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Augmented Statistics of Quaternion Random Variables:
A Lynchpin of Quaternion Learning Machines
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I. ABSTRACT

Learning machines for vector sensor data are naturally developed in the quaternion

domain and are underpinned by quaternion statistics. To this end, we revisit the

‘augmented’ representation basis for discrete quaternion random variables qa[n], i.e.[
q[n] qı[n] qȷ[n]qκ[n]

]
; and demonstrate its pivotal role in the treatment of the

generality of quaternion random variables (RV). This is achieved by a rigorous consid-

eration of the augmented quaternion RV, and by involving for additional second order

statistics, besides the traditional covariance E{qq∗} [1]. To illuminate the usefulness

of quaternions, we consider their most well-known application - three-dimensional

(3D) orientation and offer an account of augmented statistics for purely imaginary

(pure) quaternions. The quaternion statistics presented here can be exploited in the

analysis of the existing and the development of novel statistical machine learning

methods, hence acting as a lynchpin for quaternion learning machines.

II. INTRODUCTION

For a long time [2], quaternions were considered a niche area of research in data

analytics, and even Lord Kelvin shared the same sentiment [3]:

“Quaternions came from Hamilton after his really good work had been done, and

though beautifully ingenious, have been an unmixed evil to those who have touched

them in any way.”

In 1843, Hamilton proposed quaternions [2]. The quaternionic system was, however,

challenged by the vector system proposed by Heaviside [4]. Despite the criticism, Tait

continued promoting quaternions and further developed the theory of quaternions [5].

He influenced his colleague Maxwell, who simplified the well-known equations on

electro-magnetism based on quaternions. Other applications of quaternions include

Quantum Mechanics, Special Relativity, as well as Classical Physics [6].

The recent developments in sensor technology, such as vector sensors for wind
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and speech, together with a dramatic increase in the available computing power have

brought quaternions to the fore. Indeed, quaternions have been exploited in numerous

advanced signal and information processing settings, such as in frequency analysis

[7], dimension reduction [8], and hyperspectral image processing [9], as a natural

domain for 3D and 4D signals. These developments have been driven by researchers

such as Le Bihan, Sangwine, Valous, and Hitzer, to name but a few.

The word ‘evil’ according to Lord Kelvin refers, perhaps, to the fact that quaternions

have been traditionally attractive mainly to researchers who are familiar with the alge-

bra of quaternions (albeit not to many), thus giving a false impression of mathematical

obscurity of quaternions [4]. This has been particularly the case with the statistics

of quaternion random variables, a subject of this work. To demystify quaternion

statistics to a wide research community, we here adopt a tutorial-like approach, in

order to shed light onto the fundamentals of discrete quaternion statistical signal

processing. Moreover, this tutorial puts quaternions into the wider context of data

analytics for vector sensors by focusing on the best known application of quaternions

- three-dimensional (3D) orientation or rotation - which underpins numerous real-

world applications including robotics, computer vision, and virtual reality. Our aim is

to demonstrate and visualise how the statistics of quaternion random variables manifest

themselves in 3D and 4D. The cornerstone of this approach is the quaternion rotation,

which is governed by

p†[n] = q[n]︸︷︷︸
4D

p[n]︸︷︷︸
3D

q∗[n]︸︷︷︸
4D

(1)

where p†[n] and p[n] denote respectively the new and the old 3D (x, y, z) coordinate

position, whereas the full 4D quaternion q[n] models the 3D rotation (or orienta-

tion). The main motivations for considering quaternions q ∈ H (in the Hamiltonian

quaternion space) over the real vector space x ∈ R3 for 3D rotations are [10]:

1) Discontinuities in R3. The Euler angles around the z − y − x axes1 exhibit

discontinuities due to the well-known phenomenon of Gimbal lock2.

1In the specific order of: a rotation around the z-axis, a rotation around the y-axis, and finally a rotation around
the x-axis.

2Gimbal lock occurs when two of the three axes of rotation collapse into one axis of rotation, leading to 2D
rotation instead of 3D rotation.
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2) Smooth spherical linear interpolation in H. Between any two subsequent

rotations it is often desired to ensure that an object is rotated smoothly in

multiple smaller intermediate steps rather than in one or two larger steps. It

is much more straightforward to calculate these intermediate rotations using

quaternions in H, rather than through real trivariate rotation (Euler) matrices

X ∈ R3×3.

3) Averaging of rotations is widely used to mitigate noise in 3D rotation mea-

surements from vector sensors (e.g. accelerometers and gyroscopes). Averaging

over Euler’s angles in R3 is not possible, whereas averaging rotation matrices

is tedious. Yet, averaging of quaternion-based rotations is straightforward.

