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Abstract

Accurate monitoring of transverse beam emittance is a critical aspect in the optimization of

a particle collider, as it directly influences luminosity, the primary figure of merit for such a

machine. At the Large Hadron Collider (LHC), transverse emittance measurements are cur-

rently accomplished using synchrotron radiation telescopes (BSRTs) and wire scanners (BWSs).

Complementing the existing diagnostics with a novel instrument would be beneficial for relia-

bility and accuracy. The synchrotron radiation interferometer (BSRI) emerges as a promising

candidate. Similarly to the BSRT, the BSRI relies on a non-invasive optical technique which

can theoretically provide an absolute beam size measurement.

This thesis provides a comprehensive overview of the technique and examines its applicability

to the LHC synchrotron radiation source. Extensive numerical simulations are conducted to

characterize the emitted synchrotron radiation field and its evolution throughout the di↵erent

stages of the accelerator cycle. Particular emphasis is placed on the spatial coherence properties

of the light, as they are the primary target of interferometric measurements. These studies

confirmed the feasibility of using interferometry to measure the LHC transverse beam size. The

Van Cittert and Zernike theorem, a fundamental result in classical optics, is applicable with

minor corrections that consider the source’s specific characteristics.

The existing BSRI test setup underwent refurbishment and upgrades based on the new find-

ings, and the simulation results were systematically benchmarked during the 2022 run of the

LHC. The experimental campaign validates the expected performance of the interferometer at

injection energy. Discrepancies are identified at the LHC flat-top energy of 6.8 TeV, where mea-

surements are more challenging due to the increased complexity of the synchrotron radiation

source. Although the discrepancies are not entirely explained, a semi-empirical model is devel-

oped to correct for the systematic loss of contrast observed in interference fringes. The resulting

system achieves the 5% emittance accuracy target required by the machine operation. Absolute

measurements are possible at injection energy whereas a calibration with the wire scanner is



necessary at flat-top energy. The ultimate limitation of the interferometer remains the di↵rac-

tion limit, determined by the operating wavelength within the visible domain. This limitation

does not impact the measurement of standard LHC beams, with an emittance of 2.5 µm, as the

system’s sensitivity is smaller than the corresponding beam size at both injection and flat-top

energy. However, the di↵raction limit does a↵ect the interferometer’s performance at flat-top

energy for beams with emittance smaller than 1.5 µm. In this regime, the BSRI can still be used

to monitor the relative change of beam size or provide an estimation of the beam size only if

the shape of the transverse beam distribution is known a priori.

A redesign of the system, focused on reducing the operating wavelength to the ultraviolet domain,

remains the sole solution for improving sensitivity and allowing accurate measurements of the

smallest bunches without requiring assumptions about their shape.
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Chapter 1

Introduction

An overview of the Large Hadron Collider (LHC) and its typical operational cycle is presented.

The fundamental principles of transverse beam dynamics are reported, introducing the concepts

of transverse beam size and emittance and discussing their relationship in circular accelerators.

The present status of transverse diagnostics at the LHC is examined, emphasizing the need

for additional transverse diagnostic systems. Synchrotron radiation interferometry (BSRI) is

presented as a promising candidate for expanding the existing family of operational instruments.

The last section states the objective of this thesis to assess the performance of the BSRI as a

prospective operational instrument for precise beam size measurements at the LHC.



2 CHAPTER 1. INTRODUCTION

1.1 The Large Hadron Collider

The European Organization for Nuclear Research (CERN) is a leading institution in the field

of particle physics. The laboratory hosts the world’s largest accelerator complex [1]. The

complex accelerates proton beams to the record energy of 6.8TeV. The process involves many

machines [2, 3] and starts with the acceleration of negative hydrogen ions (H�) in a linear

accelerator, the LINAC4, to an energy of 160MeV. The hydrogen ions are then stripped and

injected into a four-ring synchrotron, the Proton Synchrotron Booster (PSB), where the resulting

proton beams accelerated to 2GeV. The acceleration continues with other two machines, the

Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS), which boost the beam

energy to 26GeV and 450GeV respectively. Finally, particles are injected into the Large Hadron

Collider (LHC) where two counter-rotating beams are accelerated to the flat-top energy of

6.8TeV and collide in four interaction points where as many experiments (ATLAS, ALICE,

CMS, and LHCb) study the reactions induced by the particle collisions [4]. When the LHC is in

this stationary state, the injector complex is available to serve a multitude of other experimental

facilities, whose layout is shown in Fig. 1.1a.

(a) (b)

Figure 1.1: The CERN accelerator complex (a) and the LHC layout (b).

The LHC is a synchrotron that consists of eight sectors. Each sector comprises an arc where

the main dipoles and quadrupoles bend and transversely confine the particle beams. The four

main LHC experiments and most of the equipment needed to operate the machine are located

in the straight sections connecting two consecutive arcs. The structure of the LHC is depicted

in Fig. 1.1b. The machine layout at the Interaction Point 4 (IP4) will be discussed in more
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detail in Chapter 3 as the LHC synchrotron radiation monitors and the majority of the beam

instrumentation are installed at this location.

Parameter Value Unit
Circumference 26659 m
Beam energy 450 ÷ 6800 GeV
RF frequency 400 MHz
Bunch spacing 25 ns
Bunch number 2808
Bunch intensity 1.5 ⇥ 1011 protons
Nominal emittance 2.5 µm
Peak luminosity 2 ⇥ 1034 cm�2s�1

Table 1.1: Main parameters of the LHC machine and beams.

As the world’s most powerful collider, the LHC features unique machine parameters, listed

in Tab. 1.1. The instantaneous luminosity L is one of the most important figures of merit. It is

proportional to the rate of events dN/dt the collider can produce

L , 1

�e

dN

dt
. (1.1)

The normalization to the event cross-section �e makes the luminosity a general parameter of the

machine, independent of any specific collision reaction. Therefore, the luminosity quantifies the

capability of the accelerator to produce collision events. Machine optimization primarily involves

the constant monitoring and maximization of luminosity. In a simplified collision model [5, p.

712], the luminosity can be related to other fundamental beam parameters

L =
frevN1N2Nbunch

4⇡�x�y
(1.2)

where frev is the machine revolution frequency, Ni the particle populations of the two colliding

bunches, Nbunch the total number of colliding bunches and �x,y the transverse beam size at the

collision point. Accurate knowledge of the transverse beam size is of paramount importance for

machine performance, as it has a direct impact on luminosity. Beam size measurements are also

more versatile than direct luminosity measurements as they allow monitoring the quality of each

beam separately at any stage of the accelerator cycle, without necessarily requiring collisions.

Hence, transverse profile measurements stand as an essential aspect of beam diagnostics.
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1.1.1 The LHC cycle

A typical cycle of the LHC consists of an injection stage, an energy ramp, and a long period

at high energy, known as the flat-top, during which the machine is essentially in stationary

conditions and collisions occur at the experimental points. Figure 1.2 displays the evolution of

energy and beam intensity during a typical fill for physics production.
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Figure 1.2: An example of an LHC cycle of a typical fill for physics.

The injection process takes approximately 20 minutes, during which trains of bunches from

the SPS are injected to fill both beams with a population of up to 2808 bunches per beam,

arranged along the ring according to specific filling schemes [6]. Measuring the transverse size

at injection is important to confirm the preservation of beam quality from the injectors and to

establish the initial reference for the subsequent acceleration [7]. Once the machine is filled, the

energy ramp starts, lasting approximately another 20 minutes. At the end of the ramp, the beam

energy stabilizes at the flat-top value, the beams are adjusted and collisions start. Throughout

the flat-top phase, the beam population is depleted by collisions and losses, resulting in a decrease

in luminosity. After typically 10 hours, the beams are dumped, and a new cycle begins.

The injection energy is fixed at 450GeV, corresponding to flat-top value of the SPS. Over

the years, the flat-top energy has been progressively increased through hardware upgrades [8],

mainly by increasing the magnetic field of the main dipoles. In 2010, the commissioning value

was 3.5TeV, and starting from the beginning of run 3 in 2022, the flat-top energy is 6.8TeV. The

flat-top energy of 6.8TeV is used as the default value in this thesis, unless specified otherwise.

However, it should be noted that the performance of the SR monitors above 4TeV is slightly
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a↵ected by changes in beam energy. All considerations reported for the 6.8TeV value are

applicable to the 6.5TeV flat-top of run 2 (2015-2018) and will remain valid in case of future

upgrades to reach the LHC design energy of 7TeV.

1.2 Transverse beam dynamics

In an accelerator beam, the transverse distribution of particles evolves as they propagate through

the magnetic lattice of the machine. As beam size measurements are typically performed at only

a few locations along the ring, it is helpful to introduce general quantities that allow inferring

the beam transverse distribution at any point in the machine.

(a)

′

(b)

Figure 1.3: In (a), coordinate frame to study the particle transverse dynamics and, in (b), Twiss
ellipse of a single particle.

The motion of particles in the transverse plane of a synchrotron is governed by the magnetic

field produced by the several magnets comprising the machine’s lattice. Charged particles are

subject to the Lorentz force

F = qv ⇥ B, (1.3)

where q is the particle charge, v the particle velocity and B the static magnetic field. Let

us consider the motion of a single particle, adopting the coordinate frame shown in Fig. 1.3a.

Dipole magnets deflect the particle, causing it to follow a closed trajectory. The nominal particle

is defined as the ideal particle which is subject only to the dipole magnets deflections. The

corresponding trajectory is called the nominal orbit of the machine, which is represented by

the dotted line in the figure. The nominal orbit defines the centre of the transverse coordinate
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system. Quadrupole magnets are used to confine the transverse motion of particles around the

nominal orbit and maintain a stable beam. The transverse state of a particle is defined by its

coordinates in the transverse phase space (u, u0), being u the particle’s transverse position (in

either the x or y direction) and u
0 = du

ds its angle, relative to the nominal orbit. Both of these

quantities vary along the orbit as functions of the curvilinear coordinate s. The dynamics of the

single particle in the transverse plane follows the Hill’s equation [9]

u
00(s) +K(s)u(s) = 0, (1.4)

a generalization of the harmonic oscillator, in which the strength factor K(s) is not constant

but depends on the gradient of the local magnetic field

8
>><

>>:

Kx = Gx
p/q + 1

⇢2 ,

Ky = � Gy

p/q ,

(1.5)

being Gx = @By

@x and Gy = @Bx
@y the field gradients, p/q the momentum to charge ratio of the

particle and ⇢ the local bending radius of the nominal orbit. The general solution of Eq. 1.4 is

u(s) =
p
"

p
�(s) cos(�(s) + �(0)), (1.6)

with

�(s) =

Z s

0

1

�(s)
ds. (1.7)

The solution of the Hill’s equation describes an oscillatory motion of the particle around the

nominal orbit with a variable amplitude �(s), determined by the strength of the focusing fields.

The phase advance of the transverse oscillations is quantified by �(s). The integral of �(s) over

one full revolution along the ring defines the tune of the accelerator Q , �(L)/(2⇡). The two

free parameters that scale the oscillation amplitude and the initial phase of the oscillations are

" and �0, respectively. The transverse motion of a particle around the nominal orbit is known

as betatron oscillations, named after the class of accelerator in which it was first studied.

The Hill’s equation admits a constant of motion, referred to as the Courant-Snyder invariant

" = �(s)u02 + 2↵(s)uu0 + �(s)u2 (1.8)
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where the parameters (↵,�, �), collectively called Twiss parameters, are related as

8
>><

>>:

↵(s) , ��0(s)
2 ,

�(s) , 1+↵2

� .

(1.9)

Equation 1.8 can be conveniently represented as an ellipse in the transverse phase space, called

the Twiss ellipse of the single particle. The relevant points of the Twiss ellipse are marked in

Fig. 1.3b. The transverse oscillation of the particle is fully described by this curve, which covers

all possible position-angle pairs the particle can have during its motion around the ring. The

phase advance �(s) defines the angular velocity at which the particle moves around the Twiss

ellipse.

So far, the treatment has been limited to the motion of a single particle. Since the Twiss

functions depend on the machine lattice and not on the individual particle, the Twiss ellipse

is similar for all particles inside the beam. Each single-particle ellipse has a specific area,

proportional to ", which is the free parameter that scales the amplitude of the oscillations.

The representation of the particle beam in the transverse phase space is a superposition of

many single-particle ellipses, with similar shape but di↵erent areas. In most practical cases, the

particle distribution in the transverse phase space can be approximated by a bivariate Gaussian

defined by the covariance matrix

⌃ =

0

B@
�

2
u �uu0

�uu0 �u02

1

CA . (1.10)

The standard deviations of the distribution correspond to the beam size � , �u, which describes

the spread of positions in the transverse direction, and the beam divergence �
0 , �u0 , which

characterizes the spread of angles. The covariance �uu0 represents the correlation between the

spatial and angular components of the distribution. The geometric emittance of the beam is

defined as the square root of the determinant of the covariance matrix

"g =
p
det⌃ =

q
�2

u�
2
u0 � �

2
uu0 . (1.11)

The extended beam can be described in the phase space as the specific Twiss ellipse with an

area given by its geometric emittance A = ⇡"g. From the representation of the Twiss ellipse

shown in Fig. 1.3b, one can relate the geometric emittance with the beam size and divergence,
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through the Twiss parameters 8
>><

>>:

�(s) =
p
�(s)"g,

�
0(s) =

p
�(s)"g.

(1.12)

These relationships are fundamental to transverse beam dynamics as they allow the determina-

tion of beam size and divergence at any point along the orbit, knowing the geometric emittance

of the beam and the values of the machine Twiss functions at that location.

The model outlined in this section describes an ideal machine consisting of perfect dipoles and

quadrupoles. Real machines are characterized by higher-order field components due to magnetic

multipoles or imperfections in the magnetic field. These higher-order components introduce

additional nonlinear terms in the Hill’s equation, which perturb the phase portrait of particles at

high amplitudes [10]. These e↵ects have a significant impact on the beam, primarily influencing

the stability of the beam and causing beam losses. However, since the trajectories inside the

beam core are only marginally a↵ected by the field nonlinearities, the linear approximation

remains a valid model for describing the beam transverse distributions.

A more significant limitation of this model is the assumptions that all particles in the beam

have the same energy. Real accelerator beams are characterised by a finite energy spread and

the mean beam energy changes during the acceleration. The next two paragraphs discuss the

scenario of non-monochromatic beams and introduce a more convenient definition for the beam

emittance in presence of acceleration.

1.2.1 Dispersion

Let us consider a particle with a momentum p = p0 +dp, slightly o↵ the nominal one p0. It can

be shown [9] that the equation of motion for this particle becomes

u
00(s) +K(s)u(s) =

1

⇢

dp

p0
, (1.13)

which is a nonhomogeneous Hill’s equation with a constant forcing term induced by the mo-

mentum error. Its solution is the sum of the betatron oscillation motion and a term uD(s),

due to the o↵-momentum of the particle. This additional term is conventionally written as

uD(s) , D(s) dp /p0 where D(s) is defined as dispersion function and satisfies the equation

D
00(s) +K(s)D(s) =

1

⇢
. (1.14)
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Since the o↵-momentum term influences the trajectory of each particle, the transverse size of

the beam is a↵ected by dispersion. The expression for the beam size of Eq. 1.12 is amended as

� =
q

hubetatroni2 + hudispersioni2 =

s

"g� +D2
�2

p

p
2
0

, (1.15)

including a positive contribution due to the beam momentum spread �p, defined as the standard

deviation of the o↵-momentum distribution.

The correction for the momentum spread has an intuitive explanation in the transverse

phase space. An o↵-momentum particle oscillates around an orbit di↵erent from the nominal

one, because the dipole deflection is proportional to the particle momentum. This transverse

displacement leads to a horizontal shift of the particle ellipse in the phase space. As a result, the

beam phase portrait is a convolution of the betatron and dispersion terms, hence the addition in

quadrature of Eq. 1.15. Since this e↵ect originates from dipolar fields, the dispersion correction

is typically only relevant on the horizontal plane of the machine, where most of the bending

occurs.

1.2.2 Adiabatic damping and normalized emittance

The geometric emittance defined by Eq. 1.11 is not suitable as invariant of motion when particles

are accelerated. The Radio Frequency cavities boost the particle momentum only along the

longitudinal direction, thus reducing the particle angle u
0. The beam distribution in the phase

space shrinks, and the geometric emittance decreases as the particle energy increases. This

phenomenon is commonly referred to as adiabatic damping, even though it does not involve any

dissipative forces. The normalized emittance is introduced [5, p.345] to take into account the

adiabatic damping

"n , �rel�rel"g, (1.16)

with �rel and �rel the particle relativistic factors. The increasing product of �rel�rel compensates

for the reduction in geometric emittance. Since the normalised emittance is independent of the

beam energy, it is a more convenient quantity to describe the transverse beam distributions of

accelerate beams.

Throughout this thesis, the beam emittance is always assumed to be the normalized emit-

tance, although it should be noted that the geometric emittance is necessary to calculate the

beam size and divergence using Eq. 1.12. As an area in phase space, emittance is technically a
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product of length and angle. However, it is common practice, adopted in the following, to omit

the angular component and express emittance values in units of µm, aligning with the typical

range of normalized emittance at LHC.

1.3 Transverse diagnostics at the LHC

At the LHC, two families of operational instruments are currently used for transverse beam

size measurements, wire scanners and synchrotron radiation telescopes. The two devices are

complementary and their combined use ensures reliable and accurate transverse diagnostics of

the beam.

In addition to these beam instrumentation systems, the beam size information can also be

obtained from the data recorded by the four LHC experiments.

(a)

(b)

Figure 1.4: Working principle of (a) wire scanners and (b) synchrotron radiation telescopes.

Wire scanner (BWS)

A wire scanner (BWS) is an interceptive device used to measure the transverse beam profile [11].

It consists of a 30 µm thick carbon wire that traverses the beam, generating a shower of secondary

particles. These secondary particles are then detected by a downstream scintillator. The shower

intensity is proportional to the number of particles intercepted by the wire. Thus, the intensity

of secondaries as a function of the wire position provides a reliable estimate of the transverse
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beam profile, which can be fitted to determine the transverse beam size.

Wire scanners provide an absolute measurement of the beam size and can be used at any stage

of the accelerator cycle and the detection system, based on a plastic scintillator, is su�ciently

fast to allow bunch-by-bunch measurements. The instrument is therefore adopted as a reference

for the LHC transverse size measurements. The primary limitation of wire scanners is their

maximum operating beam intensity [12]. The beam-wire interaction generates losses that can

cause the superconducting magnets in the surrounding area to loose their superconducting status

and induce a beam dump. The operational limit for the device is currently set to 12 nominal

bunches at flat-top energy. This threshold precludes the continuous monitoring of a standard

high-intensity fill, thus requiring additional diagnostics.

Synchrotron radiation telescope (BSRT)

The synchrotron radiation telescope (BSRT) is a non-invasive instrument that measures the

two-dimensional transverse beam distribution by imaging the synchrotron radiation emitted by

the particles [13]. The principle of operation of the device is illustrated in Fig. 1.4b. The system

collects the visible synchrotron radiation (SR) spontaneously emitted as the beam is deflected

by the magnetic devices of the SR source. A refractive telescope then produces an image of

the beam on a fast-gated camera that can resolve a single bunch. The horizontal and vertical

profiles are finally extracted from the two-dimensional light distribution and fitted to obtain

the standard deviation of the light spot �image. The intensity distribution at the detector can

be written as the convolution between the transverse beam distribution and the system Point

Spread Function �PSF , i.e. the response of the system to the single particle. Assuming that

both the beam distribution and the PSF are Gaussian, the size of the light spot can be expressed

as

�image = M

q
�2 + �

2
PSF , (1.17)

being M the system magnification and � the transverse beam size.

This imaging-based technique could in principle provide an absolute measurement of the

transverse beam size. The system magnification is in fact defined by design and the PSF

can be simulated using numerical codes for synchrotron radiation propagation. However, this

approach is hindered by the complexity of the LHC synchrotron radiation source, which makes

it di�cult to accurately determine a priori the real system magnification and Point Spread
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Function (PSF). The beam size inferred using the expected values of magnification and PSF are

not compatible with the reference values measured by the wire scanners. To overcome this issue,

the magnification and PSF parameters need to be experimentally evaluated. The instrument

is calibrated in a dedicated fill, where bunches with various emittances are injected, and the

reference beam size is measured using wire scanners. Experimental values for magnification

and �PSF are then derived through a linear fit of �2
image(�

2). Distinct calibrations are required

for injection and flat-top energy due to variations in the synchrotron radiation source between

these stages. Currently, the BSRT cannot provide a reliable measurement during the energy

ramp because of the evolution of the synchrotron radiation properties that a↵ect the system’s

response. This issue will be discussed in the following chapters, as both the BSRT and the

interferometer share the same synchrotron radiation source.

Despite these limitations, the BSRT is a highly reliable system. Once calibrated with the

wire scanners, its operation is not constrained by beam intensity, enabling real-time and bunch-

by-bunch transverse diagnostics at both injection and flat-top energies.

Transverse beam diagnostics from experiment data

Information regarding the transverse beam profile can also be obtained from the data collected

by the LHC experiments at the four collision points [14]. While the transverse size of the

beam could, in principle, be estimated from the instantaneous luminosity using Eq.1.2, a more

robust assessment of the emittance is achieved through an ”emittance scan”[15]. This involves

transversely displacing the colliding beams and recording the luminosity evolution as a function

of beam separation. Neglecting e↵ects due to the crossing angle, this curve is approximately the

convolution of the transverse sizes of the two beams.

These techniques have limited operational applicability as they are exclusively available dur-

ing collisions, cannot provide an independent measurement of each beam, and are conducted

only a few times per fill. Despite these limitations, emittance scans o↵er a completely inde-

pendent means of assessing the transverse emittance and o↵er a valuable comparison for the

measurements obtained from the beam instrumentation systems.

1.3.1 Need for additional transverse diagnostic systems

Both operational systems currently used for transverse beam diagnostics at the LHC have their

own limitations. The wire scanners can provide an absolute measurement of the beam size
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throughout the whole accelerator cycle, but they cannot be used at nominal beam intensity due to

the beam-wire interaction. On the other hand, the synchrotron radiation telescopes are suitable

for continuous monitoring of the beam size, but they require calibration and the measurement

during the energy ramp is not reliable due to the complexities of the LHC synchrotron radiation

source.

To complement the existing diagnostics, an additional instrument is necessary. The ideal

candidate device should be able to provide an absolute measurement of the beam size with an

accuracy target of 5% throughout the entire accelerator cycle, regardless of the beam inten-

sity [16]. Two prototype systems based on beam-gas interaction have been investigated for this

purpose, the Beam Gas Vertex monitor (BGV) and the Beam Gas Ionization monitor (BGI).

The BGV is a device that infers the beam profile by reconstructing the distribution of the

vertices of the beam-gas collisions. The BGV demonstrator, installed at the LHC in 2016, suc-

cessfully validated the feasibility of the technique [17]. However, due to its high complexity, the

exploitation of the BGV as an operational system for transverse diagnostics is challenging. The

BGI technique reconstructs the beam profile by detecting the ionization products of the beam-

gas collisions. A first prototype of the BGI was installed at the beginning of the LHC era but

later removed due to impedance-induced heating issues. A new version based on the Timepix3

detector was proposed in 2019, following the successful implementation of this technology at the

Proton Synchrotron [18].

Other techniques are being explored to enhance the LHC transverse diagnostics for the

upcoming HiLumi era. Synchrotron radiation interferometry is a promising candidate for non-

invasive diagnostics that can complement the operation of synchrotron radiation telescopes by

providing an independent and absolute measurement of the beam size. The technique is also

a valuable tool for characterizing the coherence properties of the LHC SR source, providing a

better understanding of the source used for beam diagnostics.

To explore the feasibility of the technique, a synchrotron radiation interferometer (BSRI)

was installed alongside the synchrotron radiation telescope at the beginning of LHC run 2.

The successful implementation of the instrument served as a proof of concept [13]. However,

unexpected behaviors were observed during systematic measurements conducted at the end of

the same run [19].

This thesis presents the results of comprehensive studies aimed at characterizing the co-

herence properties of the LHC synchrotron radiation source and validating the experimental
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findings obtained during run 2. The setup was subsequently refurbished and optimized based

on the results of recent synchrotron radiation simulations. The ultimate objective of this thesis

is to investigate the performance of the synchrotron radiation interferometer as an operational

instrument for accurate beam size measurements at the LHC.



Chapter 2

Principles of Synchrotron Radiation

The physics of Synchrotron Radiation (SR) has been extensively studied in literature, primarily

focusing on its application to electron beams in synchrotron light sources. While the underlying

physics is the same for both electrons and protons, the higher mass of protons allows for certain

simplifications that are typically not applicable to electrons.

This chapter aims to provide the necessary background on synchrotron radiation to under-

stand the characteristics of the LHC SR source. In Section 2.1, an overview of the phenomenon

is presented, along with an introduction to the key variables involved. The weak magnet ap-

proximation is discussed, which provides an analytical expression for the radiated electric field

and is often applicable to proton beams. This approximation is then employed to derive the

expressions for the field radiated by a weak undulator and the edge of a magnetic dipole, both

relevant in the context of the LHC synchrotron radiation source. Section 2.3 delves into the

properties of radiation emitted by a particle in a uniform magnetic field, particularly relevant

for describing radiation from the core of dipole magnets that do not satisfy the weak magnet

approximation. Since the LHC SR source consists of multiple magnetic elements, the issue of

SR interference is addressed in Section 2.4.

While analytical models provide valuable insights into the physics of SR emission, numerical

simulations are often essential for accurate quantitative analysis. The final section introduces

the simulation code employed in this thesis work, outlining the features and limitations.
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2.1 Field radiated by a relativistic charged particle

Synchrotron Radiation (SR) is a form of electromagnetic radiation, emitted when relativistic

charged particles experience an acceleration perpendicular to their direction of motion. Although

SR naturally occurs in various astronomical objects [20], this chapter focuses on the specific case

of radiation emitted by accelerator beams deflected by static magnetic fields. Discovered as an

unintended consequence in the early stages of accelerator development [21], synchrotron radi-

ation has since become the focus of dedicated facilities that produce and harness its unique

properties across various disciplines in physics, chemistry, and biology [22]. At the LHC, syn-

chrotron radiation is exploited as a tool for non-invasive diagnostics. The spontaneous emission

of light within the magnets of the machine provides valuable information about various beam

properties, which are investigated using a dedicated family of SR monitors.

ሶ ⊥

Figure 2.1: Geometry of synchrotron radiation emission. A charged particle with velocity � is
deflected with local bending radius ⇢ and transverse acceleration �̇?. The rp vector defines the
observer’s position along the observation direction n. Polar coordinates (#,') are adopted to
describe light emission. Cartesian coordinates (x, y) are used in the following chapters when
discussing the spatial distribution of radiation arriving at the entrance plane of the optical
system.

Electromagnetic radiation is always emitted when a charged particle is accelerated. In cases

involving relativistic particles, this emission can significantly deplete the particle’s kinetic energy.

A classic example of this phenomenon is Bremsstrahlung radiation, where a charged particle

experiences substantial longitudinal deceleration due to Coulomb interactions as it traverses

a material, and it is ultimately halted. Synchrotron radiation, on the other hand, primarily

involves transverse acceleration induced by static magnetic fields. In the case of hadrons, the high

magnetic rigidity prevents strong deflections of the particle’s trajectory, resulting in negligible
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energy loss compared to the total energy of the particle, thus preserving its longitudinal velocity.

The expression for the field emitted by a moving charged particle can be derived in the time

domain from the Liénard-Wiechert potentials [23, p. 661], yielding

E(t) =
q

4⇡"0

"
n ⇥ ((n � �) ⇥ �̇)

crp(1 � n · �)3

#

t0

. (2.1)

In this equation, q is the particle charge, "0 the dielectric constant, n denotes the unit vector

in the direction of observation, � = v/c represents the particle’s velocity normalized by the

speed of light, and �̇ corresponds to the particle’s acceleration. The distinction in time variables

implies that the electric field detected by the observer at time t originates from the state of the

particle at the emitter time t0. This di↵erence in time scales accounts for the propagation of the

electromagnetic radiation from the particle to the observer.

Figure 2.1 provides an overview of the relevant quantities involved. In the case of non-

relativistic particles, integrating the field expression leads to the well known Larmor formula for

the intensity distribution radiated by an accelerated particle [23, p. 668]. This model accounts

for a broad angular distribution of the radiated intensity. The same broad distribution occurs

in the case of a relativistic particle, when the radiation is observed from an inertial frame

of reference moving at the same velocity as the particle, along a tangent to its trajectory [24].

However, the emission becomes forward-boosted when the radiation is observed from a stationary

external observer. This e↵ect arises from the Lorentz transformation between the two frames

of reference, which confines the entire intensity within a narrow angle of approximately 1/� in

the forward direction, where � is the particle’s relativistic factor. The transformation between

the emitter and observer frames of reference, qualitatively illustrated in Fig. 2.2, is the ultimate

cause of the brightness and highly collimated nature of synchrotron radiation.

2.1.1 Emitter and observer time scales

When a charged particle is accelerated and emits electromagnetic radiation at the time instant

t
0, the radiation propagates at the speed of light c and reaches the observer at a later time

instant

t = t
0 +

rp(t0)

c
, (2.2)

where rp(t0) , |rp(t0)| is the distance between the observer and the particle, evaluated at the

time of the radiation emission. If the particle velocity is significantly smaller than the speed
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Figure 2.2: Origin of the brightness and narrow angular emission of synchrotron radiation. A
relativistic particle (red arrow) with normalized velocity � experiences a transverse accelera-
tion �̇, which results in the emission of electromagnetic radiation. On the left, the radiation
distribution is observed from an observer traveling at the particle’s velocity, along a tangent to
the trajectory (black arrow). Since the emitter and the observer travel at similar velocities, the
observer perceives only the transverse deflection of the particle, leading to a broad radiation
pattern which follows the Larmor model for the intensity radiated by a non-relativistic particle.
The radiation distribution in the laboratory frame can be derived by applying a Lorentz trans-
formation from this relativistic observer to a stationary one. This transformation, illustrated on
the right, enhances the intensity distribution in the forward direction, giving rise to the charac-
teristic highly collimated distribution of synchrotron radiation.

of light, rp(t0) is a slow function of t0. The two time scales coincide, with the exception of a

constant time delay due to the propagation from the emitter to the observer which has no impact

on the radiation properties. In a more general scenario, the relationship between the emitter

and observer time can be quantified by introducing a time scale change factor (t0) [25] defined

as

(t0) , dt

dt0
. (2.3)

The time scale change factor has an important physical meaning in the context of synchrotron

radiation emission. Due to the finite speed of light propagation, the observer perceives an

apparent motion of the emitter which may be di↵erent from its actual trajectory. The actions

of the emitter within a specific time interval dt0 are perceived by the observer in a di↵erent time

interval dt. The factor (t0) quantifies the relationship between these two time scales.

The time scale change factor can be expressed explicitly using Eq. 2.2

(t0) = 1 +
1

c

drp(t0)

dt0
= 1 � � cos

�
#(t0)

�
, (2.4)

where last member of the equation stems from the geometry of the problem, as the di↵erential

of the distance can be written as drp(t0) = �cn(t0) · �(t0) dt0.

When the time scale change factor (t0) is approximately equal to 1, the emitter and observer

share the same time scale. The observer perceives the actual trajectory of the emitter with a

constant propagation delay. This condition occurs when the particle motion is non-relativistic,
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i.e. � ⇡ 0, or when the observation angles are su�ciently large, i.e. for cos(#) ⇡ 0. In this

regime, the emission of electromagnetic radiation does not exhibit significant relativistic e↵ects.

The scenario changes significantly when considering a relativistic particle observed at a

small angle with respect to the tangent of the direction of motion. As the particle approaches

relativistic speeds (� ! 1) and the observation angle becomes small (# ! 0), we can calculate

the Taylor expansion of Eq. 2.4 to obtain

(t0) ⇡ 1 + �
2
#

2(t0)

2�2
, (2.5)

where the ultra-relativistic approximation 1 � � ⇡ 1/2�2 was employed. This expression is

a crucial result to interpret synchrotron radiation. It shows that the emitter time scale t
0

is squeezed into a much faster time scale t of the observer, by a factor proportional to �2. A

smooth trajectory of the particle may be transformed into an apparent motion marked by abrupt

accelerations, ultimately associated to an intense electromagnetic radiation. Since these e↵ects

become significant when (t0) ⌧ 1, Eq. 2.5 o↵ers an estimation of the necessary observation

angle # ⇡ 1/�, which corresponds to the well-known typical emission angle of synchrotron

radiation. The impact of the time scale change factor on enhancing the radiation intensity is

apparent from Eq. 2.1, as the strength of radiated field is inversely proportional to the third

power of  = 1 � n · �.

A comprehensive characterization of the emitted synchrotron radiation field requires the

computation of E(t,n) as the particle moves along its trajectory. In most cases, the expression

of Eq. 2.1 cannot be analytically solved, and numerical integration of the particle trajectory is

required to compute the radiated field. The main di�culty comes indeed from the time scale

transformation, which distorts the emitter trajectory. However, there are some exceptions where

either the particle trajectory allows for an explicit computation of the field or the time scale

transformation can be approximated, simplifying the calculation. The weak magnet approxima-

tion is one such case, widely applicable to synchrotron radiation emitted by proton beams.

2.1.2 Radiated field in space-time and space-frequency domains

The electromagnetic radiation emitted by a relativistic particle is described by the electric field

in the space-time domain, denoted as E(t,n) in Eq. 2.1. The electric field contains all the

necessary information to fully characterize the radiation, as the magnetic field component of the
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wave can be determined unambiguously from Maxwell’s equations as B(t,n) = n ⇥ E(t)/c.

In many applications of physical optics, it is often convenient to work in the space-frequency

domain, where the wavefront can be expressed as a superposition of monochromatic components.

This transformation is achieved through a Fourier transform, leading to the definition of the

Fourier-transformed field as presented in [24, p. 35]

Ẽ(!,n) =
1p
2⇡

Z
E(n, t)e�i!t dt . (2.6)

In this thesis, the characterization of the synchrotron radiation field is primarily presented in

the space-frequency domain. The Fourier-transformed field Ẽ(!,n) is thus referred to as the

”field” or ”wavefront” of the radiation.

The optical intensity associated with the radiation can be obtained by taking the square

modulus of the field I(!,n) /
���Ẽ(!,n)

���
2
. Appendix A provides detailed information on the

variables useful for quantifying radiation intensity and their exact relationship with the radiation

field.

The angular frequency ! is assumed as the standard frequency variable in the theoretical

models presented in this section. However, depending on the context, it is also convenient to

express the field in terms of the radiation wavelength � or the radiation wavevector k. The

relationship

! = 2⇡
c

�
= ck (2.7)

allows for easy interchangeability between the frequency, wavelength, and wavevector represen-

tations of the radiation.

