and Shuyuan Mary Ho. Composite role-based monitor-

ing (CRBM) for countering insider threats. In H. Chen et al., editor,

Intelligence and Security Informatics, volume 3073 of Lecture Notes in

Computer Science, pages 201–213. Springer-Verlag, Berlin, 2005.

[60] S. Pearson. Trusted computing platforms: TCPA technology in context.

Publisher: Prentice Hall PTR, 2002.

161

BIBLIOGRAPHY

[61] Pierangela Samarati Ravi S. Sandhu. Access control: Principles and prac-

tice. IEEE Communications Magazine, 32(9):40–49, September 1994.

[62] E. Rescorla. Diffie-Hellman key agreement method. RFC 2631, Internet

Engineering Task Force, June 1999.

[63] Robert Richardson. The 12th annual computer crime and security survey,

2007. http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.pdf.

[64] Carsten Rudolph. Covert identity information in direct anonymous attes-

tation (DAA). In H. Venter, M. Eloff, L. Lebuschagne, J. Eloff, and R. von

Solms, editors, Proceedings of the IFIP TC-11 22nd International Infor-

mation Security Conference (SEC 2007), volume 232 of Lecture Notes in

Computer Science, pages 443–448. Springer-Verlag, Berlin, 2007.

[65] A. Sadeghi. Trusted computing — special aspects and challenges. In

V. Geffert et al., editor, SOFSEM, volume 4910 of Lecture Notes in Com-

puter Science, pages 98–117. Springer-Verlag, Berlin, 2008.

[66] Ahmad-Reza Sadeghi and Christian Stüble. Property-based attestation

for computing platforms: caring about properties, not mechanisms. In

NSPW ’04: Proceedings of the 2004 workshop on New security paradigms,

pages 67–77, New York, NY, USA, 2004. ACM.

[67] Ravi Sandhu, Ram Krishnan, Jianwei Niu, and William Winsborough.

Group-centric models for secure and agile information sharing. In Igor

Kotenko and Victor Skormin, editors, Computer Network Security, vol-

ume 6258 of Lecture Notes in Computer Science, pages 55–69. Springer

Berlin, 2010.

[68] Ravi Sandhu, Kumar Ranganathan, and Xinwen Zhang. Secure infor-

mation sharing enabled by trusted computing and pei models. In ASI-

ACCS’06: Proceedings of the 2006 ACM Symposium on Information,

Computer and Communications Security, pages 2–12, New York, NY,

USA, 2006. ACM Press.

[69] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–

19, 1993.

[70] Ravi S. Sandhu, Xinwen Zhang, Kumar Ranganathan, and Michael J.

Covington. Client-side access control enforcement using trusted comput-

ing and pei models. J. High Speed Networks, 15(3):229–245, 2006.

162

BIBLIOGRAPHY

[71] B. Smyth, M. Ryan, and L. Chen. Direct anonymous attestation (DAA):

Ensuring privacy with corrupt administrators. In F. Stajano, C. Meadows,

S. Capkun, and T. Moore, editors, Proceedings of Security and Privacy

in Ad-hoc and Sensor Networks: 4th European Workshop, ESAS 2007,

Cambridge, UK, volume 4572 of Lecture Notes in Computer Science, pages

218–231. Springer-Verlag, Berlin, 2007.

[72] Kyle E. Stewart, Jeffrey W. Humphries, and Todd R. Andel. Developing a

virtualization platform for courses in networking, systems administration

and cyber security education. In Proceedings of the 2009 Spring Simu-

lation Multiconference, SpringSim ’09, pages 65:1–65:7, San Diego, CA,

USA, 2009. Society for Computer Simulation International.

[73] Trusted Computing Group. Infrastructure Working Group Architecture,

Part II, Integrity Management. Specification version 1.0 Revision 1.0,

2006.

[74] Trusted Computing Group. TPM Main, Part 1, Design Principles. Spec-

ification version 1.2 Revision 103, 2007.

[75] Trusted Computing Group. TPM Main, Part 2, TPM Structures. Speci-

fication version 1.2 Revision 103, 2007.

[76] Trusted Computing Group. TPM Main, Part 3, Commands. Specification

version 1.2 Revision 103, 2007.

163

Verification

Appendix A

Verification

This appendix provides a prototyping of part of the algorithms provided in this

thesis.

A.1 Introduction

In this appendix we propose, as a proof of concept, a prototype and its execu-

tion output for the initialization algorithms and the global domain algorithms

discussed in this thesis. We chose those algorithms as they constitute the

foundation of our scheme. To ease follow up we include many comments in

the provided program and referred to the algorithms used in the thesis. We

next summarize the hosting environment of our prototype.

Hosting machine: We used HP Centrino Duo, running Linux Operation Sys-

tem (ubuntu 10.04).

TPM chip: we executed the following command at the host machine to extract

the TPM details:

tpm_version

TPM 1.2 Version Info:

Chip Version: 1.2.1.0

Spec Level: 2

Errata Revision: 0

TPM Vendor ID: IFX

TPM Version: 01010000

Manufacturer Info: 49465800

164

Verification

TCG Software Stack: we used the IAIK jTSS1 software stack as an imple-

mentation of the TCG Software Stack for the Java (tm) programming

language. We decided to use IAIK jTSS as our prototyping Language is

Java.