Due to these advantages over vectors in R3, quaternions have not only become

the solution of choice for 3D modelling, but this is also natural, as 3D rotations

and positions of variables in (1) are inherently quaternion-valued. The augmented

statistical basis is crucial to exploit such quaternion operations, as explained next.

Our previous work in [1] demonstrated how the augmented basis makes it possible

us to exploit different kinds of correlation, which allows for the complete order second

quaternion statistics to be accounted for. In other words, the real-valued correlations

of the components of a quaternion cannot be extracted from the quaternion-valued

correlation (or covariance for zero mean data) rc[ℓ] = E {q[n]q∗[n− ℓ]} alone. Indeed,

the so-called complementary correlations rη[ℓ] = E {q[n]qη∗[n− ℓ]} are also required

to fully describe the second order information present in quaternions.

A. Historical perspective on quaternion statistics and machine learning

In 1999, Vakhania introduced a systemic framework for quaternion statistics in

Hilbert spaces [11]. This work was followed by Amblard and Le Bihan in 2004, who

examined the concept of properness3 for quaternion random variables [12]. Via et al.

introduced the widely linear model to exploit quaternion statistics in [13] in 2010.

The following year, we showed the duality between the quaternionic and quadrivariate

statistics [1]. Finally, Ginzberg and Walden looked at testing the properness of Gaus-

3Like in the complex domain, properness implies the rotation invariance of the probability distribution function
of Gaussian variables, which is revisited in Section III-E
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TABLE I: List of notations.

Notation Name Description or illustrative example
H The Hamiltonian space Set of quaternion numbers
C The complex space Set of complex numbers

[−n] Time reversal Sorting the elements of a sequence q[n]
in a reverse order

[n− ℓ] Time shifting A delay operation by ℓ samples
↑ Time origin The location of time index n = 0 in a

sequence q[n]
η Generic imaginary component η can represent any of the imaginary units:

ı, ȷ, κ
ℜ{·} Real component qs[n]
ℑη{·} η-imaginary component qx[n] (if η = ı)
ℑα{·} α-imaginary component qy[n] or qz[n] (if η = ı)

where α ̸= η
(·)∗ Conjugation qs[n]− qx[n]ı− qy[n]ȷ− qz[n]κ
(·)η η-imaginary involution qs[n]− qx[n]ı− qy[n]ȷ+ qz[n]κ (if η = κ).

See Eq. (9) for more details.
(·)H Hermitian operator (·)∗ followed by transpose (·)T (or vice versa)
(·)ηH η-Hermitian operator [19] (·)η followed by (·)H (or vice versa)
E {·} Statistical expectation operator Calculates the expected value on ‘average’
r[ℓ] Quaternion autocorrelation Quaternion-valued autocorrelation at lag ℓ
cij[ℓ] Real Autocorrelation Real auto-correlation between ith and jth channel
R[n] Quaternion correlation matrix Quaternion correlation matrix at time n,

e.g. see Eq. (29).
Λ Lambda matrix A matrix with a diagonal structure
⊥ Perpendicular Orthogonality between two variables
· Inner product See Eq. (4) for quaternion product
× Outer product See Eq. (5) for quaternion product

Toep{x[n]} Toeplitz matrix Construct a Toeplitz matrix using vector x[n]

sian random variables [14]. For a more complete overview of quaternion statistics,

readers are referred to [12]. Since then, augmented statistics for quaternions have

become a lynchpin for numerous statistical machine learning algorithms in H, such

as variational auto-encoders [15], generative adversarial networks [16], and kernel

learning [17]. We refer to a survey on quaternion neural networks in [18] for additional

quaternion-valued machine learning methods.

B. Notations

Table I summarises the notations employed in this work and in our sister paper [20].

In the context of a quaternion depicting a 3D position, as in Eq. (1), the imaginary

components (or vector part) correspond to the (x, y, z) coordinates with the real (or
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scalar) part qs[n] = 0. Scalar quaternion values are denoted by italics, q[n], vectors

are denoted by lowercase bold font, q[n], and matrices by bold uppercase bold letters,

Q[n]. Sets are generally denoted by capital letters in calligraphic font such as Q[n].