2.2 The weak magnet approximation

The transformation from emitter to observer time, as described by Eq. 2.5, is generally not a

constant of motion. As the particle moves along the trajectory, its direction changes, resulting

in di↵erent observation angles, hence the time dependence of #(t0). If the particle experiences

a ”small” deflection and the acceleration takes place over distances that are shorter than the

observation distance, the observation angle can be approximated as constant [26]. This approx-

imation dramatically simplifies the computation of the field, as the time transformation reduces

to a constant scaling factor. In this case, the apparent trajectory of the particle is not distorted
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by the time transformation, but only compressed along the direction of motion by a constant

factor. This condition is known as the weak magnet approximation because it relies on the

assumption of a small deflection of the particle. The complete derivation, along with a list of

the underlying assumptions, is provided in Appendix B. The final result for the field is

Ẽ(!) =
2r0�

rp

⇥
1 � �

2
#

2 cos(2'),��2
#

2 sin(2')
⇤

(1 + �2#2)2
B̃

⇣

!

c

⌘
, (2.8)

being r0 = 1/(4⇡"0) q2
/(mpc

2) the classical radius of the particle. The function B̃(kwm) denotes

the Fourier transform of the magnetic field profile B(z) experienced by the particle as it moves

along the magnet, evaluated at the ”weak magnet” wavevector kwm = !/c. The use of square

brackets provides a concise representation of the horizontal and vertical polarization components

of the radiated field.

This model has important physical bases. The magnetic field of the weak magnet B(z)

is decomposed in its sinusoidal components of wavelength �wm through a Fourier transform

operation. Since a sinusoidal field induces a sinusoidal motion with the same periodicity, the

real trajectory of the emitter is itself a linear superposition of sinusoids with wavelengths �wm.

Under the weak magnet approximation, the sinusoidal motion of the emitter is preserved in the

observer frame, but the apparent period is squeezed by the constant time scale change . In

summary, for each sinusoidal component �wm of the magnetic field, there is a corresponding

harmonic contribution to the radiated field at the observation wavelength

� = �wm =
1 + �

2
#

2

2�2
�wm. (2.9)

The weak magnet approximation is generally not applicable to electrons because of their small

mass, which allows for significant deflections even in relatively weak magnetic fields. Conversely,

the model is valid for high-energy proton beams due to their high magnetic rigidity. This

approximation can be e↵ectively exploited to characterize the radiation emitted by a wide class

of magnetic devices in proton accelerators, such as the case of the LHC.
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2.2.1 Weak undulator radiation

A plane undulator is a magnetic device that consists of a series of Nu alternating poles with a

period of �u. This device generates a periodic magnetic field that can be written as

B(z) = B0 rect

✓
z

Nu�u

◆
cos

✓
2⇡

�u
z

◆
, (2.10)

where the cosine term represents the ideal harmonic component of the field whereas the rect

function defines the finite longitudinal extension of the device. Within the undulator, the pe-

riodic field induces a sinusoidal motion with maximum angular deflection � = B0q�u/2⇡�m0c.

The undulator deflection parameter K is defined as the maximum deflection angle normalised

by the typical SR opening angle 1/�

K , B0q

m0c

�u

2⇡
. (2.11)

In the limit Nu � 1, the particle motion can be well approximated as purely sinusoidal. This

scenario of infinitely long undulator serves as a prototypical case to discuss the weak magnet

approximation, as the Fourier transform of the field involves only a single harmonic component.

The solution to the equation of motion for the emitter in an infinite sinusoidal field is given by

x(t0) =
K

�ku
sin
�
kuct

0�
, (2.12)

being ku = 2⇡/�u the wavevector associated with the undulator period. The apparent transverse

motion x(t) can be computed applying the time transformation of Eq. 2.2. The numerical

computation of the apparent motion for di↵erent values of the deflection parameter is shown in

Fig. 2.3.

In the small deflection case (K = 0.1), the apparent motion remains a sinusoid with an

apparent period of �u/(2�2). This result represents the essence of the weak magnet model, as

it shows the apparent transverse motion of the emitter is squeezed without distortions by the

constant time scale change factor . An undulator with K ⌧ 1 is referred to as weak plane

undulator and the corresponding radiation is characterized by a single fundamental harmonic,

determined by the undulator period. As the deflection parameter increases, the emitter trajec-

tory becomes more distorted. In the case of K = 10, sharp cusps appears, causing a sequence of

strong apparent accelerations of the particle. A large deflection parameter also leads to a longer
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Figure 2.3: Apparent motion of a particle within one period of an infinitely extended plane
undulator, numerically computed for di↵erent values of the deflection parameter K along the
undulator axis # = 0. The scaling factor of the vertical axis normalize the displacement by the
maximum amplitude of the oscillation. The horizontal axis is instead scaled to normalize the
duration of the apparent motion within the single period.

duration of the single period motion because of the longer curvilinear trajectory the particle has

to travel, approximately given by �u(1 + K
2
/2). The case of K � 1 corresponds to a strong

plane undulator. This example highlights that while the real motion of the particle is purely

harmonic, the apparent motion deviates from pure harmonic behavior. As a result, the radiation

emitted by a strong undulator necessarily features a spectrum with higher-order harmonics.

Figure 2.4 provides further insights into the origin of such distortion in the apparent tra-

jectory [27]. The real motion x(t0) of the particle is a sinusoid corresponding to the transverse

displacement within an undulator period. The apparent trajectory follows from the time trans-

formation of Eq. 2.2. The constant propagation delay is omitted as it does not induce any

motion distortion, and the time coordinates can be conveniently shifted to set t = t
0 = 0 at the

centre of the undulator period. If the particle is travelling towards the observer, positions with

negative t
0 are farther compared to the positive ones. The distance rp(t0) is therefore positive

for t0 < 0 and viceversa. Under the time transformation of Eq. 2.2, this condition implies that

the emitter positions x(t0) at t0 < 0 are delayed by rp(t0)/c in the observer time frame, whereas

emitter positions x(t0) at t0 > 0 are advanced by the same amount in the observer time frame.

Consequently, the sinusoidal trajectory in the emitter frame is compressed in the observer frame,

leading to the sharp cusps in the apparent motion.
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Figure 2.4: Sketch illustrating the appearance of sharp cusps in the apparent motion of a strong
undulator. The emitter trajectory x(t0) (dashed red line) and the apparent trajectory x(t) (solid
red line) are plotted as functions of their respective times. The transformation between the two
is discussed in the text.

For typical values of the magnetic field B0 ⇡ 1T and undulator period �u ⇡ 10 cm, the

deflection parameter for hadron beams is always much smaller than one. Therefore, the weak

undulator approximation is always valid.

To obtain the radiated field, it is necessary to compute the Fourier transform of the field

profile B(z). By applying the convolution theorem, the Fourier transform of Eq. 2.10 can be

analytically determined as

B̃(kwm) =
1p
2⇡

Lu

2


sinc

✓
Lu

2
(kwm + ku)

◆
+ sinc

✓
Lu

2
(kwm � ku)

◆�
(2.13)

being Lu = Nu�u the undulator magnetic length and ku = 2⇡/�u the wavevector associated

with the undulator period. This expression is then evaluated at kwm = !/c and substituted

into Eq. 2.8 to obtain the field radiated at the angular frequency !

Ẽ(!) =
2r0�

rp

⇥
1 � �

2
#

2 cos(2'),��2
#

2 sin(2')
⇤

(1 + �2#2)2
1p
2⇡

Lu

2


sinc

✓
⇡Nu

! + !1

!1

◆
+ sinc

✓
⇡Nu

! � !1

!1

◆�
.

(2.14)

The quantity !1 is the undulator proper angular frequency, defined as !1 , kuc/. The proper

frequency can be conveniently expressed as a wavelength, resulting in the undulator proper

wavelength

�1 = �u =
�u

2�2

�
1 + �

2
#

2
�
, (2.15)

which corresponds to the period of the apparent sinusoidal motion of the particle. Let us discuss

this result. The field of Eq. 2.14 is peaked around the angular frequency ! = !1, meaning that

the radiation is predominantly emitted at the proper wavelength � = �1. In this condition,

the undulator is said to be tuned as the observation wavelength matches the periodicity of the

apparent sinusoidal trajectory. The subscript convention for �1 is derived from the context of
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strong undulators. In a strong undulator, the emitted radiation consists of a discrete set of

harmonics given by �n = �1/n. However, in a weak undulator, where the purely harmonic

apparent motion is preserved, only the fundamental wavelength �1 satisfies the tuned condition.

The radiation spectrum exhibits a central lobe, whose characteristic width is determined by

the length of the undulator

��

�1
/ 1

Nu
, (2.16)

Secondary lobes with decreasing intensity appear due to the oscillatory behavior of the sinc

function. Undulators installed in synchrotron light sources are typically designed with a large

number of periods, resulting in Nu ⇡ 100. These devices possess a significant intrinsic monochro-

maticity due to the narrow bandwidth of the main lobe. In order to observe radiation from the

undulator, the observation wavelength must be close to the proper wavelength, and the first

sinc function of Eq. 2.14 is often negligible for ! 6= !1. In contrast, shorter undulators provide

a broader radiation spectrum, allowing the use of o↵-resonance wavelengths. In this case, both

sinc contributions of the field are needed to accurately describe the radiation spectrum, which

is asymmetric with respect to the proper frequency.

The number of periods also determines the width of the radiation emission angle. The sinc

function of E(!) can be approximated by a Gaussian distribution1, whose standard deviation

yields

�
0 ' 1

2�

r
1

Nu
(2.17)

at the tuned condition � = �1. This result is compatible with the rough estimate of 1/� as a

typical SR opening angle. Since light divergence plays a major role in determining the spatial

coherence properties of a source of light, this estimation for �0 will be recalled when discussing

this subject.

The polarization of undulator radiation is predominantly linear in the horizontal direction,

corresponding to the particle’s wiggling motion in the horizontal plane. The peak of the hor-

izontal polarization occurs on-axis, where the apparent transverse acceleration projection is

maximized. On the other hand, the vertical polarization exhibits a node on the undulation

plane, as the apparent trajectory seen from this plane is characterized by no vertical accelera-

tions. Quantitative examples of the weak undulator spectrum and intensity distribution will be

provided in the characterization of the LHC undulators.

1The approximation is performed by assuming an equal area for the two intensity distributions.
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2.2.2 Edge radiation

Edge radiation is a peculiar type of synchrotron radiation, emitted when a particle traverses

the fringe field at the edge of a dipole [28]. It arises from the abrupt transverse acceleration

caused by the magnet edge, resulting in an emission that contains enhanced high-frequency

components. In cases where the synchrotron radiation emitted by the magnet core is primarily

concentrated at a much lower frequency than the observation frequency, edge radiation becomes

the prevailing contribution of the radiated field.

The longitudinal profile of the magnetic field at the entrance edge of a dipole can be described

as a piecewise function

B(z) = B0

h
H(z) +H(�z)ez/ledge

i
=

8
>><

>>:

B0 e
z/ledge z  0,

B0 z > 0.

(2.18)

Here, B0 represents the strength of the uniform magnetic field inside the dipole. The function

H(z) denotes the Heaviside step function, and the fringe field of the magnet is modeled as an

exponentially decaying tail with a characteristic length of ledge. In an ideal dipole without a

fringe field, referred to as hard edge dipole, the edge length is considered to be zero. In real

scenarios, the diameter of the yoke aperture provides a reasonable initial guess for the extent of

the fringe field [29].

Regardless of the strength of the dipole, the edge of the magnet is a relatively short region

that induces a negligible deflection of the particle. The weak magnet approximation can be

applied, as the observation angle # remains conserved throughout the fringe field region. This

allows for a simplified analysis and modeling of the radiation emitted in the vicinity of the magnet

edge. The magnetic field profile B(z) can be Fourier-transformed2 to obtain the expression for

B̃(kwm) required in Eq. 2.8

B̃(kwm) =
1p
2⇡

iB0

kwm

✓
1 �

iledgekwm

1 + iledgekwm

◆
, B̃hard(kwm) · f(ledge). (2.19)

This expression shows that the e↵ect of the fringe field can be represented as the contribution of

the ideal hard-edge B(z) = B0 H(z), multiplied by a function of the decaying tail f(ledge). The

modulus of f(ledge) is always less than unity, indicating that the presence of a smooth fringe field

2The Fourier transform of the Heaviside’s step function reads H̃(kwm) = 1p
2⇡

i
kwm

+
p

⇡
2 �(kwm) where we omit

the � term neglecting the singularity at kwm = 0.
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suppresses the intensity of the radiated field, which is proportional to |B̃|2. This observation is

consistent with the physical interpretation of the weak magnet approximation, as a sharper field

profile corresponds to a higher frequency content in the emitted radiation. The contribution

from the fringe field becomes negligible when ledge ⌧ 1/kwm, and in such cases, the emitted

radiation can be well approximated using only the hard-edge model. Recalling Eq. 2.9, we can

express this limit as � � ledge, emphasizing that the specific form of the fringe field is not

significant as long as the observation wavelength � is significantly larger than the characteristic

extension of the fringe tail ledge, compressed by the time-scale change factor . To provide a

numerical example, the wavevector corresponding to a typical visible wavelength of � ⇡ 500 nm

and relativistic factor � ⇡ 1000 (Eproton ⇡ 1TeV) is in the order of �wm ⇡ 1m. The hard edge

model is always valid for realistic values of ledge ⇡ 1 cm. We conclude that, at these energies, the

fine features of the fringe field can be resolved only by working with wavelengths much shorter

than the visible range.

The complete expression for the Fourier-transformed field becomes

Ẽ(!) =
2r0�

rp

⇥
1 � �

2
#

2 cos(2'),��2
#

2 sin(2')
⇤

(1 + �2#2)2
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2⇡

iB0

!

2�2
c

1 + �2#2

2

41 � 1

1 � 2�2c
1+�2#2

i
!ledge

3

5.

(2.20)

The weak magnet approximation for the edge radiation is self-consistent when describing

the high-frequency behaviour of the emitted field. A problem exists in the opposite limit where

Eq. 2.19 diverges for low observation frequencies (! ! 0). The inconsistency comes directly

from the field profile used to derive the edge radiation. The step function of Eq. 2.18 represents

an infinitely long magnet which inevitably cannot induce a negligible deflection. The expression

derived for the edge radiation is only suitable to describe the high-frequency components of the

emitted radiation, dominated by the abrupt variation of the magnet fringe field. An alterna-

tive model is required to accurately describe the low-frequency emission, which arises from the

continuous deflection of particles within the uniform magnetic field of the magnet core. In the

next section, we will focus on the radiation emitted by the magnet core. This type of radiation

exhibits a broad spectrum of frequencies centered around a characteristic frequency, called crit-

ical frequency. The critical frequency depends on the particle energy and the bending radius of

the magnet. To operate in a regime dominated by edge radiation and make use of Eq. 2.20, it is

important to ensure that the observation frequency significantly exceeds the critical frequency

of the dipole.
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The field profile described by Eq. 2.18 corresponds to a rising magnet edge, and the derived

expression for Ẽ(!) is suitable for describing the radiation emitted by a particle entering a

dipole. In the case of a falling edge, we can simply invert the spatial coordinate, B(z) ! B(�z)

and apply the reversal property of the Fourier transform, B̃(kwm) ! B̃(�kwm). This property

simplifies the treatment of radiation emitted by both entrance and exit dipole edges. The result is

particularly helpful for studying the case of two consecutive dipoles bonding a straight section.

The radiation emitted at the exit edge of the upstream magnet overlaps with the entrance

edge radiation of the downstream magnet, resulting in interference e↵ects. If the magnets are

identical, the emitted wavefronts have the same magnitude but opposite phase, which must be

taken into account in the interference description. Further details about the interference of

synchrotron radiation emitted by di↵erent sources will be discussed in Sec. 2.4.

2.3 Ordinary synchrotron radiation

The last analytical model presented in this chapter pertains to the synchrotron radiation emitted

by a particle travelling on a circular orbit. This model describes one of the most common

situations of a particle bent by a uniform magnetic field and the resulting radiation is referred

to as ordinary synchrotron radiation or core radiation of a dipole magnet. The weak magnet

approximation does not apply to this case as the observation angle eventually spans 2⇡ over the

full turn. The circular trajectory is nonetheless one of the few cases for which the radiated field

can be analytically computed. Due to the specific geometry of the problem, the radiation field

exhibits symmetry with respect to the orbit plane and axial symmetry around the revolution

axis. For a horizontal orbit plane, the synchrotron radiation field depends only the latitudinal

angle #. The problem of computing the radiation emitted along a circular trajectory was first

solved by Schwinger and the resulting field distribution is named after him [30]. The derivation

is quite tedious, with the di�culties stemming more from the extensive computations required

rather than the physics of the emission process. The final result for the radiated field is

Ẽ(!) =
�

p
3q�

(2⇡)3/2✏0crp

!

2!c
(1 + �

2
#

2)

"
K2/3(⇠),�i

�#p
1 + �2#2

K1/3(⇠)

#
(2.21)



CHAPTER 2. PRINCIPLES OF SYNCHROTRON RADIATION 29

where K⌫ represents the modified Bessel function of second kind of order ⌫ and ⇠ = !
2!c

(1 +

�
2
✓
2)3/2 an auxiliary variable. !c is the radiation critical angular frequency, defined as

!c ,
3

2

c�
3

⇢
, (2.22)

being ⇢ the radius of the circular orbit. The critical frequency is an important parameter to

characterize ordinary synchrotron radiation as it divides the spectrum in two regions of equal

power. The primary limitation of this model is the small angle approximation required to derive

this result. The Schwinger distribution provides an accurate estimate for the field at # . 1/�

whereas the exponential decay of the Bessel functions underestimates the background radiation

at larger polar angles. It is worth mentioning that the weak magnet approximation can still

be applied to describe the radiation at large angle observations [31]. When the observer is

positioned at significant latitude angles, the observation angle does not change significantly over

the particle revolution. This behavior can be understood by considering the limit where the

observer is positioned above the revolution orbit, resulting in an observation angle that remains

approximately constant at # ⇡ ⇡/2 throughout the entire orbit. As a result, the conservation of

the observation angle allows the application of the weak magnet approximation for large angle

radiation, regardless of the actual strength of the magnet.

Figure 2.5 presents some examples of intensity curves computed using the Schwinger model.

The Schwinger distribution can be conveniently generalized using normalized units defined as

�# for the polar angle, and !/!c for the observation frequency.

The angular distributions presented in Figure 2.5 provide information on the characteristic

opening angle of the radiation. At the critical frequency ! = !c, the Schwinger profile closely

resembles a Gaussian distribution with a standard deviation of 1/�. As the observation fre-

quency increases, the opening angle becomes narrower, indicating a more focused radiation.

Conversely, for frequencies below the critical value, the characteristic angle is larger than the

1/� prediction. Using the same approach presented for undulator radiation, the divergence of

ordinary synchrotron radiation can be approximated by the trend [25]

�
0 '

8
>>>>>><

>>>>>>:

1
�

⇣
!
!c

⌘�1/3
if ! < !c,

1
� if ! ⇡ !c,

1
�

⇣
!
!c

⌘�1/2
if ! > !c.

(2.23)
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Figure 2.5: Schwinger distributions of the total (solid lines) and horizontal (dashed lines) po-
larization components of the core radiation field, computed at di↵erent observation frequencies.
The polar angle is normalised by the characteristic SR opening angle 1/�. A simple Gaussian
with angular aperture �0 = 1/� is plotted for reference (purple dotted line).

All estimations are consistent, within a reasonable range of frequencies, with the usual value of

�
0 ⇡ 1/�. This result highlights another property of the critical frequency !c as it corresponds

to the best approximation of 1/� for the light opening angle. It is important to note that the

radiation opening angle exhibits a relationship with the radiation wavelength that is less than

linear. This means that as the wavelength increases, the increase in the opening angle is not as

rapid. This relationship between the angular spread and the wavelength is particularly relevant

when evaluating the performance of optical systems, as the achievable resolution is determined

by a combination of these two parameters.

To conclude, let us discuss the polarization properties of the core radiation. The horizontal

component is the most intense as it is aligned with the direction of maximum transverse accel-

eration. Similar to the undulator case, when an observer is positioned on the orbit plane, the

apparent motion of the particles does not exhibit a vertical component. As a result, no vertically

polarized radiation is emitted at # = 0. The intensity of vertical polarization is not negligible

out of the orbit plane, especially at observation frequencies lower than the critical one. The field

of the vertical polarization changes sign across the orbit plane, as Ey is an odd function of the

latitude angle. The phase of the vertical polarization is therefore antisymmetric across the orbit

plane whereas the phase of the horizontal component is symmetric. This di↵erent behaviour
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needs to be taken into account in interferometry and eventually requires the presence of a linear

polarizer to eliminate one of the two polarization components.

2.4 Synchrotron Radiation interference

Synchrotron radiation emitted by magnetic devices propagates along the particle beam. Due to

its narrow opening angle, the radiation can travel long distances inside the accelerator vacuum

chamber without experiencing significant intensity dissipation. Consequently, it is common for

the radiation emitted from multiple devices to overlap, resulting in interference e↵ects in the

extracted light. The multi-source interference is a relevant phenomenon in SR-based diagnostics.

Let us examine the simplest scenario involving only two sources situated along a straight section,

as depicted in Fig. 2.6.

,

Figure 2.6: Interference of two synchrotron radiation sources. The field emitted by the farthest
source propagates along the beam direction for a distance L and reaches the second source.
The two-source interference is recorded by an observer placed at the position (x, y) on a plane
perpendicular to the main propagation direction.

The manifestation of interference e↵ects crucially depends on the correlation between the

single-source fields. In optics, this correlation is quantified by the degree of coherence of the

radiation, a subject that will be extensively discussed in Chapter 4. In summary, the narrower

the radiation spectrum, the stronger the tendency for fields emitted by the same particle passing

through di↵erent sources to produce interference e↵ects. Since the treatment in space-frequency

domain assumes strictly monochromatic conditions, the correlation of the single-particle radia-

tion is always preserved during the propagation and the total field is the sum of the single-source

fields3

Ẽ(!, x, y) = Ẽ1(!, x, y) + Ẽ2(!, x, y) · ei��(!,x,y)
. (2.24)

In this expression, �� represents the phase di↵erence between the two interfering fields. The

coordinate dependence (x, y) is explicitly written to emphasize that the relationship is point-

specific, indicating that the phase of the interference varies with the observer position. The

phase di↵erence �� can be determined by separately tracking the phase advance for particles

3In the opposite scenario of complete lack of correlation, the quantity to be summed is the optical intensity.
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and light along their respective paths [32], yielding

�� =
!

c

✓
L

�
+ rp,2 � rp,1

◆
, (2.25)

where rp = |rp,i(x, y)| represents the distance between the center of each source and a transverse

observer position (x, y). Let r̄p,1 = |rp,1(0, 0)| and r̄p,2 = |rp,2(0, 0)| be the longitudinal distances

of the source centres from the observer plane and r? ,
p
x2 + y2 the radial coordinate on the

observer plane. Under ultrarelativistic, � ⇡ 1, and paraxial, r? ⌧ r̄p, approximations, the

quantities can be Taylor-expanded and rearranged to obtain
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✓
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2r̄p,2(L+ r̄p,2)
L

◆
, !

c
(��beam +��sphere). (2.26)

The interference phase consists of two contributions. The term ��beam remains constant

across the observation plane but varies with the beam energy, while the second term ��sphere

is independent of beam properties and exhibits a quadratic scaling with the radial coordinate.

The contribution ��sphere is purely geometric, representing the phase di↵erence between two

spherical wavefronts radiated from the source centres. On the other hand, ��beam is specific

to synchrotron radiation as it quantifies the phase slippage between the particle and the light

propagating along the straight section L. Because of the relativistic motion, the source distance

is squeezed by the recurring factor 1/2�2 and the corresponding phase di↵erence varies slowly

with L. The intensity distribution resulting from the interference of the two sources is given by

the square modulus of Eq. 2.26, leading to

I(!, x, y) = I1 + I2 + 2
p
I1I2 cos (�1 � �2 � ��). (2.27)

This expression is a specific case of the general law of interference discussed in Chapter 4, applied

to fully coherent sources. The light distribution is the sum of the intensities from each individual

source and an interference term. The interference term is directly proportional to the product

of the electric field strengths and is modulated by the phase characteristics of the sources. The

phase modulation term has been separated for convenience into the phase di↵erence ��, due to

the propagation e↵ects of Eq. 2.26, and the contributions originating from the intrinsic phase

of the single-source wavefronts, represented by �1 = arg(Ẽ1) and �2 = arg(Ẽ2). When the

sources are identical, �1 � �2 is zero. The interference pattern created by the superposition
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of the two sources exhibits distinct characteristics associated with ��sphere and ��beam. The

��sphere term gives rise to concentric fringes in the pattern, with the fringe spacing decreasing

quadratically as a function of the radial coordinate r?. On the other hand, ��beam determines

the initial phase of these intensity oscillations.

2.5 Simulation framework

The analytical formulas presented in the previous sections can be used to characterize the

radiation emitted by rather simple magnetic structures, within the limitations of the underlying

approximations. For more complex scenarios, such as the SR source used for diagnostics at the

LHC, analytical models continue to provide valuable insights into the physical properties of the

radiation. However, numerical simulations are necessary to perform accurate and quantitative

analyses of the radiated field.

The simulations presented in this thesis are performed using a code based on Synchrotron Ra-

diation Workshop (SRW) [33, 34]. SRW is a standard tool for synchrotron radiation simulations,

initially developed at the European Synchrotron Radiation Facility and constantly upgraded by

the synchrotron radiation community. The code takes the source magnetic field as input and

computes the Fourier-transformed field Ẽ(!, zp, r?,p) radiated by a single particle traversing the

magnetic structure, where zp and r?,p define the longitudinal and transverse positions of the ob-

server, respectively. The computation of the emitted wavefront involves integrating the solution

of the Helmholtz equation, which describes the transverse components of the electromagnetic

field radiated by a charged particle in the frequency domain. This yields the expression for the

electric field [35]
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(2.28)

where z̄ and r?(z̄) represent the longitudinal and transverse positions of the particle, in the

emitter time frame. This approach is equivalent to the one based on the solution of retarded

potentials but it is computationally more e�cient. Despite being formally more complicated than

Eq. 2.1, Eq. 2.28 o↵ers a formula that can be directly integrated to obtain the field radiated at

each point of the observation mesh defined by the user. First, the code computes the trajectory

of the particle under the e↵ect of the magnetic structure. The instantaneous transverse velocity
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�?(z̄) and the longitudinal component of the relativistic factor �z(z̄) are then derived from the

trajectory. Finally, the evolution of these functions along the particle trajectory are numerically

integrated, according to Eq. 2.28, to obtain the field Ẽ(!, zp, r?,p).

The computation time scales linearly with the longitudinal discretization of the particle

trajectory and the size of the mesh at the observation plane. On a standard desktop computer,

a detailed mapping of the field radiated by a single particle may take several minutes. The

simulation of a finite emittance beam becomes impractical as it typically requires a few thousands

particles to accurately reproduce the beam phase space. The code was adapted to perform

the parallel computation of the radiated wavefront and the simulation time was drastically

reduced by running simulations on a dedicated multi-core server. In addition to the wavefront

computation, SRW allows the propagation of the field through an arbitrary optical system,

defined as a sequence of drifts or standard optical components (lenses, apertures or obstacles).

The computation is performed using standard algorithms of Physical Optics Propagation (POP),

based on Fourier optics principles. SRW is a powerful framework for simulations of complete

SR beamlines, from the magnetic source to the final image at the detector plane. As with

all numerical codes, SRW relies on a set of approximations. The expression of Eq. 2.28 only

accounts for the transverse components of the radiated field because the longitudinal component

of Helmholtz’s equation Laplacian is neglected. This condition is equivalent to the already

mentioned paraxial approximation of synchrotron radiation, satisfied as long as the observation

angle is small # ' 1/�. The field computation is valid in the far field regime, i.e. at observation

distances much larger than the radiation wavelength. This second assumption is also verified

working in the optical domain. Finally, the particle shall travel in ultrarelativistic regime. The

range of LHC energies, from 450GeV to 6.8TeV, fulfills this last requirement.



Chapter 3

Spatial and spectral properties of the

LHC synchrotron radiation source

This chapter presents the synchrotron radiation source currently used for beam diagnostics at the

LHC. The source layout is illustrated and the magnetic devices are individually characterized,

using simulations to determine the spatial and spectral distributions of the emitted synchrotron

radiation. Simulation results are compared with analytical predictions to provide a physical

interpretation of the synchrotron radiation emission process. The spatial distribution of the

entire source is then characterized as a function of the accelerator energy, highlighting the notable

change of the emitted wavefront during the energy ramp. The accuracy of SRW simulations is

confirmed through a comparison between the simulated spatial distribution of the synchrotron

radiation intensity and the experimentally observed light distribution at various beam energy.

The spatial and spectral properties of the radiated wavefront are comprehensively analyzed

through single-particle simulations, which reveal the essential features of the radiation. The

chapter concludes by addressing the impact of finite emittance beams, which consist of multiple

particles, on the distribution of the emitted light.
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3.1 Source layout

The SR monitors of the LHC are installed at Point 4, in the long straight section between the

sectors 34 and 45. In this particular section of the accelerator, the nominal beam separation

of 19.4 cm is increased to 42 cm to accommodate the accelerating cavities (RF). The separation

increase is achieved by means of dipole magnets arranged in a dogleg configuration [36], illus-

trated in Fig. 3.1a. It involves the use of D4-type dipole magnets to deflect the beams in opposite

directions. The diverging beams travel the distance required to obtain the desired separation

for the RF cavities and the parallelism is eventually restored by another special magnet, the

D3, which compensates for the kick induced by the D4. The same sequence of D4 and D3 is

replicated on both sides of the RF cavity section. The layout of the accelerator at Point 4 makes

it an ideal location for the installation of SR monitors, as the light emitted by the magnetic

devices can be readily extracted along the empty drift sections.

Above a beam energy of 1TeV, the D3 and D4 dipoles emit synchrotron radiation with a

high photon flux in the optical range, making them suitable for non-invasive beam diagnostics.

The D3 was selected as the source for the operational SR monitors [37], while the potential

use of the D4 dipoles for an additional diagnostics line is being investigated for the upcoming

HiLumi LHC era [38]. Neither of these dipoles is suitable for visible diagnostics at the injection

energy of 450GeV, as their typical emission wavelengths are in the far-infrared. A dedicated

superconducting undulator, optimized for beam diagnostics purposes at injection energy, was

designed and included in the machine lattice [39].

The resulting SR source consists of multiple devices, whose contribution to the radiated

wavefront depends on the accelerator energy. Considering Beam 1 as example, particles coming

from the left side of Point 4 are first deflected by the D3L, traverse the RF section and reach

the opposite side of the straight section where the undulator and the D3R are located. At

injection energy, visible light is only emitted by the undulator. Above 1TeV the D3R becomes

the most intense source, with a non-negligible contribution from the upstream D3L. The light

emitted by these devices is intercepted by an in-vacuum mirror, located approximately 27m

downstream of the undulator centre. Part of the radiation is extracted and directed to an optical

table, installed beneath the beam pipe, housing the instrumentation. The extraction system

significantly influences the performance of the SR monitors by limiting the horizontal acceptance

of the optical systems. The configuration is symmetrical for Beam 2, with its extraction system



Chapter 3: Spatial-spectral properties of the LHC source 37

and instrumentation situated on the left-hand side of the long straight section.

To conclude the description of the source layout, it is useful to define a coordinate system

that can describe the geometry of the source and map the radiated wavefront. The undulator

axis is conventionally taken as the reference optical axis, with the undulator centre serving as

the origin of the longitudinal coordinate system, denoted by z. The radiated field Ẽ(!, x, y) is

always computed on planes perpendicular to this axis. The coordinate origin in the transverse

plane corresponds to the intersection with the optical axis. The analysis of the spatial properties

of the emitted SR involves computing the intensity distribution I(x, y) at a specific wavelength

�. Unless otherwise specified, the intensity is evaluated at the position of the extraction system,

which serves as the reference plane for assessing the light distribution.

(a)

(b)

Figure 3.1: Schematic diagram (a) illustrating the layout of the synchrotron radiation source
used for beam diagnostics at the LHC. The vertical scale is exaggerated to emphasize the beam
deflections within the magnetic devices. The extraction system is shown for Beam 1 only. In
(b), a picture of the superconducting undulator (green) and the D3 dipole (blue) installed on
the right-hand side of the long straight section located at Point 4.
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3.2 Light extraction system

The light extraction system is a key element of the LHC SR diagnostics and one of the most

technologically challenging aspects. It consists of a mirror placed inside the beam chamber

that intercepts part of the light and sends it to the beam instrumentation. The geometry of

the extraction tank is displayed in Fig. 3.2. The mirror is installed in an extremely harsh

environment, in the ultra-high vacuum of the LHC beam pipe and in close proximity to the

particle beam. The design has been optimised over the years of LHC operation. The current

solution consists of a monolithic fused silica substrate with a fully dielectric reflecting coating.

This design minimises the device impedance and thus reduces the impact on beam stability and

RF heating, which may significantly degrade the optical quality of the surface [40]. In addition to

beam-induced damage, the mirror is also constantly exposed to the high-frequency components

of the SR spectrum which may create local blackening or detachment of the reflecting coating,

as already occurred in run 2 [19]. The extraction mirror is the most critical optical component

to manufacture and represents the limiting factor for the achievable optical performance of the

SR monitors. The present mirror features a �/5 wavefront error with a 20-10 scratch-dig surface

quality, making it a suitable component for both imaging and interferometry applications.

Figure 3.2: Sketch of the LHC synchrotron radiation extraction system. Light emitted by the
source devices propagates alongside the particle beam. A tilted mirror inserted in the vacuum
chamber intercepts a portion of this radiation and reflects it downward, where the SR diagnostic
systems are installed in an optical enclosure under the accelerator beam pipe. The dash-dotted
line in figure represents the undulator axis, used as the reference of the SR coordinate system.

In addition to the technological aspects, the extraction mirror is also the main constraint for

the angular acceptance of the downstream systems, in particular in the horizontal direction. On

the extraction plane, located at z = 27.4m, the distance between the beam and the undulator
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axis is 34mm. For machine protection reasons, the edge of the mirror is positioned approximately

22mm away from the beam. This position provides a safe distance of 20 beam size units at

injection energy. As a result, only a portion of the emitted light can be extracted, and the

vertical mirror edge behaves as an unavoidable source of di↵raction a↵ecting the horizontal

direction. On the remaining three sides, the mirror extends beyond the size of the light spot,

allowing for the extraction of the entire intensity. The optical acceptance of the extraction

system is ultimately limited to a size of 50mm ⇥ 50mm, corresponding to a physical mirror

dimension of 50mm ⇥ 70mm when projected at an angle of 45�. The mirror centre lies at

x ⇡ �13mm, resulting in a mirror edge located at xedge ⇡ 12mm on the side facing the beam.