Language: we used java programming language. Following is the used Java

version as extracted from the hosting machine:

java -version

java version "1.6.0_15"

Java(TM) SE Runtime Environment (build 1.6.0_15-b03)

Java HotSpot(TM) Client VM (build 14.1-b02, mixed mode, sharing)

We now provide a summary of the IAIK jTSS which would help to understand

the provided software prototyping. This summary is mainly based on trust-

edjava.sourceforge.net website. As we said earlier we use IAIK jTSS which

implements the TCG Software Stack (TSS) in Java. TSS is the core software

component for interaction with the TPM, which has been designed and stan-

dardized by TCG. TSS is composed of set of hierarchical stacks as illustrated

in Figure A.1. Layer-1 is the TPM chip, layer-2 is the TPM device driver,

layer-3 is the TSS Device Driver Library (TDDL) which provides standard in-

terfaces, layer-4 is the TSS Core Services (TCS), and layer-5 is the TSS Service

Provider (TSP). TPM is accessed (in our hosting machine) from (/dev/tpm0)

via the TDDL. TDDL is first TSS component running in user space which

provides a standard abstraction layer for TPM access regardless of the TPM

manufacturer. TCS interacts with TDDL and provides command serialization

to TPM, manage TPM resources, and intermediate the communication be-

tween TSP and TDDL that includes building TPM command messages from

TSP sent messages. TSP interaction with the TCS revolves around contexts.

Upper layers can send commands to the TCS using an TCS context object

which manages resources, e.g. key handles, and allocated memory. TSP is a

shared library providing a standardized C interface (TSPI) which can be used

by application developers when interacting with the TPM. TSP does not only

provides TPM access (via TCS) but also includes additional functionality such

as signature verification and persistent user storage.

When interacting with the TPM, the application developer must first instanti-

ate a TSP context object. The application would then need to use the context

object and connect to the TCS. The context object allows the usage of the

1http://trustedjava.sourceforge.net/

165

Verification

Figure A.1: The TSS Stack

TCS capabilities, used to create TSP objects (e.g. TPM, Policy, Key, Hash,

EncData, and PcrComposite), registering and retrieving keys from user repos-

itory, and holds basic information about environment configuration. TPM

functions such as data encryption require the knowledge of a usage secret.

The association of a usage secret to TSP objects, for example to a key object,

is managed at the TSP layer via a policy object. The policy object can be

assigned to multiple TSP objects that use the same usage secrete.

A.2 Summary of Used Functions

In this section we provide the summary of the definition of the main TSP

functions in our prototype, as provided in IAIK jTSS2 (for further details

please see their website).

• connect() — This method tries to connect the context to the default host

(localhost).

• getTpmObject() — This method is used to obtain a TPM object that

allows interaction with the system’s TPM.

• createEncDataObject(long initFlags) — This method returns a new enc-

data objectwhere initFlags is used to specify further options for the new

2http://trustedjava.sourceforge.net/

166

Verification

object as defined by the TSS specification. Valid initFlags are: TcTss-

Constants.TSS ENCDATA BIND, TcTssConstants.TSS ENCDATA SEAL,

TcTssConstants.TSS ENCDATA LEGACY.

• createHashObject(long initFlags) — This method returns a new hash ob-

ject; where initFlags is used to specify further options for the new object

as defined by the TSS specification. Valid initFlags are: TcTssCon-

stants.TSS HASH DEFAULT, TcTssConstants.TSS HASH OTHER, TcTss-

Constants.TSS HASH SHA1.

• createPcrCompositeObject(0) — This method returns a new PCR object.

• createPolicyObject(long initFlags) — This method returns a new policy

object; where initFlags is used to specify further options for the new ob-

ject as defined by the TSS specification. Valid initFlags are: TcTssCon-

stants.TSS POLICY MIGRATION and TcTssConstants.TSS POLICY USAGE.

• createRsaKeyObject(long initFlags) — This method returns a new key object;

where initFlags - is used to specify further options for the new object as defined

by the TSS specification. Valid initFlags are: TcTssConstants.TSS KEY SIZE DEFAULT,

TcTssConstants.TSS KEY SIZE 512, TcTssConstants.TSS KEY SIZE 1024, TcTss-

Constants.TSS KEY SIZE 2048, TcTssConstants.TSS KEY SIZE 4096, TcTss-

Constants.TSS KEY SIZE 8192, TcTssConstants.TSS KEY SIZE 16384, TcTss-

Constants.TSS KEY TYPE AUTHCHANGE, TcTssConstants.TSS KEY TYPE BIND,

TcTssConstants.TSS KEY TYPE DEFAULT, TcTssConstants.TSS KEY TYPE IDENTITY,

TcTssConstants.TSS KEY TYPE LEGACY (signing and binding), TcTssCon-

stants.TSS KEY TYPE SIGNING, TcTssConstants.TSS KEY TYPE STORAGE,

TcTssConstants.TSS KEY NON VOLATILE, TcTssConstants.TSS KEY VOLATILE,

TcTssConstants.TSS KEY NOT MIGRATABLE (default),

TcTssConstants.TSS KEY MIGRATABLE,

TcTssConstants.TSS KEY CERTIFIED MIGRATABLE,

TcTssConstants.TSS KEY NOT CERTIFIED MIGRATABLE,

TcTssConstants.TSS KEY NO AUTHORIZATION (default),

TcTssConstants.TSS KEY AUTHORIZATION,

TcTssConstants.TSS KEY AUTHORIZATION PRIV USE ONLY,

TcTssConstants.TSS KEY STRUCT DEFAULT (default),

TcTssConstants.TSS KEY STRUCT KEY, TcTssConstants.TSS KEY STRUCT KEY12,

TcTssConstants.TSS KEY TSP SRK.