C. Basics of quaternions

As quaternions are hypercomplex numbers, they are comprised of a scalar (real)

part and a vector part made up of three imaginary parts. In other words, a quaternion

variable q[n] can be expanded component-wise, as

q[n] = qs[n] + qx[n]ı+ qy[n]ȷ+ qz[n]κ (2)

where the real part is ℜ{q[n]} = qs[n] and its vector part is made up of three imaginary

components, i.e. ℑ{q[n]} = qx[n]ı+ qy[n]ȷ+ qz[n]κ. These imaginary units obey the

following rules

ı2 = ȷ2 = κ2 = −1, ıȷ = κ, ȷκ = ı, κı = ȷ (3)

A quaternion product between q1[n] and q2[n] can be computed as

ℜ{q1[n]q2[n]} = ℜ{q1[n]}ℜ{q2[n]} − ℑ{q1[n]} · ℑ{q2[n]} (4)

ℑ{q1[n]q2[n]} = ℜ{q1[n]}ℑ{q2[n]}+ ℜ{q2[n]}ℑ{q1[n]}+ ℑ{q1[n]} × ℑ{q2[n]}

(5)

Observe the outer product ‘×’ in Eq. (5) implies the noncommutativity of the quater-

nion product. On the other hand, the inner product ‘·’ between the two vector parts in

Eq. (4) guarantees that the product of the real parts remains a scalar. A consequence

of the noncommutativity of the quaternion product implies the following, in contrast

to Eq. (3)

ȷı = −κ, κȷ = −ı, ıκ = −ȷ (6)

Like a complex number, a quaternion can be conjugated by negating its imaginary

parts, that is

q∗[n] = qs[n]− qx[n]ı− qy[n]ȷ− qz[n]κ (7)
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The conjugate can be used to calculate the inverse of a quaternion q−1[n] = q∗[n]
∥q[n]∥ ,

whereby the norm ∥q[n]∥ is given by

∥q[n]∥ =
√
q[n]q∗[n]

=
√
q2s [n] + q2x[n] + q2y[n] + q2z [n] (8)

This norm is useful in normalising quaternions into unit quaternions q[n] = q[n]/∥q[n]∥,

which are used in 3D rotations. In other words, in Eq. (1) the norm of the rotation

quaternion ∥q[n]∥ = 1. Next, the algebra of quaternions based on involutions is re-

visited for background purposes of this tutorial.

D. Quaternion Algebra based on Involutions

Open literature treats extensively and rigorously quaternion algebra, such as the

work by Voight [21]. The aim of this section is to focus on the so called quaternion

‘involutions’ and to present their algebraic properties in an accessible way. The basics

of univariate quaternion algebra required for this tutorial are covered, while a more

comprehensive review is provided in our sister paper [20]. This section concludes by

revisiting some properties of quaternion matrices and is based on our previous work

[19].

As shown in Eq. (7), the quaternion conjugate, like with the complex numbers,

can be obtained as q∗[n] = ℜ{q[n]} − ℑ{q[n]}, which also represents the quaternion

inverse q−1[n] = q∗[n], provided q[n] has a unit norm.

Similarly, an involution represents a self-inverse mapping, e.g. (q∗[n])∗ = q[n].

In the context of this work, however, we treat quaternion involutions as the three

perpendicular involutions, given by

qı[n] = qs[n] + ıqx[n]− ȷqy[n]− κqz[n] qȷ[n] = qs[n]− ıqx[n] + ȷqy[n]− κqz[n]

qκ[n] = qs[n]− ıqx[n]− ȷqy[n] + κqz[n] (9)

In other words, for any η−involution, the operation qη[n] = −ηq[n]η conjugates

all imaginary components except for the imaginary η-component. These quaternion
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involutions obey the following algebraic rules

(q∗[n])η = (qη[n])∗ (p[n] + q[n])η = pη[n] + qη[n]

(p[n]q[n])η = pη[n]qη[n] (p[n]q[n])η∗ = qη∗[n]pη∗[n]

(pα[n])η = (pη[n])α = pδ ∀η ̸= α ̸= δ ∈ {ı, ȷ, κ} (10)

The quaternion involutions can be manipulated matrix-wise as

(Q∗[n])T = (QT[n])∗ = QH[n] (P[n]Q[n])∗ ̸= P∗[n]Q∗[n]

(Q∗[n])η = (Qη[n])∗ (P[n]Q[n])T ̸= QT[n]PT[n]

(Qη[n])T = (QT[n])η (P[n]Q[n])η = Pη[n]Qη[n]

(Qη[n])H = (QH[n])η (P[n]Q[n])H = QH[n]PH[n]

(Qδ[n])η = (Qη[n])δ = Qα[n] (P[n]Q[n])ηH = QηH[n]PηH[n]

∀η ̸= δ ̸= α ∈ {ı, ȷ, κ} (11)

For clarity and conciseness, these equations are stated without proofs, however,

the curious reader is referred to our previous work [19] for more details. Our sister

paper [20] demonstrates how the augmented statistics (via the augmented basis) can

act as a lynchpin for learning machines on quaternion data. This work, however,

introduces augmented quaternion statistics via numerical examples and 3D orientation

applications. This approach is different from our previous work [1] on augmented

statistics in two ways. First, the current work is presented as a tutorial with numerical

examples. Second, this tutorial illustrates quaternion statistics via 3D orientation

examples, while our previous work [1] focused on the mapping between quaternion-

valued covariances and their real-valued counterparts to illustrate quaternion statistics.