Due to the characteristic opening angle of synchrotron radiation, in the order of 1/�, only a

small region of the mirror surface, typically a few millimeters, is e↵ectively used at flat-top

energy. However, the mirror surface is almost entirely illuminated by the broad emission of the

undulator radiation at injection energy.

3.3 Superconducting undulator

The undulator used for beam diagnostics at the LHC consists of four superconducting poles

arranged to create a two-period vertical field with periodicity �u = 0.28m. The coil assembly

and the resulting magnetic profile at the gap centre are illustrated in Fig. 3.3. The main design

parameters of the device are listed in Tab. 3.1. The undulator is housed in a cryostat that is

directly connected to the adjacent D3, which maintains the superconducting coils at 4.5K. The

assembly of undulator and D3 is shown in Fig. 3.1b.

Parameter Value Unit
Period length �u 0.28 m
Period number Nu 2
Operating current (nominal) 400 (450) A
Operating peak field B0 (nominal) 4.5 (5) T
Deflection parameter K 0.064
On-axis proper wavelength �1 at 450GeV 610 nm
On-axis proper wavelength �1 at 6800GeV 2.7 nm

Table 3.1: Parameters of the LHC superconducting undulator.

Under operating conditions, the undulator generates a peak magnetic field of 4.5T at the

centre of the magnet gap. Despite the strength of the field, the relatively large mass of the

protons yields an undulator deflection parameter K = 0.064 ⌧ 1. As a result, the weak
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Figure 3.3: Coil assembly of the LHC superconducting undulator (a) and the corresponding
magnetic field profile created at the gap centre (b). The magnetic measurements are interpolated
to obtain the continuous field profile implemented in simulations.

magnet approximation discussed in the previous chapter is applicable to this undulator, since

the deflection induced by the magnetic field is much smaller than the typical opening angle of the

emitted radiation. An important consequence of the weak undulator model is that the spectral

and spatial properties of the emitted radiation depend only on the undulator period �u and the

number of periods Nu. The high magnetic field is necessary to ensure an adequate photon flux

but B0 has no impact on the shape of the radiation spatial distribution and its spectrum.

The spectral distribution of the radiation can be obtained by calculating the square modulus

of the weak undulator field, as described in Eq. 2.14. Along the undulator axis (# = 0), the

spectrum is peaked at the proper wavelength �1 = �u/2�2. The undulator is specifically designed

to maximize the synchrotron radiation emission in the visible range at the injection energy. It has

a magnetic field period of 28 cm, which corresponds to an on-axis proper wavelength of 610 nm

at 450GeV. According to the weak magnet model, the radiation spectrum is determined by

the Fourier transform of the longitudinal profile of the magnetic field. Figure 3.4 shows the

on-axis spectrum at injection energy. The spectrum resulting from the numerical simulation

of the measured magnetic profile is compared to the analytical spectrum of the corresponding

ideal undulator, as defined by Eq. 2.10. The central lobe of the spectral distribution appears

similar in both models because it is primarily determined by the undulator periodicity, which

does not depend on the exact shape of the magnetic field profile. The asymmetry of the central

lobe arises from the presence of two sinc functions in Eq 2.14, where the term dependent on
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! + !1 cannot be neglected due to the limited number of periods of the device. The small

number of periods also contributes to the broadening of the main peak in the spectrum. The

characteristic width of the peak �� spans a range of a few hundred nanometers, consistent with

the estimation ��/� ' 1/Nu stated in Eq. 2.16. The two magnetic profiles exhibit significant

di↵erences in the tails of the spectrum, where the analytical profile greatly overestimates the

intensity decay. This discrepancy can be attributed to the underlying principles of the weak

magnet model. The ideal field, defined as a cosine function truncated by a rectangular window,

possesses sharper spatial features than the smooth profile of the real undulator field. Since the

weak magnet model relates the frequency content of the magnetic field profile to the spectrum

of the radiated field, the less intense tails in the spectrum of the real undulator are expected.
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Figure 3.4: Simulation of the on-axis undulator spectrum at injection energy. The measured
magnetic field of Fig. 3.3b is used as input for the numerical computation of the spectrum with
SRW (blue curve). The result is compared to the spectrum simulated in SRW using the ideal
sinusoidal profile defined in Eq. 2.10 (orange curve). The spectrum of the weak undulator is
reported (dashed curve), validating the agreement between the numerical SRW simulation and
the analytical result of the weak magnet approximation.

The evolution of the undulator on-axis spectrum as a function of the beam energy is reported

in Fig. 3.5. As the beam energy increases, the proper wavelength of the undulator decreases to

shorter values. Additionally, the on-axis photon flux increases quadratically with the energy due

to the weak undulator field being proportional to �. Between 450GeV and 800GeV, the on-axis

radiation drifts outside of the visible range and the proper wavelength reaches the far UV domain.

Visible undulator radiation can be still observed o↵-axis, where the undulator period observed
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at larger angles produces SR with longer proper wavelength � ⇡ (1 + �
2
#

2)/2�2. Above 1TeV,

the emission of visible undulator radiation is limited to observation angles that are significantly

larger than the acceptance of the extraction system. At this stage, the D3 dipoles become the

most intense source of visible synchrotron radiation.
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Figure 3.5: Simulation of the on-axis spectrum emitted by the LHC undulator at several beam
energies. The yellow band highlights the UV-VIS range currently exploited for SR diagnostics.
Notice that in a logarithmic plot, the energy evolution of the radiated spectrum corresponds to
a rigid shift of the curve to shorter wavelengths and higher photon fluxes.

At high beam energy, the undulator on-axis emission has its peak at wavelengths as short as

a few nanometers. This radiation has the potential to be exploited for accurate diagnostics at

flat-top in the soft X-ray domain, for example by means of a pinhole camera [41]. However, it

currently acts as a parasitic e↵ect, negatively impacting the lifetime of the extraction mirror. The

optical coating is constantly irradiated by a narrow and intense beam of soft X-rays. During

LHC run 2, mirrors installed in the system experienced a surface damage caused by a local

detachment of the dielectric coating at the location of the undulator axis [19]. Starting from

run 3, the undulator is turned o↵ during the energy ramp to mitigate the issue of coating

degradation. The device is gradually powered down, and it is completely o↵ by the time the

beam has reached the energy of 3.3TeV. As a consequence, the actual evolution of the spectrum

during the accelerator energy ramp should take into account the decrease in intensity caused by

the reduction in the device’s peak field.
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3.4 D3 dipole

The D3 is a special type of superconducting dipole, consisting of two independent single-aperture

magnets housed within a cryostat similar to the one used for the LHC main dipoles. The internal

structure of this magnet is depicted in the cross-section view of Fig. 3.6 and the properties

relevant to synchrotron radiation emission are summarised in Tab. 3.2. The distinctive feature

of this magnet is that the deflection of the two beams acts in opposite directions, as required

to increase the inter-beam separation. The magnetic field is therefore aligned in the two beam

pipes. This configuration imposes certain limitations on the achievable magnetic field strength,

resulting in a larger bending radius compared to the main dipoles of the LHC arcs. The larger

bending radius has direct implications for the spectral properties of the emitted synchrotron

radiation, as the critical wavelength of the dipole is proportional to the bending radius �c =
4⇡
3

⇢
�3 .

The D3 dipole magnet is characterized by a peak field strength of 3.9T and induces a deflection

with a bending radius exceeding 6 km. In comparison, the LHC main arc dipoles generate a

higher field of 8.3T within the gap, resulting in a smaller bending radius of approximately

2.8 km.

Figure 3.6: Cross-section displaying the internal structure of a D3-type dipole. Illustration taken
from the D3 design report [36].

Since no detailed measurements of the magnetic field profile are available for this magnet,
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Parameter Value Unit
Magnetic length lcore 9.45 m
Coil inner diameter dcoil 0.08 m
Maximum magnetic field B0 3.85 T
Bending radius ⇢ 6013 m
Critical wavelength �c at 450GeV 230 µm
Proper wavelength �c at 6800GeV 66 nm

Table 3.2: Parameters of the D3-type dipole.

we assume a uniform magnetic field ranging for lcore with exponential tails of characteristic

length ledge ⇡ dcoil = 80mm, consistent with the model of Eq. 2.18. This realistic field profile

is compared with the ideal hard-edge dipole with a uniform field inside the magnet core which

suddenly drops at the dipole edges, with no field tails extending beyond.

The radiation emitted by the D3 dipole is in general more complicated than the weak un-

dulator case, as there is no unique model that comprehensively describes the entire wavefront.

Significant di↵erences arise in the radiation emitted when particles traverse the region of the

magnet edge compared to the light radiated by the circular motion inside the magnet core. While

both forms of radiation share the same physical origin, it is convenient to analyze them sepa-

rately using the analytical models presented in Sec.2.2 and Sec.2.3 for edge and core radiation,

respectively. The distinction between edge and core radiation is a conceptual framework useful

to describe some specific features of dipole radiation. In reality, the particle undergoes a continu-

ous transverse acceleration across the entire region of uniform field, and there is no fundamental

di↵erence in the emission process between the edge and core locations. The spectral-spatial

properties of the D3 dipole are characterized focusing on the D3R, which provides the main con-

tribution to the high energy radiation in the diagnostics line of the Beam 1. Since the two D3

dipoles of the LHC SR sources are identical, the same considerations apply to the D3L provided

that the di↵erent arrangement in the source layout is taken into account. The magnetic device is

characterized individually, while the next section is entirely dedicated to the interference e↵ects

that arise from the presence of both magnets.

The spatial distribution of the D3 at flat-top energy is shown in the central plot of Fig. 3.9.

The distribution exhibits two broad circular spots, centred at (x, y) = (0, 0) and (x, y) ⇡

(34, 0)mm. Between these centres, there is a region characterized by significantly higher ra-

diation intensity and narrower vertical aperture of the light. With reference to the source

geometry of Fig. 3.1, the two circular spots are aligned along the entrance and exit axes of the
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dipole and they represent the edge radiation contribution of the magnet. The radius of the spot

corresponding to the exit edge radiation is smaller since it is closer to the observation plane. The

high-intensity region in the centre is the dipole core radiation, emitted tangentially to the beam

deflected inside the dipole, which resembles the pattern produced by a sweeping searchlight.

Due to the di↵erent spatial distribution of core and edge radiation, it is possible to separately

study each contribution by properly selecting the observation point.
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Figure 3.7: Spectra of the D3R dipole at 6.8TeV, simulated with a hard-edge model (blue
curves) and an exponentially decaying field tail (orange curves). The solid lines describe the
spectrum of the radiation emitted from the magnet core whereas the dashed lines are the spectra
computed along the axis of the entrance edge. The edge radiation spectrum computed with the
weak magnet approximation of Eq. 2.14 is plotted in dashed lines for both models of the fringe
field.

Figure 3.7 shows the spectra of dipole SR, simulated in the region of edge and core radiation,

and comparing the hard-edge model to the more realistic case of a field profile with exponentially

decaying fringe field. Dipole radiation is characterized by a much broader spectral distribution

when compared to typical undulator radiation, even in the case of the relatively large spectrum

of the LHC mini-undulator. This characteristic is due to the lack of periodicity in the magnetic

field, which does not favor the emission of a specific range of frequencies. The spectrum of the

core radiation is the typical distribution resulting from the Schwinger’s field of Eq. 2.21. The

core emission is peaked near the dipole critical wavelength. The spectral distribution exhibits a

characteristic tail towards longer wavelengths, and a relatively fast decay as we move towards

shorter wavelengths. Despite the asymmetry of the curve, the integrated power on both sides

of the spectral distribution is equal due to the higher energy associated with shorter wavelength
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photons. The spectrum of the core radiation exhibits a perfect overlap between the hard and

exponential models for the edge field. This outcome is expected since the shape of the fringe

field has a negligible influence on the properties of the radiation originating from the dipole core.

The distribution changes when simulating the spectrum for the radiation emitted from the

magnet edge, obtained by sampling along the direction of the beam entering the dipole. The long

wavelength tail of the edge radiation follows a similar trend to the core radiation, but with lower

intensity. This is because the deflection under a uniform magnetic field, i.e. the constant part

of the step function, still dominates in the long wavelength regime but only half of the magnet

contributes to the emission, hence the lower intensity compared to the core spectrum. On the

other hand, the edge radiation exhibits a significantly higher intensity in the high frequency

region. This is the most distinctive feature of edge radiation and it is perfectly described by the

sudden change in the magnetic field, as confirmed by the perfect overlap between the analytical

model presented for the edge radiation and the high-frequency limit of the simulated curve. In

the edge spectral distribution is it also possible to appreciate the di↵erence between the di↵erent

fringe field models. The hard-edge profile features the sharpest field profile and therefore provides

the most intense radiation at high frequency. The intensity of radiation decreases as the fringe

field becomes smoother, such as in the case of an exponential decay of the field. This behavior

is consistent with the fact that the modulus of the fringe field modulation factor f(ledge) of

Eq. 2.20 is always smaller than one.

To complete the characterization of the D3 spectral properties, let us consider the evolution

of the spectrum during the accelerator energy ramp. The core and edge curves simulated at

various beam energies are reported in Fig. 3.8. Below 1TeV, there is minimal radiation emitted

by the dipole in the visible range. As the energy increases, the high-frequency tail of the

edge radiation gradually extends into the visible spectrum and becomes dominant over the

undulator radiation. By reaching 1.3TeV, the dipole radiation is completely dominated by the

edge contribution. Above 2TeV, the visible core radiation becomes significant, and at 3TeV, the

critical wavelength of the dipole reaches the centre of the visible range and core radiation becomes

the most intense contribution, although the broader edge radiation remains as background in the

peripheral regions of the observation plane. As the beam energy further increases, the critical

wavelength drifts beyond the UV range and the light emission in the optical domain remains

essentially stable. In contrast to the behavior observed in undulators, the dipole spectrum

evolves di↵erently as the beam energy increases. While undulator spectra rigidly shift towards
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shorter wavelengths with increasing intensity, in the case of dipoles, the long-wavelength tails

remain largely una↵ected and the intensity curve expands towards shorter wavelengths. This

phenomenon can be interpreted as the additional radiation produced at higher beam energies

being predominantly emitted as more energetic photons. The emission at a fixed observation

wavelength, longer than the critical wavelength, is marginally a↵ected by further increase of the

beam energy. Beyond the energy threshold of 4TeV, the D3 radiation exhibits minimal changes

in the visible domain. This leads to the relevant conclusion that, for wavelengths longer than

the critical one, the characteristics of dipole radiation remain essentially constant regardless of

variations in beam energy.

100 101 102 103 104

wavelength [nm]

107

108

109

1010

1011

1012

1013

in
te

n
si

ty
[p

h
/(

s
m

m
2

n
m

)]

Energy [GeV]

1300

3000

5000

6800

Figure 3.8: Simulation of the spectrum emitted by a D3 dipole at several beam energies. For
each energy, the spectrum of the core radiation (solid curves), simulated at the centre of the core
radiation region, is compared to the one simulated along the reference undulator axis (dashed
curves), representing the edge radiation contribution. The yellow band highlights the UV-VIS
range currently exploited for SR diagnostics.

The individual characterization of the D3 dipole is not su�cient to fully characterize the

spatial-spectral properties of the LHC SR source at flat-top energy. The presence of two identical

dipoles in the source layout introduces interference e↵ects, which produce characteristic features

in both the radiation spectrum and spatial distributions.

3.5 Dipole interference e↵ects

The synchrotron radiation emitted by the D3L originates over 130m upstream of the extraction

mirror. Due to its narrow emission angle of a few milliradians, it traverses unperturbed the RF
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cavity section and it is extracted alongside the light from the nearest D3R. As anticipated in

Sec. 2.4, the emission from the same particle in di↵erent source devices is perfectly coherent

under monochromatic conditions. As a result, interference phenomena arise from the coherent

overlap of the two D3 wavefronts. Fig. 3.9 illustrates the contributions of each dipole at the

extraction plane and the spatial distribution resulting from their overlap.

The contribution from the single D3L is identical to the D3R one, thoroughly discussed in

the previous section. However, due to the greater distance from the observer plane, the spatial

distribution of the D3L dipole is broader compared to the D3R. Additionally, the two patterns

are mirrored due to the opposite bending of the two dipoles. As a result, the interference mainly

involves the radiation emitted by the exit edge of the D3L and the entrance edge of the D3R.

The radiation from the cores, despite being much more intense at high energy, does not spatially

overlap significantly, resulting in less intense interference e↵ects. The simulated SR intensity,

including both dipoles, is depicted in the bottom plot. The extracted light is characterized by

three distinct regions: a bright spot of D3R core radiation, an almost uniform and less intense

background of core radiation from the downstream D3L, and a pattern of interference rings

centred along the axis of the dipoles’ edges. In a regime where edge radiation prevails over the

core radiation, such as at lower beam energies or higher observation frequencies, the interference

rings become the most prominent feature. The concentric ring pattern originates from the

phase di↵erence between the two wavefronts, as calculated in Eq. 2.26. The periodicity of the

fringes is determined only by the observation wavelength, while the initial phase of the intensity

modulation is influenced by the beam parameters.

The interference between the two D3 dipoles a↵ects also the spectrum of the LHC radiation.

Figure 3.10 presents a summary of the edge and core radiation spectra when both dipoles are

included in the simulations.

The on-axis spectra have the same intensity distribution as they both represent the central

peak of the edge radiation. Light from the D3L is more attenuated by the larger distance to

the observer, hence the di↵erent amplitude of the spectrum. The spectrum of the interfering

edges is governed by Eq. 2.27 and, in particular, its upper and lower envelopes are given by

I(�)± = I1(�) + I2(�) + 2
p

I1(�)I2(�), being Ii(�) the single-magnet radiation intensity at a

given wavelength. The overall spectrum is a modulation of the more intense D3R, because of

the intensity imbalance between the two dipoles. The spectrum fluctuates within this envelope

with a wavelength-dependent period, in agreement with the interference phase of Eq. 2.26. The
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Figure 3.9: Spatial distribution of the radiation emitted by the single D3L (top), the single
D3R (centre) and both dipoles (bottom), simulated at the plane of the extraction mirror. The
beam energy is 6800GeV and the observation wavelength 400 nm. The dashed square marks the
extension of the extraction mirror, which defines the acceptance of the SR monitors. The colour
map is in logarithmic scale to cope with the high dynamic range of the intensity distribution.

interference e↵ect is conceptually the same for the spectra of the core radiation. The di↵erence

is that the core radiation of the two dipoles is not spatially overlapping as the region of core

radiation from the D3R corresponds to a peripheral region of the edge radiation of the D3L. The

two contributions exhibit di↵erent spectra and, as a consequence of the scarce spatial overlap,
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Figure 3.10: Simulation of the SR spectra of the D3 dipoles at 6.8TeV. Solid curves refer to
the spectrum computed at (x, y) = (14, 0)mm, corresponding to the region of core radiation
from the D3R. Dashed curves are simulated on-axis and represent the spectrum of the edge
radiation for both magnets. The curves computed individually for each magnet are reported for
comparison. The vertical red dashed line marks the radiation critical wavelength.

the modulation e↵ect of the D3L is much less significant than in the on-axis region.

To conclude this section on dipole interference e↵ects, it is important to address the ex-

perimental conditions necessary for observing this phenomenon. A rigorous treatment of this

problem involves the study of the radiation temporal coherence, which will be presented in more

detail in the Sec. 4.1. Here, we provide a concise overview of the concept and present a practical

criterion for observing interference fringes. The light emitted by the upstream source reaches the

observer before the light radiated by the second source, due to the slower particle propagation in

the straight section between the magnets. Interference occurs only if the correlation between the

two emissions is preserved throughout the propagation. In the case of perfectly monochromatic

radiation, this condition is automatically satisfied as the correlation is fully preserved along an

infinitely extending sinusoidal wave. However, in reality, the finite bandwidth of the radiation

leads to a reduction in correlation. The propagating radiation maintains its correlation for a

distance on the order of �2
/��, where �� represents the bandwidth of the radiation [42, p. 356].

To observe interference e↵ects, it is necessary for this distance to be greater than the optical

path di↵erence between the radiation from the two sources. The optical path di↵erence can be

directly determined from the phase di↵erence at the observer plane, as presented in Eq. 2.26,
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and can be expressed as

�l ⇡ L

2�2
+

r
2
?

2r̄p,2(L+ r̄p,2)
L. (3.1)

With realistic values for parameters � ⇡ 2000, L ⇡ 100m, rp,2 ⇡ 30m, and a typical observation

range of r? ⇡ 10mm, the optical path di↵erence yields approximately 1.5 µm. At a typical

visible wavelength of 500 nm observed with a filter of 5 nm bandwidth, the radiation correlation

is preserved for a distance in the order of 50 µm. In this typical scenario, interference e↵ects

between the two magnets can be observed. The interference persists at higher beam energies

since the optical path di↵erence decreases due to the shorter delay caused by beam propagation.

However, it is worth noting that if a bandpass filter is not used and the synchrotron radiation

is directly observed on a viewing screen, the broad spectrum of the dipole radiation leads to a

much shorter correlation length and the interference e↵ects are completely suppressed.

3.6 Polarization e↵ects

The spatial distribution of synchrotron radiation significantly depends on the selected polariza-

tion component. The majority of the radiation intensity is emitted with a polarization parallel

to the orbit plane, where the transverse deflection takes place. However, for an observer posi-

tioned outside the orbit plane, the apparent motion of the particles includes a non-zero vertical

projection, resulting in the emission of vertically polarized radiation. The spatial distributions

of the two transverse polarization components, simulated at injection and flat-top energies, are

reported in Fig. 3.11.

At injection energy, the undulator radiation is strongly polarized along the horizontal direc-

tion, with a two order of magnitude less intense vertical polarization. In practice, the vertical

polarization component can be neglected at injection energy. At high beam energy, the typical

features of edge and core radiation are clearly distinguishable in both polarisation components

as well as the fringes created by the two dipole interference. In the region of core radiation, the

light distribution in the vertical direction follows the Schwinger profiles of Fig. 2.5. At flat-top

energy, the light profile is broader than the Gaussian approximation with 1/� opening angle

because the dipole critical wavelength of 66 nm, is shorter than visible wavelengths. Addition-

ally, the spatial distribution of the unpolarized light exhibits significant secondary lobes due to

the vertical polarization component, symmetric with respect to the orbit plane. These lobes are

clearly visible in Figure 3.11d. Quantitatively, the vertical polarization of the core radiation in
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(a) Horizontal polarisation at 450GeV.
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(b) Vertical polarisation at 450GeV.
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(c) Horizontal polarisation at 6800GeV.
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(d) Vertical polarisation at 6800GeV.

Figure 3.11: Spatial distribution at injection and flat-top energies, computed separately for the
horizontal and vertical polarization components. Injection distributions are simulated at the
undulator proper wavelength of 610 nm while at flat-top the simulation wavelength is 400 nm.
The white dashed square defines the acceptance of the extraction mirror.

the visible domain is only slightly weaker than the horizontal polarization, with a di↵erence of

less than an order of magnitude. Interferometric measurements require a defined polarization

state, which cannot be achieved with the intrinsic horizontal polarization of the light at flat-top

energy alone. Therefore, a linear polarizer is necessary to fully suppress the vertical component.

Finally, the flat-top intensity distributions exhibit a distinct characteristic of the D3R core

radiation. Moving from the region of the entrance edge to the exit edge, the radiation intensity

increases while the vertical width decreases. This behavior can be described by the ”sweeping

searchlight” analogy, where the emitted light corresponds to di↵erent longitudinal positions along

the dipole. This allows to define an e↵ective source distance for the longitudinally undefined

position of the D3R source. This finding is particularly useful for interferometry, where a well-
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defined distance of the source is required to retrieve the information on the source transverse

distribution.

3.7 Finite emittance beams

The results discussed in the previous sections rigorously describe the radiation emitted by a

filament beam travelling along the nominal accelerator orbit. A real accelerator beam com-

prises many particles organized in bunches, characterized by finite longitudinal and transverse

extensions. In general, both distributions impact on the properties of the emitted synchrotron

radiation [43, p. 30].

The longitudinal bunch length determines the correlation properties of radiation from di↵er-

ent particles1. If the bunch is shorter than the observation wavelength, the radiation emission

simultaneously occurs for all the particles and the field intensity is the coherent sum of the

single particle fields, proportional to the square of the number of particles. Conversely, if the

bunch length is much longer than the wavelength, the radiation from each particle has a random

initial phase and the total wavefront is proportional to the particle number, as an incoherent

sum. This regime in which there is no correlation between the radiation emitted by di↵erent

particles is commonly known incoherent synchrotron radiation. Given the nominal LHC bunch

length of �l ⇡ 1 ns, SR in the visible domain is always incoherent and the radiation intensity

scales linearly with the bunch population.

On the other hand, the transverse distribution of the particles determines the spatial coher-

ence properties of the SR. This subject will be discussed in depth in the next chapter, dedicated

to this property essential to SR interferometry. In this paragraph, we briefly discuss the impact

of a finite transverse emittance on the spatial distribution of emitted SR. Under the aforemen-

tioned assumption of incoherent SR, the total beam intensity is the sum of the single-particle

contribution, shifted and titled according to the (x, x0, y, y0) coordinate of the particle in the

transverse phase space. The result is essentially a convolution of the single-particle radiation

pattern over the transverse distribution of the beam, propagated to the observation plane. This

equivalence is rigorous as long as no quadrupoles are present in the beamline, ensuring that the

centroids of the light distribution propagate in the same manner as the beam particles. The

finite emittance beam features a smoother light distribution compared to the filament beam,

1Notice that the correlation discussed here, related to the longitudinal bunch length, is di↵erent from the cor-
relation between the radiation emitted by the same particle in di↵erent magnetic devices, as mentioned discussing
the dipole interference e↵ects in Sec. 3.5.
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with the sharp spatial features blurred by the convolution operation. This e↵ect is negligible

for undulator radiation at injection energy, due to the already uniform single-particle pattern.

However, it becomes more evident in the case of dipole radiation, especially for the fringe pattern

of two-dipole interference. Figure 3.12 illustrates the impact of a finite transverse emittance on

the spatial distribution of synchrotron radiation at flat-top energy.
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Figure 3.12: Cross-cuts of the SR intensity distribution simulated at a beam energy of 6800TeV
and observation wavelength � = 400 nm. The zero-emittance case (single particle or filament
beam) is compared to a beam with the nominal LHC 2.5 µm normalised emittance.

As expected, the convolution e↵ects have a negligible impact in regions where the initial

single-particle distribution is already smooth. However, they noticeably dampen the high-

frequency fluctuations of the interference pattern. The reduction in fringe contrast due to

the beam emittance can be exploited for non-invasive transverse diagnostics in cases where the

source radiation displays su�ciently sharp interference e↵ects [44]. In the case of the LHC, the

significant spacing between dipoles results in dipole interference fringes that cause only a mild

modulation of the more intense D3R distribution. The fringes at zero emittance already have

a relatively low contrast, making the technique insu�ciently sensitive to resolve the emittance-

dependent loss of contrast.
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3.8 Spatial distribution evolution during the energy ramp

In this section, we analyze the evolution of the SR spatial distribution as a function of beam en-

ergy. During the accelerator energy ramp, the emitted radiation undergoes significant changes,

transitioning from the regime dominated by the undulator at injection energy to the predomi-

nance of dipole radiation as the beam passes the 2TeV energy level. Special attention is given

to the transition between these two regimes, which poses a challenging scenario for synchrotron

radiation-based diagnostics.

The evolution of the spatial distribution of synchrotron radiation is illustrated in Fig. 3.13.

The figure presents a comparison between the simulated SR distribution at various beam energies

and the images of the extracted light, captured by a camera on a viewing screen during an

accelerator energy ramp. The observation wavelength is fixed at 560 nm, which is the primary

operating wavelength of the synchrotron radiation interferometer. In Fig. 3.14, the evolution of

the photon flux, integrated over the extraction acceptance, is reported for various wavelengths

within the UV-VIS range, of interest for the whole family of SR monitors.

At injection energy, the 560 nm observation wavelength is close to the undulator on-axis

proper wavelength and the spatial distribution is a bright spot of light with the maximum

emission along the undulator axis. Due to the limited number of periods of the LHC undulator,

the radiation has a rather broad opening angle and the most of the extraction acceptance is

illuminated. As the energy increases, the on-axis proper wavelength drifts to shorter values and

the resonance condition is satisfied at larger observation angles, according to Eq. 2.15. The on-

axis region of the intensity spatial distribution is depleted and the amount of light available for

diagnostics drops, as confirmed by the steep decrease of the integrated photon flux of Fig. 3.14.

At 800GeV, the main lobe of the undulator radiation is outside of the extraction acceptance.

Nevertheless, the central region is illuminated by the secondary lobe of the sinc function of the

undulator spectral distribution. This is consistent with the spectrum simulation of Fig. 3.5.

In terms of absolute intensity, although the increased energy produces more intense radiation,

this secondary peak is a factor of 50 less intense than the original on-axis emission at 450GeV.

The undulator radiation intensity monotonically decreases after this energy value as no other

relevant peaks are present in the spectrum. In addition to the intrinsic decrease due to the

spectral properties of undulator radiation, the available light is also reduced by the ramp-down

of the device current, performed to mitigate the undulator damage to the extraction mirror



56 Chapter 3: Spatial-spectral properties of the LHC source

�40 �20 0 20 40 60
�40

�20

0

20

40

�10 0 10

�10

0

10

(a) 450GeV

�40 �20 0 20 40 60
�40

�20

0

20

40

�10 0 10

�10

0

10

(b) 550GeV

�40 �20 0 20 40 60
�40

�20

0

20

40

�10 0 10

�10

0

10

(c) 800GeV

�40 �20 0 20 40 60
�40

�20

0

20

40

�10 0 10

�10

0

10

(d) 1600GeV

�40 �20 0 20 40 60
�40

�20

0

20

40

�10 0 10

�10

0

10

(e) 3300GeV

�40 �20 0 20 40 60
�40

�20

0

20

40

�10 0 10

�10

0

10

(f) 6800GeV

Figure 3.13: Evolution of the SR spatial distribution during the accelerator energy ramp. For
some relevant values of the beam energy, the intensity map simulated with SRW (left) is com-
pared to the one observed with a camera on a white screen (right). The simulation and obser-
vation wavelength is 560 nm. The white dashed square in the simulation marks the extraction
mirror acceptance. The experimental images are further limited by the acceptance of a circu-
lar 50mm bandpass filter, required to have a quasi-monochromatic observation. The e↵ective
aperture of the experimental observation is reported, for comparison, as a dotted red path on
the simulated distribution. Simulated and observed intensities are not directly comparable as
the colour scale is adapted to the full dynamic range of each picture. The position axes are in
units of mm for all plots.

coating at high beam energies. Synchrotron radiation diagnostics in the energy range just below

1TeV are limited by the available amount of light and the fact that most of this radiation is

emitted at the peripheral region of the system’s acceptance.

Above 2TeV, the D3 dipoles become the brightest source of light in the visible domain.

Light from the dipoles initially appears in form of edge radiation, due to the harder spectrum

compared to the core contribution. Around 1.6TeV, the on-axis radiation from the dipoles

equals the photon flux of the undulator at injection energy. The spatial distribution in the

regime of pure edge radiation is displayed in the picture corresponding to 1.6TeV. The on-axis
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Figure 3.14: Evolution of the photon flux emitted by the LHC source, integrated over the full
acceptance of the extraction mirror, simulated at various visible wavelengths. The energy at
which the wavelength is the proper wavelength of the undulator and the critical wavelength of
the dipole is marked by vertical dash-dotted lines and dashed lines respectively.

region features the concentric rings due to the interference between the two D3 edges. Radiation

from the exit edge of the D3R can be observed in the simulated spatial distribution. This region

is not a↵ected by interference because radiation from the exit edge of the D3R does not spatially

overlap with other emissions. The radiation emitted from the exit edge of the D3R is not

practically useful since it cannot be extracted due to its proximity to the beam. The dipole

interference pattern is rapidly evolving in this regime. Recalling the expression for the phase

di↵erence of Eq. 2.26, the on-axis phase of the interference pattern decays as L/�2. The result

is a pattern of concentric rings characterised by a fixed periodicity, dictated by the observation

wavelength, and a rapidly varying initial phase. This situation persists until this phase term due

to the dipole separation reduces to a su�ciently small value and the fringe pattern stabilizes.

Finally, the last major change in the SR distribution is the appearance of core dipole radiation

that fills the space gap between the two edge regions. Figure 3.13 reports the interesting case of

3.3TeV, corresponding to the beam energy at which the dipole critical wavelength matches the

observation wavelength. The extracted portion of SR remains significantly a↵ected by the dipole

interference e↵ects. The average vertical profile is Gaussian, characterised by an opening angle of

1/� ⇡ 280 µrad. Above the critical energy, the light distribution remains relatively stable. The

spatial distribution shows a behaviour similar to the one noticed for the dipole spectrum. An

energy increase a↵ects the situation at short photon wavelengths leaving almost unchanged the
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distribution at wavelengths longer than the critical one. This argument provides an explanation

for the similarity between the simulated (and observed) light distribution at 3.3TeV and the

final distribution at flat-top energy. It also clarifies why the curves of the integrated photon flux

exhibit a flat trend above the energy at which the observation wavelength matches the dipole

critical wavelength. In this regime, the most noticeable change is the deviation of the vertical

profile of the core radiation from the Gaussian distribution to a flatter profile described by the

Schwinger functions. However, despite this change in shape, the vertical opening angle remains

almost unchanged. This is consistent with the low-frequency trend of Eq. 2.23, as the light

divergence does not depend on � at a fixed observation frequency.

The example discussed in this paragraph focuses on the SR distribution at 560 nm since most

of the interferometric measurements presented in this thesis are conducted at this wavelength.

However, the considerations regarding the SR evolution as a function of beam energy can be

extended to all wavelengths. The only notable di↵erence is the energy at which the reported

turning points occur, which varies depending on the specific observation wavelength, and are

essentially determined by the proper wavelength of the undulator and the critical wavelength of

the dipoles.

In conclusion, it is important to emphasize the dynamic nature of the synchrotron radiation

emitted by the LHC source throughout the accelerator energy ramp. This mutability poses

significant challenges for all SR-based diagnostics. At present, the SR telescopes are unable to

provide reliable beam size measurements during the energy ramp. Emittance measurements in

the ramp are only available in low-intensity fills, when the wire scanners are available. The

ability to accurately measure beam sizes during the energy ramp becomes a crucial requirement

for any candidate instrument for transverse diagnostics. Despite its potential advantages, SR

interferometry encounters similar challenges as SR imaging due to the complex nature of the

LHC source. Consequently, achieving accurate measurements during the energy ramp remains

a persistent challenge.