• seal(TcIRsaKey encKey, TcBlobData data, TcIPcrComposite pcrCom-

posite) — This method encrypts a data blob in a manner that can only

167

Verification

be decrypted by unseal on the same system. The data blob is encrypted

using a public key operation with the non-migratable key addressed by

the given encryption key object. Additionally the seal operation al-

lows software to explicitly state the future trusted configuration that the

platform must be in for the encrypted data to be revealed and implic-

itly includes the relevant Platform Configuration Register (PCR) values

when the seal operation was performed. Which PCR registers are going

to be part of the seal operation is specified by the PCR composite ob-

ject; where encKey is the key used for encryption, data is the data to

encrypt, and pcrComposite is the PCR values the encrypted data should

be sealed to (set to null to omit sealing to PCR values).

• unseal(TcIRsaKey key) — This method reveals data encrypted by Tspi Data Seal

only if it was encrypted on the same platform and the current configura-

tion (as defined by the named PCR contents of the encrypted data blob)

is the one named as qualified to decrypt it. This is internally proofed

and guaranteed by the TPM; where key is non-migratable key which is

used to decrypt the data.

• sign(TcIRsaKey key) — This method signs the hash data of the object

with the provided signing key; where key is the Key object which should

be used for the signature.

• setHashValue(TcBlobData hashValue) — This method sets the hash value

of the hash object; where hashValue is the hash value to be set.

• setPcrValue(long pcrIndex, TcBlobData pcrValue) — This method sets

the digest for a given PCR index inside the PCR composite object. Mul-

tiple PCRs with different indices can be set by calling this method mul-

tiple times in the same PCR composite object; where pcrIndex is the

index of the PCR to set, and pcrValue is the value of the PCR.

• setSecret(long secretMode, TcBlobData secret) — This method sets the

authorization data of a policy object and defines the handling of its

retrieval; where secretMode is a flag indicating the policy secret mode to

set. Valid secretModes are: TcTssConstants.TSS SECRET MODE NONE,

TcTssConstants.TSS SECRET MODE PLAIN,

TcTssConstants.TSS SECRET MODE POPUP,

and TcTssConstants.TSS SECRET MODE SHA1.

• assignToObject(TcIAuthObject obj) — this method assigns an object

(working object) like TPM object, key object, encrypted data object

168

Verification

to a certain policy; where obj is the object to be assigned. Each of these

working objects will utilize its assigned policy object to process an au-

thorized TPM command. Note that there are two different policies that

can be assigned to a working object, usage policy and migration policy.

• createKey(TcIRsaKey wrappingKey, TcIPcrComposite pcrComposite) —

This method creates a key pair within the TPM and wraps it with the

key addressed by wrappingKey. The key must already be properly set up

via the key init flags or TcIAttributes.setAttribData(long, long, TcBlob-

Data) and TcIAttributes.setAttribUint32(long, long, long); where wrap-

pingKey is the key used to wrap the newly created key, and pcrComposite

if not omitted (i.e. set to null), the newly created key will be bound to

the PCR values described within this object.

• loadKey(TcIRsaKey unwrappingKey) — This method loads the key blob

into the TPM. The TPM will unwrap the key when it is loaded; where

unwrappingKey is the key which should be used for unwrapping.

• certifyKey(TcIRsaKey certifyingKey, TcTssValidation validation) — This

method signs a public key inside the TPM using

TcTssConstants.TSS SS RSASSAPKCS1V15 SHA1; where certifyingKey

is a certifying key which is used to sign the key, and validation is a struc-

ture of the type TcTssValidation. After successful completion of the call

the validationData field of this structure contains the signature data of

the command. The data field of the structure contains an instance of

TcTpmCertifyInfo or TcTpmCertifyInfo2.

• getRandom(long length) — This method returns random data obtained

from the TPM via the TSS; where length is the length of the data to be

requested.

• pcrRead(long pcrIndex) — This methods reads a PCR register; where

pcrIndex is the index of the PCR to read.

• pcrExtend(long pcrIndex, TcBlobData data, TcTssPcrEvent pcrEvent)

— This method extends a PCR register and writes the PCR event log;

where pcrIndex is the index of the PCR to extend, data is a data blob

for the PCR extend operation, and pcrEvent contains the info for an

event entry (if this is null no event entry is created and the method only

executes an TPM extend operation

169

Verification

• loadKeyByUuidFromSystem(TcTssUuid uuid) — This method creates

a key object based on the information contained in the key manager

using the UUID and loads the key into the TPM. The persistent storage

provides all information to load the parent keys required to load the key

associated with the given UUID; where uuid is the UUID of the key to

be loaded.

• getUuidSRK() — This method returns the UUID of the SRK (PS-system,

no-auth, non-migratable).

A.3 Program

#

cat muntaha.java

import java.io.*;

import java.util.Arrays;

import iaik.tc.tss.api.tspi.*;

//import iaik.tc.tss.api.exceptions.common.TcTssException;

//import iaik.tc.tss.api.constants.tpm.*;

import iaik.tc.tss.api.constants.tsp.*;

import iaik.tc.tss.api.structs.common.*;

import iaik.tc.tss.api.structs.tpm.*;

import iaik.tc.tss.api.structs.tsp.*;

public class muntaha {

public muntaha()

{

}

public static void main(String[] args) throws Exception

{

TcIContext context_ = null;

long current_time = System.currentTimeMillis();

long took_time;

try {

/**

* *

* Initialization steps *

* *

170

Verification

*/

System.out.println("**");

System.out.println("******* Initialization steps **********");

System.out.println("**\n");

/**/

System.out.println("\ni) Create context and tpm objects.\n");

/**/

context_ = new TcTssContextFactory().newContextObject();

context_.connect();

TcITpm tpm = context_.getTpmObject();

/**/

System.out.println("\nii) Define the policy object, set the secret in the");

System.out.println(" policy, and then assign it to the tpm object.\n");

/**/

TcBlobData ownerSecret = TcBlobData.newString("muntaha");