III. THE AUGMENTED BASIS IN H

Given that digital signal processing (DSP) relies on several basic operations, such

as time reversal and time-shifting, we present for the first time their relevance for

quaternion-valued sequences, their characterisation, and their statistics.
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A. Significance of the augmented basis

A quaternion variable, q[n], depends intrinsically on its involutions and their con-

jugates, as

q[n] =
1

2
(qı∗[n] + qȷ∗[n] + qκ∗[n]− q∗[n]) (12)

so that, unlike complex numbers, it is not possible to extract algebraically each

component of a quaternion variable, i.e. qs[n], qx[n], qy[n], qz[n] using only the variable

q[n] and its conjugate. Indeed, the calculations of these components require both the

quaternion involutions and conjugate operations, in the form

qs[n] =
1

2
(q[n] + q∗[n]) qy[n] =

1

2ȷ
(q[n]− qȷ∗[n])

qx[n] =
1

2ı
(q[n]− qı∗[n]) qz[n] =

1

2κ
(q[n]− qκ∗[n])

This exemplifies the significance of quaternion involutions, which are used to

construct the only general quaternion representation basis, which extends from the

original quaternion, q[n], to its augmented counterpart
[
q[n], qı[n], qȷ[n], qκ[n]

]
, as

considered in our sister paper [20].

B. Characterisation of discrete quaternion sequences

A sequence q[n] is called a conjugate symmetric sequence if q[n] = q∗[−n],

whereby the negative sign designates the key DSP operation of time reversal. In

the same spirit, we can now define such sequences based on quaternion involutions.

A sequence is called a conjugate η-symmetric sequence, qηs[n], if

q[n] = qη∗[−n] η ∈ {ı, ȷ, κ} (13)

In other words, the η-imaginary components are conjugates of each other at the time

indices n and −n, whereas the other α-imaginary components are not necessarily

so when α ̸= η. Notice that Eq. (13) implies that at the time origin, n = 0, the

corresponding imaginary component vanishes, i.e. ℑη{q[0]} = 0. On the other hand,
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a conjugate anti η-symmetric sequence, qηa[n], satisfies

q[n] = −qη∗[−n] η ∈ {ı, ȷ, κ} (14)

Essentially, Eq. (14) means that q[n] = −q[−n] except for the η-imaginary com-

ponent, since ℑη{q[n]} = ℑη{q[−n]}. In contrast to Eq. (13), the η−imaginary

component does not vanish, ℑη{q[0]} ≠ 0, at the time index n = 0, but the other

components vanish, i.e. ℜ{q[0]} = ℑα{q[0]} = 0, where α ̸= η. The so-defined

sequences can be used to construct the original quaternion sequence (and vice-versa)

as

q[n] = qηs[n] + qηa[n] (15)

qηs[n] =
1

2

(
q[n] + qη∗[−n]

)
(16)

qηa[n] =
1

2

(
q[n]− qη∗[−n]

)
(17)

These newly characterised quaternion sequences can be used to construct the ac-

curate descriptors of second order correlations. This is further illustrated in Example

1 which gives a numerical demonstration of a conjugate ı-symmetric sequence in Eq.

(24) and its anti-symmetric counterpart in Eq. (25).

C. Second order statistics of ‘full’ quaternion random variables.

For simplicity and without loss of generality, we assume that all random processes

considered have zero mean, so all the correlation measures in this work are equal

to their covariance counterparts. The characteristic autocorrelation sequences of q[n],

the building blocks for the second order autocorrelation matrices, are defined4 as

rc[ℓ] =
n=∞∑
n=−∞

q[n]q∗[n− ℓ] (18)

rp[ℓ] =
n=∞∑
n=−∞

q[n]q[n− ℓ] (19)

rη[ℓ] =
n=∞∑
n=−∞

q[n]qη∗[n− ℓ] (20)

4These autocorrelations can be normalised by the number of samples in a signal, as considered in the simulations.
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EXAMPLE 1. Consider the sequence q[n] which is defined for −2 ≤ n ≤ 2

as

q[n] =

[
1+4ı+ȷ+κ, −2+3ı+2ȷ+2κ, 4− 2ı+ 3ȷ+ 3κ

↑
, −5−6ı+4ȷ+4κ, −3−2ı+5ȷ+5κ

]
(21)

To determine its conjugate ı−symmetric part, qıs[n], it is first ı-conjugated as

qı∗[n] =

[
1−4ı+ȷ+κ, −2−3ı+2ȷ+2κ, 4 + 2ı+ 3ȷ+ 3κ

↑
, −5+6ı+4ȷ+4κ, −3+2ı+5ȷ+5κ

]
(22)

and then time-reversed to yield

qı∗[−n] =

[
−3+2ı+5ȷ+5κ −5+6ı+4ȷ+4κ, 4 + 2ı+ 3ȷ+ 3κ

↑
, −2−3ı+2ȷ+2κ, 1−4ı+ȷ+κ

]
(23)