Chapter 4

Spatial coherence properties of the

LHC synchrotron radiation source

This chapter aims to comprehensively investigate the coherence properties of the synchrotron

radiation (SR) emitted by the LHC source, focusing on their relevance for diagnostic applications

in interferometric techniques. The concept of optical coherence is introduced in space-time

domain, where it naturally emerges as a correlation within the radiated field. The fundamental

quantities for characterizing spatial and temporal coherence are rigorously defined and compared

with their counterparts in the space-frequency domain, commonly discussed in simulations and

theoretical models. The following sections describe how the coherence state of an optical field

originates from the properties of the source, emphasizing the dependence on the source transverse

distribution. The Van Cittert and Zernike (VCZ) theorem is presented as a fundamental model

that relates the spatial coherence of a field with the transverse profile of the radiating source.

The quasi-homogeneous model is then introduced as a generalization of the VCZ theorem to a

wider class of light sources, including relevant cases of SR emitted by relativistic beams. Finally,

the chapter presents the results of numerical simulations performed to accurately quantify the

LHC SR degree of coherence. These studies aim to investigate the applicability of the VCZ

theorem as a model for retrieving the transverse beam size from the coherence of the emitted

SR.
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4.1 Optical coherence

In optics, coherence is the study of the correlation between di↵erent points of a wavefront. The

coherence of a wavefront is related to its tendency to exhibit interference e↵ects. Constructive

or destructive interference of electromagnetic waves can occur only if the interfering fields are

su�ciently correlated. Optical coherence is commonly defined using the concepts of temporal and

spatial coherence. Temporal coherence refers to the correlation properties of a signal as it evolves

over time, while spatial coherence involves the correlation between di↵erent points on a wavefront

sampled at the same instant in time. In practice, all sources of light are characterized by finite

spatial and temporal coherence, which means that interference e↵ects eventually vanish over a

wavefront area that is too large or a time delay that is too long. Two quantities are introduced

to quantify the coherence of a light wavefront: the coherence length1 and the coherence area.

The coherence length serves as a measure of temporal coherence. It represents the distance

over which a wavefront can propagate without experiencing a significant loss of correlation. This

concept was previously introduced in Sec. 3.5 to discuss the conditions necessary for observing

interference e↵ects between two sources of synchrotron radiation. The coherence length can be

determined based on the spectral bandwidth of the light, following the relation lcoh ⇡ �
2
/�� [45].

Despite being a crucial property of an optical field, temporal coherence is marginally addressed

in the following as it does not convey direct information about the transverse distribution of a

source of light. The primary focus of this thesis is on spatial coherence. In analogy with the

coherence length, the coherence area describes the spatial extent of a transverse region on the

wavefront where the field correlation is preserved. The objective of this chapter is to discuss the

relationship between the transverse distribution of a source of light and the coherence properties

of the emitted field and present the fundamental results that allow inferring the source transverse

size from the radiation coherence area. It is worth emphasizing that in real experiments, both

temporal and spatial coherence coexist and jointly contribute to the loss of interference capability

in the radiation. Therefore, it is crucial to minimize the impact of temporal coherence and ensure

that it does not a↵ect the measurement of spatial coherence. The coherence length is a useful

parameter in this regard, as it provides an immediate estimation of the temporal coherence and

defines the conditions under which it can be neglected. The results presented in the following

sections pertain to the theory of second-order coherence of scalar fields, where the term ”second-

1Depending on the context, it may be more convenient to define a coherence time ⌧coh. The two quantities
are equivalent as they are one-to-one related by the speed of light as lcoh = c⌧coh.
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order” refers to the correlations between two variables, specifically space-time or space-frequency.

Additionally, in scalar fields, the polarization components are treated individually, excluding any

cross-polarization interference.

4.1.1 Coherence in space-time domain

To quantify optical coherence and relate it to physical observables, we need to introduce the

relevant variables that characterize the correlation properties of an optical field.

Let E(t, r) be the complex representation of a scalar component of an optical field at the time

instant t and spatial point r. This representation encompasses both the phase and amplitude

information of the field. The real part of E(t, r) corresponds to the observable quantity that

characterizes the radiation field and can be ideally measured using a detector with infinite time

and spatial resolution. If the process is stationary, the optical intensity associated with the field

E(t, r) is defined as [42, p. 562]

I(r) = hE(t, r)E⇤(t, r)i. (4.1)

Typically, radiation emission processes are ergodic, meaning that the time-average of the field

corresponds to the ensemble-average of multiple realizations of the field generated by the indi-

vidual emitters that constitute the source. Under this assumption, the notation h. . . i represents

either average operation. Let us now isolate two points of the wavefront, E(t, r1) and E(t, r2),

and compute the intensity resulting from the superposition of the propagated fields at a point

r
0. This situation can be created by placing two narrow pinholes in r1 and r2 and detecting the

intensity at the point r0 on a screen downstream. The resulting field reads

E(t, r0) = K1E

⇣
t � s1

c
, r1

⌘
+K2E

⇣
t � s2

c
, r2

⌘
, (4.2)

where si = |r0 � ri| is the distance from the two sampled points and Ki are pure imaginary

numbers that describe the propagation from ri to r
0, which can be derived applying the Huygens-

Fresnel principle [42, p.417]. Recalling Eq. 4.1, the optical intensity associated with the resulting

field becomes

I(r0) = |K1|2I(r1) + |K2|2I(r2) + 2|K1K2|Re
⇢⌧

E

✓
t+

s2 � s1

c
, r1

◆
E

⇤(t, r2)

��
. (4.3)
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The stationarity of the process implies that the only significant time dependence is the time

di↵erence due to the propagation, ⌧ = (s2 � s1)/c, irrespective of the specific absolute time

instance at which the fields are sampled. Let us introduce the quantity

�12(⌧) ,
⌧
E

✓
t+

s2 � s1

c
, r1

◆
E

⇤(t, r2)

�
, (4.4)

which can be conveniently normalized by an intensity factor

�12(⌧) ,
�12(⌧)p
I(r1)I(r2)

. (4.5)

Redefining Ii(r0) = |Ki|2I(ri) as the intensity from the field in ri propagated to r
0, Eq. 4.3 can

be rewritten in more compact form as

I(r0) = I1(r
0) + I2(r

0) + 2
p
I1(r0)I2(r0)Re{�12(⌧)}. (4.6)

This equation is a prominent result of optics and it is referred to as general interference law

of stationary fields. Under very general conditions, it states that the superposition of two optical

fields can be interpreted as the sum of the two fields’ intensities, modulated by an interference

term. The key quantity to describe the interference e↵ect is �12(⌧) which is defined as the mutual

coherence function of the field. It represents the correlation of the wavefront between the two

points r1 and r2 over a time interval ⌧ [46]. Its normalized form �12(⌧), known as the complex

degree of coherence, satisfies the inequality conditions 0  |�12(⌧)|  1. A value of |�12(⌧)| equal

to zero indicates complete lack of correlation, or incoherence, between the wavelets originating

from the sampled points. In this case, the intensity resulting from the field superposition reduces

to the sum of the two independent field intensities. On the other hand, a value of |�12(⌧)| equal

to unity signifies perfect correlation, or coherence, between the wavelets. The intensity is then

bounded by I(r0)± = I1(r0)+I2(r0)±2
p
I1(r0)I2(r0) and exhibits oscillations based on the phase

of the complex quantity �12(⌧). In cases where the correlation between the wavefronts is neither

fully coherent nor completely incoherent, the fields are referred to as partially coherent. In

such intermediate situations, the intensity profile exhibits oscillations that are confined within

narrower envelope functions given by

I(r0)± = I1(r
0) + I2(r

0) ± 2
p

I1(r0)I2(r0)|�12(⌧)|. (4.7)
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Equation 4.6 is a generalization of the interference law presented in Eq. 2.27 to describe the

interference between wavefronts emitted by the same particle as it traverses di↵erent magnetic

devices. In the case of Eq. 2.27, the elemental sources were assumed to be fully coherent,

since the particle preserved the correlation during propagation. The phase was dictated by the

propagation delay �� = kc⌧ , which corresponds to a ”pure phase” complex degree of coherence

�12(��) = e
i��, whose real part reduces to cos(��). In the context of more general interference

between partially coherent fields, the quantity �12(⌧) assumes complex values. Its absolute value

provides a measure of the interference capability of the radiation, while the phase governs the

positions of the interference fringes’ maxima and minima.

11 12 12

Figure 4.1: Spatial and temporal coherence of a wavefront. On the left, the correlation of a
wavefront propagating from a single point is evaluated across a time interval ⌧ to assess its
temporal coherence. In the centre, the correlation between two wavelets sampled at di↵erent
locations is measured with no propagation delay, to assess their spatial coherence. On the right,
the same measurement is repeated by introducing a time delay between the two fields, thus also
introducing a temporal component in the coherence measurement.

The complex degree of coherence can be decomposed into temporal and spatial components.

The temporal correlation of a field can be quantified by fixing the sampling point and scanning

the time delay, hence �11(⌧) represents the temporal coherence of the field. In a complementary

way, spatial coherence can be probed by sampling two distinct points at zero relative time delay

�12(0). In practical scenarios, complete isolation of the temporal and spatial components is

challenging because spatial coherence measurements are often performed at a point r
0 that is

not equidistant from both r1 and r2. This di↵erence in distance introduces a corresponding time

di↵erence, leading to deviations from a ⌧ = 0 condition. In spatial coherence measurements,

it is crucial to verify that the optical path di↵erences involved, given by ⌧c, are always shorter

than the coherence length of the radiation, assessed as lcoh ⇡ �
2
/��. Since lcoh is inversely pro-

portional to the spectral bandwidth, temporal coherence e↵ects vanish for quasi-monochromatic

fields. This requirement can be fulfilled by working with quasi-monochromatic sources or by
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applying narrow filtering to a broadband spectrum to enhance the radiation temporal coherence.

4.1.2 Degree of coherence in space-frequency domain

The concept of optical coherence has been introduced in the space-time domain, where the

complex degree of coherence naturally emerges to quantify the space-time correlation of an

optical field. Working with analytical models or numerical simulations, it is more convenient to

describe the radiation field in the space-frequency domain. In this framework, the radiation is

characterized in terms of the Fourier-transformed field Ẽ(!, r) extensively discussed in Sec. 2.1.

Di↵erent quantities are defined to study the optical coherence in the space-frequency domain.

Although we will eventually show the equivalence, under certain assumptions, between the space-

time and space-frequency treatment of the optical coherence, it is worth discussing this subject

further as the comparison is not immediately apparent.

The wavefront correlation in space-frequency domain is quantified by its cross-spectral density

function [47]. The cross-spectral density between two points of a Fourier-transformed field

Ẽ(!, r) is defined2 as

W12(!) , hẼ(!, r1)Ẽ
⇤(!, r2)i, (4.8)

where h. . . i represents the ensemble average of the field and ⇤ the complex-conjugate operation.

The cross-spectral density is closely related to the mutual coherence function through a Fourier

transform operation [45, p.170]

W12(!) =

Z
�12(⌧)e

�i!⌧d⌧. (4.9)

When the sampling points coincide, i.e. r1 = r2 = r, Eq. 4.9 reduces to

I(!) =

Z
I(⌧)e�i!⌧d⌧., (4.10)

indicating that the spectral density I(!), i.e. the spectrum of the radiation, corresponds to the

Fourier transform of the radiation intensity in the space-time domain. For a pair of distinct

points, W12(!) describes the correlation of the radiation spectrum across the wavefront and

2Following an approach completely symmetric to what presented in space-time domain, we should evaluate
the correlation between two di↵erent frequencies !1 and !2. The complete computation [48] leads to a Dirac
delta �(!1 � !2) factor in the correlation integral, meaning that field components with di↵erent frequencies are
completely uncorrelated. This explains why the cross-spectral density is defined at a fixed frequency for both
points.
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complements the information provided by �12(⌧). Similarly to the definition of �12(⌧), the cross-

spectral density can also be normalized to obtain a quantity whose modulus ranges between zero

and a unitary value

µ12(!) ,
W12(!)p

I(r1,!)I(r2,!)
. (4.11)

This quantity is called spectral degree of coherence and quantifies the degree of correlation of

the spectral components of the radiation. Despite the similar definition, the spectral degree of

coherence di↵ers in general from the complex degree of coherence �12(⌧). The exact relationship

between the two quantities writes [49]

�12(⌧) =

Z 1

0

q
Ī(r1,!)Ī(r2,!)µ12(!) e

�i!⌧d!, (4.12)

being Ī(ri,!) , I(ri,!)/
R
I(ri,!)d! the normalized spectral density at ri. Let us notice that

the normalized spectral density is not a↵ected by a constant scaling of the entire spectrum. If

the radiation spectrum I(!) has the same distribution in both points, then Ī(r1,!) = Ī(r2,!),

irrespective of the absolute intensity of the radiation at the two locations. An optical field

satisfying this condition is defined as cross-spectrally pure [48]. Typically, synchrotron radiation

wavefronts are not cross-spectrally pure because they feature di↵erent spectral distributions as a

function of the sampling point. The cases presented in Chapter 3 provide clear examples of this

property as the undulator spectrum is highly dependent on the observation angle, and the dipole

radiation spectrum displays distinct distributions for edge and core contributions. Since Eq. 4.12

is not an identity, µ12(!) and �12(⌧) are in general not immediately comparable. However, it is

intuitive to expect that the space-time and the space-frequency approaches yield the same result

when the radiation is quasi-monochromatic. To conclude the comparison between space-time

and space-frequency domain, let us consider the quasi-monochromatic scenario.

If the radiation is quasi-monochromatic, one can assume a constant spectral degree of coher-

ence µ12(!) ⇡ µ12(!0) over the narrow bandwidth�!, being !0 the average frequency within the

range. In space-time domain, the narrow bandwidth implies a long coherence time ⌧coh ⇡ 1/�!.

This corresponds to a scenario where temporal coherence is high enough to not a↵ect the com-

plex degree of coherence, so we can neglect the propagation delay and assume ⌧ = 0. Moreover,

if the radiation spectrum can be approximated as uniform over the considered bandwidth, the fil-

tered spectrum is essentially dominated by the narrowband selection and the radiation becomes

cross-spectrally pure, yielding
R p

Ī(r1,!)Ī(r2,!)d! = 1. In quasi-monochromatic conditions,
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Eq. 4.12 reduces to

�12(0) ⇡ µ12(!0), (4.13)

thus confirming the equivalence between the two definitions of degrees of coherence. This result

allows the direct comparison between the (spatial) degree of coherence �12(0), estimated from

experiments, and the spectral degree of coherence µ12(!0), obtained from theoretical models or

numerical simulation of the Fourier-transformed fields. Since in the following we will consistently

assume quasi-monochromatic conditions to suppress temporal coherence e↵ects, the distinction

between �12(0) and µ12(!0) becomes irrelevant. For this reason, we will informally refer to

the combined quantity as the ”degree of coherence”, understanding that �12(0) represents the

measurable field coherence while µ12(!0) is the quantity assessed in simulations.

4.1.3 Van Cittert and Zernike theorem

An optical field radiated by a source necessarily carries some information about the source

properties. Part of such information is encoded in the correlation properties of the radiation

across the emitted wavefront, hence the spatial degree of coherence. This section presents a

fundamental result of classical optics, the Van Cittert and Zernike theorem [50, 51], which

relates the degree of coherence of the wavefront to the transverse distribution of the source.

Let us assume a fully incoherent planar source ⌃, characterized by a transverse two-dimensional

distribution f(⇠, ⌘), normalized such that
R
⌃ f(⇠, ⌘) d⇠d⌘ = 1. The prototypical example of a

fully incoherent source is a thermal source, where the radiation originates from numerous point-

like elemental emitters, such as excited atoms, whose decay processes occur independently and

lack correlation. The intensity radiated by the infinitesimal source element d⇠d⌘ to the point ri

writes �iI⌃f(⇠, ⌘)d⇠d⌘, being I⌃ the total source intensity and �i an illumination factor, quan-

tifying the fraction of light delivered to ri. In general, �i = �i(⇠, ⌘) as di↵erent emitters may

di↵erently illuminate the considered points. For isotropic emission, �i reduces to the geometric

attenuation 1/s2
i . Finally, let us assume that the radiation is observed in a narrow spectral

band, centred at ! = ck = c2⇡/�, and that the phase of the elemental emitter wavefront can be

described by a spherical wave.

Since the source is fully incoherent, the mutual intensity function can be computed as the

sum of contributions across the source extension, each radiating a spherical wavefront according
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to the Huygens-Fresnel principle

�12 =

Z

⌃
E(r1)E

⇤(r2) = I⌃

Z

⌃

p
�1�2f(⇠, ⌘)e

ik(s1�s2)d⇠d⌘. (4.14)

The quasi-monochromatic assumption allows neglecting any temporal coherence e↵ects. The

resulting �12 represents only the spatial component of the mutual intensity function. The

complex degree of coherence is derived upon normalization by the intensity at the two points

�12 =

R
⌃

p
�1�2f(⇠, ⌘)eik(s1�s2)d⇠d⌘

qR
⌃ �1f(⇠, ⌘)d⇠d⌘ ·

R
⌃ �2f(⇠, ⌘)d⇠d⌘

. (4.15)

To simplify the expression, let us assume that �i is constant over the source. A constant

illumination factor does not necessarily mean that the source globally delivers the same absolute

intensity to r1 and r2. It implies instead that the fractions of light delivered to the two points

are the same for each emitter, even though the total intensity arriving at the two points may

di↵er. We refer to this condition as even illumination of the two points. To provide a practical

example, let us consider a thermal source consisting of independent elemental emitters that

radiate an isotropic wavefront. The intensity delivered at two points r1 and r2, su�ciently far

from the source, is in general di↵erent unless they are at the same distance from the source.

Nevertheless, the condition of even illumination is satisfied as the fractions of intensity arriving

at r1 and r2 are the same for all emitters.

Under the assumption of even illumination, the complex degree of coherence reduces to

�12 =

R
⌃ f(⇠, ⌘)eik(s1�s2) d⇠d⌘R

⌃ f(⇠, ⌘) d⇠d⌘
. (4.16)

This equation already embodies the essence of the Van Cittert and Zernike theorem. It shows

that the complex degree of coherence of the source can be decomposed into a sum of pure phase

terms, weighted according to the source distribution, which depend only on the path di↵erence

between the infinitesimal component of the source and the two sampled points. Under small

angle approximation, this path di↵erence can be made explicit [42, p. 574]

s1 � s2 ⇡ (x2
1 + y

2
1) � (x2

2 + y
2
2)

2rp
� (�x⇠ � �y⌘)

rp
, (4.17)

where xi and yi are the transverse components of ri, �x = x1 � x2 and �y = y1 � y2, and
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rp ⇡ s1 ⇡ s2 is the first order approximation of the source distance. The first term represents

the phase di↵erence of a spherical wave propagating from the source centre. Since it does not

depend on the transverse position of the emitters, it can be taken out of the integral and gives

rise to a constant phase o↵set  . The complex degree of coherence finally reads

�12 = e
i 

R
⌃ f(⇠, ⌘)e�i2⇡(⌫x⇠�⌫y⌘) d⇠d⌘R

⌃ f(⇠, ⌘) d⇠d⌘
. (4.18)

where (⌫x, ⌫y) are conveniently introduced as spatial frequencies, proportional to the transverse

distance of the points at the observation plane

8
>><

>>:

⌫x = �x
rp�

,

⌫y = �y
rp�

.

(4.19)

The spatial frequencies represent a set of coordinates useful to map the transverse space of the

observer. Their utility extends beyond the VCZ theorem as they are in fact a general concept

of Fourier optics, often involved in problems concerning the physical optics propagation (POP)

of a wavefront [52, Sec. 2.2].

The Van Cittert and Zernike (VCZ) theorem states that the complex degree of coherence is,

apart from a non-important phase term, the two-dimensional Fourier transform of the source

profile, evaluated at the spatial frequencies defined in Eq. 4.19. The theorem is strictly valid

for purely transverse and fully incoherent sources, under quasi-monochromatic conditions and

in small-angle approximation.

Let us consider, for future reference, the VCZ prediction for the degree of coherence generated

by a Gaussian-distributed source. Writing the normalized two-dimensional source distribution

as

f(⇠, ⌘) =
1

2⇡�⇠�⌘
e

� 1
2

 
⇠2

�2
⇠
+ ⌘2

�2
⌘

!

, (4.20)

the VCZ expression for the complex degree of coherence yields

�12(�x,�y) = e
� 1

2

⇣ 2⇡�⇠
�rp

⌘2
�x2+

⇣
2⇡�⌘
�rp

⌘2
�y2

�

. (4.21)

This result is based on the symmetry of the Gaussian distribution under a Fourier trans-

form operation, for which a Gaussian distributed source with standard deviation � produces a
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Gaussian degree of coherence with standard deviation �coh, the two being related by

�coh =
�rp

2⇡�
. (4.22)

The above equation shows that the coherence area �coh of a Gaussian source expands linearly

as light propagates, is proportional to the radiation wavelength and it is inversely proportional

to the transverse size of the source distribution. The first two behaviours are very general and

not limited to the Gaussian case as they are a direct consequence of the definition of the spatial

frequencies of Eq. 4.19, which are invariant under distance and wavelength scaling. The exact

inverse proportionality on the source size, as well as the 2⇡ factor, are instead specific to the

Gaussian function. Nevertheless, the reciprocity between the source size and coherence area can

be extended, in a qualitative way, to other source distributions. It is a well-known property of

the Fourier transform to preserve the product of the characteristic widths of a function and its

transform. Once a characteristic width of the coherence area is defined, such as the full width at

half maximum (FWHM) of the degree of coherence, it is legitimate to assume that this quantity

scales as the inverse of the source size.

4.2 Partially coherent sources

The Van Cittert and Zernike theorem is based on the assumption of a fully incoherent emission

from the source. Synchrotron radiation does not typically satisfy this condition as the source is

characterized by an intrinsic finite coherence, ultimately related to the narrow emission angle of

the elemental emitters, which make it a partially coherent source. The partial coherence at the

source location has important consequences on the spatial coherence of the propagating field,

which may deviate from the VCZ model. The exact characterization of the LHC SR source

coherence requires numerical simulations as no analytical models can cope with the complexity

of this scenario. The results of numerical simulations are presented in Sec. 4.3. This section aims

at providing a physical insight into the subject of partially coherent sources and introduces an

analytical model, the quasi-homogeneous source, that confirms the validity of the VCZ prediction

of the degree of coherence for a particular class of partially coherent sources.

To address the scenario of SR, the primary assumption of the VCZ theorem that needs to

be relaxed is the one of isotropic radiation from the elemental emitter. To take into account the

finite opening angle, we consider an elemental emitter featuring a Gaussian angular distribution



70 Chapter 4: Spatial coherence properties of the LHC source

of the radiated intensity, with standard deviation �0l, as illustrated in Fig. 4.2. This model o↵ers

a realistic approximation of the SR emitted by the single particle, without the need to account

for the complexity of the actual angular distribution of SR.

Figure 4.2: Elemental emitter radiating light with an opening angle of �0l. The finite emission
angle implies a finite extension of the emitter �l, the two being constrained by the uncertainty
principle �0l · �l ⇡ �. The subscript means that these quantities refer to properties of the light
and help to distinguish them from the size and divergence of the extended source, � and �0.

The finite opening angle �0l of the light implies a finite ”e↵ective” transverse size �l of the

elemental emitter, the two being constrained by

�l ⇡ 1

4⇡

�

�
0
l

, (4.23)

where � is the observation wavelength. This relationship arises from the wave nature of light

and is a consequence of the position-momentum uncertainty principle applied to the emitted

photons. According to the principle, the position and momentum of a particle have uncertainties

constrained by �x ·�px ⇡ ~/2, where ~ is the reduced Planck constant. In the case of photons,

the momentum uncertainty is related to the angular spread of the radiation3, as �0l , �/h�px,

and the position uncertainty corresponds to the ”e↵ective” size of the emitter, as �l , �x. The

e↵ective size of the elemental emitter is also referred to as di↵raction size of the radiation [25],

because the finite opening angle of the radiation can be described as the di↵raction pattern

generated by a hypothetical pupil of characteristic width �l. Equation 4.23 is a fundamental

result of physical optics that has relevant implications on the coherence of the source wavefront.

Photons emitted within the di↵raction size are indistinguishable, implying that the elemental

emitter possesses a finite intrinsic extension. The finite size of the elemental emitter a↵ects

the coherence properties of the radiated field as the radiation from the elemental emitter is, by

definition, perfectly coherent. The presence of areas of perfect coherence within an extended

source undermines one of the fundamental assumptions of the VCZ theorem, which requires

complete incoherence across the source plane. The impact of the intrinsic source coherence on

3We use the De Broglie relationship for the photon momentum p = h/� and take its projection px ⇡ p✓ to
relate the momentum uncertainty with the angular spread
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the coherence of the radiated field necessarily needs to be studied. The quasi-homogeneous

model was introduced to extend the validity of the VCZ theorem, taking into account a partial

degree of coherence at the source plane.

4.2.1 Quasi-homogeneous sources

The coherence properties of a wavefront obey propagation laws similar to the ones that govern

the propagation of the field and the radiation intensity. In particular, knowing the cross-spectral

density distribution at a given plane W (r1, r2,!), it is possible to propagate the same quantity

to downstream planes according to [45, p. 229]

W (r01, r
0
2,!) =

ZZ
W (r1, r2,!)

e
ik(s2�s1)

s1s2
dr1dr2, (4.24)

being si = |r0i � ri| the distance between the considered pair of points and k = !c the usual radia-

tion wavevector. The VCZ theorem can be derived as a particular case of this general expression4,

writing the cross-spectral density at the initial plane as W (r1, r2,!) = I(r1, r2,!)�(r1 � r2), to

represent a fully incoherent field at source [45, p. 377].

The assumption of full incoherence can be relaxed by assuming a cross-spectral density of

the form

W (r1, r2,!) =
p

I(r1,!)
p
I(r2,!)g(r2 � r1,!), (4.25)

where I(ri,!) represents the usual optical intensity at a given point ri on the initial plane and g

is a generic function of the distance between the pair of points. Let us now assume that both I

and g are Gaussian functions, with � and �g as standard deviation respectively and that �g ⌧ �.

Comparing this expression with the definition of Eq. 4.11, this cross-spectral density represents a

field with a Gaussian distributed intensity of width � and characterised by a degree of coherence

µ12(!) = g(r2 � r1,!) which depends only on the distance between two points. This model

is referred to as a Gaussian Schell quasi-homogeneous source. In particular, in a Schell source

the coherence depends only on the relative distance between two points [53] while the quasi-

homogeneous condition requires that the areas of coherence within the source are much smaller

than the overall source extension [54], consistently with the assumption �g ⌧ �. For brevity, we

omit the Gaussian Schell attributes and refer to this model as a ”quasi-homogeneous” source.

4The small-angle approximation of Eq. 4.17 is still needed to obtain a Fourier transform from the resulting
integral.
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The degree of coherence of the wavefront radiated by a quasi-homogeneous source is still

Gaussian and its standard deviation can be analytically computed as

�coh =
�rp

4⇡�

r
1 +

⇣
�g

2�

⌘2
. (4.26)

From this result, it is apparent that the quasi-homogeneous model is a generalization of the VCZ

theorem as the VCZ expression for the coherence area of Eq. 4.22 is recovered in the limit of fully

incoherent source, i.e. for �g ! 0. The important consequence of the quasi-homogeneous model

is that, even if the source is characterised by a certain intrinsic coherence, the VCZ result may

still apply provided that the source coherence involves areas smaller than the source extension.

Under these conditions, the correction factor due to �g is negligible. The validity of the quasi-

homogeneous model is not guaranteed when the intrinsic degree of coherence �g involves areas

on the same order of the source transverse size �. In the case of interest, the intrinsic coherence

of the source involves areas on the same order as the di↵raction size of the elemental emitters,

i.e. �g ' �l. We can therefore conclude that the VCZ theorem is still applicable, through the

quasi-homogeneous model, when the source size is much larger than the light di↵raction size.

However, the situation is not straightforward when the source size approaches the di↵raction size.

This condition is commonly referred to as the di↵raction limit, indicating that the properties of

light are significantly influenced by the intrinsic di↵raction resulting from the finite size of the

elemental emitter. Such a scenario can arise in synchrotron radiation sources, where the small

opening angle leads to a di↵raction size that may be comparable to or smaller than the beam

size. In these cases, the assumption of a quasi-homogeneous model may not hold.

4.2.2 Spatial coherence of synchrotron radiation

The quasi-homogeneous model includes a wider class of sources than the simple VCZ. However, it

still has some limitations when it comes to synchrotron radiation. The primary limitation of the

quasi-homogeneous model is that its validity is not guaranteed when the beam is su�ciently small

to approach the di↵raction limit. Additionally, describing the SR source only by its transverse

spatial distribution is insu�cient since the SR elemental emitters are distributed according to

the four-dimensional transverse phase space of the beam. Finally, Eq. 4.26 is derived assuming

a Gaussian distribution of the intensity radiated by the elemental emitter. However, SR is

typically emitted with specific angular distributions, for which a Gaussian model provides only
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a qualitative approximation.

More advanced theories have been developed to describe the coherence of SR, based on the

complete beam phase-space distributions [55, 56, 57] and at the di↵raction limit, taking also

into account the e↵ects due to a non-Gaussian shape of the radiated intensity [58]. A detailed

discussion of these models is beyond the scopes of this thesis as they mainly focus on the

coherence properties of X-ray beams generated by undulators in third-generation light sources.

However, some concepts have general validity and can be e↵ectively applied to the case of the

LHC SR source.

According to these theories, the validity of the quasi-homogeneous model is always confirmed

when the source distribution is much larger than the light di↵raction size, irrespective of the

particle divergence. The exact angular distribution of the radiation also plays a minor role in

these cases. This implies that the analytical expression of the VCZ remains applicable far from

the di↵raction limit for �l ⌧ �. This result concerns standard scenarios of light emitted by single

devices, such as undulators or dipole magnets. The coherence properties of SR can be influenced

by the presence of multiple source devices and their interference. While it is important to include

these e↵ects in our study, we will show that, similar to the spatial-spectral distributions, the

degree of coherence in the presence of interfering fields still follows the trend predicted by the

Van Cittert-Zernike theorem, modulated by the interference e↵ects.

A more complicated scenario occurs when the beam approaches the di↵raction limit �l & �,

even in case of individual devices. The degree of coherence of the radiated field cannot be

described by a simple formula and the VCZ does not provide in general an accurate prediction

of the coherence area.

The scenarios of quasi-homogeneous and di↵raction limit beams are represented in Fig. 4.3.

𝑐

(a) �0
l . �

0, �l ⌧ �

𝑐

(b) �0
l . �

0, �l . �

Figure 4.3: Sketch to illustrate the coherence properties of quasi-homogeneous SR source (a)
and a source close to the di↵raction limit (a).

Figure 4.3a illustrates the first scenario where the spatial distribution of the beam is much

larger than the width of the single-particle di↵raction size. This condition is su�cient to satisfy

the quasi-homogeneous model, irrespective of the beam divergence and the exact intensity profile
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of the single particle radiation. In fact, recalling the reciprocal relation between source size and

coherence area of the emitted field, a large source produces radiation with a narrow coherence

area. Although the beam angular distribution may prevent some emitters from illuminating the

coherence area, the average e↵ect is that the small coherence area receives light from the entire

beam spatial distribution. This scenario is particularly relevant in the field of third-generation

light sources, where the coherence properties of synchrotron radiation are primarily studied. It

specifically describes the coherence along the horizontal direction, where the beam size exceeds

the typical di↵raction size. In the context of the LHC SR source, this situation occurs at injection

energy, where the beam size is considerably larger than the di↵raction size associated with a

single emitter.

The opposite case of a source size comparable to the width of the single-particle di↵raction

size is depicted in Fig. 4.3b. Despite the source being characterized by a high-degree of intrinsic

coherence, the coherence area of the radiation is typically narrower than the VCZ prediction [58].

This counter-intuitive result can be qualitatively justified recalling the argument of even illumi-

nation, which was introduced in the derivation of the VCZ theorem. The combined e↵ect of a

small source size and a narrow opening angle, occurring at the di↵raction limit, results in a co-

herence area larger than the spot of light from the single emitter. Consequently, the emitters do

not evenly illuminate the entire coherence area. The uneven illumination leads to an increased

value in the denominator of Eq. 4.15, causing the degree of coherence to be smaller than the VCZ

prediction. In Section 5.1, we will present an explicit example illustrating this behavior, focusing

on the practical case of a Young’s interferometer experiment. The phenomenon of coherence

loss at the di↵raction limit is commonly observed in the vertical direction of third-generation

light sources, where the VCZ theorem tends to overestimate the degree of coherence due to this

e↵ect. Similarly, this issue may arise in the SR source of the LHC at flat-top energy, where

the validity of the quasi-homogeneous model is not guaranteed. In such cases, simulations are

necessary to accurately assess the applicability of the VCZ theorem.

4.2.3 Imaging and interferometry resolution at di↵raction limit

The finite di↵raction size of the elemental emitter is an intrinsic property of the source that

inevitably a↵ects the performance of any optical system attempting to resolve the source trans-

verse distribution. This intrinsic di↵raction poses a theoretical limit on the resolution of imaging

and interferometry techniques.
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In imaging systems, the di↵raction size sets an intrinsic lower limit for the width of the

achievable Point Spread Function (PSF), which represents the system’s response to the elemental

emitter. The response of the system to the extended source corresponds to a proper convolution

between the PSF and the source distribution. However, when the size of the extended source

approaches or becomes smaller than the �l of the individual emitter, the system sensitivity

becomes saturated by the PSF itself, making it challenging to accurately reconstruct the actual

distribution of the extended source. Equation 4.23 illustrates that, for a fixed light opening

angle, the only way to enhance resolution in the di↵raction limit is by reducing the observation

wavelength. This explains why the LHC SR telescopes operate in the far-UV range at flat-top

energy [13], aiming to increase the resolution margin by minimizing the theoretical width of the

PSF.

The di↵raction limit also a↵ects the performance of interferometric techniques that rely on

the coherence properties of light to reconstruct the transverse profile of the source. Let’s first

consider the case of a collimated beam with negligible particle divergence, where the radiation

divergence is primarily determined by the single-particle opening angle. When approaching

the di↵raction limit, the large coherence area tends to extend beyond the size of the available

light spot. Consequently, the intrinsic coherence of the source saturates the degree of coherence

within the limited available light, resulting in a reduced sensitivity to the source’s transverse

size. To overcome this limitation, it is necessary to decrease the width of the coherence area so

that it fits well within the available light spot. In complete analogy with the imaging case, the

only e↵ective strategy to achieve this is by reducing the operating wavelength.

In the case of a divergent beam, the manifestation of the di↵raction limit is less apparent.

If the inverse relationship between the coherence area and the source size held true, a highly

divergent beam could potentially fully illuminate an arbitrarily large coherence area without

losing its resolution capabilities. However, this apparent violation of the di↵raction limit is

resolved by the non-validity of the VCZ theorem in this regime. As the source size approaches the

di↵raction size, the coherence area becomes narrower than the prediction of the VCZ theorem.