TcIPolicy policy = context_.createPolicyObject(

TcTssConstants.TSS_POLICY_USAGE);

policy.setSecret(TcTssConstants.TSS_SECRET_MODE_PLAIN,ownerSecret);

policy.assignToObject(tpm);

/**/

System.out.println("\niii) Retrive the tpm’s SRK and assign it to the defined");

System.out.println(" policy.\n");

/**/

TcIRsaKey srkkey = context_.loadKeyByUuidFromSystem(

TcUuidFactory.getInstance().getUuidSRK());

policy.assignToObject(srkkey);

/**/

System.out.println("\niv) Create a composite PCR object S_M which will be");

System.out.println(" used latter to bind the usage of the master");

System.out.println(" application key with it.\n");

/**/

TcIPcrComposite S_M = context_.createPcrCompositeObject(0);

S_M.setPcrValue(0, tpm.pcrRead(0));

S_M.setPcrValue(1, tpm.pcrRead(1));

S_M.setPcrValue(2, tpm.pcrRead(2));

S_M.setPcrValue(3, tpm.pcrRead(3));

S_M.setPcrValue(4, tpm.pcrRead(4));

S_M.setPcrValue(5, tpm.pcrRead(5));

171

Verification

S_M.setPcrValue(6, tpm.pcrRead(6));

S_M.setPcrValue(7, tpm.pcrRead(7));

S_M.setPcrValue(8, tpm.pcrRead(8));

/**/

System.out.println("\nv) Initialize the master application key object and");

System.out.println(" assign its policy.\n");

/**/

TcIRsaKey MasterKey = context_.createRsaKeyObject(

TcTssConstants.TSS_KEY_TYPE_STORAGE |

TcTssConstants.TSS_KEY_SIZE_2048 |

TcTssConstants.TSS_KEY_NOT_MIGRATABLE);

policy.assignToObject(MasterKey);

/**/

System.out.println("\nvi) Initialize the master application key pair");

System.out.println(" (PuM, PrM) pointed to by MasterKey object. We ");

System.out.println(" then load the key.\n");

/**/

MasterKey.createKey(srkkey, S_M);

MasterKey.loadKey(srkkey);

/**/

System.out.println("Initialize the AIK key object, assign its policy,");

System.out.println("create it, and then load it.");

/**/

TcIRsaKey AikSignKey = context_.createRsaKeyObject(

TcTssConstants.TSS_KEY_TYPE_SIGNING |

TcTssConstants.TSS_KEY_SIZE_2048 |

TcTssConstants.TSS_KEY_NOT_MIGRATABLE);

policy.assignToObject(AikSignKey);

AikSignKey.createKey(srkkey, S_M);

AikSignKey.loadKey(srkkey);

System.out.println("\nThe public part of the AikSignKey:\n"+

AikSignKey.getPubKey().toHexString());

System.out.println("\nThe public part of the MasterKey:\n"+

MasterKey.getPubKey().toHexString());

took_time= System.currentTimeMillis() - current_time;

System.out.println("\nMaster initialization phase took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

/***

172

Verification

* *

* Client Initialization at Client Device *

* *

**

*/

System.out.println("**");

System.out.println("******* Client Initialization *********");

System.out.println("******* at Client Device *********");

System.out.println("**\n");

/**/

System.out.println("\ni) Create a composite PCR object S_D which will be");

System.out.println(" used latter to bind the usage of the client");

System.out.println(" application key with it\n");

/**/

TcIPcrComposite S_D = context_.createPcrCompositeObject(0);

S_D.setPcrValue(0, tpm.pcrRead(0));

S_D.setPcrValue(1, tpm.pcrRead(1));

S_D.setPcrValue(2, tpm.pcrRead(2));

S_D.setPcrValue(3, tpm.pcrRead(3));

S_D.setPcrValue(4, tpm.pcrRead(4));

S_D.setPcrValue(5, tpm.pcrRead(5));

S_D.setPcrValue(6, tpm.pcrRead(6));

S_D.setPcrValue(7, tpm.pcrRead(7));

S_D.setPcrValue(8, tpm.pcrRead(8));

/**/

System.out.println("\nii) Initialize the client application key object and");

System.out.println(" assign its policy.\n");

/**/

TcIRsaKey ClientKey = context_.createRsaKeyObject(

TcTssConstants.TSS_KEY_TYPE_STORAGE |

TcTssConstants.TSS_KEY_SIZE_2048 |

TcTssConstants.TSS_KEY_NOT_MIGRATABLE);

policy.assignToObject(ClientKey);

/**/

System.out.println("\niii) Initialize the master application key pair");

System.out.println(" (PuM, PrM) pointed to by MasterKey object.");

System.out.println(" We then load the key.\n");

/**/

ClientKey.createKey(srkkey, S_D);

173

Verification

ClientKey.loadKey(srkkey);

took_time= System.currentTimeMillis() - current_time;

System.out.println("\nClient initialization phase took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

/***

* *

* Admin Registration *

* *

**

*/

System.out.println("**");

System.out.println("******* Admin Registration ************");

System.out.println("**\n");

/**/

System.out.println("\ni) Retrive admins authentication credentials.\n");

/**/

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

String [] adminname;

String [] adminpass;

int N;

System.out.print("Enter number of admins (must be more than one): ");

N = Integer.parseInt(in.readLine());

if(N < 2){N=2;}// Default number of admins

adminname = new String[N];

adminpass = new String[N];

for (int i=0; i<N; i++) {

System.out.print("Enter admin username: ");

adminname[i] = in.readLine();

System.out.print("Enter admin password: ");

adminpass[i] = in.readLine();

}

/**/

System.out.println("\nii) Seal the retrived authentication credentials.\n");