Upon substituting Eq. (21) and Eq. (23) into Eq. (16), the conjugate

ı−symmetric part qıs[n] can be obtained as

qıs[n] =

[
−1+3ı+3ȷ+3κ, −3.5+4.5ı+3ȷ+3κ, 4 + 3ȷ+ 3κ

↑
, −3.5−4.5ı+3ȷ+3κ, −1−3ı+3ȷ+3κ

]
(24)

Likewise, Eq. (17) can be used to compute its conjugate anti ı-symmetric

sequence, qıa[n], as

qıa[n] =

[
2 + ı− 2ȷ− 2κ, 1.5− 1.5ı− ȷ− κ, −2ı

↑
, − 1.5− 1.5ı+ ȷ+ κ, − 2 + ı+ 2ȷ+ 2κ

]
(25)

Observe in Eq. (24) the vanishing ı-component of the element ℑı{qıs[0]} = 0

at time index n = 0, in contrast to that in Eq. (25). Adding both elements at

n = 0 gives back q[0] = 4− 2ı+ 3ȷ+ 3κ in Eq. (21).

It is straightforward to see from Eq. (12) that the relationship between the auto-

correlation measures in Eqs. (18)-(20) is given by

rp[ℓ] =
1

2

(
rı[ℓ] + rȷ[ℓ] + rκ[ℓ]− rc[ℓ]

)
(26)

Eq. (26) implies that knowing any four of these five autocorrelation descriptors is

sufficient to determine the fifth unknown autocorrelation. In other words, only four

of these five autocorrelations are sufficient to capture the second order information of

the signal. These autocorrelations have the following properties:

P1. rc[ℓ] are conjugate symmetric, i.e. rc[ℓ] = r∗c [−ℓ],
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P2. rc[ℓ] attains its maximum at ℓ = 0, i.e. rc[0] ≥ rc[ℓ] ∀ℓ ̸= 0,

P3. rη[ℓ] are conjugate η-symmetric, i.e. rη[ℓ] = rη∗η [−ℓ],

P4. All autocorrelations r[ℓ] are symmetric in terms of the absolute magnitude, i.e.

|r[ℓ]| = |r[−ℓ]|.

Notice that rp[ℓ] does not exhibit a symmetry analogous to Properties P1 and P3,

due to the non-commutativity of the quaternion product. Still, Property P4 means that

rp[ℓ] is symmetric in terms of its absolute magnitude, i.e. |rp[ℓ]| = |rp[−ℓ]|. These

correlation sequences are important building blocks to characterise the second order

information of discrete-time random processes in the matrix form. For instance, rη[ℓ]

can be used to construct the complementary η−correlation matrix E{q[n]qηH[n]}. For

further illustration, consider the vector

q[n] =

[
q[n], q[n− 1], . . . , q[n− τ ]

]T
(27)

of τ quaternion values. Then, its outer product is given by

q[n]qηH[n] =


q[n]qη∗[n] q[n]qη∗[n− 1] · · · q[n]qη∗[n− τ ]

q[n− 1]qη∗[n] q[n− 1]qη∗[n− 1] · · · q[n− 1]qη∗[n− τ ]

...
... . . . ...

q[n− τ ]qη∗[n] q[n− τ ]qη∗[n− 1] · · · q[n− τ ]qη∗[n− τ ]


(28)

which is a τ × τ matrix. Taking its expected value yields the η-autocorrelation matrix

Rη[n] =


rη[0] rη[1] · · · rη[τ ]

rη[−1] rη[0] · · · rη[τ − 1]

...
... . . . ...

rη[−τ ] rη[1− τ ] · · · rη[0]


=


rη[0] rη[1] · · · rη[τ ]

rη∗η [1] rη[0] · · · rη[τ − 1]

...
... . . . ...

rη∗η [τ ] rη∗η [τ − 1] · · · rη[0]


(29)

Similarly, the autocorrelation matrices Rc[n] = E{q[n]qH[n]} and Rp[n] = E{q[n]qT[n]}

are made up respectively of rc[ℓ] and rp[ℓ]. Such an η-correlation matrix has the

following properties:

PI. The η-autocorrelation matrix has an η-Hermitian Toeplitz structure due to Prop-
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erty P3, that is

Rη[n] = Toep{rη[0], rη[1], . . . , rη[τ ]} (30)

PII. The η-autocorrelation matrix can be factorised as [19]