Increasing the aperture of the available light by increasing the beam divergence would not

improve the system’s resolution. In essence, the non-validity of the VCZ theorem for small

beam sizes directly stems from the fundamental di↵raction limit, which cannot be overcome.
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4.3 Relevant parameters for the coherence characterization of

the LHC synchrotron radiation source

As discussed in the preceding section, the coherence characteristics of a SR wavefront are heavily

influenced by the interplay between the parameters of the beam transverse phase space and

the properties of the single-particle light. Specifically, the ratio between the beam size and

the light di↵raction size assumes a crucial role in assessing the validity of the VCZ theorem.

This section aims to provide a comprehensive overview of the relevant parameters associated

with the elemental emitter light and the extended beam distributions, which are necessary for

characterizing the spatial coherence of the LHC SR source. The scenarios of injection and

flat-top energy are considered separately, due to di↵erences in beam and light parameters.

4.3.1 Beam and light parameters

The beam parameters relevant to the characterization of the source transverse distributions

are summarized in Tab. 4.1. The values reported are representative of nominal conditions for

both the beam and the machine, although they may vary in di↵erent operational scenarios.

In the subsequent discussion, we present some fundamental considerations that are universally

applicable to the transverse diagnostics of any LHC beam. The size and divergence of the

particle distribution are then compared to the parameters of SR, namely the di↵raction size

and the opening angle of the light, to provide a preliminary assessment of the spatial coherence

properties of the radiated field.

The LHC features rather round beams at the SR source locations, characterized by horizontal

and vertical transverse sizes on the same order of magnitude. The symmetry in the beam

transverse distribution translates to comparable coherence areas in both directions of the emitted

SR. This is a significant di↵erence compared to a typical third-generation light source, where

the beams are much larger in the horizontal plane, and transverse diagnostics must cope with a

completely asymmetric extent of the SR degree of coherence. The nominal source size at injection

is larger than 1mm in both directions and reduces to values in the order of 300 µm at high energy,

as a consequence of the adiabatic damping process described in Sec. 1.2. Assuming that the

normalized emittance is preserved during the acceleration process, the beam size at any point of

the energy ramp can be assessed from the ' 1/
p
E scaling law. The most relevant parameters

in the table are those pertaining to the undulator and the D3R, as they represent the primary
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Parameter D3L Und D3R Unit

Magnetic length L 9.45 0.56 9.45 m
Position scentre -92.9 0 10.7 m
Horizontal Twiss (↵,�)x (0.74, 298) (0.26, 205) (0.20, 200) (rad, m)
Vertical Twiss (↵,�)y (-0.15, 218) (-0.59, 287) (-0.68, 300) (rad, m)
Horizontal dispersion Dx -0.09 -0.10 -0.11 m
Vertical dispersion Dy -0.07 -0.01 0 m
Emittance "n 2.5 µm
Energy spread �E/E 1.3 ⇥ 10�4 -

Injection (450GeV)

Beam size �x 1.25 1.03 1.02 mm
Beam divergence �x0 5.21 5.21 5.21 µrad
Covariance �xx0 -3.86 -1.34 -1.05 mm µrad
Beam size �y 1.07 1.22 1.25 mm
Beam divergence �y0 4.95 4.95 4.95 µrad
Covariance �yy0 0.79 3.07 3.33 mm µrad

Flat-top (6800GeV)

Beam size �x 328 272 269 µm
Beam divergence �x0 1.37 1.37 1.37 µrad
Covariance �xx0 -268 -92.9 -72.9 µm µrad
Beam size �y 281 322 329 µm
Beam divergence �y0 1.30 1.30 1.30 µrad
Covariance �yy0 54.8 212 230 µm µrad

Table 4.1: Nominal parameters of the LHC beam at the locations of the SR source devices.
Values are reported for Beam 1 as the interferometer test setup is currently installed on this
beam. In bold font, the values of the source size that define the typical operating conditions at
injection and flat-top regimes.

sources of SR for Beam 1 diagnostics at the injection and flat-top energy, respectively. Since no

quadrupoles are present in the region of the LHC SR source, the beam divergence is conserved,

and the transverse size is transported through the source devices using the relationships for

free propagation. The absence of quadrupoles in the straight section also justifies the rather

smooth betatron function � and the corresponding small value of the divergence of the beams

at all source devices. Finally, given the small values of Dx,y and momentum spread, another

legitimate approximation concerns the impact of dispersion. The correction to the transverse

size due to dispersion e↵ects, represented by the second term of Eq. 1.15, yields values much

smaller than 1% in all cases. These corrections are beyond the resolution capability of the LHC

transverse diagnostics and are therefore neglected in the following discussion.

The beam parameters can be compared with the characteristics of the emitted light to assess

the expected spatial coherence properties in di↵erent scenarios. Table 4.2 provides a summary

of the light parameters. The calculations are performed at two standard wavelengths, 560 nm

and 400 nm, which are commonly used in the LHC SR monitors and currently exploited by the
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experimental setup of the SR interferometer. At the injection stage, only values for 560 nm are

reported, as 400 nm falls outside the main lobe of the undulator spectrum. The light opening

angle �0l is estimated using Eq.2.17 for undulator radiation and the low-frequency limit of Eq.2.23

for dipole radiation. The di↵raction size is determined by the uncertainty principle �l ·�0l ⇡ �/4⇡,

as presented in Eq. 4.23. While these values provide rough estimations, they are in agreement

with the more accurate quantities obtained by fitting the spatial distribution of the simulated

light spot.

Parameter Injection - 560 nm Flat-top - 560 nm Flat-top - 400 nm Unit

Light divergence �0
l 740 280 250 µrad

Di↵raction size �l 60 160 127 µm
Light width at slits �0

l · rp 22 7.0 6.3 mm
VCZ �coh at slits 2.5 7.4 5.3 mm

Table 4.2: Typical parameters of the SR available for diagnostics at injection and flat-top
energies, evaluated at two wavelengths of interest for interferometric measurements. The source
distance rp is fixed to 30m for the undulator and 25m for the dipole. The coherence area is
estimated for typical beam sizes of 1mm at injection energy and 300 µm at flat-top energy.

At injection energy, the characterization of the spatial coherence properties is quite straight-

forward. The light spot created by the undulator is much broader than the estimated coherence

area. The VCZ theorem is expected to apply strictly because, within the scale of the coherence

area, the emission is essentially isotropic. The same conclusion is reached by comparing the

source size and the single-emitter di↵raction size, as the typical transverse beam size � is more

than an order of magnitude larger than �l. The quasi-homogeneous model applies to this case

and the VCZ theorem is expected to provide an accurate estimation of the degree of coherence.

It is worth noting that the emission angle of undulator radiation is actually broader than the

acceptance of the extraction mirror. This has relevant consequences for imaging applications as

the Point Spread Function at the di↵raction limit is a↵ected by the di↵raction from the rectan-

gular aperture of the mirror. The di↵raction due to the mirror leads to a theoretical PSF in the

order of 120 µm, thus twice as large as the intrinsic light di↵raction size.

The assessment of the spatial coherence behavior becomes more complicated at high beam

energy, as we observe that the expected coherence area is on the same order of magnitude as

the size of the available light spot. Similarly, when comparing the beam transverse size and the

di↵raction size, we find that �/�l ⇡ 2. This indicates that the intrinsic coherence of the source

cannot be ignored, and the application of the VCZ theorem is not guaranteed. The collimated

beam is a valid approximation at flat-top energy because the light divergence is two orders of
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magnitude larger than the beam divergence. This indicates that the extent of the available light

is primarily determined by the opening angle of the single emitter radiation. Even if the VCZ

theorem is confirmed, the resolution is limited by the inability to observe the complete decay of

the degree of coherence for small beam sizes within the extent of the available light. In addition

to the problem of the source intrinsic coherence, the assessment of the coherence properties of

the SR at flat-top is also hindered by the specific features of the dipole light, namely the peculiar

angular distribution and the interference e↵ects between the two dipoles. No theoretical model

exists to deal with such a complicated scenario. Numerical simulations are therefore required to

accurately study the transverse coherence properties of the radiation at high energy. Section 4.4

presents the results of the complete numerical characterization.

Double-Gaussian beam distributions

The beam parameters discussed in the previous paragraph are based on the assumption that

the beam transverse distribution can be described by a two-dimensional Gaussian function with

(�x,�y) as standard deviations and neglecting the covariance term �xy due to coupling between

the transverse planes. This assumption is valid to describe LHC beams in nominal conditions but

there are some specific cases where it was observed5 that the beam transverse profile features

a higher population in the tails that significantly di↵er from the Gaussian distribution. For

such cases, the profile along one of the two transverse directions is better rendered by a linear

combination of two Gaussian functions [59]

f(⇠) = c
1p
2⇡�1

e
� 1

2
⇠2

�2
1 + (1 � c)

1p
2⇡�2

e
� 1

2
⇠2

�2
2 . (4.27)

In this scenario, a fraction c of the particle population is included in a ”core” distribution

characterised by a standard deviation �1 and the remaining 1� c fraction of particles belongs to

the beam ”tails” (or ”halo”) with a standard deviation �2. We fix the convention that �1 � �2

to preserve consistency with the definition of core and tails.

The beam profile described by Eq. 4.27 is a convenient choice as it includes the non-Gaussian

characteristics of the actual particle distribution while preserving the simplicity of Gaussian

functions in beam propagation and evaluation of the degree of coherence. Exploiting the lin-

earity of the Fourier transform, the degree of coherence predicted by the VCZ theorem can be

5Examples are shown in the chapter summarising the beam size measurement performed during the LHC
emittance calibration fill.
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immediately written as

�12(�x) = c e

� 1
2

�x2

�2
coh,1 + (1 � c) e

� 1
2

�x2

�2
coh,2 , (4.28)

being �coh,i = �rp/(2⇡�i) the coherence area associated to each component of the double-

Gaussian profile. The narrower core distribution predominantly influences the high-separation

limit of the coherence curve, while the beam tails primarily a↵ect the coherence decay at short

separations. As the profile distribution in Eq. 4.23 is normalized, the condition of unitary

self-coherence, �12(0) = 1, is fulfilled regardless of the core fraction c value.

A relevant aspect of non-Gaussian beam distributions is their propagation along the ma-

chine lattice. This is particularly important for cross-comparison between di↵erent diagnostic

instruments which are normally placed at di↵erent locations in the machine. Neglecting all

intra-bunch interactions, we can assume that the two distributions propagate as independent

Gaussian beams. This assumption is valid for short time intervals (a few minutes) as we will show

that, in the long term, core and tails populations evolve in di↵erent manners. The emittance of

core and halo populations is individually preserved and, applying the definition of Eq. 1.11, the

overall beam emittance reads

"dg = c "1 + (1 � c) "2 = c
�

2
1

�
�rel + (1 � c)

�
2
2

�
�rel, (4.29)

where "dg represents the normalized emittance of the beam, � is the Twiss betatron function

at the location where the �i are evaluated, and �rel the relativistic factor. The emittance

definition is highly sensitive to the presence of particles at large betatron amplitudes, whereas

the performance of the machine is primarily influenced by the population in the core region. This

is because particles in the tail region have minimal impact on the luminosity [60]. To provide a

more practical definition of the emittance when significant tail contributions are present in the

beam distribution, the emittance for a double-Gaussian profile can be evaluated based on the

emittance of its simple-Gaussian fit. The beam size resulting from the simple-Gaussian fit is

well approximated6 by the weighted average of the two double Gaussian standard deviations

� ⇡ c�1 + (1 � c)�2, (4.30)

6The approximation is obtained by requiring that the single Gaussian and the double Gaussian profiles have
the same area.
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to which corresponds the normalized emittance " = �rel�
2
/�. It is important to note that this

definition is merely practical and does not correspond to any physical quantification of the beam

emittance. While the actual emittance in presence of double-Gaussian beam profile is represented

by "dg, the emittance retrieved from the single-Gaussian fit is normally considered in most

practical scenarios. Therefore, unless otherwise stated, the term ”emittance” in the following

will always refer to the (normalized) emittance derived from a simplified Gaussian approximation

of the beam profile. Figure 4.4 shows a simulation of a double-Gaussian beam distribution and

presents numerical examples of the emittance calculated using di↵erent methods.
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Figure 4.4: Simulation of a double-Gaussian beam with �1 = 200 µm, c = 0.6 and �2/�1 = 2.
In (a), the simulated phase space and in (b) the spatial profile extracted from the distribution.
The simulated profile is fitted with the complete double-Gaussian function of Eq. 4.29 and with
an approximated simple Gaussian distribution. The emittance values of the core ("1) and tail
("2) contributions are annotated on the plot, along with the emittance (") calculated from the
complete distribution and the e↵ective emittance ("sg) assessed from the simple Gaussian fit
of the profile. All values refer to the normalized emittance and expressed in units of µm. In
particular, it is worth noting that �sg is smaller than �, reflecting the underestimation of the
tail contribution when the simple-Gaussian fit is adopted.

4.4 Simulations of LHC SR source degree of coherence

The spatial coherence properties of the LHC synchrotron radiation source are extensively in-

vestigated using numerical simulations performed with SRW. The characterization at injection

energy is relatively straightforward due to the highly uniform coherence properties of undulator

radiation. However, at flat-top energy, the situation becomes more complex as the coherence

properties may deviate from the quasi-homogeneous model. Moreover, the degree of coherence

is influenced by interference e↵ects arising from the interaction between the two D3 dipoles.
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The primary objective of this section is to develop a practical algorithm for extracting the

transverse beam profile from the degree of coherence. The algorithm should be implementable

in operational scenarios, enabling real-time transverse diagnostics while minimizing the need

for extensive data processing. The VCZ theorem presents an ideal approach as it provides a

direct formula for retrieving the source size from the coherence area of the radiation. Even in

cases where the theorem is not globally applicable to the entire wavefront due to the specific

characteristics of the radiation, our aim is to preserve the analytical formula of Eq. 4.22 by

properly redefining source distance parameters to ensure an accurate reconstruction of the beam

profile.

4.4.1 Simulation approach and coherence maps

The output of an SRW simulation of the radiation emitted by a single particle is a set of four

matrices, which map the real and imaginary parts of each polarization component of the radiated

field. In the following, we only consider the horizontal polarization as it is the more intense and

thus the more suitable for measurements. Given the Fourier-transformed field Ẽm(x, y,!) of the

m-particle, the spectral degree of coherence of the finite beam reads

µ(x1, x2, y1, y2,!) =
hẼm(x1, y1)Ẽ⇤

m(x2, y2)i
hĨm(x1, y1)ihĨm(x2, y2)i

, (4.31)

where h. . . i represents the average over the simulated particles and Ĩm(xi, yi) = Ẽm(xi, yi)Ẽ⇤
m(xi, yi)

the intensity of the single particle radiation at (xi, yi). The expression for the spectral degree of

coherence stems directly from the definition of Eq. 4.11, under the assumption that fields from

di↵erent particles are uncorrelated.

In order to implement a pure Monte Carlo approach, one would sample the four-dimensional

transverse phase space of the beam at a given source location and simulate numerous single-

particle trajectories. This method requires the simulation of hundreds of thousands of particles,

making it a computationally heavy approach. However, since the computation of the SR field

is a deterministic process, random sampling of the space phase is superfluous. An alternative

and more e�cient strategy is the ”macroparticle” simulation. This approach involves sampling

the transverse phase space with a uniform mesh and assigning a weight to each particle’s con-

tribution based on the beam’s transverse distribution at the sampled location. This approach

eliminates the need for simulating hundreds of thousands of particles, as only a few hundred
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macroparticles are required to accurately replicate the complete beam distribution. In the case

of the LHC source, the simulation e↵ort can be further optimized by exploiting the negligible

divergence of the beam. This allows the approximation of a perfectly collimated beam, which re-

quires extracting macroparticle samples from the sole two-dimensional spatial distribution. The

simulations presented in this study follow the macroparticle simulation approach, as it does not

rely on any restrictive assumptions. It is worth noting that in lightweight simulations, where

the precise phase space distribution is not a critical factor, the approximation of a perfectly

collimated beam remains a practical and useful approach.

To fully characterize the radiation degree of coherence, one would need to evaluate the

spectral degree of coherence between all possible pairs of points across the wavefront. This

approach is impractical and highly redundant as it does not take advantage of any symmetry in

the radiation. A more convenient solution is to define a reference axis and compute the degree

of coherence between all points that are symmetric with respect to that axis. For instance,

in the horizontal case, one can compute µ(x0 � �x, x0 + �x, y,!), where x0 represents the

coordinate of the folding axis. The resulting coherence values can be visualized as a coherence

map, which illustrates how the degree of coherence decays as a function of the distance from the

reference axis. Similarly, the vertical direction can be examined by folding the wavefront around

a horizontal reference axis and computing µ(x, y0��y, y0+�y,!). Although the position of the

reference axis can be arbitrarily chosen, a convenient approach is to align it with the symmetry

axes of the radiation spatial distribution.

4.4.2 Undulator radiation at injection energy

Undulator radiation exhibits symmetry in the vertical and horizontal directions with respect to a

reference axis that passes through the undulator axis. The most natural approach to characterize

the radiation coherence is to compute the degree of coherence between pairs of points symmetric

with respect to these reference axes. The resulting coherence maps are reported in Fig. 4.5

and Fig. 4.6, for the vertical and horizontal cases respectively. The simulations are performed

at the operating wavelength of 560 nm. This corresponds to the operating wavelength of the

interferometer at injection and is close to the undulator proper wavelength of 610 nm.

Both coherence maps show a smooth decay as the distance from the folding axis increases.

The width of the degree of coherence is uniform along the axis7, confirming the homogeneity of

7One may notice a slight deviation at the positions ±38 mm along the folding axis, in both maps. This anomaly
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Figure 4.5: Degree of coherence along the vertical direction of undulator radiation at 450GeV
and 560 nm, simulated for a nominal beam of 2.5 µm normalized emittance and evaluated at the
extraction mirror plane (z = 29.27m). In (a), the two-dimensional coherence map is computed
with respect to a horizontal folding axis at y0 = 0. The white dashed perimeter encloses
the region of points allowed by the extraction mirror aperture. In (b), a profile of the degree of
coherence is extracted from the coherence map at x0 = 0 and compared with the VCZ prediction.

undulator radiation coherence. The agreement of the simulation result with the VCZ prediction

is apparent from the plot of the coherence map cross-cut, where the simulated curve perfectly

overlaps with the Gaussian decay obtained as the Fourier transform of the source profile, char-

acterized by the coherence area of Eq. 4.22. The same result is obtained by computing the

coherence map with respect to folding axes placed at di↵erent positions, for both transverse

directions.

At injection energy, simulations validate the VCZ expression for the spatial degree of coher-

ence across the entire undulator wavefront. This finding is consistent with the prediction of the

quasi-homogeneous model, as the source size significantly exceeds the light di↵raction size.

4.4.3 Dipole radiation at flat-top energy

As previously observed for the spatial distribution, we expect that also the coherence properties

of synchrotron radiation at high beam energy are influenced by the more complicated structure

of the radiated field. The degree of coherence does not exhibit the same uniformity as in the

case of undulator radiation, and the appearance of the coherence maps varies significantly based

on the selection of the reference axis. It is not expected that the VCZ theorem applies in its

canonical form. To investigate the coherence properties of synchrotron radiation in the high

coincides with the first zero of the undulator intensity distribution, produced by a ⇡ value in the sinc function
argument of Eq. 2.14. The normalization of the cross-spectral density leads to a division by zero, which in turn
results in a degree of coherence that is highly susceptible to numerical errors.
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Figure 4.6: Degree of coherence along the horizontal direction of undulator radiation at 450GeV
and 560 nm, simulated for a nominal beam of 2.5 µm normalised emittance and evaluated at the
extraction mirror plane (z = 29.27m). In (a), the two-dimensional coherence map is displayed
with respect to a vertical folding axis at x0 = 0. The white dashed perimeter encloses the region
of points allowed by the extraction mirror aperture. In (b), a profile of the degree of coherence
is extracted from the coherence map at y0 = 0 and compared with the VCZ prediction.

energy regime, it is convenient to examine the horizontal and vertical directions separately,

starting with the simpler vertical case.

Vertical direction

Along the vertical direction, it is possible to exploit the SR symmetry with respect to the orbit

plane by placing the reference axis at y0 = 0, i.e. the same as the one considered for undulator

radiation. The resulting coherence map is reported in Fig. 4.7.

The aspect of the coherence map is tightly related to the spatial distribution of the two D3

at high energy, which was illustrated in the bottom plot of Fig. 3.9. The same regions identified

when discussing the spatial distribution are observed in the coherence map, dominated by the

D3L, the D3R and their interference. In the same way as the intensity background is dominated

by an almost uniform light from the upstream D3L, the peripheral region of the coherence map

is characterised by an almost Gaussian uniform coherence profile. In the region corresponding

to the core radiation from the D3R, the degree of coherence still shows a rather smooth decay

characterised by a narrower width. The region around the straight section axis is marked by

the usual concentric rings of dipole interference. Before quantitatively examining the width

of the coherence area in di↵erent regions of the wavefront, it is worth noting that the light

emitted by the far D3L dipole exhibits a significantly larger coherence area compared to the
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Figure 4.7: Degree of coherence along the vertical direction of the LHC SR source at 6800GeV
and 400 nm, simulated for a nominal beam of 2.5 µm normalised emittance and evaluated at the
extraction mirror plane (z = 29.27m). In (a), the coherence map is computed with respect to
the folding axis lying on the orbit plane at y0 = 0. The white dashed square defines the region of
points allowed by the extraction mirror aperture. In (b), a quantitative comparison of the degree
of coherence decay and VCZ prediction extracting vertical cross-cuts of the coherence map at
x = 6mm (D3R) and x = �20mm (D3L). A detailed description of the curves is reported in
the text.

region dominated by the D3R. This qualitative observation confirms the expected increase in

coherence area with respect to the source distance.

A quantitative comparison of the two dipole contributions is presented in Fig. 4.7, where

cross-cuts are extracted from the coherence map in the region entirely governed by the D3L

light (orange solid curve) and the one dominated by radiation from the D3R (blue solid curve).

The curve for the D3L well agrees with the coherence decay predicted by the VCZ theorem

(orange dots) when the source position is located at the centre of the D3L. This suggests that

the D3L is su�ciently far from the observer to neglect the longitudinal extension of the dipole

and use the average distance as rp parameter to evaluate the �coh in the VCZ formula. It is

important to notice that the conformity with the VCZ prediction is not limited only to the

Gaussian shape, but the theorem precisely reproduces the width of the coherence decay. This

quantitative agreement provides initial evidence to support the applicability of the VCZ theorem

to the flat-top case, despite the uncertainty arising from the comparison between the source size

and light di↵raction size. The coherence cross-cut extracted at x = 6mm exhibits two distinct

behaviours. For half-separations up to 5mm the degree of coherence is monotonically decreasing

following a Gaussian trend. This part of the curve represents the coherence of the core radiation

from the D3R, prevailing at small latitude angles. Seeking an analytical formula to describe the
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coherence decay in this region, the VCZ theorem is not immediately applicable as the source

distance rp is considerably a↵ected by the D3R longitudinal extension. The fact that the source

distance changes along the dipole is visible in the coherence map. The width of the coherence

area decreases moving from x = 0, corresponding to the radiation emitted by the initial part of

the dipole, to x = 34mm, where the incoming radiation is predominantly emitted in the last

segment of the dipole close to the exit edge. To reproduce the degree of coherence decay along

the dipole, let us assume that the source distance rp is measured along the direction tangent to

the beam trajectory passing through the observer position. This definition of rp is illustrated

in Fig. 4.8 and quantifies the concept of ”sweeping searchlight” already discussed for dipole

radiation in Sec. 3.4. With the usual small angle approximations, the source distance can be

written as

rp ⇡ (z � zin)

s

1 � 2⇢x

(z � zin)2
, (4.32)

being z � zin the distance between the observer and the dipole entrance edge, x the observer’s

transverse position and ⇢ the dipole bending radius. One can verify that rp ranges from the

entrance edge distance z � zin, for x = 0, to the exit edge distance z � zin � lcore, for x =

zlcore/⇢� l
2
core/(2⇢), being lcore the magnetic length of the dipole. With this definition of source

distance, the simulated decay of the D3R degree of coherence perfectly overlaps with a Gaussian

with �coh given by Eq. 4.22 (blue dots). The VCZ result is still applicable, provided the source

distance parameter is adjusted taking into account the position where the degree of coherence

is evaluated. For half-separations larger than 10mm, core radiation from the D3R is negligible

and, eventually, the D3L becomes again the prevailing contribution.

Figure 4.8: Definition of source distance rp for SR emitted by the D3R dipole.

Although SR from the D3L exhibits a more regular coherence profile, it is not suitable

for beam diagnostics because of the lower available intensity. Additionally, since this light is

generated much upstream of the extraction mirror, it is more a↵ected by spurious reflections

in the vacuum chamber during propagation. It is therefore crucial to confirm that the beam

size information can be reliably retrieved from the coherence properties of the experimentally

available D3R light. For this purpose, the simulated degree of coherence of the D3R is fitted
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with a Gaussian function to obtain the �coh as a function of the horizontal position of the

coherence cross-cut. Equation 4.22 is then used to obtain the VCZ source size and the associated

emittance is finally compared to the input value. The procedure is repeated to cover the full

range of normalised emittance values relevant to LHC beams. The results of these simulations

are summarised in Fig. 4.9.
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Figure 4.9: Reconstruction of the beam emittance from the simulated degree of coherence of
the D3R radiation, using the VCZ theorem. The simulation is performed for various values
of normalized emittance ranging from 1 to 5 µm. Colour bands represent a tolerance of ±5%
around the input value. The solid curves are obtained using the source distance defined in
Eq 4.27, while an average value of rp is fixed for the dashed curves.

The emittance reconstruction fails at horizontal positions close to the magnet edge where the

interference between the two dipoles distorts the coherence decay. However, values consistent

within the desired ±5% accuracy are obtained elsewhere, regardless of the input emittance.

This finding has two significant implications. Firstly, it provides a straightforward algorithm for

evaluating the beam emittance from radiation coherence, using the analytical expression of the

VCZ theorem with the corrected source distance. Secondly, it confirms the consistency of this

correction for all emittance values, demonstrating the validity of the VCZ at high energies also

for the smallest beams of interest for the LHC transverse diagnostics.

In summary, despite being more challenging than at injection, the vertical direction at flat-

top energy provides a fully consistent and practical approach to retrieve the beam emittance

from the degree of coherence of the sole D3R radiation. The presented algorithm relies on

the analytical result of the VCZ theorem, which has been demonstrated to be applicable upon
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correction for the longitudinal extension of the dipole source.

Horizontal direction

The asymmetry of the dipole synchrotron radiation significantly a↵ects the coherence proper-

ties along the horizontal direction. Finding a suitable reference axis for computing the degree

of coherence in the horizontal direction is not straightforward due to this lack of symmetry.

Therefore, we opt for a folding axis that is convenient in practice. As explained in the previous

paragraph, the synchrotron radiation from the D3R is the one ultimately exploitable in mea-

surements. Referring to the high-energy SR distribution of Fig. 3.9, the core radiation from

the D3R dipole is essentially confined between its entrance and exit edge directions, located at

x = 0 and x = 34mm respectively at the observation plane. Evaluating the degree of coherence

between points symmetric to the centre of the dipole radiation would have no practical utility

as none of these pairs is eventually allowed by the horizontal aperture of the extraction mirror.

A more convenient position for the reference axis is at the centre of the extracted portion of the

D3R radiation, i.e. for x0 = xmirror/2 ⇡ 6mm. This choice limits the study to the coherence

properties of the sole light accessible for beam diagnostics. The resulting degree of coherence is

reported in Fig. 4.10.

Similarly to the case of the vertical direction, it is possible to identify two distinct behaviours.

Within the region �10mm < y < 10mm, where the prevailing source is indeed the D3R, the

degree of coherence exhibits a considerably narrower width than the background radiation,

which is dominated by the more distant D3L. The validity of this interpretation is supported by

a quantitative analysis of the simulated degree of coherence compared to the VCZ prediction.

The cross-cut of the simulated degree of coherence in the background region (orange line) is in

good agreement with the VCZ Gaussian decay (orange dots) that originates from a source at

the centre of the D3L. On the other hand, the degree of coherence pertaining to the small-angle

radiation (blue curve) is consistent with the VCZ prediction for a source situated within the

D3R (blue dots). As for the vertical case, fluctuations in the coherence profiles appear as a

consequence of the interference between the dipoles. The D3R coherence profile of Fig. 4.10b

suggests that the VCZ theorem provides an accurate expression to predict the average trend of

the coherence decay.

For a more detailed investigation of the VCZ applicability to the horizontal direction, let

us assess the accuracy of the emittance reconstruction from the fit of the degree of coherence.
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Figure 4.10: Degree of coherence along the horizontal direction of the LHC SR source at
6800GeV and 400 nm, simulated for a nominal beam of 2.5 µm normalised emittance and eval-
uated at the extraction mirror plane (z = 29.27m). In (a), the coherence map computed with
respect to a vertical folding axis at the centre of the D3R light available for extraction, i.e.
at x0 = 6mm. The white dashed square defines the region of points the extraction mirror
aperture allows. Note that the horizontal range of the available half-separations is limited to
approximately 6mm, the distance between the reference axis and the extraction mirror edge. In
(b), a quantitative comparison of the degree of coherence decay and VCZ prediction extracting
horizontal cross-cuts of the coherence map at y = 0 (D3R) and y = 20mm (D3L). A detailed
description of the curves is reported in the text.

The procedure is similar to the one presented for the simulation of Fig. 4.9. The result of

this analysis for the horizontal direction is illustrated in Fig. 4.11. One of the main objectives

of this simulation is to investigate how the reconstructed emittance varies with the horizontal

position of the sampled points, which is in turn related to the longitudinal position inside the

dipole where the radiation is emitted. For this purpose, the curves are computed by moving

the position of the reference axis x0 and extracting the coherence cross-cut to fit at y = 0. The

source distance parameter required by the VCZ formula is again obtained from Eq. 4.27, where

the position of the folding axis x0 is used as the value for the x coordinate. This approach yields

an average value for the parameter rp, a trade-o↵ between the distances associated with the

two points x0 ±�x. The emittance assessed using an average distance, fixed for all folding axis

positions, is plotted for reference (dashed lines).

The retrieval of the input emittance is successful within the required tolerance when the

folding axis position x0 is greater than 6mm. This is not unexpected since the coherence

properties of the radiation are relatively uniform in this region, as all points are sampled from

the D3R core radiation. The simulation also demonstrates that correcting for the source distance

results in a more accurate emittance estimation than the value obtained using a fixed average
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Figure 4.11: Reconstruction of the beam emittance from the simulated degree of coherence of
the D3R radiation, using the VCZ theorem. The simulation is performed for various values
of normalised emittance ranging from 1 to 5 µm. Colour bands represent a tolerance of ±5%
around the input value. The solid curves are obtained using the source distance defined in
Eq 4.27, where the x corresponds to the position of the reference axis. An average value of rp is
fixed for the dashed curves.

distance.

A relevant issue a↵ecting the horizontal degree of coherence is that the available range

of separations approaches zero as the folding axis position approaches the mirror edge. It is

therefore important to note that although the simulated curves are relatively flat for x0 & 6mm,

it is convenient to limit the working region to 6mm . x0 . 8mm. This ensures that a wider

range of point separations is available to resolve a su�cient coherence decay.

The retrieved emittance clearly deviates from the input value when the folding axis is placed

in the edge region of the D3R, i.e. for x0 . 6mm. This discrepancy occurs because, while

the points sampled at x0 +�x are mostly illuminated by the D3R core radiation, the opposite

points at x0 � �x carry a relevant contribution from D3L. The resulting coherence is a↵ected

by this heterogeneity and the method proposed for the emittance reconstruction, based on the

VCZ applied to the sole D3R, fails to deal with the spurious D3L contribution.

In conclusion, the assessment of the beam emittance at high beam energy is confirmed also

along the horizontal direction, for all values of the LHC transverse emittance. Like the vertical

case, the VCZ theorem is not exact as the SR wavefront emitted by the LHC source at flat-top

does not feature a uniform degree of coherence. However, the VCZ analytical expression is
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applicable, in an approximate way, for a quantitative reconstruction of the beam emittance. It

is important to notice that the di�culties encountered arise essentially from the complicated

structure of the LHC source at high energy. Simulations do not provide evidence of a deviation

from the VCZ theorem due to the intrinsic coherence of the source, even for the smallest beams

of interest. We can therefore conclude that the quasi-homogeneous model is suitable to describe

the coherence properties also along the horizontal direction at high beam energy.



Chapter 5

Synchrotron radiation

interferometry at the LHC

In the previous chapter, it was demonstrated that the analysis of the spatial coherence of the

synchrotron radiation emitted by the LHC source allows reconstructing the transverse distri-

bution of the particle beams. Under certain conditions, the application of the Van Cittert and

Zernike theorem provides a straightforward approach to infer the source transverse profile from

the degree of coherence of the emitted light. This result is very general and not limited to the

specific technique used to measure the radiation coherence.

This chapter focuses on the implementation of synchrotron radiation interferometry (BSRI)

at the LHC. The fundamental working principle of the Young’s double slit interferometer is

presented as the basis for the design of the LHC interferometer. The experimental setup cur-

rently installed at the LHC is described, along with a discussion of the simulations performed to

characterize its performance. The last section showcases a collection of experimental observa-

tions which serves as a qualitative validation of the system response and provides the necessary

context for discussing the performance of the BSRI as an instrument for accurate beam size

measurement, which will be the central subject of the subsequent chapter.
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5.1 Young’s double slit interferometer

Interferometry is the branch of optics related to the measurement of the complex degree of

coherence between di↵erent points of a wavefront. The general interference law of Eq. 4.6

I(r0) = I1(r
0) + I2(r

0) + 2
p
I1(r0)I2(r0)Re{�12(⌧)} (5.1)

states that the intensity I(r0) resulting from the superposition of two points of the wavefront

carries information about the coherence �12(⌧). If the superposition occurs without introducing

a time delay between the interfering points, the complex degree of coherence �12(⌧) reduces

to the spatial degree of coherence �12(0) or, equivalently, the cross-spectral density µ12(!).

As extensively discussed in Sec. 4.1, the equivalence is guaranteed for quasi-monochromatic

fields, provided that the optical path delays are always shorter than the coherence length of the

radiation. A spatial interferometer is any optical apparatus that exploits this e↵ect to measure

the (spatial) degree of coherence of a wavefront.

Due to the virtually infinite number of configurations that can produce an overlap between

two points of a wavefront, a multitude of spatial interferometer designs have been proposed [61,

62, 63, 64]. The Young’s double-slit apparatus was the first proposed and conceptually the

simplest [42, p.290]. The working principle of this interferometer is illustrated in Fig. 5.1.

1

2

1

2

Figure 5.1: The Young’s double-slit interferometer.

The light emitted by a source is sampled by two apertures, or slits, separated by a distanceD.