/**/

174

Verification

TcBlobData adminname_blob = TcBlobData.newString(

Arrays.toString(adminname),true,"ASCII");

TcIEncData encrypted_adminname_blob = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(encrypted_adminname_blob);

encrypted_adminname_blob.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

adminname_blob);

encrypted_adminname_blob.seal(MasterKey, adminname_blob, null);

TcBlobData sealed_adminname_blob =

encrypted_adminname_blob.getAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB);

TcBlobData adminpass_blob = TcBlobData.newString(

Arrays.toString(adminpass),true,"ASCII");

TcIEncData encrypted_adminpass_blob = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(encrypted_adminpass_blob);

encrypted_adminpass_blob.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

adminpass_blob);

encrypted_adminpass_blob.seal(MasterKey, adminpass_blob, null);

TcBlobData sealed_adminpass_blob =

encrypted_adminpass_blob.getAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB);

System.out.println("\nAdmin credentials are sealed");

//In practice: sealed_adminname_blob would be saved to a file.

took_time= System.currentTimeMillis() - current_time;

System.out.println("\nAdmin Registration phase took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

/***

* *

* Admin Verification *

* *

**

*/

175

Verification

System.out.println("**");

System.out.println("******* Admin Verification ************");

System.out.println("***\n");

/**/

System.out.println("\ni) UnSeal the admin authentication credentials.\n");

/**/

TcIEncData adminname_unseal_object = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(adminname_unseal_object);

adminname_unseal_object.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

sealed_adminname_blob);

TcBlobData unsealed_adminname_blob =

adminname_unseal_object.unseal(MasterKey);

TcIEncData adminpass_unseal_object = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(adminpass_unseal_object);

adminpass_unseal_object.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

sealed_adminpass_blob);

TcBlobData unsealed_adminpass_blob =

adminpass_unseal_object.unseal(MasterKey);

String tempadmin = unsealed_adminname_blob.toStringASCII();

tempadmin = tempadmin.replaceAll("(^\\[)","");

tempadmin = tempadmin.replaceAll("\\].*$","");

adminname = tempadmin.split(",\\s");

tempadmin = unsealed_adminpass_blob.toStringASCII();

tempadmin = tempadmin.replaceAll("(^\\[)","");

tempadmin = tempadmin.replaceAll("\\].*$","");

adminpass = tempadmin.split(",\\s");

176

Verification

/**/

System.out.println("\nii) Admin authentication.\n");

/**/

System.out.print("Enter number of admins to authenticate (>2): ");

int M = Integer.parseInt(in.readLine());

if(M<2) M=2;

String username, password, match;

match="F";

for (int i=0; i<M; i++) {

System.out.print("Enter admin username: ");

username = in.readLine();

System.out.print("Enter admin password: ");

password = in.readLine();

for(int j=0; j<N; j++){

if(username.equals(adminname[j]) && password.equals(adminpass[j])){

j=N;

match="T";

}

}

if(match.equals("F")) {

System.out.println("\n Incorrect username or password,"

+" please re-enter them.");

i--;

}

match="F";

}

System.out.println("\nAdmin credentials unsealed and then admins verified"+

" successfully.\n Username:"+

unsealed_adminname_blob.toStringASCII());

System.out.println("\nPassword:"+unsealed_adminpass_blob.toStringASCII());

took_time= System.currentTimeMillis() - current_time;

System.out.println("\nAdmin verification phase took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

/**

* *

* Initalize Global Domain Credentials (i_g, k_g, and pkl_g) *

* *

177

Verification

*/

System.out.println("***");

System.out.println("** Initalize Global Domain Credentials **");

System.out.println("** (i_g, k_g, and pkl_g) ****************");

System.out.println("***\n");

/**/

System.out.println("\ni) Create global domain credentials.\n");

/**/

TcBlobData i_g = tpm.getRandom(128);

TcBlobData k_g = tpm.getRandom(128);

System.out.print("Enter number of device in the global domain: ");

int N_G = Integer.parseInt(in.readLine());

String [] pkl_g = new String[N_G];

for (int i=0; i<N_G; i++) {

System.out.print("\nEnter Device "+i+" public key: ");

pkl_g[i] = in.readLine();

}

System.out.println("\nGlobal domain credentials are created "+

"(k_g, i_g, and pkl_g).");

System.out.println("\nk_g has the following value:\n"+k_g.toHexString());

System.out.println("\ni_g has the following value:\n"+i_g.toHexString());

System.out.println("\npkl_g has the following value:\n"+

Arrays.toString(pkl_g));

/**/

System.out.println("\nii) Seal global domain credentials.\n");

/**/

TcIEncData encrypted_k_g_blob = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(encrypted_k_g_blob);

encrypted_k_g_blob.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

k_g);

encrypted_k_g_blob.seal(MasterKey, k_g, null);

TcBlobData sealed_k_g = encrypted_k_g_blob.getAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

178

Verification

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB);

System.out.println("\n k_g is sealed\n");

//In practice: sealed_k_g would be saved to a file.

TcIEncData encrypted_i_g_blob = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(encrypted_i_g_blob);

encrypted_i_g_blob.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

i_g);

encrypted_i_g_blob.seal(MasterKey, i_g, null);

TcBlobData sealed_i_g = encrypted_i_g_blob.getAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB);

System.out.println("\n i_g is sealed\n");

//In practice: sealed_i_g would be saved to a file.