Rη[n] = ΦΛsΦ
ηH (31)

where Λs is a diagonal matrix of the singular values of Rη[n], and Φ is a

unitary matrix. The diagonalisation in Eq. (31) is useful in testing the degree of

properness of quaternions, which is discussed in Section III-E,

PIII. The η-autocorrelation matrix Rη[n] can be diagonalised simultaneously with the

autocorrelation matrix Rc[n] as [22]

ΨRc[n]Ψ
H = Λa ΨRη[n]Ψ

ηH = Λb (32)

where Λa = I is an identity matrix and Λb is a diagonal matrix with non-negative

real values. This is known as the quaternion strong uncorrelating transform

(QSUT) [22]. The QSUT has been exploited in the classification of electroen-

cephalogram (EEG) data [23], while its approximate but computationally efficient

counterpart AUT (approximate uncorrelating transform) has been used in the

convergence analysis of adaptive filters [24].

To facilitate the adoption of Properties PII in Eq. (31) and PIII in Eq. (32) in practical

applications, their pseudo-codes are listed below.

PSEUDOCODE 1. Computation of Φ in Property PII in Eq. (31).

1. Compute Λs using singular value decomposition (SVD)

Rη[n] = UsΛsV
H
s

2. Compute the unitary matrix Φ

Φ = Us(D
η)1/2, where D = VηH

s Us
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PSEUDOCODE 2. Computation of Ψ in Property PIII in Eq. (32).

1. Calculate the SVD of Rc[n] as

Rc[n] = UcΛcU
H
c

2. Compute the whitening matrix W

W = (Λc)
−1/2UH

c

3. Apply W to the η-correlation matrix Rη[n] as

WRη[n]W
ηH = Γ

4. Factorise Γ using PSEUDOCODE 1 to compute Φ

Γ = ΦΛsΦ
ηH

5. Compute Ψ using results from Step 2 and Step 4

Ψ = ΦHW

Both PSEUDOCODE5 1 and 2 require the computation of quaternion SVD, which

is readily available from the quaternion Matlab toolbox [25]. For clarity, Example

2 provides a numerical illustration6 of the diagonalisation of the ı-autocorrelation

based on PSEUDOCODE 1, whereas PSEUDOCODE 2 represents essentially the

traditional pre-whitening process followed by PSEUDOCODE 1.

5The Matlab implementation for PSEUDOCODE 1 is available here, whereas that of PSEUDOCODE 2 can
be downloaded here.

6All numerical values are presented to an accuracy of 2 decimal places and time indexing [n] is dropped due
to limited space.
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EXAMPLE 2. Consider the factorisation of the ı-autocorrelation matrix Rı =

ΦΛsΦ
ıH, which is listed in PSEUDOCODE 1 and is given by

Rı =

 19.62− 13.67ȷ+ 13.52κ 19.68− 0.03ı− 13.70ȷ+ 13.57κ

19.68 + 0.03ı− 13.70ȷ+ 13.57κ 19.62− 13.67ȷ+ 13.52κ


(×10−2)

Observe that each row of the matrix is derived from a conjugate ı−symmetric

sequence
[
rı[−ℓ], . . . , rı[0], . . . , rı[ℓ]

]
, with the diagonal elements as rı[0]. As

such, its diagonal elements have vanishing ı−components and its off-diagonals

have conjugate ı−components. This ensures the ı−Hermitian property of Rı =

RıH
ı . Its two singular values are λ1 = 0.55 and λ2 = 7.48×10−4 and the unitary

matrices Us and Vs can be obtained using SVD as

Us =

0.51− 0.35ȷ+ 0.35κ 0.53− 0.21ȷ+ 0.42κ

0.51− 0.35ȷ+ 0.35κ −0.53 + 0.21ȷ− 0.42κ



Vs =

0.71 −0.71

0.71 0.71


Prior to the computation of Φ, the diagonal matrix D is obtained asa

D = VıH
s Us =

0.71− 0.50ȷ+ 0.49κ 0

0 −0.75 + 0.30ȷ− 0.59κ


Finally, the unitary matrix Φ can be computed as

Φ = Us(D
ı)1/2 =

0.65− 0.19ȷ+ 0.19κ −0.25− 0.30ȷ+ 0.59κ

0.65− 0.19ȷ+ 0.19κ 0.25 + 0.30ȷ− 0.59κ


where (Dı)1/2 can be expressed as

(Dı)1/2 =

(0.71 + 0.50ȷ− 0.49κ)0.5 0

0 (−0.75− 0.30ȷ+ 0.59κ)0.5


Hence, the ı−autocorrelation Rı can be diagonalised as

ΦHRıΦ
ı = Λs =

0.55 0

0 7.48× 10−4


aNote that VıH

s = VT
s , since Vs is real-valued in this example.
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D. Simplification of second order statistics for ‘degenerate’ quaternion random vari-

ables

There are many instances when full quaternion modelling is not required, and

degenerate cases7 are adequate for engineering applications, as in the modelling of

three dimensional (3D) coordinates on a sphere or 2D coordinates for modelling

horizontal motion. These degenerate cases of quaternion modelling can simplify its

statistics (and computation), which is addressed next.