The wavelets emerging from the two slits propagate to a downstream plane where the intensity

resulting from their overlap is recorded by a detector. If the detector is placed su�ciently far

from the slit plane, the intensity patterns from each slit become so wide that distance between

the centres, due to the slit separation, becomes negligible. Under these conditions, the intensity

distributions produced by the two apertures perfectly overlap, resulting in the formation of
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interference fringes. In free propagation, the superposition of the two fields requires a significant

distance downstream of the slit plane. A solution to make the system more compact is to place

a lens just after the slit plane, so that the single-aperture patterns overlap at the image plane,

as illustrated in the figure above. Given the distance s
0 between the source and the slits, the

distance between the slit plane and the detector s
00 is determined by the thin lens equation

s
00 = fs

0
/(s0 � f), and can be adjusted by a proper choice of the lens focal length f .

In order to find an explicit expression for Eq. 5.1, the intensity distribution of a single-slit

I1(r0) can be written as the di↵raction function of the aperture [42, p. 425]. Under monochro-

matic conditions and in the far field, the intensity pattern created by an aperture follows the

Fraunhofer di↵raction law, which involves the Fourier transform of the aperture shape. In

the case of rectangular apertures, the Fourier transform results in the product of squared sinc

functions along each direction

Ii(r
0) = Ii(x, y) = Ii,0 sinc

2
⇣
⇡w

�s00
x

⌘
sinc2

✓
⇡h

�s00
y

◆
(5.2)

where Ii,0 represents the optical intensity transmitted by each aperture, (w, h) are the aperture

dimensions, � the operating wavelength and s
00 the average distance between the slit and the

detector planes. The Fraunhofer di↵raction condition, s
00 � w

2
/�, typically requires rather

large observation distances. If a lens is added to the setup, the parameter s
00 appearing in the

single-aperture di↵raction pattern coincides with the distance between the lens and its image

plane.

When both apertures are considered, the general law of interference yields the intensity

distribution

I(r0) = (I1,0 + I2,0) sinc
2
⇣
⇡w

�s00
x

⌘
sinc2

✓
⇡h

�s00
y

◆"
1 +

2
p
I1,0I2,0

I1,0 + I2,0
Re{�12(⌧)}

#
, (5.3)

where �12(0) is the degree of coherence of the wavefront points sampled by the two apertures.

Since the degree of coherence is a complex quantity, it can be conveniently expanded as

�12(⌧) = |�12(0)|ei 2⇡� (s002�s001 )+�12,0 , (5.4)

being |�12(0)| the modulus of the degree of (spatial) coherence at the slits and �12,0 a constant

phase di↵erence between the fields sampled by the two slits. Equation 5.4 is based on the
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assumption of negligible temporal coherence e↵ects. The modulus of the degree of coherence is

evaluated at zero delay, |�12(⌧)| ⇡ |�12(0)|, and the path di↵erence s
00
2 � s

00
1 implies only a phase

contribution that appears as a modulation of the intensity pattern. In order to obtain an explicit

expression for the intensity distribution, let us assume that the two apertures are aligned along

the horizontal direction, meaning that the slit separation D is parallel to the x coordinate of the

detector plane. Under the usual small angle approximation, the path di↵erence can be expanded

as s
00
2 � s

00
1 ⇡ xD/s

00 [42, p. 291]. In case of vertical slit configuration, i.e. D parallel to the y

coordinate, the same approximation holds true with x $ y.

Expanding the degree of coherence and using the small angle approximation for the path

di↵erence, Eq 5.3 can be finally written as

I(r0) = (I1,0 + I2,0) sinc
2
⇣
⇡w

�s00
x

⌘
sinc2

✓
⇡h

�s00
y

◆"
1 +

2
p
I1,0I2,0

I1,0 + I2,0
|�12(0)| cos

✓
2⇡D

�s00
x+ �12,0

◆#
.

(5.5)

This equation describes the intensity distribution produced by any Young’s interferometer with

rectangular apertures. In the following, it is referred to as the interferogram of the radiation.

Similar to any interference pattern, it can be interpreted as the incoherent sum of the two

intensity contributions Ii(r0), modulated by an oscillating function that depends on the degree

of coherence. The intensity oscillations, or interference fringes, are confined within the envelopes

I
±(r0) = (I1,0 + I2,0) sinc

2
⇣
⇡w

�s00
x

⌘
sinc2

✓
⇡h

�s00
y

◆ 
1 ±

2
p
I1,0I2,0

I1,0 + I2,0
|�12(0)|

!
. (5.6)

The contrast of the interference fringes is called visibility and it is defined as di↵erence between

the upper and lower intensity envelopes, normalized by their sum

V , I
+ � I

�

I+ + I�
. (5.7)

A unitary visibility indicates that fringes exhibit maximum contrast, meaning that the waves

propagating from the two apertures can interfere in a fully constructive or destructive way.

Conversely, in the case of null visibility, no interference fringes appear as the interferogram

represents the incoherent sum of the two intensity distributions. From the expression of the

intensity envelopes, the relationship between the visibility and the degree of coherence can be

made explicit as

V =
2
p

I1,0I2,0

I1,0 + I2,0
|�12(0)|. (5.8)
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The fringe visibility serves as the experimental observable associated with the modulus of the

degree of coherence. The proportionality factor in the last equation accounts for the intensity

di↵erence between the radiation transmitted through the two apertures. When the transmitted

intensities Ii,0 are equal, the wavelets from both apertures interfere with equal strength at the

detector, and the fringe contrast is solely determined by the coherence of the fields. However,

if there is an imbalance in intensities, interference occurs between waves of di↵erent strengths,

resulting in a fringe contrast that is always less than the modulus of the degree of coherence.

Consequently, perfect coherence does not lead to complete destructive or constructive interfer-

ence unless the intensities of the interfering fields are identical. While the interferogram visibility

does not precisely correspond to the modulus of the degree of coherence, one should note that

the correction for intensity imbalance is often negligible in most practical situations. Even in an

extreme case where I1,0 = 2I2,0, the fringe visibility is only reduced by a factor of approximately

6% compared to |�12(0)|. This correction is typically insignificant for quasi-uniform wavefronts.

It becomes relevant in specific scenarios, which will be discussed in the following paragraphs.

The experimental setup of a Young’s double-slit interferometer closely resembles the system

illustrated in Fig.5.1. One of the key advantages of the Young’s apparatus is its simplicity, as

it only requires the ability to block the wavefront and allow the propagation of only the two

desired points to the detector. In the visible spectrum, implementing a Young’s interferometer

is straightforward using an opaque mask with two apertures. Due to the few optical components

required, the setup is very robust and minimally a↵ected by misalignment errors. The design

of the double-slit interferometer can be adapted to measure the degree of coherence for various

wavefronts, and it has found applications across a wide range of the electromagnetic spectrum.

It has been employed to measure micro-metric electron beams using X-ray synchrotron radia-

tion [65] and to determine the size of astronomical targets in the radio-wave domain [66]. The

most relevant limitation of the double-slit interferometer, compared to most sophisticated spa-

tial interferometer designs, is that it can only measure the degree of coherence for two points

at a time. Mapping the degree of coherence across the entire wavefront may require lengthy

measurements and necessitates a flexible setup capable of providing a large array of slit config-

urations.

The measurement procedure is straightforward. For a specific configuration of the slits, the

interferogram captured by the detector is fitted using the expression provided in Eq. 5.5 to de-

termine the fringe visibility. Most of the parameters in the fringe pattern equation are known
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by design of the setup. The interference phase �12,0 and the total amplitude I1,0 + I2,0 are left

as fitting parameters, along with the visibility itself. In cases where the correction for the imbal-

ance factor is significant, two additional measurements are required. These involve separately

measuring the amplitudes of the di↵raction patterns produced by each aperture separately, to

assess the single-slit intensities I1,0 and I2,0. Typically, the measurement is repeated to explore

di↵erent configurations of the setup, such as varying the slit separation, adjusting the absolute

position of the slits across the wavefront, or changing the operating wavelength.

If the source satisfies the Van Cittert and Zernike theorem, the degree of coherence is solely

dependent on the distance between the sampled points1. This condition provides a simplified

approach to fully characterize the coherence of the wavefront by measuring the decay of visi-

bility as a function of slit separation, irrespective of the absolute position of the two apertures.

Assuming a Gaussian-distributed source and neglecting intensity imbalance, the visibility can

be directly related to the source size � using Eq. 4.22 to obtain

V = e
� 2⇡2D2

�2s02 �
2

. (5.9)

This equation indicates that, in theory, the visibility V measured at a single slit separation

D is su�cient to determine the source size � of a Gaussian beam. However, in practice, it

is more reliable to measure the visibility at multiple slit separations to enhance measurement

statistics and improve accuracy. The resulting visibility as a function of the slit separation V (D)

is then fitted using Eq. 5.9 to obtain the source size as a fit parameters. In the following, we will

refer to this type of measurement as ”slit separation scan”. The slit separation scan is also the

standard method to obtain more information about the actual source profile, as the decay of the

degree of coherence corresponds to the Fourier transform of the source transverse distribution.

In the case of non-Gaussian beams, a complete slit separation scan is necessary to reconstruct

the actual beam profile and accurately assess the transverse size.

The fit of the interferogram provides additional information about the phase of the wavefront,

encoded in the fringe phase �12,0. The phase information becomes crucial when the complex

degree of coherence is actually a complex function, as the knowledge of the modulus of �12(0) is

not su�cient for accurately reconstructing the source profile. This limitation does not a↵ect the

case of interest. In the context of transverse distributions of particles in an accelerator beam,

1This applies in general to any Schell-model source
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we can safely assume that the source transverse profiles are always symmetric2. The symmetry

of the transverse profile implies that the degree of coherence is a purely real function of the slit

separation, as the Fourier transform of a real and even function remains real and even. While the

interferogram phase �12(0) does not provide necessary information for reconstructing the beam

profile, it allows investigating some theoretical properties of the wavefront. One such application

is the study of the polarization characteristics of the dipole radiation at flat-top energy, which

will be discussed in detail in a dedicated paragraph below.
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Figure 5.2: Typical interferogram profile. The interference fringes at the detector (blue curve)
are described by the integration of Eq. 5.5 along the axis perpendicular to the slit separation.
The intensity modulation is bounded by the envelope (orange curve) determined by the spatial
degree of coherence of the pair of points sampled by the slits.

5.1.1 Young’s experiment: physical understanding

The Young’s double-slit interferometer serves not only as a practical experimental setup, but

also as a convenient system for gaining a physical understanding of how the source distribution

influences the coherence properties of the wavefront. This paragraph aims to provide an insight

into the formation of the Young’s interference fringes. We start by considering the straightfor-

ward case of a classical thermal source, to give a geometric interpretation of the VCZ theorem.

We then assume a finite opening angle of the elemental emitters, to approach the di↵raction

limit and show why the VCZ theorem fails to predict the wavefront coherence in this regime.

These scenarios are illustrated in Fig. 5.3. To simplify the analysis, we assume point-like aper-

2As described in Chapter 1, particles in the accelerator oscillate around the nominal orbit. Even if the bunch
was initially injected with an asymmetric distribution, these oscillations would induce a ”filamentation” process
in the transverse phase space, that eventually results in a symmetric transverse profile.
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tures. The corresponding di↵raction pattern is so broad that the single-slit intensity distribution

is essentially uniform over the entire detector plane. Furthermore, we assume monochromatic

conditions to exclude any temporal coherence e↵ects from our discussion.

(a)

(b)

Figure 5.3: Qualitative representation of a Young’s experiment with a (a) thermal source and a
(b) source at di↵raction limit, as presented in Fig. 4.3b.

Thermal source: the Van Cittert and Zernike theorem

A fundamental property of a thermal source is the isotropic emission of each elemental emitter.

As discussed in Sec. 4.2, this condition is intimately related with the complete incoherence at the

source plane. The interferogram of the extended source can be decomposed into the incoherent

sum of the contributions from each individual emitter. The interferogram associated with the

elemental emitter exhibits a unitary visibility. This is because the wavefront radiated by each

emitter is, by definition, fully coherent, and the isotropic emission ensures that the intensity

transmitted through the two slits is perfectly balanced. However, the transverse position of the

interference fringes is not the same for all elemental interferograms, as it depends on the trans-

verse position of the emitter. In fact, a change in the emitter position results in a corresponding

shift in the location where destructive or constructive interference takes place at the detector.

The interferogram of the extended source is the sum of many identical interferograms, with

unitary visibility and shifted according to the emitter transverse positions. The interferogram

resulting from the incoherent sum has a visibility lower than one, which depends on the trans-

verse distribution of the source. This is the fundamental principle underlying the VCZ theorem,

as it explains why the visibility of the extended source interferogram carries information on
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the transverse source distribution. This principle is qualitatively illustrated in Fig. 5.3a. Three

elemental emitters produce staggered interferograms with unitary visibility. The incoherent sum

of these patterns yields the interferogram of the extended source with a non-unitary visibility.

The reciprocity relationship between the source size and the coherence area of the wavefront

can also be understood by considering that a larger source leads to a lower visibility, due to

the widespread distribution of the elemental interferogram positions. Conversely, the elemental

interferograms of a small source closely overlap, therefore preserving a higher visibility.

A similar situation occurs when the light radiated by the single emitter is not perfectly

isotropic but its aperture significantly exceeds the coherence area of the radiation. In such

cases, the intensity of light passing through the two slits is approximately equal for all emit-

ters, leading to the formation of elemental interferograms with the almost unitary visibility.

The interferogram of the extended source originates following the same principle described for

the thermal source, thus preserving the relationship between the source distribution and the

visibility. This type of source corresponds to the quasi-homogeneous model discussed in the

previous chapter, where it was demonstrated that the VCZ theorem is applicable, albeit in an

approximate manner.

Di↵raction limit

Figure 5.3b depicts the case of a source at the di↵raction limit, for a beam with a particle

divergence comparable with the light opening angle. The di↵raction limit implies that the

coherence area, thus the required slit separation, is comparable to or larger than the extent of

the single-particle light distribution. In this regime, the visibility of the elemental interferogram

is not necessarily the same for all emitters. When an emitter uniformly illuminates the two

slits, the corresponding interferogram maintains a unitary visibility. However, a tilted particle

provides an imbalanced illumination which produces an interferogram with lower visibility. In

the extreme case where a particle illuminates only one slit, interference does not occur, and

the single particle contribution resembles the flat intensity distribution given by the di↵raction

from the single aperture. The visibility resulting from the sum of the elemental interferograms

is lower than the value predicted by the VCZ theorem. The reason for this is that the fringe

contrast is dictated not only by the transverse distribution of the beam, which is the fundamental

principle of the VCZ theorem, but also by the imbalance of the illumination across the elemental

emitters. This e↵ect is the visual representation of the concept of uneven illumination discussed
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in Section 4.1, in the specific case of a Young’s interferometer. The resolution performance of the

system is limited because only particles that evenly illuminate both apertures e↵ectively convey

information about the source distribution. Other particles contribute to a constant intensity

background that degrades the interferogram contrast without adding information about the

source profile.

Finally, let us examine the di↵raction limit for a collimated beam. In this particular scenario,

the beam divergence is negligible, ensuring an even illumination of the two apertures. As a result,

the individual interferograms generated by each particle exhibit full contrast, with the fringe

position determined by the emitter location, similar to what observed for a thermal source. The

VCZ theorem accurately estimates the degree of coherence within the confines of the available

light. However, it becomes impossible to measure the complete decay of the coherence degree

since the coherence area extends beyond the reach of the available light. The limited extent of

the available light constrains the resolution of the technique and represents the manifestation of

the di↵raction limit for a small and collimated beam.

5.2 Implementation at the LHC

Young’s interferometry in the visible domain can be implemented using a simple optical setup,

making this apparatus a convenient option for a SR interferometer at the LHC. Due to the chal-

lenging environmental conditions and limited accessibility to the instrumentation during machine

operation, remote control of the setup is necessary, with interventions restricted to a few days

per year. To address these requirements, a test setup of a synchrotron radiation interferometer

(BSRI) was developed and installed during the LHC run 2 (2015-2018) [13]. Subsequently, the

setup underwent upgrades and optimizations during the long shutdown 2 (2018-2022) based on

the latest simulations of the LHC SR source, as detailed in this thesis. This section reports the

main design parameters and provides an overview of the current implementation of the BSRI

setup.

5.2.1 Design parameters: operating wavelength and slit separation

In order to optimize a double-slit interferometer design, the primary objective is to maximize

the system’s sensitivity to the transverse size of the source. For Gaussian distributed sources,

the maximum sensitivity of the visibility to the transverse size is found for a slit separation that
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matches the coherence area, i.e. �coh = D, which corresponds to a visibility value of V = 1/
p
e ⇡

0.6. For a given source size, the interferogram visibility depends on the slit separation, the source

distance and the working wavelength, according to Eq. 5.9. In the case of the LHC SR source,

the source distance is given by the source layout and corresponds to approximately 26m. As

extensively described in Sec. 4.4, the best estimation of the source distance varies from injection

energy to 6800GeV, following the source evolution as a function of the beam energy. Since the

source distance is fixed by the existing hardware, the interferometer optimization concerns the

operating wavelength and the slit separation. The wavelength is constrained by the radiation

spectrum and the choice of working in the visible domain (400 ÷ 800 nm) whereas the extent

of the available SR intensity distribution limits the maximum achievable slit separation. The

following considerations ultimately aim to identify a convenient selection of band-pass filters

and slit configurations, given the limited options that can be implemented in the experimental

setup.
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Figure 5.4: Optimization of the BSRI operating wavelength at (a) injection energy and at (b)
flat-top energy. The blue and orange curves represent the sets of wavelengths and slit separations
that produce the target visibility of V = 0.6 at the nominal emittance "n = 2.5 µm, for the
vertical and horizontal direction respectively. The color band represents the full range of LHC
normalized emittance 1 ÷ 5 µm. The red curve reports the normalized SR spectrum at the two
beam energies.

Figure 5.4 provides an overview of the parameters relevant for the design of the system. At

the injection energy, the spatial distribution of the undulator light is significantly larger than

the radiation coherence area. This ensures that any desired slit separation can be selected,

in the visible domain and across the entire range of beam emittance. However, the operating

wavelength is limited by the bandwidth of the on-axis undulator spectrum. To maximize the
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photon flux at the slits, the operating wavelength should be chosen in the vicinity of 610 nm,

which corresponds to the undulator proper wavelength at the injection energy. At high beam

energy, the peak of the SR spectrum emitted by the dipoles lies in the soft X-ray region. The

radiation intensity becomes almost flat over the whole visible domain and is much higher than at

injection energy, due to the larger relativistic factor of the particles. Consequently, the photon

flux is no longer a constraint and, instead, the incoming radiation is usually attenuated to prevent

the saturation of the detector. The choice of the wavelength is then determined by the extent of

the coherence area, which should not exceed the width of the available SR distribution, around

7mm from Tab. 4.2. Figure 5.4b shows that the reference visibility for a slit separation of 7mm

is obtained with an operating wavelength between 500 nm and 600 nm. Shorter wavelengths are

anyway useful to resolve the full visibility decay within the extent of light spot, especially for

beams with a smaller emittance than the reference value of 2.5 µm.

These constraints led to the selection of two band-pass filters with central wavelengths of

560 nm and 400 nm. The 560 nm filter is optimized for injection energy and can still be used with

high-energy beams. Furthermore, this wavelength lies at the centre of the visible domain, where

standard optical components typically exhibit optimal performance. The 400 nm filter is beyond

the undulator range at injection energy but can help reduce the required slit separation at flat-

top energy, where the coherence area of the small emittance beams at 560 nm is comparable or

larger than the light spot size. Additionally, the 400 nm wavelength is a standard for the other

LHC SR monitors, making this band-pass filter useful for comparison purposes in the setup.

The other parameter needed to identify a band-pass filter is the bandwidth of the trans-

mitted light. A spatial interferometer would ideally require an infinitely small bandwidth to

satisfy the monochromatic condition and ensure that the degree of coherence is not a↵ected by

temporal e↵ects. In practice, a finite bandwidth is required to have a light intensity su�cient

for measurements. Therefore, the optimization consists in finding the largest bandwidth that

allows an accurate reconstruction of the source size from the interferogram visibility. The result

of this procedure is reported in Fig. 5.5.

Since no correlation exists between fields at di↵erent wavelength, the interferogram of the

finite bandwidth radiation corresponds to the incoherent sum of the individual monochromatic

contributions. Figure 5.5a shows some examples of interferogram simulated at di↵erent radiation

bandwidths. A finite bandwidth leads to a reduction in fringe visibility in the peripheral region

of the interferogram. This phenomenon originates from the finite temporal coherence of the non-
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Figure 5.5: Impact of a finite radiation bandwidth on the source size estimation. In (a), inter-
ferograms simulated at di↵erent radiation bandwidths, centred at a typical average wavelength
of 560 nm. In (b), e↵ect of the finite bandwidth on the beam emittance reconstruction.

monochromatic radiation. The optical path to reach the centre of the interference pattern has

the same length for light coming from both slits. The temporal correlation at the interferogram

centre is therefore always unitary and the visibility is only reduced by the spatial component

of the degree of coherence, irrespective of the radiation bandwidth. However, in the peripheral

regions of the interferogram, the optical path di↵erence introduces a loss of correlation that

depends on the coherence length of the radiation, thus the spectral bandwidth. This loss of

temporal coherence distorts the shape of the interferogram. Using the interferogram function

of Eq. 5.5 to fit the intensity profile leads to an underestimation of the visibility because the

fringe contrast is not entirely determined by the spatial degree of coherence. The lower visibility

eventually results in an overestimation of the beam emittance. An example of the relative

errors of the emittance retrieved from the fit of finite bandwidth interferograms is plotted in

Fig. 5.5b. The precise values reported in the figure are not universal, as di↵erent slit separations

and central wavelength may produce slightly di↵erent curves. Nevertheless, one may observe

that the relative error is always smaller than 1.5% provided that the bandwidth is narrower

than 10 nm, hence a ��/� < 2%. This estimation is conservative as it pertains to the smallest

achievable emittance and assumes a uniform intensity distribution within the bandwidth. In

reality, band-pass filters often exhibit a smoother transmissivity function, where the majority

of the light is transmitted at the nominal wavelength and only the tails extend beyond the

FWHM. Taking this into account, we can conclude that a band-pass filter with a 10 nm FWHM

bandwidth is normally su�cient to ensure the quasi-monochromatic condition.
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The values provided in this section serve to define the typical operating conditions and are

necessary for determining certain design parameters of the experimental setup. However, it is

important to note that the system performance is not heavily dependent on these design values,

and reliable measurements can still be obtained under non-optimal conditions. For accurate

measurements, it is recommended to work with intermediate values of fringe visibility. The

visibility should not be too low, as the fringe contrast would be too sensitive to fluctuations in

the light intensity. Conversely, a visibility close to one indicates that the wavefront is essentially

fully coherent, and the fringe contrast is marginally influenced by the source size. To optimize

the sensitivity to the source transverse size, it is generally desirable to operate within a visibility

range of 0.2 . V . 0.8

5.2.2 Experimental setup and control tools

The experimental setup for the BSRI is located at Point 4 of the LHC, installed on the same

optical table as the SR telescopes. After being intercepted by the extraction mirror, the radiation

is directed towards an optical table located in a light-shielded area beneath the accelerator beam

pipe. The incoming light is distributed to all SR monitors using a system of folding mirrors and

splitters. At present, the BSRI line receives approximately 35% of the extracted SR intensity.

A diagram of the BSRI setup, depicting the relevant optical components in a schematic view, is

shown in Fig. 5.6.

Figure 5.6: The SR interferometer (BSRI) installed at the LHC during run 3.

A motorized mirror at the entrance of the interferometer allows the steering of the optical
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line. Downstream of the steering mirror, the light is sampled according to the required double-

slit configuration. The light shaping is achieved with a collimator followed by an opaque mask

with several laser-cut slit pairs. The collimator ensures that only one slit pair is illuminated

at a time, preventing light from passing through the other slits. A slit configuration is defined

according to the convention shown in Fig. 5.7. The two rectangular apertures are characterized

by a width w, which is evaluated in the direction of the slit separation, and an height h,

perpendicular to the former. The transverse position of the slit configuration is defined by the

position of its centre (xc, yc) relative to the undulator axis, assumed as the reference axis for

the SR spatial distribution. In the present BSRI setup, the slit width is determined by the

design of the slit opaque mask, which currently includes two sets of slits with 500 µm and 1mm

width. The available slit separations are also chosen by design and range from 3mm to 12mm,

according to the considerations presented in the previous section. In particular, the smaller

slit separation are mainly used to probe the narrow coherence area at injection energy whereas

slit separations above 6mm are normally required at flat-top energy. The slit height has a

maximum value of 15mm and can be finely adjusted by changing the collimator aperture. The

entire slit assembly is motorized so that any slit configuration can be transversely shifted across

the incoming light. The slit configuration can be positioned anywhere within the 50mm⇥50mm

collimator aperture. This feature is particularly important to study the two-dimensional map

of the degree of coherence of the SR at the slit plane.

𝑐 𝑐
𝑐 𝑐

Figure 5.7: Geometry of the BSRI slits. Notice the definition of the width and height dimensions
depending on the slit direction.

The quality of the visible SR arriving at the slit plane can be monitored with a camera,

which is also used to align the slit assembly with respect to the SR. The light sampled by the

slit assembly propagates though the interferometer optical system. Given the large distance from

the source, the single lens of the classical Young’s apparatus is replaced by a refractive telescope

consisting of a main lens and a magnifying secondary lens. The main lens is a super apochromatic
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triplet with 816mm focal length and 102mm aperture (F/8), taken from a Takahashi TSA-102

refractive telescope. The secondary lens is an eyepiece with 30mm focal length, from the same

company. The primary lens is fixed on the optical table, while the eyepiece is mounted on a

translation stage to enable the adjustment of the system focus. In a Young’s interferometer, the

accurate focus is achieved when the intensity distributions from the individual apertures overlap

at the detector plane. A set of neutral density (ND) and bandpass filters is installed in the

drift space between the two lenses. All filters are mounted on pneumatic actuators and can be

independently inserted in the line. The ND filters are standard absorptive filters from Thorlabs.

The available attenuation range is 10 ÷ 105 (OD1 ÷ OD5). Two hard-coated bandpass filters

from Edmund Optics allows the selection of the design 560 nm and 400 nm wavelengths, with

an average background attenuation of 104 (OD4) and a FWHM bandwidth of 10 nm. A linear

polarizer from Newport, featuring an extinction ratio of 700:1, is placed between the eyepiece

and the detector. The polarizer is mounted on a rotational stage, enabling the measurement

of the interferogram parameters’ dependence on the polarization state of the light. The last

component of the line is the detector. This device consists of a digital camera (Basler acA1920-

25gm) coupled to a fast-gated image intensifier unit (Hamamatsu C9547-01). Due to the LHC

bunch spacing of 25 ns, currently available cameras are not su�ciently fast to perform single

bunch measurements. An image intensifier is a device based on a microchannel plate (MCP)

that can be used as fast light shutter, with an achievable gating time as short as 3 ns. To acquire

single bunch data, the intensifier gate is synchronized with the passage of the bunch. Multiple

single-turn interferograms are then integrated on the camera to obtain a high-quality signal.

The BSRI uses standard hardware of the LHC SR monitors and it is fully integrated in the

CERN control system. The setup is entirely controlled via a Graphical User Interface (GUI)

written in Python. The images acquired by the camera are processed by the GUI which provide a

real-time monitoring of the interferogram parameters. The BSRI GUI also allows the automated

execution of standard parameters scans, such as moving the slits to map the wavefront visibility

or performing a scan of the slit separation to measure the coherence decay for di↵erent bunches.
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5.3 Expected performance of the Synchrotron Radiation inter-

ferometer

The potential of reconstructing the beam size based on the coherence properties of the syn-

chrotron radiation wavefront was thoroughly investigated in Chapter 4. In this section, we

present the results of simulations that have been carried out to assess the expected performance

of the BSRI system. The objective is to confirm the applicability of a Young’s interferometer

to reconstruct the beam profile and define operational scenarios that e↵ectively address the

challenges posed by the complex nature of the LHC SR source.

The complete BSRI optical system is implemented in SRW. The single-particle interferograms

are simulated at the detector plane, using the Physical Optics Propagation feature of the code.

The interferogram of the extended source is obtained by incoherently summing the single-particle

contributions and then fitted to determine the fringe visibility. The visibility is corrected for

the intensity imbalance, if necessary, and the resulting degree of coherence is compared to the

VCZ prediction. The system response is evaluated by repeating the procedure with di↵erent

geometries of the slits, to assess the dependence of the visibility on the slit configuration.

The distribution of the SR arriving at the slit plane is shown in Fig. 5.8. The horizontal

aperture of the light is limited by the acceptance of the extraction mirror. Since the slits are

located approximately 2m downstream of the extraction plane, the intensity cut is enveloped

by the fringes of the Fresnel di↵raction from the mirror edge.
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Figure 5.8: Simulation of the SR intensity reaching the slit plane at injection and flat-top. The
vertical cut on the right side of the light distribution is due to the edge of the extraction mirror,
located at xm ⇡ 12mm
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The following two paragraphs present the results of the performance characterization of the

BSRI for the injection and flat-top scenarios. The simulations of the complete BSRI system

are needed to assess the e↵ects of the finite apertures and the presence of the extraction mirror

di↵raction at the slit plane, which were not taken into account in the general study of the

coherence properties of the wavefront radiated by the LHC source.

Performance at injection energy

Based on the characterization of the coherence properties of undulator radiation, it is expected

that the assessed degree of coherence is uniform throughout the entire undulator wavefront at

the injection energy. Figure 5.9 displays the degree of coherence obtained from the simulation

of the BSRI interferograms for a various slit configurations.
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Figure 5.9: Degree of coherence assessed from the BSRI simulations at injection energy. The
degree of coherence is simulated at the slit separations of interest for the injection scenario, and
at several positions of the horizontal slit centre xc, fixing the vertical position on the light centre
yc = 0. For each slit separation, the simulation is performed with slit widths of w = 500 µm (solid
lines) and w = 1mm (dashed lines). Color bands represent the degree of coherence computed
from the input beam size using the VCZ formula, plotted with a beam size tolerance of ±2.5%.
The simulations are performed at the injection operating wavelength of 560 nm.

The uniformity of the degree of coherence is confirmed along the vertical direction, regardless

of the position of the slit center and the employed slit separation. The constant value of the

degree of coherence, even near the extraction mirror cut, is due to the SR symmetry along the

vertical direction, which is not a↵ected by the mirror edge di↵raction. The retrieved degree of

coherence is compatible with the VCZ prediction, within the required tolerance, for both values

of the simulated slit widths. However, a better agreement is found for the narrower 500 µm slits.

The discrepancy between the degree of coherence evaluated with the two slit widths can be
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attributed to the fact that the slit width of 1mm is comparable with the typical slit separation.

This leads to an ”e↵ective” slit separation that di↵ers from the nominal distance between the

aperture centres. The e↵ective separation is shorter than the nominal as the radiation intensity

increases approaching the optical axis. The higher degree of coherence observed for the wider

slits thus originates from the smaller e↵ective slit separation. This problem is not relevant for

the narrower slit of 500 µm, as the finite width of these apertures can be neglected compared to

the typical slit separation D & 3mm. The degree of coherence in this configuration perfectly

agrees with the VCZ prediction, as expected from the undulator coherence at injection energy.

A similar situation occurs along the horizontal direction. The main di↵erence is the e↵ect

of the extraction mirror, which does a↵ect the assessed degree of coherence when the slits are

placed in the proximity of the mirror cut. The wavefront sampled by the slits in this region is

significantly a↵ected by the fringes of the mirror edge di↵raction and the degree of coherence

fluctuates accordingly. Nevertheless, this is not a problem in practice as it is su�cient to avoid

the region close to the mirror cut and place the slits in the centre of the undulator radiation,

where the intensity is also higher.

In conclusion, the simulations performed at injection energy confirm that the BSRI is capable

of retrieving the beam size along both directions. The only relevant constraint is that the slit

separation should be su�ciently larger than the aperture width. This practically limits the

minimum slit separation achievable, thus making it challenging to resolve the narrow decay of

the degree of coherence at injection energy, especially in case of large bunches.

Performance at flat-top energy

The performance assessment is more critical at flat-top due to the peculiar characteristics of

the two-dipole radiation, which have a significant impact on the coherence of SR. Let us discuss

the results of the BSRI simulations, starting from the more straightforward vertical direction

depicted in Fig. 5.10a.

The degree of coherence evaluated using square slits of 1mm ⇥ 1mm (solid lines) exhibits

considerable fluctuations with respect to the horizontal slit position, making it di�cult to de-

termine a well-defined value of |µ(xc, D)|. This behaviour is due to the interference between the

two dipoles and hinders a reliable assessment of the source size. In addition to the fluctuations,

the degree of coherence also shows a decreasing trend as the slit centre moves from the optical

axis towards the mirror cut. This behaviour is consistent with the drift of the source distance
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Figure 5.10: Degree of coherence assessed from the BSRI simulations at 6800GeV. The degree
of coherence is simulated for the slit separation of interest for the injection scenario and at
several positions of the horizontal slit centre xc, fixing the vertical position on the light centre
yc = 0. Solid lines refer to a slit configuration with square apertures of 1mm⇥1mm. The dashed
lines represent the e↵ect of the dipole interference mitigation discussed in the text. Color bands
represent the VCZ prediction with the usual beam size tolerance of ±2.5%, corrected by the
source distance change as a function of the slit horizontal position. The simulation is performed
at the operating wavelength of 400 nm.

along the dipole, already mentioned in Sec. 4.4.

The latter e↵ect can be corrected in the same way presented for the coherence map, by

redefining the source distance as a function of the horizontal position of the slit centre

rp ⇡ (z � zin)

s

1 � 2⇢xc

(z � zin)2
. (5.10)

This expression for the source distance leads to a predicted degree of coherence which is not

constant throughout the entire radiation wavefront but decreases as the slits approach the mirror

edge. This is fully compatible with the results of the simulation, as the average trend of |µ(xc, D)|

decreases with xc. The oscillations around the trend can be mitigated by taking advantage of

the finite size of the slits and increasing the slit height to allow at least one full period of the

dipole fringes to pass through, thus intrinsically averaging the degree of coherence and damping

the fluctuations. The result of this mitigation is shown in the figure as a dashed line and it is

in good agreement with the VCZ prediction, which has been corrected by the source distance

rp(xc). The optimal mitigation was determined to occur at a slit height of h = 4mm. Increasing

the slit height beyond this value can negatively impact the correction for the source distance

rp(xc), which requires short slits to sample light from a well-defined horizontal position xc.