TcBlobData pkl_g_blob = TcBlobData.newString(

Arrays.toString(pkl_g),true,"ASCII");

TcIEncData encrypted_pkl_g_blob = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(encrypted_pkl_g_blob);

encrypted_pkl_g_blob.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

pkl_g_blob);

encrypted_pkl_g_blob.seal(MasterKey, pkl_g_blob, null);

TcBlobData sealed_pkl_g_blob =

encrypted_pkl_g_blob.getAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB);

System.out.println("\npkl_g is sealed");

//In practice: sealed_pkl_g_blob would be saved to a file.

took_time= System.currentTimeMillis() - current_time;

System.out.println("\nInitialize global domain credentials took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

179

Verification

/**

* *

* Join a device to the Global Domain: this part mainly covers the master *

* controller steps. The client steps would follow the same steps, *

* similar to the ones provided. *

* *

*/

System.out.println("**");

System.out.println("** Join a device to the Global Domain **");

System.out.println("**\n");

/**/

System.out.println("\ni) Client sends a join domain request associated with a nonce");

System.out.println(" (nonce_from_client) and the global domain identifier i_g.");

System.out.println(" As we do not have a real client communication, we created");

System.out.println(" the nonce locally. In practice these values will be");

System.out.println(" communicated from client to the master application.\n");

/**/

TcBlobData nonce_from_client = tpm.getRandom(128);

TcBlobData i_g_from_client = i_g;

if(!i_g_from_client.equals(i_g)){

System.out.print("\nSend an error message to client device");

System.exit(0);

}

/**/

System.out.println("\nii)Mutual Authentication.");

System.out.println("This step include the usage of certifykey function");

System.out.println("to generate matster application key certicate bound with S_M\n");

/**/

TcBlobData nonce_from_master = tpm.getRandom(128);

TcTssValidation MasterKeyValidation = new TcTssValidation();

MasterKeyValidation.setExternalData(nonce_from_client);

AikSignKey.loadKey(srkkey);

MasterKey.loadKey(srkkey);

MasterKeyValidation = MasterKey.certifyKey(AikSignKey, MasterKeyValidation);

180

Verification

System.out.println("\nThe MasterKey Validation includes the certified\n"+

"master application key with S_D:\n"+

MasterKeyValidation.getValidationData().toHexString());

//Sign nonce_from_master using AikSignKey

TcIHash hash_object = context_.createHashObject(

TcTssConstants.TSS_HASH_SHA1);

TcTpmDigest master_nonce_digest = new TcTpmDigest(

nonce_from_master);

hash_object.setHashValue(

master_nonce_digest.getDigest());

TcBlobData sign_master_message =

hash_object.sign(AikSignKey);

/**/

System.out.println("\niii) The master controller then sends the MasterKeyValidation,");

System.out.println(" nonce_from_master, and its signature (sign_master_message) to the");

System.out.println(" client device. The client device can then do the verifications.");

System.out.println(" We ommit some of the client side steps for conveniance.\n");

/**/

match="F";

for (int i=0; i<N_G; i++) {

if(ClientKey.getPubKey().equals(pkl_g[i])){

match="T";i=N_G;

}

}

match="T"; //Temporarily for the purpose of prototyping

if(match.equals("F")){

System.out.print("\nERROR: Client is not part of the Global Domain");

}

/**/

System.out.println("\niv) Encrypt k_g using ClientKey and send it over to");

System.out.println(" client application.\n");

/**/

TcIEncData k_g_unseal_object = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(k_g_unseal_object);

181

Verification

k_g_unseal_object.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

sealed_k_g);

TcBlobData unsealed_k_g_blob = k_g_unseal_object.unseal(MasterKey);

TcIEncData encrypted_k_g_object_to_client = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_BIND);

policy.assignToObject(encrypted_k_g_object_to_client);

encrypted_k_g_object_to_client.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

unsealed_k_g_blob);

encrypted_k_g_object_to_client.seal(ClientKey, unsealed_k_g_blob, null);

// send the encrypted_k_g_object_to_client to client.

took_time= System.currentTimeMillis() - current_time;

System.out.println("\nJoin device to the global domain took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

/**

* *

* At client device: k_c Generation and Sealing *

* *

*/

System.out.println("**");

System.out.println("****** At client device: ***************");

System.out.println("****** k_c Generation and Sealing *****");

System.out.println("**\n");

TcBlobData k_c = tpm.getRandom(128);

TcIEncData encrypted_k_c_blob = context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(encrypted_k_c_blob);

encrypted_k_c_blob.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

182

Verification

k_c);

encrypted_k_c_blob.seal(MasterKey, k_c, null);

TcBlobData sealed_k_c =

encrypted_k_c_blob.getAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB);

System.out.println("\n k_c is sealed");

took_time= System.currentTimeMillis() - current_time;

System.out.println("\nk_c generation and sealing took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

/**

* *

* Remove Device *

* *

*/

System.out.println("**");

System.out.println("******* Remove Device *****************");

System.out.println("**\n");

// Admins must be authenticated as explained earlier -

// we omit it to avoid repetation

TcIEncData pkl_g_unseal_object =

context_.createEncDataObject(

TcTssConstants.TSS_ENCDATA_SEAL);

policy.assignToObject(pkl_g_unseal_object);

pkl_g_unseal_object.setAttribData(

TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,

TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB_BLOB,

sealed_pkl_g_blob);

TcBlobData unsealed_pkl_g_blob = pkl_g_unseal_object.unseal(MasterKey);

String temp_pkl_g = unsealed_pkl_g_blob.toStringASCII();

temp_pkl_g = temp_pkl_g.replaceAll("(^\\[)","");

temp_pkl_g = temp_pkl_g.replaceAll("\\].*$","");

pkl_g = temp_pkl_g.split(",\\s");

183

Verification

// The master controller instructs the client device to remove ClientKey from

// its protected storage. It then continues with these steps.

match="F";

String more="Yes";