Degenerate quaternions for 3D. Pure quaternions take the form p[n] = px[n]ı +

py[n]ȷ+pz[n]κ, and can be used for modelling 3D trajectories, whereby they represent

the ‘position’ variable p[n] in Eq. (1). In the context of pure quaternions, the pseudo-

autocorrelation rp[ℓ] and the autocorrelation rc[ℓ] are related as8

rp[ℓ] = −rc[ℓ] (33)

which implies that Eq. (26) becomes

rc[ℓ] = −
(
rı[ℓ] + rȷ[ℓ] + rκ[ℓ]

)
(34)

Hence, Eq. (34) implies that, for pure quaternions, only three correlation descriptors

are sufficient to capture the complete second order statistics. This is a reduction from

the requirement of having four known descriptors, as in Eq. (26) for full quaternions.

Degenerate quaternions for 2D modelling. Any two out of the three imaginary

components can be used for such modelling, as in Table II which shows which of those

two imaginary units are considered to design a particular 2D trajectory. In addition,

its last two columns show that only two correlation measures are sufficient, although

this pair of correlation measures cannot be selected arbitrarily.

TABLE II: Relationships between autocorrelations for 2D quaternion modelling.

Modelling Application Relationship I Relationship II
p[n] = px[n]ı+ py[n]ȷ 2D horizontal trajectory rı[ℓ] = −rȷ[ℓ] rκ[ℓ] = −rc[ℓ]
p[n] = px[n]ı+ pz[n]κ 2D vertical trajectory in X plane rı[ℓ] = −rκ[ℓ] rȷ[ℓ] = −rc[ℓ]
p[n] = qy[n]ȷ+ pz[n]κ 2D vertical trajectory in Y plane rȷ[ℓ] = −rκ[ℓ] rı[ℓ] = −rc[ℓ]

7The term ‘degenerate’ means that the quaternion is not full.
8For pure quaternions p and q, Eq. (33) can be verified by the quaternion product equivalence pq = −pq∗.
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For example, when considering the 2D horizontal trajectory, only rı[ℓ] or rȷ[ℓ]

and rc[ℓ] or rp[ℓ] or rκ[ℓ] are sufficient. If we consider rı[ℓ] and rc[ℓ], then Eq. (34)

confirms the relationships in Table II, given by

rc[ℓ] = −
(
rı[ℓ] + rȷ[ℓ]− rc[ℓ]

)
rı[ℓ] = −rȷ[ℓ] (35)

and

rc[ℓ] = −
(
rı[ℓ]− rı[ℓ] + rκ[ℓ]

)
rc[ℓ] = −rκ[ℓ] (36)

Remark 1. The degeneracy of a particular axis (i.e. zero values along that axis)

implies its redundancy in the quaternion statistics of a problem in hand. Consequently,

the corresponding autocorrelation is also redundant since rη[ℓ] = rp[ℓ] = −rc[ℓ]. For

example, in a 2D vertical trajectory in the Y plane, there is no activity along the

x-axis, leading the redundancy of rı[ℓ] = rp[ℓ].

Remark 2. The dependency of two axes (i.e. non-zero values along these two axes)

can be captured by either of the corresponding autocorrelations. For instance, in a

horizontal trajectory, the dependency between the x and y axes can be seen from

rı[ℓ] = −rȷ[ℓ].

Remark 3. The redundancy in statistics is useful to compute a more accurate

estimate of the statistical correlations. For instance in a 2D horizontal trajectory,

we have rc[ℓ] = −rκ[ℓ]. Computing both rc[ℓ] and rκ[ℓ] would be redundant, yet

computing both autocorrelations separately from the data and their ‘averaging’ would

ensure a more accurate estimate of the two correlation measures in practice, especially

for noisy signals. As such, for robustness against noise, the corresponding vector

augmentation in the X-Y plane would be qa[n] =

[
q[n] qκ[n]

]
for 2D proper signals.

Difference from C for 2D modelling. It is instructive to illustrate how the 2D

modelling via quaternions would differ, if the complex domain C was considered

instead. First, the C modelling would require the use of the real part of the complex

numbers, unlike in Table II which requires only the imaginary parts of a quater-
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nion. This fundamental difference leads to the following deviations from quaternion

statistics:

1) The relationship between the pseudo-autocorrelation rp[ℓ] and the autocorrela-

tion rc[n] in Eq. (33) no longer holds. The only possible way for these to share

a relationship (i.e. equality), is if 2D degnerates into 1D.