The simulation results for the horizontal direction are presented in Fig. 5.10b. The qualita-
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tive behavior is similar to the vertical case, with an oscillating degree of coherence that decreases

as we move from the reference axis to the mirror edge. However, the correction for the source

distance and the mitigation of the oscillations are not as e↵ective as in the vertical case. Cor-

recting for the source distance in the horizontal direction is somewhat arbitrary because the two

slits sample the wavefront at di↵erent horizontal positions. Evaluating the source distance at the

slit center lacks a strict physical interpretation and serves as an average distance considering the

longitudinal extension of the dipole. The oscillations are minimally influenced by the slit height

since the slits are essentially parallel to the dipole interference fringes. To perform averaging,

increasing the slit width rather than the height would be more suitable. However, this option

is not convenient as it would significantly a↵ect the e↵ective slit separation. Hence, even with

the largest available slit height of 15mm (dashed line), no substantial di↵erence is observed.

Lastly, it is worth mentioning that the range of allowable slit center positions in the horizontal

direction is limited to ensure that neither of the apertures falls outside the available light spot.

The horizontal direction at flat-top energy is also one of the few cases where the correction of

the visibility is not negligible. Looking at the SR intensity distribution of Fig. 5.8b, the light

transmitted through two vertical apertures is unlikely to be the equal and the correction for the

imbalance becomes relevant if one of the apertures approaches the edge of the available light.

To summarize, the behavior of the BSRI at flat-top energy is less straightforward compared

to the injection energy. However, there are corrective measures that can be implemented to

mitigate the challenges associated with the synchrotron radiation emitted by the interfering

dipoles. These measures allow retrieving the beam size from the interferogram visibility, using

the Van Cittert and Zernike theorem. While the mitigation strategy is more successful in the

vertical direction, achieving the desired ±2.5% accuracy in beam size, it proves to be more

challenging in the horizontal direction, where the accuracy target is only marginally met.

5.4 Experimental validation of the setup

To conclude the description of the BSRI implementation, we present a collection of experimental

results performed to validate the response of the setup and its dependence on various experi-

mental parameters. The measurements performed to characterize the accuracy of the BSRI as a

transverse beam size measurement instrument deferred to Chapter 6, entirely dedicated to this

subject.
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Figure 5.11a showcases a typical interferogram captured by the BSRI. To enhance the in-

terference pattern’s quality, a reference image of the background noise is obtained by shutting

the light path and subsequently subtracted from the interferogram. The system magnification

is adjusted to ensure that the central lobe of the interferogram covers the entire detector, to

achieve the best spatial resolution of the fringe pattern. This requirement, necessary to record

high-quality interferograms, results in a large region of the detector constantly exposed to light,

which negatively a↵ects the lifetime of the image intensifier. As a result, the BSRI is limited

to sporadic use, mainly for verifying the stability of SR telescope measurements. Conversely,

SR telescopes are well-suited for continuous monitoring since the smaller light spot created by

the imaging system can be scanned, thereby diluting the light intensity over a the entire active

aread of the detector. The vertical profile extracted from the two-dimensional interferogram is

presented in Fig. 5.11b. The analytical fit performed using the interference pattern formula ex-

hibits a perfect overlap with the experimental data. The constant visibility observed across the

entire fringe pattern confirms that temporal coherence e↵ects do not distort the interferogram

shape. Moreover, the interference fringes remain well-contained within the intensity envelopes,

which are calculated by combining the single-slit di↵raction distributions using Eq.5.6.
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Figure 5.11: In (a), example of a two-dimensional interferogram recorded on the BSRI detector.
In (b), the profile of the intensity fringes is extracted and fitted to retrieve the visibility. The
intensity envelopes obtained from the single-slit profiles are plotted as a verification.

Figure 5.12 presents a measurement performed to assess the stability of the visibility mea-

surement. During a standard fill for physics at flat-top energy, four nominal bunches with

slightly di↵erent sizes were continuously measured using the BSRI. The system demonstrates
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its capability to resolve the variations in visibility associated with the evolution of the bunch

size during the fill. The fluctuation in the visibility measurement exhibits a standard deviation

smaller than 0.5%. Assuming a linear relationship between the visibility and the source size,

valid for small variation around a reference operating visibility, the statistical error of ±0.5%

in visibility corresponds to the same fluctuation in beam size, or twice this value in emittance.

This level of precision exceeds the standard performance of the BSRT, where the measurement

typically fluctuates with a statistical error of ±3% in beam size. It is worth noting that the rel-

ative error of the BSRT could also be improved by increasing the gain of the detector, although

this is normally minimized to extend the lifetime of the image intensifier.
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Figure 5.12: Evolution of the visibility measured by the BSRI for nominal bunches during a
physics fill at flat-top energy. The bottom plot shows the corresponding evolution of beam size
measured by the BSRT for reference. The decrease in measured visibility throughout the fill is
consistent with the increase in beam size observed by the BSRT. This behavior can be attributed
to bunch collisions that result in the increase of the bunch transverse emittance.

A more quantitative comparison between the BSRT and BSRI beam size measurements is

presented in Fig. 5.13. This measurement was performed during a ”scrubbing” run, which is a

stage of the accelerator commissioning process where multiple bunches are allowed to circulate

at injection energy to prepare the machine for the intensity ramp-up. A characteristic of the
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scrubbing fill is that the bunches in the tails of each train tend to increase their transverse size

due to electron cloud e↵ects [67]. The BSRI e↵ectively detects this phenomenon and provides

beam size measurements that are fully compatible with the values obtained from the BSRT for

all the bunches in the measured train.
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Figure 5.13: Horizontal beam size of 24 consecutive bunches belonging to a train. Measurement
performed during a scrubbing fill at injection energy. The beam size measured by the BSRI
and BSRT are compared for each bunch. The error bar represent the statistical error associated
with the two measurements.

5.4.1 E↵ect of the exposure time

The intensity captured by the detector can be adjusted with a combination of attenuation filters,

gain of the image intensifier, and exposure time of the digital camera. While the attenuation

filters and intensifier gain only a↵ect the amount of light reaching the camera, changing the

detector exposure time also a↵ects the time response of the system. Long exposure times are

sensitive to phenomena such as air turbulence, mechanical vibrations of the setup, or beam

instabilities that can blur the interferogram pattern and decrease the assessed visibility.

To investigate the impact of exposure time on the visibility of the interferogram, measure-

ments were conducted by varying the exposure time between 200ms and 50 µs. The former

represents a long exposure time that produces a very stable pattern whereas the latter is the

shortest exposure time permitted by the camera. The resulting average visibility and its sta-

tistical fluctuation, evaluated over a sample of 30 frames per exposure time, are displayed in

Fig. 5.14.

One notable finding is the relatively consistent visibility maintained throughout the entire

range of exposure times investigated. As expected, the visibility shows a slight increase at shorter
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Figure 5.14: Measured interferogram visibility as a function of the camera exposure time. The
average visibility value is extracted from a sample of 30 interferograms and its standard deviation
is plotted as the vertical error bars.

exposure times, suggesting that experimental factors may have a minor impact on visibility at

longer exposures. However, the increase in average visibility is also accompanied by a larger

standard deviation. The increase of standard deviation becomes apparent when comparing

the quality of the interferograms captured at the two extreme exposure cases, as depicted in

Fig. 5.15. The 50 µs exposure interferogram exhibits considerably noisier fringes compared to the

cleaner pattern observed at 200ms, resulting in a significant fluctuation in the fitted visibility.

It is important to note that the 50 µs exposure duration is shorter than the LHC revolution

period of approximately 90 µs, which means that the actual exposure to synchrotron light is

limited to a few nanoseconds due to the bunch length. Despite this extremely short duration,

the average visibility remains consistent, indicating that factors such as air turbulence and

mechanical vibrations, which operate on a much slower timescale, do not significantly impact

the BSRI measurements.

For standard measurements at flat-top energy, an exposure time of 50ms is typically em-

ployed to obtain a good fringe quality without setting the intensifier gain its maximum limit.

At injection energy, the exposure time is increased to 200ms to cope with the less intense un-

dulator SR. At present, shorter exposure times do not o↵er substantial improvements in system

performance, as the real-time image processing operates at a relatively slow frame rate of approx-

imately 1 fps. However, this finding suggests that future upgrades of the BSRI could potentially
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Figure 5.15: Example of interferograms acquired at the minimum and maximum exposure times
of Fig. 5.14. The single-turn interferogram (b) is acquired maximising the light at the detector,
selecting the largest available slit height, extracting all attenuation filters and setting the maxi-
mum image intensifier gain. Furthermore, these measurements were performed during a special
fill with high-intensity bunches of 1.8 ⇥ 1011 particles.

adopt shorter exposure times to enhance measurement speed without significant compromise to

measurement stability.

5.4.2 Visibility uniformity across the SR wavefront

An important experimental test is the validation of the system response when the slits are

transversely displaced to map the visibility across the incoming wavefront. Although this type

of measurement is not directly relevant to operational scenarios, where the slits are typically

held in a stationary configuration or a slit separation scan is performed around a fixed slit

center, it serves as a valuable tool for investigating the coherence properties of the wavefront

and benchmarking the degree of coherence against simulations. Fig.5.16 and Fig.5.17a present

two examples of such visibility maps, which were measured at injection energy and 6800GeV,

respectively.

The measurement carried out at injection energy confirms that the system accurately repro-

duces the uniform visibility expected from the degree of coherence of the undulator radiation.

The observed variations, smaller than 1%, are consistent with typical statistical fluctuations of

the visibility assessment. This result not only validates the uniformity of the undulator radiation

coherence but also serves as evidence of the overall optical quality of the system, indicating that

it does not introduce any significant wavefront distortions.

The visibility map obtained at flat-top energy exhibits a distinct pattern, which originates
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Figure 5.16: Interferogram visibility at 450GeV mapped as a function of the slit centre position,
using a vertical slit configuration with a fixed slit separation of D = 3mm. The color scale
has the same range as that of Fig. 5.17, allowing for a direct comparison of the uniformity of
visibility between injection and flat-top energies.

from the interference between the two D3 dipoles. The measured visibility oscillates following a

regular pattern, characterized by concentric rings centred at the light reference axis. The pattern

detected in the BSRI visibility map agrees with the results obtained from the simulation of the

same slit position scan, providing qualitative validation of the system response to dipole inter-

ference e↵ects. However, despite the qualitative agreement between the observed and simulated

patterns, the former exhibits some imperfections not present in the latter. Several factors may

contribute to this discrepancy, with the most probable explanation being the presence of brighter

spots in the SR distribution observed at the slit plane, as depicted in the flat-top image shown

in Fig. 3.13. However, these local deviations do not significantly a↵ect the overall response of

the system, which remains consistent across the entire visibility map.

5.4.3 Dependence on polarization

To conclude this collection of experimental observations, let us examine the influence of the

polarization angle on the interferogram parameters. At high energy, the linear polarizer is

essential to avoid superposition between horizontal and vertical polarization components. As

discussed in Sec. 3.6, the horizontal polarization of the single particle field has a continuous

phase over the entire wavefront, while the vertical polarization undergoes an inversion of sign

across the orbit plane, resulting in a ⇡ phase jump at y = 0. This phase jump associated

with the vertical polarization is detectable by the BSRI, as it contributes to the phase term

�12 of the interferogram fringes. In a vertical slit configuration, whenever the two apertures
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Figure 5.17: Interferogram visibility, as a function of the slit centre position at 6800GeV. Slit
position scan performed using a vertical slit configuration with fixed slit separation D = 7mm.

sample points on opposite sides of the orbit plane, the two wavefronts arrives at the centre of

the interferogram in anti-phase, leading to an intensity minimum. Conversely, for horizontal

polarization, an intensity maximum is observed at the interferogram centre. This behavior is

confirmed by the polarizer angle scan presented in Fig. 5.18, where the fitted phase �12 is 0 (or

2⇡) for horizontal polarization and ⇡ for vertical polarization.

The visibility of the interferogram remains constant for both horizontal and vertical polar-

izations individually, as the fringe contrast is not a↵ected by the phase di↵erence �12. However,

when the polarizer is set at intermediate angles, the two polarization components combine, lead-

ing to the superposition of interferograms with opposite phases. This combination results in a

suppression of the visibility, highlighting the importance of using a linear polarizer for accu-

rate visibility measurements. The decay in visibility is less pronounced around the horizontal

polarization, primarily due to the higher intensity associated with the horizontal polarization.
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Figure 5.18: Measured interferogram visibility and phase, as a function of the radiation polariza-
tion angle. The horizontal polarization corresponds to an angle of 0� (or 180�). The polarization
scan is performed at 6800GeV, with a vertical slit configuration centred at (xc, yc) = (6, 0)mm
and a slit separation of D = 7mm. Some points between 45� and 90� are missing because the
fit fails at very low visibility.
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Chapter 6

Performance assessment of the

synchrotron radiation interferometer

The accuracy and performance of the synchrotron radiation interferometer as a transverse di-

agnostic instrument are investigated in this chapter.

In the initial part of the chapter, the results from the interferometer are compared to the

reference data obtained from wire scanners during the LHC emittance calibration fill. At in-

jection energy, visibility measurements show good agreement with the reference values derived

from wire scanner profiles, through the Van Cittert and Zernike theorem. At flat-top energy,

a consistent discrepancy appears, with the measured visibility systematically lower than the

reference. Extensive investigations have been conducted to identify the source, yet the ultimate

cause of the discrepancy has not been isolated. Several observations suggest an intrinsic physical

origin, currently not accounted for in simulations. To address this issue, an empirical model was

developed to correct the raw visibility data obtained from the interferometer and restore the

compatibility with the wire scanner reference.

Section 6.3 delves into the deployment of the interferometer in an operational scenario,

where the instrument must operate with a limited range of visibility points to reconstruct the

beam profile and estimate the transverse emittance. The di↵raction limit represents the ultimate

constraint for the interferometer in this context, making it particularly challenging to accurately

assess emittance for small bunches at flat-top energy.

Finally, the chapter includes a comparison with emittance values assessed by the CMS de-

tector through an emittance scan, to investigate the overall consistency of transverse diagnostics

at the LHC.
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6.1 Comparison between synchrotron radiation interferometer

and wire scanner measurements

The emittance calibration fill is a special LHC fill where a limited number of bunches, covering

the full range of LHC emittances, are injected and accelerated. This reduced number of bunches

allows for the operation of wire scanners, which are employed to measure the transverse beam

size at regular intervals throughout the entire fill. The primary objective of this fill is to calibrate

the synchrotron radiation telescopes (BSRT), enabling them to provide accurate emittance mea-

surements in regular physics fills. Additionally, this fill presents an ideal opportunity to validate

and assess the performance of novel systems for transverse diagnostics, such as the synchrotron

radiation interferometer (BSRI). Emittance calibration fills are regularly conducted during the

accelerator run, to ensure a constant update of the BSRT calibration. The measurements pre-

sented in the following refer to the two emittance calibration fills of the 2022 LHC run, identified

by the fill numbers 7915 (4th July) and 8479 (24th November).

The emittance calibration fill follows a sequence similar to that of a regular LHC cycle.

For both beams, a limited number of bunches with five di↵erent emittances are injected, corre-

sponding to the maximum beam intensity allowed by wire scanners. The transverse emittance is

determined in the initial stage of the LHC injector complex, at the injection of the Proton Syn-

chrotron Booster (PSB). The H- ions from LINAC 4 are stripped and the resulting protons are

injected into the PSB rings to produce bunches with nominal emittances ranging between 1 µm

and 5 µm. These bunches are subsequently accelerated through the complex until they reach

the LHC, where the actual emittance is verified by means of wire scanners. Once the injection

process is completed, the calibration at the injection energy is performed, followed immediately

by beam acceleration. It is important to limit the time spent at injection energy due to the

tendency of the bunches, particularly the smaller ones, to experience transverse blow-up. Once

the acceleration phase is completed, the beams are adjusted and collisions occur at the interac-

tion points. This stationary regime lasts for several hours, enabling systematic measurements

to take place.

The transverse emittance alone does not o↵er a complete characterization of the transverse

distribution of the bunches involved in the calibration fill. Wire scanner profiles reveal that the

bunches exhibit significant tails, deviating from the simple Gaussian distribution. As a result,

the assumption of a double-Gaussian distribution, introduced in Sec. 4.3, becomes necessary to
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better describe the transverse profile of the bunches and allow a consistent comparison between

the wire scanners and the interferometer measurements.

6.1.1 Reference measurements from wire scanners

Wire scanner measurements are continuously performed during the calibration fill to monitor the

evolution of the transverse beam distribution. Each time a wire scanner is activated, the beam is

intercepted twice: once during the inward motion and a second time during the outward motion

of the wire. These two measurements are treated independently, and the resulting profiles are

considered separately in the following analysis. The transverse size of the desired bunches is

determined by fitting the profiles. The normalized emittance is calculated from the beam size

using Eq. 1.16. Dispersive e↵ects are neglected, taking advantage of the minimal dispersion

function within the LHC straight sections.

Figure 6.1 provides an overview of the wire scanner beam size measurements performed

throughout the fill. The fill starts with the injection of the larger bunches. Once the instrumen-

tation setup is completed, the remaining bunches are injected. The machine remains at injection

energy for approximately 15 minutes to allow for the calibration of the BSRT and, in parallel,

perform a few slit separation scans with the interferometer. Wire scanner measurements reveal

a noticeable increase in size at injection energy, exceeding 20% for the smaller bunches. As the

accelerator energy ramp begins, there is a sudden decrease in the transverse beam size. Ideally,

the beam size evolution during the energy ramp follows the 1/
p
E trend due to the adiabatic

damping. After reaching the flat-top energy of 6.8TeV, the machine goes through the sequence

to initiate collisions. These steps include reducing the beam size at the interaction point (re-

ferred to as ”squeeze”), approaching the beams (referred to as ”adjust”), and optimizing the

luminosity to achieve the final stage of ”stable beams.” These operations primarily change the

beam characteristics at the interaction points, with minimal impact on the particle distributions

at the diagnostics location. Therefore, for the purpose of our analysis, we can assume stationary

beam conditions once the accelerator reaches the flat-top energy.

The emittance evolution of the bunches relevant to the comparison with the synchrotron

radiation interferometer is illustrated in Fig. 6.2. Ideally, this plot should exhibit a set of constant

emittance values within the desired range of 1 µm to 5 µm, with increments of 1 µm. However,

the actual picture is not as straightforward. The emittance at injection does not exactly coincide

with the nominal values requested to the PSB, due to the bunch propagation through the injector
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Figure 6.1: Beam size measurements obtained by wire scanners during the calibration fill 8479
for Beam 1 in both horizontal and vertical directions. Each data point represents the average size
obtained from inward and outward scans. Bunches injected with the same nominal emittance are
grouped by color, using di↵erent markers. The solid green line corresponds to the beam energy.
The marker and color bunch notation remains consistent throughout the chapter, helping the
readability of the plots.

complex. At injection energy, the emittance evolution reflects the same increase observed in

the beam size, particularly apparent for the smaller bunches. Fluctuations are present during

the energy ramp and can be attributed to transients in the accelerator optics, which slightly

changes between injection and flat-top energies. Despite these temporary fluctuations, the overall

emittance remains well preserved during the ramp, with a slight increase observed for the smaller

bunches in the horizontal direction. The preservation of the normalized emittance during the

energy ramp also implies that the beam size indeed exhibits the expected 1/
p
E behavior of

adiabatic damping. At flat-top energy, the values of the emittance remain stable for several

hours. The only noticeable e↵ect is a slight increase in the emittance of bunch 2450 in the
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vertical direction, which becomes distinguishable from the bunch 2700, injected with the same

nominal emittance of 1 µm.
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(b) Horizontal direction

Figure 6.2: Reference emittance obtained from the wire scanner profiles during the calibration
fill 8479 for Beam 1 in both horizontal and vertical directions. The structure of the plot is the
same as Fig. 6.1.

6.1.2 Wire scanner profiles

The simple Gaussian analysis provides a practical characterization of the transverse distribution

of bunches. However, additional degrees of freedom are required to accurately describe the real

profile of the bunches during an emittance calibration fill.

Figure 6.3 illustrates wire scanner profiles for two representative bunches with di↵erent emit-

tances, acquired in both transverse directions. These examples demonstrate a clear deviation

from a Gaussian function, with noticeable tails present in the profiles of the smaller bunches.
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Figure 6.3: Examples of Wire scanner profiles recorded during the injection phase of the calibra-
tion fill, for two bunches of di↵erent nominal emittance. The circles are the experimental data
points, the dashed line is the simple Gaussian fit while the solid line represents the fit performed
with the weighted combination of two Gaussian distributions.

A weighted combination of two Gaussian distributions is capable of accurately reproducing the

experimental data. Therefore, the best approximation for the actual bunch profile is the double-

Gaussian distribution

f(⇠) = c
1p
2⇡�1

e
� 1

2
⇠2

�2
1 + (1 � c)

1p
2⇡�2

e
� 1

2
⇠2

�2
2 , (6.1)

previously introduced in Eq. 4.27.

To systematically assess the deviation of the bunch profiles from the Gaussian distribution

throughout the fill, we can analyze the relative di↵erence between the emittance of the double

Gaussian distribution, "dg = c"1 + (1 � c)"2, and the ”e↵ective” emittance obtained from the

simple Gaussian fit, ". The result of this comparison is illustrated in Fig. 6.4. The analysis

confirms that more significant deviations from the simple Gaussian distribution occur for the

smaller bunches, regardless of the transverse direction, and persist throughout the entire fill.

The deviation for the bunches with a nominal emittance larger than 3 µm is typically below

10%, indicating that their profiles can be adequately approximated using the simple Gaussian

distribution. At injection energy, the profiles of the injected bunches tend to converge towards

a more Gaussian distribution as they circulate in the machine. This behaviour is particularly

pronounced for the smaller bunches and, in combination with the increase of the emittance ob-

served in Fig. 6.2, can be attributed to a blow-up of the core fraction of particles. A similar e↵ect
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is observed for bunch 2450 at flat-top energy, where the increase in emittance is accompanied

by a reduction of the deviation from the Gaussian distribution.
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Figure 6.4: Relative di↵erence between the emittance computed with a double Gaussian and a
simple Gaussian fit of the wire scanner profiles during the emittance calibration fill 8479.

6.1.3 Comparison between wire scanners and synchrotron radiation interfer-

ometer data

When comparing the wire scanner and synchrotron radiation interferometer measurements, a few

aspects need to be considered. Firstly, the two instruments measure the beam at slightly di↵erent

locations along the machine, requiring the propagation of the reference measurement from the

wire scanner to infer the beam distribution at the synchrotron radiation source. Secondly, the

wire scanner measurements clearly show that the smaller bunches significantly deviate from the

Gaussian distribution. This prevents the applicability of Eq. 5.9 to infer the beam size from a
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single visibility measurement and requires instead a scan of slit separations to probe at least a

fraction of the visibility decay. Lastly, the transverse distribution of the bunches evolves over

time, thus limiting the comparison between wire scanner and interferometer only to adjacent

measurements. This section outlines the methodology used for comparing the results from the

two instruments.

The output of a slit separation scan is a discrete set of visibility values acquired for the

selected bunches and slit separations. Since this measurement process usually takes only a

few minutes, the characteristics of the bunches remain unchanged within this time interval.

Therefore, all wire scanner measurements conducted during the interferometer scan can be

averaged to obtain the reference measurement. Under the validity of the Van Cittert and

Zernike theorem, the visibility measured by the interferometer as a function of the slit separation

corresponds to the Fourier transform the bunch profiles. The expected visibility decay for double

Gaussian profiles can be determined by applying Eq. 4.28

V (D) = c e

� 1
2

D2

�2
coh,1 + (1 � c) e

� 1
2

D2

�2
coh,2 , (6.2)

being �coh,i = �rp/2⇡�i the coherence area associated with each of the two Gaussian con-

tributions and c the fraction of core particles. Assuming that the core and tails contributions

propagate independently as two overlapping Gaussian beams, the values of �i can be transported

from the location of the wire scanner to the synchrotron radiation source using the standard

principles of transverse beam dynamics, while the core fraction remains preserved along the ring.

The standard deviations �i and the core fraction c are determined, and propagated, separately

for each wire scanner profile. To obtain a unique reference curve Vref (D) for comparing the vis-

ibility decay measured by the interferometer, the wire scanner measurements performed during

the slit separation scan need to be averaged.

Averaging the fit parameters is not a suitable approach due to the existence of multiple

combinations of (�1,�2, c) that can yield similar wire scanner profiles. Taking the average of

each parameter separately often results in an inaccurate assessment of the reference visibility

curve1. Instead, a preferable approach is to compute the curve V (D) for each profile individually

and then average the resulting set of curves to obtain the reference visibility decay Vref (D).

1For example, an almost Gaussian profile with a standard deviation � can be accurately reproduced by pa-
rameter combinations like (�, �, 0.5) and (�, 0, 1). Averaging these parameters yields (�, �/2, 0.75), which does
not represent the actual shape of the original profile
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This method ensures a more reliable estimation of the reference visibility curve by averaging the

variations in the parameters across di↵erent profiles.

The reference visibility is evaluated at the slit separations used in the interferometer scan.

Finally, the reference and measured visibility points are conveniently presented in a scatter plot,

o↵ering a visual representation of the agreement between the two datasets.

6.1.4 Injection energy

We will now present the results of the comparison between the synchrotron radiation interferom-

eter and wire scanner measurements, starting with the scans performed at injection energy. The

injection scenario is conceptually straightforward and not a↵ected by any potential di�culties

arising from the source complexity. Therefore, the agreement between the expected reference

and the observed visibility serves as a fundamental validation of the accuracy of the setup.

Figure 6.5a presents the results of a slit separation scan conducted at injection energy along

the vertical direction. The measured visibility points align with the reference curves inferred

from the wire scanner profiles, indicating a good agreement. Despite the visibility associated

with the larger bunches being relatively low and not suitable for accurate measurements, the

scatter plot of Fig. 6.5b confirms a satisfactory agreement for all measured bunches. The linear

regression of the measured points perfectly overlaps with the expected reference, and overall, the

dataset remains confined within a beam size tolerance of ±2.5%. Similar results are observed

for the horizontal direction using data from a slit separation scan performed just before the start

of the energy ramp, reported in Fig. 6.6.

The importance of considering the exact shape of the bunch profile when comparing wire

scanner and interferometer data is illustrated in Fig. 6.7. For the smaller bunches, the reference

visibility curves obtained through a simple Gaussian fit of the wire scanner profiles diverge sig-

nificantly from the visibility points measured by the interferometer. This deviation is expected,

as the distribution of these bunches di↵ers considerably from a simple Gaussian function. The

discrepancy between the two approaches vanishes for the larger bunches, which are in fact well-

described by a Gaussian distribution.

The fact that the visibility critically depends on the shape of the bunch profile is not prob-

lematic at the current stage of the analysis, as the objective of this section is to verify that the

visibility points measured by the interferometer align with the reference curve obtained from the

wire scanner. However, it does have practical implications when the interferometer is used in
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Figure 6.5: Assessment of the BSRI accuracy along the vertical direction at injection energy.
In (a), the comparison between the reference visibility inferred from the wire scanner profiles
(lines) and the visibility measured by the interferometer (markers). For each bunch, the average
reference visibility is plotted as a solid line inscribed in a color band which represents the
statistical uncertainty associated with the wire scanner measurements. In (b), the scatter plot
of reference and measured visibility. The linear regression V (Vref ) is plotted as a red dashed
line and the computed coe�cients annotated on the plot. The red dash-dotted lines represent
a tolerance of 2.5% beam size around the ideal trend V = Vref , plotted as a grey dashed line
(not visibile in this case as perfectly overlapping with the linear regression).

situations where the shape of the profile is not known a priori, and it needs to be reconstructed

from the available visibility points. This constraint is part of a broader intrinsic limitation of the

interferometer, and will be discussed in more detail in Sec. 6.3 when addressing the deployment

of the interferometer in an operational scenario.

6.1.5 Flat-top energy

The radiation emitted by the smaller beams at flat-top energy exhibits a larger coherence area,

which allows for a wider range of slit separations to be used in probing the visibility decay.

The results of two slit separation scans conducted at flat-top energy are shown in Fig. 6.8a

and Fig. 6.9a, representing the vertical and horizontal planes respectively. In contrast to the

injection energy, a significant discrepancy is found between the measured visibility points and

the reference curves. In particular, the measured visibility is systematically lower than the

corresponding target value. This behavior is qualitatively similar for both vertical and horizontal

scans. The only quantitative distinction is that the smaller horizontal beam size leads to a range

of visibility values that are generally larger compared to the vertical direction. The occurrence

of a ”loss of visibility” at flat-top energy is not an isolated phenomenon limited to a single

occurrence. It consistently manifests in all scans conducted during both emittance calibration
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Figure 6.6: Assessment of the BSRI accuracy along the horizontal direction at injection energy.
The structure of the two plots is the same as Fig. 6.5.

fills and therefore deserves further investigations. Despite the optimum operating wavelength

for the flat-top case being set at 400 nm based on simulations, the majority of measurements

were conducted at 560 nm to compensate for the lower-than-expected visibility using a longer

wavelength. However, scans were also conducted at 400 nm, and the results obtained at both

operating wavelengths are fully compatible, as detailed in a dedicated paragraph in Sec. 6.2

below.

The scatter plots of Fig. 6.8b and Fig. 6.9b provide a more quantitative representation of the

discrepancy between the measured and reference visibility. As expected from the plots of the

visibility curves, the measured points clearly fall outside the beam size tolerance of ±2.5%. The

deviation primarily manifests as a constant o↵set rather than a di↵erent slope. Furthermore,

the points do not align well along a consistent trend, and their scatter varies depending on

the specific bunch. In this scenario, linear regression is not a suitable method to describe the

relationship between the measured and reference visibility. Even if the average trend of the

measured points is corrected using the parameters determined through linear regression, the

points would still be scattered around a region corresponding to a relative error in beam size

larger than ±20%, significantly above the desired tolerance.

These results indicate that the raw visibility measured by the interferometer cannot be

directly used for an absolute measurement of the beam size using the procedure outlined in

Chapter 4 and based on the Van Cittert and Zernike formula. However, a promising finding is

that the visibility curves exhibit a consistent trend and a clear correlation with the di↵erent size

of the bunches. This suggests that, upon implementation of an e↵ective algorithm to correct
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Figure 6.7: E↵ect of profile Gaussianity on visibility curves at injection. The solid lines represent
the reference curves obtained through a double Gaussian fit of the wire scanner profiles, while the
dashed lines are derived from a simple Gaussian fit. The color bands representing the reference
uncertainty are omitted. Data from the same scan as Fig. 6.5 is used for this comparison.

for the loss of visibility, the interferometer could still serve as a redundant and independent, yet

calibrated, instrument for transverse diagnostics.

6.1.6 Correction of loss of visibility

The aim of this paragraph is to find an empirical model that can be used to correct the raw

visibility and restore agreement with the reference values. This model is essential not only for

making the interferometer data usable but it could also help the investigation of the physical

origin of the visibility loss, which will be the subject of Sec. 6.2.

Several parameters have been considered in search of a consistent model to explain the

observed discrepancy. Eventually, good results were achieved by introducing a slight modification

to the linear regression V (Vref ), incorporating a dependence on the slit separation

V (Vref , D) = a3VrefD + a2Vref + a1D + a0, (6.3)

where the coe�cients ai are left as fitting parameters of the points in the (Vref , D) space.

The results of the fitting operation are illustrated in Fig. 6.10a and Fig. 6.11a, for the same

vertical and horizontal scans presented in the previous section. The fitting function of Eq. 6.3

represents a surface in the three dimensional space (Vref , D, V ). Despite the linear dependence on

Vref and D, this surface is not a plane due to the non-zero value of the coe�cient a3 associated to
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Figure 6.8: Assessment of the BSRI accuracy along the vertical direction at flat-top energy. The
structure of the two plots is the same as Fig. 6.5. Measurement performed at the operating
wavelength of 560 nm.

the mixed term. The agreement between the measured data points and the fitted surface shows

that this empirical model is e↵ective in reproducing the experimental dataset for all bunches.

Figure 6.10b and Fig. 6.11b o↵er a more quantitative representation of the fit quality. The raw

visibility is corrected according to the relationship of Eq. 6.3 and the result is plotted against

the reference visibility. The corrected points perfectly align along the reference. The spread

among di↵erent bunches vanishes, and all points are well confined within the required tolerance.

The correction of the visibility loss is also e↵ective in the horizontal direction. However, as

expected in the more challenging horizontal plane, the fitting process yields larger residuals.

As a result, the scatter among the bunches can still be observed in the corrected data, which

slightly exceeds the beam size tolerance of ±2.5%. The fit error could be further reduced by

using a quadratic surface as fitting function. However, this option is excluded to maintain a

relatively simple relationship for the visibility correction and to avoid the risk of overfitting the

experimental dataset.

Reproducibility of the visibility correction

To ensure the practical implementation of the visibility correction in an operational scenario, it is

crucial to assess the stability of the coe�cients ai defined in Eq. 6.3 across various slit separation

scans and, ideally, over longer periods of time across di↵erent calibration fills. An immediate way

to assess the reproducibility of the visibility correction is by applying the coe�cients calculated

in one calibration fill to correct the raw data from a di↵erent fill. The results of this test are
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Figure 6.9: Assessment of the BSRI accuracy along the horizontal direction at flat-top energy.
The structure of the two plots is the same as Fig. 6.5. Measurement performed at the operating
wavelength of 560 nm

shown in Fig. 6.12, where the visibility raw data acquired during the emittance calibration fill

of November 2022 is corrected using the coe�cients computed from the fill of July 2022.

The reproducibility of the correction function is validated in both directions. The correction

using coe�ecients from a di↵erent fill is slightly less e↵ective compared to the cases where the raw

data were corrected using coe�cients computed on the same dataset. Nevertheless, the linear

regression of on the corrected data confirms that the visibility loss is e↵ectively compensated.

The spread of points around the reference trend remains within acceptable limits, therefore

preserving the tolerance achieved with the correction computed on the same dataset.

Although no significant modifications were made to the interferometer setup, there was a

gap of several months between the two calibration fills. During this period, the instrument was

frequently operated, and interventions were conducted on other equipment located on the same

optical table. Despite these factors, the correction coe�cients remained consistent, demonstrat-

ing the stability of the visibility correction. This stability is fundamental for the practical use

of the interferometer, as the model of Eq. 6.3 can be adopted as a calibration of the device,

ensuring reliable and consistent measurements over time.

6.2 Investigations on loss of visibility at flat-top energy

The previous section introduced a strategy to address the loss of visibility at flat-top energy

by utilizing an empirical model that incorporates a correction based on the slit separation, and

a set of experimental coe�cients. In the following discussion, we study the problem of the
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Figure 6.10: Loss of visibility correction along the vertical direction at flat-top energy. In (a),
a visualization of the V (Vref , D) fit of Eq. 6.3 and, in (b), the scatter plot of the corrected
visibility points.

loss of visibility at flat-top energy and provide a summary of the investigations performed to

identify the underlying cause of this discrepancy. The analysis conducted so far has not yielded

conclusive results, and the ultimate source of the issue remains unidentified. Nevertheless,

several potential factors that could induce a loss of visibility have been ruled out, and certain

observations suggest that the loss of visibility is likely to originate from intrinsic properties of

the synchrotron radiation source.