String pk_device_remove = null;

while(more.equals("Yes")){

System.out.print("Enter client device public key to be removed : ");

pk_device_remove = in.readLine();

for (int i=0; i<N_G; i++) {

if(pk_device_remove.equals(pkl_g[i])){

pkl_g[i] = null;

System.out.println("\nClient device is removed.\n");

match="T";

i=N;

}

}

if(match.equals("F")){

System.out.println("\nClient device does not exists.\n");

}else{match="F";}

System.out.print("If you want to remove more devices enter Yes : ");

more = in.readLine();

}

took_time= System.currentTimeMillis() - current_time;

System.out.println("\ndevice removal took: "+ took_time +" milliseconds\n");

current_time = System.currentTimeMillis();

} catch(Exception e) {

System.out.println(e.getMessage());

throw e;

} finally {

context_.closeContext();

}

}

184

Verification

}

#

A.4 Execution Output

The following is the result of executing the provided program. We captured the

execution output from Unix command prompt and copy it as follows.

#

java muntaha

**

******* Initialization steps **********

**

i) Create context and tpm objects.

ii) Define the policy object, set the secret in the

policy, and then assign it to the tpm object.

iii) Retrive the tpm’s SRK and assign it to the defined

policy.

iv) Create a composite PCR object S_M which will be

used latter to bind the usage of the master

application key with it.

v) Initialize the master application key object and

assign its policy.

vi) Initialize the master application key pair

(PuM, PrM) pointed to by MasterKey object. We

then load the key.

Initialize the AIK key object, assign its policy,

create it, and then load it.

185

Verification

The public part of the AikSignKey:

00 00 00 01 00 01 00 02 00 00 00 0c 00 00 08 00

00 00 00 02 00 00 00 00 00 00 01 00 82 dc 72 9e

54 ce 3b fa ac bb c9 7a 38 39 19 10 89 96 99 55

71 0f be fd 96 c7 2c 06 7d 09 47 1a 1c 1a 03 e1

45 89 81 f8 9a 75 2c e8 b6 26 27 5e 30 76 9d 3e

53 62 d5 08 e6 ec 17 2d d1 d5 16 22 20 ad 82 8f

bf 62 03 61 00 6e 4a 8d 5e 0b 17 0b 4c d3 b9 f0

af a3 7b 26 ac de 40 f3 d3 51 e8 62 a2 8c 5b ac

bb d0 07 ed fd 33 ce 86 7a 46 74 f3 a9 80 cb 20

17 bf 26 d3 db 8c bc df 3f c7 05 d2 d3 5d 3e 9b

d9 ee 46 4a 97 a7 58 42 a4 7e 01 5d 63 be 34 30

e7 c2 ce 1f 71 f1 cf 4b dd 07 fc 43 58 a3 4b d9

32 bd cd f4 7d a5 cd a8 d2 c8 95 e1 09 da 7c 44

56 62 cc 62 23 b1 a3 28 28 a8 49 48 b1 0c 6e ea

3f d2 d9 ac 2c 02 a2 c6 dd e3 48 a9 a5 d4 09 f2

12 44 80 74 87 86 56 52 ec fd 55 98 c1 ff 2f fa

97 dc 5f 5a 2b 84 91 94 1f f8 f4 17 e1 b6 e1 32

be a4 3c dc 07 cd 52 e6 a7 9a 21 63

The public part of the MasterKey:

00 00 00 01 00 03 00 01 00 00 00 0c 00 00 08 00

00 00 00 02 00 00 00 00 00 00 01 00 85 31 02 9f

ae 81 c0 e1 7b e9 75 dc 88 41 7c 09 2f 69 7a 1c

ea 13 9c e6 8f 41 1d 54 61 dc b3 a8 9e 5b d9 f7

c3 30 b4 60 01 74 1c b8 25 ad 48 9d 96 bf 4e a4

b9 52 64 43 07 dd d3 8e b2 67 c6 2b 1a 01 57 52

9a 7f 25 3c 07 6e b4 58 4a f7 35 a4 9e f3 06 e1

01 55 3a 66 0b b0 91 7c c7 15 2e f7 86 ef 5e cb

ef b8 e2 f9 a9 e8 40 cd 54 6c 03 e5 41 17 f9 66

ae 11 13 dd bf 2a 0c 64 26 93 3c 80 2e c0 e2 98

a5 0b 26 3c 0f 93 c8 62 df c2 69 1c 37 8c 2c e0

eb 98 1c ee 5f 83 d3 7a e2 ea c2 47 e4 59 81 22

c0 d6 25 cb 25 9e 59 f8 bd d5 6a 21 90 0e 2a 4f

05 22 99 85 49 67 88 89 76 91 46 cd 8c 03 d7 f8

6c 74 ec e7 97 70 f6 61 8c ab 6c 5b b1 97 01 f6

e4 2f 2d b4 71 24 44 df 89 cb ae 51 28 c8 34 6c

fc 30 52 28 13 71 5c 9c d2 51 1c 50 9d e5 c7 80

f7 ad 80 f3 fd 07 8b 5a c0 fc d7 37

Master initialization phase took: 6425 milliseconds

**

186

Verification

******* Client Initialization *********

******* at Client Device *********

**

i) Create a composite PCR object S_D which will be

used latter to bind the usage of the client

application key with it

ii) Initialize the client application key object and

assign its policy.

iii) Initialize the master application key pair

(PuM, PrM) pointed to by MasterKey object.

We then load the key.

Client initialization phase took: 13082 milliseconds

**

******* Admin Registration ************

**

i) Retrive admins authentication credentials.