Defects in the experimental setup

A potential explanation for the loss of visibility in the recorded interferogram is related to defects

in the experimental apparatus. Imperfections in the optical components can cause smearing or

blurring of the light distribution at the detector, resulting in reduced contrast of the interference

fringes. The same phenomenon may occur as a consequence of mechanical vibrations or air

turbulence in the optical line. Interferometers are particularly sensitive to these phenomena

compared to imaging systems because they rely on the phase information of the wavefront,

which is easily distorted by wavefront errors, air turbulence or mechanical vibrations.

Nevertheless, optical defects in the apparatus are not a plausible explanation for the ob-

served loss of visibility, as they would equally a↵ect measurements at both flat-top and injection

energy. Moreover, measurements at injection energy are even more sensitive to optical defects

due to the broader emission of the undulator, which covers a larger area of the optical sur-

faces compared to the narrow light spot of dipole radiation. However, no discrepancies were
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Figure 6.11: Loss of visibility correction along the horizontal direction at flat-top energy. In
(a), a visualization of the V (Vref , D) fit of Eq. 6.3 and, in (b), the scatter plot of the corrected
visibility points.

observed at injection energy, and the measured visibility remained consistently uniform across

all the available wavefronts, as demonstrated in Sec. 5.4. On the other hand, the stability of

the visibility measurements reported in Fig. 5.14, even when the exposure time of the detector

is reduced to the few nanoseconds of the single bunch passage, rules out mechanical vibrations

or air turbulence as potential causes for the loss of visibility.

In conclusion, it is unlikely that the observed discrepancy between the reference and the

measured visibility at flat-top energy is due to defects in the experimental apparatus.

E↵ect of background light

The presence of background light at the detector is another common cause of loss of contrast in

interference patterns. Background light may originate from various sources, including spurious

contributions of the synchrotron radiation itself or residual light that is not properly shielded.

In the case of interest, constant backgrounds due to stray light would not a↵ect the visibility

assessment because the image processing accounts for the subtraction of a reference background.

The presence of spurious contributions from synchrotron radiation cannot be ruled out a priori.

Reflections on the vacuum chamber while the radiation is still in the beam pipe, reflections from

the optical components2, and leakage of spurious wavelengths from the bandpass filters are all

potential sources of such contributions.

To evaluate the potential impact of background light, multiple simulation scenarios were

2Although most of the components have antireflective features, a small fraction of light is inevitably reflected,
which can produce aliases of the interferogram at the detector.
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Figure 6.12: Reproducibility of the visibility correction between the two calibration fills of 2022.
The scatter plots depict slit separation scans conducted in both the horizontal and vertical
directions. The scans were performed in fill 8479 and the corrections were applied using the
coe�cients calculated during fill 7915.

performed. The simulations used the interferograms predicted by the reference measurements as

input and introduced several types of background light patterns. These patterns included aliases

of the interferograms, shifted to simulate spurious reflections, interferograms with di↵erent fringe

periodicity to simulate spurious wavelengths leaking through the filter, and light distributions

that may not follow the interferogram function and could simulate stray light reaching the

detector. The interferograms resulting from these simulations were then fitted to assess the

discrepancy between their visibility and the reference visibility used as input. The objective of

these tests was to reproduce a situation where the visibility deviates from the reference in way

similar to the behaviour observed in experiments, as shown in Fig. 6.8b.

Despite numerous attempts, it is not possible to replicate the observed discrepancy. In

particular, the bunch-dependent deviations are not observed in any manipulation of the input

interferogram. While various tests result in a visibility trend that deviates from the reference, the

resulting visibility points still exhibit a consistent alignment along a common trend. The spread

among the bunches could be artificially induced by introducing bunch-dependent corrections,

such as adapting the parameters of the background light to match the observed discrepancy.

However, these corrections are considered arbitrary and therefore excluded, since there are no

physical reasons to support their application.
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Physical origin of the visibility loss

Common experimental causes of visibility loss have been investigated and ruled out as expla-

nations for the discrepancy observed in the interferometer data at flat-top energy. This section

gathers a few considerations that suggest that these discrepancies are actually inherent physical

characteristics of the LHC synchrotron radiation source, which currently elude the simulations.

The consistency of the loss of visibility provides the initial evidence of a physical origin.

The observed discrepancy in the visibility curves follows a regular pattern that exhibits high

reproducibility across various scans and fills, while also demonstrating qualitative similarity in

both planes.

An additional indication that the visibility loss is not an experimental artifact can be de-

duced from the empirical model found for the visibility correction. The raw visibility, for all

points and bunches, is nearly perfectly corrected by incorporating only a dependence on the slit

separation. This dependence is not accidental as the slit separation is one of the parameters,

alongside the wavelength and the source distance, which determines the spatial coherence, thus

the fundamental coordinate that governs the transverse coherence of a wavefront. These findings

suggest that the empirical formula used to correct the raw visibility in Eq. 6.3 may actually rep-

resent a first-order expansion of an underlying physical model that provides the exact correction

of the VCZ theorem for the specific case under study.

This assumption can be further probed by studying the dependence of the measured visibility

with respect to the wavelength. According to the Van Cittert and Zernike theorem, visibility

curves at di↵erent wavelengths should overlap when plotted as a function of the spatial frequency

⌫ = D/(rp�) rather than the slit separation alone. Figure 6.13 reports a comparison between

slit separation scans performed at the two operating wavelengths of the setup at flat-top energy.

The overlap of the two observation wavelengths is validated as the data points from both scans

align well along a common trend. It is important to note that while this scaling law was derived

from the VCZ theorem, the concept of spatial frequency is a fundamental principle in physical

optics, governing the propagation of optical fields. The alignment between two wavelengths

strengthens the assumption of a physical origin for the observed discrepancy. However, this

evidence alone cannot be considered as an exclusive proof of the VCZ theorem, as alternative

models could potentially exhibit the same scaling law.

In conclusion, many independent observations support a physical origin of the visibility loss

at flat-top energy. The recorded discrepancy is extremely consistent and common experimental
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Figure 6.13: Comparison between the visibility measured at 560 nm (empty markers) and 405 nm
(filled markers) at flat-top energy, for a vertical slit separation scan. The double Gaussian fit of
the visibility points is plotted as dashed lines, to highlight the common trend of visibility data
both wavelengths. In order to overlap scans recorded at di↵erent wavelengths, the horizontal
axis is expressed as spatial frequency instead of the usual slit separation.

sources of visibility loss have been investigated and ruled out. While the deviation from the

VCZ theorem is not currently predicted by simulations, there is no reason to distrust the simu-

lation tools themselves, as they are based on a well-established code like Synchrotron Radiation

Workshop, which has accurately predicted other aspects of the LHC source, such as the two-

dipole interference, even before they were directly observed. Further investigations are therefore

required to expand the analysis of potential sources, searching for elements that have not yet

been included into the simulations and could account for the observed discrepancy.

6.3 Deployment of the synchrotron radiation interferometer in

an operational scenario

The results presented thus far demonstrate the compatibility between the visibility measured

by the interferometer and the reference visibility inferred from the wire scanner profiles. At

injection energy, the agreement is achieved applying the VCZ theorem to relate the bunch

transverse distributions to the degree of coherence of the radiation. At flat-top energy, although

the measured visibility can still be related to the reference, the direct comparison using the simple

VCZ formula proved to be ine↵ective. However, compatibility can be restored by applying an

empirical formula to correct the raw measured visibility. This correction has been demonstrated
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to be consistent for all bunches and scans, and reproducible across di↵erent fills.

The objective of this section is to assess the performance of the interferometer in an opera-

tional scenario, where the aim is not only to establish a correlation between the interferometer

and wire scanner data but also to provide independent and accurate beam size measurements.

In this context, the primary limitation of the interferometer lies in the limited range of available

slit separations, which hinders the direct measurement of the complete decay of visibility and

therefore the reconstruction of the complete transverse particle distribution.

Let us first consider the case of a perfectly Gaussian bunch. In this ideal scenario, the only

unknown parameter of the visibility decay is the coherence area �coh, which can be retrieved from

a single visibility measurement at a fixed slit separation. Once the visibility of the interferogram

is measured, and corrected if necessary, the corresponding source size can be computed as

� = �rp/(⇡D)
p
1/2 log(1/V ), derived inverting Eq. 5.9. This approach heavily relies on the

assumption of a Gaussian bunch profile, and its accuracy is dictated by the accuracy of the single

visibility measurement. Studies performed during the emittance calibration fill confirmed that

the single visibility measurement is accurate within an emittance tolerance of ±5% at injection

energy. Upon correcting the raw visibility to compensate for the loss of visibility, comparable

results were achieved for the flat-top scenario. The tolerance target was successfully validated

for the vertical plane, while it was only marginally met for the more challenging horizontal case.

The situation changes significantly when the assumption of Gaussian bunches cannot be

made a priori, and the shape of the bunch profile needs to be obtained based on the visibility

data itself. This realistic scenario is discussed in Fig. 6.14a, where a slit separation scan at

flat-top from the emittance calibration fill is provided as an example to discuss this limitation.

Due to the limited extent of available light distribution, the interferometer can only probe a

finite range of slit separations. As a result, the behavior of visibility decay at larger separations

remains completely unknown. This limitation would not be problematic if the bunch profile

were known a priori, as the visibility tail could be extrapolated accurately based on the fit of

the available points. Otherwise, multiple solutions are possible and the extrapolated behaviour

is essentially dictated by the guess parameters used for the fit. In the specific example presented

in the figure, the measured points are fitted with a double-Gaussian function, employing four

distinct combinations of guess parameters (c,�coh,1,�coh,2). The resulting profile reconstruction

is entirely arbitrary and yields widely scattered values of e↵ective emittance, rendering them

of limited usefulness in an operational scenario. The situation can be partially improved by
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Figure 6.14: Deployment of the interferometer in an operational scenario. In (a), the visibility
decay of bunch 2700 (red crosses) from Fig. 6.8 is fitted with a simple Gaussian function (blue
dashed line) as well as multiple double-Gaussian functions (solid lines) using di↵erent combi-
nations of guess parameters. The e↵ective emittance obtained from each fit is indicated on the
plot, along with the reference profile and the corresponding reference e↵ective emittance from
the wire scanner. In (b), a scan performed at 400 nm is superimposed to the previous. The
physical slit separation D of the latter scan is scaled to D ⇥ 560/400 to ensure compatibility
with the 560 nm dataset, according to the scaling law based on the spatial frequency definition.
The same fitting procedure is repeated for the combined dataset.

performing slit separation scans at various wavelengths and merging the measured visibility

points using the spatial frequency scaling law outlined in the previous section, as illustrated in

Fig. 6.14b. Including the shorter wavelength in the visibility scan expands the range of available

slit separations and helps to reduce the spread of the tails, thus decreasing the uncertainty on

the emittance assessment.

The inability to systematically reconstruct the complete visibility decay has a significant

impact on the scans conducted at flat-top energy, particularly for smaller bunches. These cases

are characterized by visibility decay that typically extend beyond the range of the available

light. This represents a fundamental limitation of the LHC synchrotron radiation interferome-

ter, which is unable to fully reconstruct the bunch profile. The origin of this constraint lies in

the di↵raction limit. To e↵ectively minimize the uncertainty in emittance, a potential solution

would involve significantly reducing the wavelength and operating in the far ultraviolet domain,

as the synchrotron light telescopes do. However, several experimental constraints hinder the

implementation of this option, with the most notable challenges being the high sensitivity to

optical defects at such short wavelengths and the significant magnification required to compen-

sate for the otherwise narrow fringe periodicity. A more practical approach is to reduce the

degrees of freedom in the visibility fit by fixing the core fraction c and allowing the two standard
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deviations of the double Gaussian function to be the free parameters. Although this solution

a↵ects the self-consistency of the interferometer emittance measurement, as it requires prior

knowledge about the shape of the bunch profile, satisfactory results were achieved by fixing a

typical value for the core fraction c = 0.6 and leaving the standard deviation parameters to fit

the available experimental data points.

In the vertical direction, the assessed emittance exhibits deviations of less than ±4% for

bunches with a nominal emittance " & 3 µm. However, the di↵raction limit introduces a slight

increase in uncertainty to ±6% for bunches within the nominal LHC emittance range of 2 µm .

" . 3 µm. For the smallest recorded bunches of 1.5 µm, discrepancies larger than ±10% are

observed. These situations can be mitigated by including data from the 400 nm wavelength,

thus reducing the relative errors by a margin of 2%. The situation is slightly worse for the

horizontal direction. Although the uncertainty for larger bunches remains below the accuracy

target of ±5%, the smaller bunches with an emittance of 1.5 µm experience significant relative

errors, sometimes close to ±12%.

It is important to emphasize that these figures are applicable to cases where the bunch profile

is not known a priori. In scenarios where the bunch is known to follow a Gaussian distribution,

or an accurate distribution is available from an independent source, the interferometer has been

shown to meet the required specifications of ±5% emittance error accuracy.

6.3.1 Comparison with data from emittance scans

The emittance measurements performed at flat-top energy using synchrotron radiation monitors

exhibit an unavoidable correlation, as both the telescopes and the interferometer rely on correc-

tions derived from the wire scanner data. The comparison between the two instruments remains

important in order to monitor any variations or drifts in their respective results. However,

the emittance scans performed by the experiments at the interaction points o↵er an indepen-

dent measurement which can be used to assess the consistency of the overall LHC transverse

diagnostics.

A good opportunity to compare measurements from the synchrotron radiation monitors

and the experiments is a special LHC run dedicated to Van der Meer (VdM) scans. In this

series of fills, approximately 150 nominal bunches are circulating and several emittance scans

are performed by the experiments. While the primary objective of the VdM program is to

calibrate the luminosity detectors of the experiments [68], it also provides ideal conditions for
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cross-comparison among the LHC transverse diagnostic instruments.

Figure 6.15a provides a visual comparison between the vertical emittance measured by the

synchrotron radiation telescope and the interferometer for all bunches in Beam 1. The BSRI

emittance measures systematically a larger values than the BSRT. The discrepancy is approx-

imately 7% for the smaller bunches, but decreases to less than 3% for the larger bunches

exceeding 2.5 µm. This deviation may suggest a potential drift in the BSRT calibration, but

it could be also attributed to the limited performance of the interferometer in resolving the

emittance of very small bunches.

The luminosity detectors of the LHC experiments provide bunch-by-bunch measurements

that can be compared with the data from the synchrotron radiation monitors. However, the

intrinsic limitation of the emittance scan is that it can only provide the average emittance of

each pair of colliding bunches. The instantaneous luminosity, measured as a function of the

beam separation, is only sensitive to the overlap between the two beams, and the distributions

of each beam cannot be isolated. For each pair of colliding bunches, the emittance scan can

provide the average emittance

"avg = �rel
⌃2

2�⇤
, "b1 + "b2

2
, (6.4)

where ⌃2 = �
2
b1 + �

2
b2 represents the variance obtained from the convolution of the transverse

distributions of the two colliding bunches, �⇤ the betatron function at the interaction point

and �rel the usual relativistic factor. In case of a finite crossing angle, Eq. 6.4 includes an

additional contribution accounting for the bunch longitudinal size and the value of the crossing

angle itself. To eliminate additional sources of uncertainty, the emittance scans conducted by

CMS are considered for comparison with the vertical emittance measurements discussed earlier,

since the crossing angle at IP5 lies on the horizontal plane.

Direct comparison between emittance measurements obtained from the interferometer and

the emittance scan data is not feasible since a BSRI setup is currently only available for Beam 1.

Nevertheless, a direct comparison can be made between data from CMS and the BSRT to gain

additional insights into the agreement between the BSRT and the BSRI. The correlation between

average emittances measured by CMS and the BSRT is illustrated in Fig.6.15b. The comparison

reveals that the BSRT tends to underestimate the results from the experiment, slightly beyond

the typical uncertainty associated with the emittance scan [69]. This discrepancy may confirm
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a slight calibration drift in the BSRT, resulting in an underestimation of the beam emittance.
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Figure 6.15: Cross-comparison among synchrotron radiation monitors and CMS emittance scan
performed during the 2023 Van der Meer run. In (a), comparison between the emittance of all
bunches circulating in Beam 1, as measured by the BSRI and BSRT. In (b), the bunch-by-bunch
average emittance between Beam 1 and Beam 2, as measured by the BSRT and inferred from
the CMS luminometer. The identity line is displayed as a grey dashed line on both plots. The
measurements refer to the vertical direction only and were performed during a special fill 8999,
dedicated to Van der Meer scans.

In conclusion, the comparison with the experiment’s emittance measurements provide valu-

able and independent insights but they also introduce inherent sources of uncertainty. The wire

scanners o↵er a well-established reference, less prone to systematic errors. Therefore, comparison

with the wire scanners during an emittance calibration fill remains the more reliable approach

to assess the performance of novel systems for transverse diagnostics.



Conclusion and outlook

This thesis presented a comprehensive overview of the latest studies conducted on the syn-

chrotron radiation source of the LHC and thoroughly investigated the performance of a syn-

chrotron radiation interferometer as an instrument for non-invasive transverse beam diagnostics.

The spatial and spectral properties of the radiation emitted throughout a standard cycle

of the LHC have been accurately characterized by numerical simulations, employing state-of-

the-art codes for the modeling of synchrotron radiation emission and propagation. The most

distinctive features of the LHC source were also studied by means of theoretical models, aiming

to o↵er deeper insights into the physical origins of the observed properties. This framework

allowed to accurately describe the characteristics of the synchrotron radiation in the stationary

regimes of injection and flat-top energy, as well as following their evolution during the accelerator

energy ramp. The outcome of this characterization extends beyond the scope of the synchrotron

radiation interferometer, and may serve as a reference for the development of future diagnostics

based on synchrotron radiation at the LHC.

Extensive simulations were also performed to characterize the spatial coherence properties

of the radiation, with the goal of establishing models that link the spectral degree of coherence

to the source distribution. At injection energy, the Van Cittert and Zernike theorem was con-

firmed in its canonical form, meaning that the transverse beam profile can be inferred from the

decay of the degree of coherence through a simple Fourier transform operation. At high beam

energy, the longitudinal extension of the source, the narrower emission angle of synchrotron

radiation, and the presence of interference phenomena between multiple source elements hinder

the straightforward applicability of the theorem. Nevertheless, strategies have been developed

to mitigate the complications due to the source and restore the validity of the Van Cittert and

Zernike formula, albeit in an approximate manner. The proposed approach is based on a redef-

inition of the source distance parameter and on the identification of specific configurations of

the interferometer. These studies indicate that the operational requirement of achieving a ±5%

147
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emittance accuracy can be met at both injection and flat-top beam energies.

Systematic benchmark of the simulations was conducted during the initial year of LHC run

3. The measurement campaign utilized a test setup of the synchrotron radiation interferometer,

which was refurbished and optimized based on the simulation findings. The setup produces in-

terferograms featuring high-quality interference fringes. The fringe visibility exhibits a statistical

fluctuation smaller than ±0.5%, thus providing high stability in the source size measurement.

The visibility measurement demonstrates a low sensitivity to variations in experimental pa-

rameters, such as changes in detector gain and exposure time. The response is very uniform

across the entire acceptance of the system and marginally a↵ected by the alignment of the var-

ious components of the optical line. These results demonstrate the interferometer’s capability

to provide relative measurements, enabling emittance evolution monitoring and comparisons

between bunches of di↵erent sizes.

The results obtained from the interferometer are subsequently compared to reference mea-

surements from the wire scanners to assess the absolute accuracy of the instrument. In particular,

the visibility points measured by the interferometer are compared with the reference degree of

coherence inferred from the wire scanner profiles. The reference degree of coherence is derived

from the transverse profile using the Van Cittert and Zernike formula, with adjustments based

on simulation findings to account for the specific characteristics of the LHC source at flat-top

energy.

The agreement between the two instruments is confirmed at injection energy, where the

measured visibility points are consistently confined within a tolerance of ±2.5% emittance error

around the reference curve. Similar results are achieved in both the horizontal and vertical

directions, in line with the uniformity of undulator radiation along both planes.

The comparison at flat-top energy yields an unexpected outcome, as the visibility measured

by the interferometer is systematically lower than the values expected from the wire scanner

profiles. The investigations carried out to identify the origin of this discrepancy did not yield

conclusive results. Several observations, along with the absence of issues at injection energy,

indicates that the observed discrepancy does not stem from a defect in the experimental setup.

Instead, it appears to be related to a physical feature of the LHC source at high energy which is

currently not taken into account in simulations. A semi-empirical model was found to correct this

discrepancy and restore the agreement with the wire scanner reference. This model provides a

compact formula to correct the raw visibility data, including a dependence on the slit separation
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and a set of numerical coe�cients that are fitted experimentally. The interferometer cannot

provide absolute beam size measurements at flat-top energy until the physical origin of the

discrepancy is understood. Nevertheless, the semi-empirical correction can be incorporated into

the processing of the raw data as a calibration, allowing the instrument to remain an independent

and redundant tool of non-invasive transverse diagnostics. In this context, an important outcome

of the measurement campaign is the consistent reproducibility of the correction coe�cients across

the calibration fills conducted throughout the year.

The e↵ectiveness of the visibility correction ensures that the problem of visibility loss, while

remaining theoretically interesting, does not preclude the operation of the interferometer. A

more relevant limitation concerns the capability of the instrument to resolve smaller beams at

flat-top energy. This limitation is ultimately related to di↵raction and therefore intrinsic to any

optical technique. In interferometry, it is manifested by the impossibility to fully measure the

coherence decay due to the coherence area extending beyond the narrow angular opening of

the radiation. The current implementation of the interferometer operates in the visible domain,

which poses challenges in reconstructing the profile of bunches with an emittance smaller than

1.5 µm. The only solution to mitigate the limitation imposed by di↵raction is to reduce the

operating wavelength, thereby decreasing the coherence area to fit within the available light

extent. This involves a redesign of the system to operate in the ultraviolet range. While

technologically challenging, the implementation of ultraviolet interferometry is undoubtedly the

most e↵ective option to enhance the theoretical performance of the technique and enable accurate

reconstruction of the smallest bunch profiles.

It is important to emphasize that the di↵raction limit primarily a↵ects situations where the

shape of the bunch profile is not known a priori and must be inferred from the sole interferometer

measurements. If the bunch profile precisely follows a Gaussian distribution, the full decay of

the coherence can be extrapolated from the fit of the available range of visibility points. This

approach remains valid for non-Gaussian bunches, provided that the shape of the profile is

known in advance and the e↵ective size is left as a fitting parameter to match the measured

points. Examples were shown in this thesis, using a combination of two Gaussian distributions

to describe the transverse profile of the smallest bunches. The accuracy of this approach relies

significantly on the knowledge of the shape of the input profile. Since the single visibility

measurement satisfies the ±5% uncertainty, the operational accuracy target can be met as long

as an accurate profile is provided as input for the fitting process.
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Based on the results presented in this thesis, the synchrotron radiation interferometer can

be deployed in an operational scenario to complement the measurements provided by the syn-

chrotron radiation telescope. In particular, it can be used as an expert tool to monitor the

stability of the telescope measurements and detect any drift in its calibration. The interfer-

ometer is not suitable for continuous measurements as the lifetime of the detector would be

drastically a↵ected. However, the instrument could provide on-demand measurements, or auto-

matic scans could be periodically performed during physics fills, for instance at the beginning of

the stable beams phase when emittance scans are also conducted by the LHC experiments. The

hardware of the test setup consists of standard components that are already used in the other

synchrotron radiation monitors. The control tools developed for the experimental benchmark

need to be adapted to facilitate the operational usage of the setup. This essentially involves

limiting flexibility to enhance performance and ensure user-friendliness of the software tools.

The challenge of achieving an absolute beam size measurement, independent of any calibration,

persists until the source of the visibility discrepancy at flat-top energy is identified. This issue

also limits the use of interferometry during the accelerator energy ramp. Although a correc-

tion strategy could be developed for this scenario, it would involve a series of several empirical

models to adjust the raw visibility and follow the evolution of the synchrotron radiation source

as a function of the beam energy. While feasible, this approach contradicts the principle of an

operational instrument for transverse diagnostics, which should ideally provide a robust beam

size assessment, minimizing the need for external corrections. Despite the progress and under-

standing of most phenomena observed in previous experiments, the synchrotron light source of

the LHC remains an intriguing subject of study due to its complexity. Such studies are neces-

sary to address current gaps and potentially enable the full exploitation of the interferometer

for absolute beam size measurement during all stages of the accelerator energy ramp.



Appendix A

Synchrotron radiation field and

intensity units

The wavefront of synchrotron radiation is fully described by the electric and magnetic fields
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For most physical optics applications, it is more convenient to work in the space-frequency

domain, where the wavefront is decomposed in a superposition of monochromatic waves. The

transformation is performed through a Fourier transform and the Fourier-transformed field is

Ẽ(!) =
1p
2⇡

Z
E(t)e�i!t dt . (A.2)

This field is a complex vector that defines the intensity and phase of the radiation in the three-

dimensional space. Synchrotron radiation is typically emitted within a narrow cone. In a

coordinate frame where the longitudinal component is aligned with the propagation direction,

the wavefront can be approximated as Ẽ ⇡ [Ex, Ey, 0]. The longitudinal component is omitted

and the problem reduces to the computation of sole transverse field. This is called paraxial

approximation and it is often implicitly assumed when discussing synchrotron radiation.

The intensity of the radiation is quantified by the energy radiated per unit solid angle and

unit angular frequency. It can be computed from the radiation field
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151



APPENDIX A

This definition, given in SI units, is seldom used in practical cases as the light intensity is

more conveniently quantified as a photon flux. In this thesis, the radiation intensity is always

expressed as the number of photons per second emitted by a beam of 1A current, in a 1 nm

bandwidth, impinging on a unit surface of 1mm2. The corresponding unit is ph/(smm2 nmA).

Numerical codes, like Synchrotron Radiation Workshop, normally compute the number of

photons emitted in a bandwidth corresponding to 0.1% of the central frequency. This definition

is tightly related to the concept of brilliance commonly used by the light source community. The

conversion between the two definitions is reported for reference

I
⇥
ph/(smm2 nmA)

⇤
= I
⇥
ph/(smm2 0.1%BWA)

⇤
· 103

�[nm]
. (A.4)
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Derivation of the weak magnet

model

The starting point of this derivation is the Liénard-Wiechert equation for the radiated electric

field [24, p. 18] in time domain and in the observer frame. With the notations of Fig. 2.1, the

electric field writes

E(t) =
q

4⇡✏0

"
n ⇥ ((n � �) ⇥ �̇)

crp(1 � n · �)3

#

t0

, (B.1)

where the subscript t0 means that all quantities are evaluated at the emitter time. The solution

of this field is in general complicated because of the conversion between emitter and observer

time of Eq. 2.2. The situation drastically simplifies when the observation angle becomes almost

constant and the time transformation reduces to t = t
0. This occurs if the particle deflection is

small and the length of the magnet is much shorter than the observation distance. The versor

particle-observer is n ⇡ [sin# sin', sin# cos', cos#]. The weak deflection also implies that the

motion remains almost longitudinal, i.e. � ⇡ �[0, 0, 1]. To simplify further the computation,

we assume the non-restrictive hypotheses of small angles # . 1/� and ultrarelativistic regime

� � 1 which together yield n ⇡ [# cos',# sin', 1 � #
2
/2] and � ⇡ 1. These assumptions are

also consistent with the expression  ⇡ (1�n ·�) = (1+�2
✓
2)/(2�2) already derived for Eq. 2.5.

Finally, we need to obtain an explicit form for the particle transverse acceleration �̇. Let us

consider a vertical magnetic field B(z) = [0, B(z), 0] which exerts a Lorentz force on the charged

particle. Taking advantage of the small deflection, one can neglect the e↵ect of this force on the
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longitudinal acceleration and assume �̇ being purely transverse

�̇ ⌘ �̇? =
qB(z)

m0�
[1, 0, 0], (B.2)

being q and m0 the particle charge and rest mass, respectively. Substituting these quantities in

Eq. A.1, the radiated field becomes1 and the field in time domain reads

E(t) ⇡ 4r0c�
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being r0 = q
2
/4⇡"0m0c

2 the particle classical radius. The two terms in brackets represent the

horizontal and vertical polarization components of the field, while the longitudinal component

is negligible and thus omitted. This omission is consistent with the paraxial approximation of

synchrotron radiation, where the narrow emission angle allows us to consider the SR wavefront

as planar and purely transverse.

The last step to obtain the electric field in time domain is to perform the transformation

between emitter and observer time scales. Since all angles are constant, the only term to be

transformed in Eq.B.3 is the longitudinal coordinate

z ⇡ ct
0 =

ct


=

2�2

1 + �2#2
ct (B.4)

where we used Eq. 2.3. The resulting (transverse) field becomes

E(t) =
4r0c�

3

rp

[1 � �
2
#

2 cos(2'),��2
#

2 sin(2')]

(1 + �2#2)3
B

⇣
c


t

⌘
(B.5)

Finally, the expression is Fourier-transformed to derive the field in space-frequency domain. The

Fourier-transform acts solely on the magnetic field profile, the only time-dependent quantity left

in this model. The final result for the radiated field is

Ẽ(!) =
2r0�

rp

[1 � �
2
#

2 cos(2'),��2
#

2 sin(2')]

(1 + �2#2)2
B̃

⇣


c
!

⌘
. (B.6)

The only quantity to compute in the weak magnet approximation is the Fourier transform of the

magnetic field profile B̃(kwm) = F{B(z)}. The result is then evaluated at the ”weak magnet”

wavevector kwm = !/c and substituted into Eq. B.6 to obtain the field radiated at the angular

1The vectorial identity a ⇥ (b ⇥ c) = (a · c)b � (a · b)c is helpful to expand the triple product.
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frequency !. Since the approximation requires an almost constant observation wavelength, a

su�cient condition is that the particle deflection is small compared to the typical SR emission

angle of 1/�.
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Notations

Abbreviation Description Page
LHC Large Hadron Collider 2
IP Interaction Point 2
BWS Wire Scanner 10
BSRT Synchrotron Radiation Telescope 11
BSRI Synchrotron Radiation Interferometer 13
BGV Beam Gas Vertex monitor 13
BGI Beam Gas Ionization monitor 13
SR Synchrotorn Radiation 16
WM Weak Magnet approximation 20
SRW Synchrotron Radiation Workshop 33
D3 LHC D3-type special dipole magnet 36
UND LHC superconducting undulator 37
VCZ Van Cittert and Zernike theorem 66

List of abbreviations and acronyms used in this thesis. The page number refers to the acronym
definition.

Symbol Descriptions
a scalar
a vector
a
⇤ complex-conjugate of a

a ⇥ b vector product between a and b

a · b scalar product between a and b

, equal by definition to
⇡ approximately equal to
' asymptotically equal to
/ proportional to

Notation adopted for mathematical expressions.
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Symbol Description Page
L instantaneous luminosity 3
↵,�, � Twiss parameters. Standard convention, distinction from relativistic

factors clear from context
7

� and �0 beam size and divergence 7
D dispersion 8
" normalized emittance 9
r and n vector for observation point and corresponding unity vector n , r/r 16
� and � relativistic factors. Standard convention, distinction from Twiss pa-

rameters clear from context or explicitly written as �rel and �rel.
17

t and t
0 observer and emitter time 17

E(t,n) electric field in space-time domain 17
(t0) time scale change factor 18
Ẽ(!,n) electric field in space-frequency domain, also referred to as ”Fourier-

transformed field”
20

I optical intensity of a radiation field 20
�, k, ! wavelength, wavevector and angular frequency of a field described in

frequency domain
20

K undulator deflection parameter 22
�1 undulator proper wavelength 24
!c dipole critical (angular) frequency 28
lcoh and �coh coherence length and coherence area 60
�12(⌧) mutual coherence function 62
�12(⌧) complex degree of coherence 62
W12(!) cross-spectral density 64
µ12(!) spectral degree of coherence 65
�l and �0l size and divergence of an elemental emitter in a source of light 70
V visibility of an interferogram 96

Symbols used to denote recurring quantities. The page number refers to the definition of the
corresponding variable.
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[66] T. L. Wilson, K. Rohlfs, and S. Hüttemeister, Tools of Radio Astronomy. Springer, 2013.

[67] G. Iadarola and G. Rumolo, “Scrubbing: expectations and strategy, long range perspec-

tive,” in Chamonix Workshop on LHC Performance, CERN, 2014.

[68] S. van der Meer, “Calibration of the e↵ective beam height in the ISR,” tech. rep., CERN,

1968.

[69] O. Karacheban, “Understanding the beam emittance evolution during stable beams based

on emittance scans,” tech. rep., CERN, 2019.


	Introduction
	The Large Hadron Collider
	The LHC cycle

	Transverse beam dynamics
	Dispersion
	Adiabatic damping and normalized emittance

	Transverse diagnostics at the LHC
	Need for additional transverse diagnostic systems


	Principles of Synchrotron Radiation
	Field radiated by a relativistic charged particle
	Emitter and observer time scales
	Radiated field in space-time and space-frequency domains

	The weak magnet approximation
	Weak undulator radiation
	Edge radiation

	Ordinary synchrotron radiation
	Synchrotron Radiation interference
	Simulation framework

	Spatial and spectral properties of the LHC synchrotron radiation source
	Source layout
	Light extraction system
	Superconducting undulator
	D3 dipole
	Dipole interference effects
	Polarization effects
	Finite emittance beams
	Spatial distribution evolution during the energy ramp

	Spatial coherence properties of the LHC synchrotron radiation source
	Optical coherence
	Coherence in space-time domain
	Degree of coherence in space-frequency domain
	Van Cittert and Zernike theorem

	Partially coherent sources
	Quasi-homogeneous sources
	Spatial coherence of synchrotron radiation
	Imaging and interferometry resolution at diffraction limit

	Relevant parameters for the coherence characterization of the LHC synchrotron radiation source
	Beam and light parameters

	Simulations of LHC SR source degree of coherence
	Simulation approach and coherence maps
	Undulator radiation at injection energy
	Dipole radiation at flat-top energy


	Synchrotron radiation interferometry at the LHC
	Young's double slit interferometer
	Young's experiment: physical understanding

	Implementation at the LHC
	Design parameters: operating wavelength and slit separation
	Experimental setup and control tools

	Expected performance of the Synchrotron Radiation interferometer
	Experimental validation of the setup
	Effect of the exposure time
	Visibility uniformity across the SR wavefront
	Dependence on polarization


	Performance assessment of the synchrotron radiation interferometer
	Comparison between synchrotron radiation interferometer and wire scanner measurements
	Reference measurements from wire scanners
	Wire scanner profiles
	Comparison between wire scanners and synchrotron radiation interferometer data
	Injection energy
	Flat-top energy
	Correction of loss of visibility

	Investigations on loss of visibility at flat-top energy
	Deployment of the synchrotron radiation interferometer in an operational scenario
	Comparison with data from emittance scans


	Conclusion and outlook
	Synchrotron radiation field and intensity units
	Derivation of the weak magnet model
	Notations