Enter number of admins (must be more than one): 4

Enter admin username: user1

Enter admin password: pass1

Enter admin username: user2

Enter admin password: pass2

Enter admin username: user3

Enter admin password: pass3

Enter admin username: user4

Enter admin password: pass4

ii) Seal the retrived authentication credentials.

Admin credentials are sealed

187

Verification

Admin Registration phase took: 25481 milliseconds

**

******* Admin Verification ************

i) UnSeal the admin authentication credentials.

ii) Admin authentication.

Enter number of admins to authenticate (>2): 3

Enter admin username: user1

Enter admin password: pass4

Incorrect username or password, please re-enter them.

Enter admin username: user1

Enter admin password: pass1

Enter admin username: user2

Enter admin password: pass2

Enter admin username: user3

Enter admin password: pass3

Admin credentials unsealed and then admins verified successfully.

Username:[user1, user2, user3, user4]

Password:[pass1, pass2, pass3, pass4]

Admin verification phase took: 24047 milliseconds

** Initalize Global Domain Credentials **

** (i_g, k_g, and pkl_g) ****************

i) Create global domain credentials.

Enter number of device in the global domain: 3

Enter Device 0 public key: pub0

188

Verification

Enter Device 1 public key: pub1

Enter Device 2 public key: pub2

Global domain credentials are created (k_g, i_g, and pkl_g).

k_g has the following value:

88 81 84 be 3b 6a e6 1f 60 5a 83 94 41 36 57 18

7a 59 22 1a d4 22 51 64 3e 54 5c fa 37 ab a3 07

35 4e 6c db af 22 0c c2 38 ed 35 fb f3 9c c2 c0

fe e7 7d 1b 25 ed e9 61 c3 a4 48 92 d3 4a be 31

e9 31 99 e4 d9 2f 05 4a 7a b8 95 01 57 b7 20 c6

f2 8b 2e 58 49 31 49 38 7a 23 06 ae 6b 9f ae 0f

49 d5 cf 23 5c 19 4f e7 98 27 b9 74 63 11 e9 03

3d 6f 6f 06 9a 46 8d bd e0 e3 63 bc 32 44 e1 19

i_g has the following value:

7b 81 79 20 cc 16 21 c6 a1 3d 70 79 f3 a6 d5 db

15 06 a9 d0 0a 12 0e 3e 86 e5 d2 32 e6 0e cc d1

77 56 e0 75 97 13 20 d4 41 9c de f2 13 9e 11 76

95 3b 4e b7 b0 72 3c 51 b4 2d ee 0f 7c eb 4d 41

ea 8b 5b b3 71 fc ba 10 86 22 21 2e 3b ae ba 7a

92 6b 4d a2 0b 4b 09 bd 2e 93 51 ce 68 7a 4d d0

3b b8 50 f6 ba 0d 19 e2 9d 9e 3d 7a c1 29 2f cd

05 1c 4a 87 06 27 21 ec 40 b0 7a 32 32 63 d4 93

pkl_g has the following value:

[pub0, pub1, pub2]

ii) Seal global domain credentials.

k_g is sealed

i_g is sealed

pkl_g is sealed

Initialize global domain credentials took: 12373 milliseconds

189

Verification

**

** Join a device to the Global Domain **

**

i) Client sends a join domain request associated with a nonce

(nonce_from_client) and the global domain identifier i_g.

As we do not have a real client communication, we created

the nonce locally. In practice these values will be

communicated from client to the master application.

ii)Mutual Authentication.

This step include the usage of certifykey function

to generate matster application key certicate bound with S_M

The MasterKey Validation includes the certified

master application key with S_D:

6f 33 8e 85 d1 7e b0 13 da 49 10 47 d6 73 43 ca

35 3d 70 ea 03 d2 d4 49 ea e9 84 d1 63 56 96 58

0d 31 68 08 64 c7 4c a0 d6 44 30 01 46 aa c7 fc

35 00 c6 a6 cc 9f 03 50 08 4b 7f 47 ae e6 ab 6a

63 3a 35 ea 62 6a aa 87 52 58 bb 52 31 92 14 11

0d dc 3b 22 30 df 2a 1f 20 4e e4 f8 50 dd 26 ef

51 66 2f 04 88 82 9a 8a 2d 33 ee 0f 30 d4 6c cd

ab 28 ac 50 89 1b 9e db 1d 1e 78 07 4e 32 33 0e

a2 0a 34 96 2f 6e 99 f8 67 21 c1 d8 49 72 a3 93

48 5d b2 24 30 b1 b8 ec 33 d5 ae 87 3f 50 84 1b

32 32 46 d1 41 a7 cf f1 19 18 86 e7 41 3c d2 db

59 60 0f ec 59 35 ef d8 ea 29 52 9f f8 b3 09 3a

5d cb 99 91 91 ab 20 1e de 8d a3 1a 02 4b a6 13

45 91 23 15 be b4 be 97 9c 9a 4d cd 24 ac d9 b0

18 28 15 93 a0 e0 4e 96 3e da a4 53 67 a0 18 d9

62 5d 99 a3 bb 5a 81 64 1d d4 10 e2 48 4d 15 e2

iii) The master controller then sends the MasterKeyValidation,

nonce_from_master, and its signature (sign_master_message) to the

client device. The client device can then do the verifications.

We ommit some of the client side steps for conveniance.

iv) Encrypt k_g using ClientKey and send it over to

190

Verification

client application.

Join device to the global domain took: 6664 milliseconds

**

****** At client device: ***************

****** k_c Generation and Sealing *****

**

k_c is sealed

k_c generation and sealing took: 804 milliseconds

**

******* Remove Device *****************

**

Enter client device public key to be removed : pub2

Client device is removed.

If you want to remove more devices enter Yes : No

device removal took: 13203 milliseconds

#

191

Verification

192