2) There is no relationship between the pseudo-autocorrelation rp[ℓ] and the η-

autocorrelation rη[n] in C, whereas it can be shown that there can be a rela-

tionship between pseudo-autocorrelation rp[ℓ] and the η-autocorrelation rη[ℓ] in

H by making use of Eq. (33), i.e. substitute rc[ℓ] with rp[ℓ] in Table II.

3) The pseudo-autocorrelation rp[ℓ] does exhibit the symmetry rp[ℓ] = rp[−ℓ] in

C, unlike in H. This is due to the commutativity of the complex product.

The second order statistics of quaternions would not be complete if the concept of

properness is not revisited, the subject of the next section.

E. Properness in H

There are several theoretical definitions for this second-order statistical property

in the literature. For example, Q−properness describes a quaternion random vari-

able with three vanishing complementary covariances (i.e. Rı = Rȷ = Rκ = 0 );

C−properness means two of the three complementary covariances vanish; and finally

R−properness implies only one of the three complementary covariances is zero [13].

On the other hand, a Gaussian quaternion random variable is called (η, α)−proper

(or circular) if it is invariant under two rotations [12], i.e.

q[n] = eηθ1q[n]eαθ2 (37)

where the angles θ1, θ2 lie between −π/2 and π/2. For a more comprehensive analysis

on properness, the reader is referred to [12]. Next, Section IV provides simulation

examples to illustrate the relevance of quaternion statistics in 3D orientation/rotation

applications. For clarity and conciseness, further theoretical considerations of proper-

ness are omitted in the next section.
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IV. MAKING SENSE OF QUATERNION STATISTICS IN 3D ORIENTATIONS

The aim of this section is to illustrate and demystify quaternion statistics. To

this end, the usefulness of quaternions is first demonstrated in terms of tracking the

statistics of trajectories on a 3D sphere. Second, the symmetries of the absolute values

of autocorrelations (Property P4) are demonstrated. Third, the relationships between

the different autocorrelations in Table II and Eq. (33) are elaborated visually. Figs. 1-4

show the absolute values of the autocorrelations in Eq. (12) for different trajectories,

which were normalised by the total number of samples (i. e. 1,001 3D samples) for

each example. To make sense of these quaternion autocorrelations r[ℓ] (the four top

right plots), Figs. 1-4 also show the real autocorrelations c[ℓ] in the nine bottom plots.
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Simulation 1. Fig. 1 shows an example of no particular trajectory (random walk)

on a 3D sphere. From the top plots, it is clear that all quaternion autocorrelations

vanish (except at the lag ℓ = 0) to reflect the randomness of the 3D data. As

such, at lag ℓ = 0, we have

rc[0] = 0.000999 + 0ı+ 0ȷ+ 0κ

rp[0] = −0.000999 + 0ı+ 0ȷ+ 0κ

rı[0] = −0.00032707 + 0ı+ 0ȷ+ 0κ

rȷ[0] = −0.00035628 + 0ı+ 0ȷ+ 0κ

rκ[0] = −0.00031565 + 0ı+ 0ȷ+ 0κ (38)

Eq. (38) confirms the relationship rc[ℓ] = −rp[ℓ] in Eq. (33). Moreover, plugging

in the autocorrelation values in Eq. (38) into the relationship in Eq. (26) confirms

the validity of the latter.

The observed lack of structure in terms of 3D trajectory implies that rη[ℓ] follows

the same pattern as rc[ℓ]. Moreover, rη[ℓ] are real-valued, confirming the lack

of correlation between each ⊥ coordinate due to the randomness of the data.

This is confirmed in the bottom plots of the six real (cross) autocorrelation

such as c12[ℓ], c13[ℓ], c23[ℓ]. On the other hand, rc[0] and rp[0] are by definition

real-valued at lag ℓ = 0 and maximum just like the three real autocorrelations

c11[ℓ], c22[ℓ], c33[ℓ].
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Simulation 2. Fig. 2 shows an example of a 3D oblique trajectory that involves

non-zero coordinates on all three ⊥ axes. Considering the lag ℓ = 0, we have

rc[0] = 0.000999 + 0ı+ 0ȷ+ 0κ

rp[0] = −0.000999 + 0ı+ 0ȷ+ 0κ

rı[0] = 0.00019605 + 0ı− 0.00013661ȷ+ 0.0001351κ

rȷ[0] = −0.00034437 + 0.00030387ı+ 0ȷ− 0.0001351κ

rκ[0] = −0.00085068− 0.00030387ı+ 0.00013661ȷ+ 0κ (39)

Unlike Simulation 1, rη[ℓ] are not constrained to real values due to the correlation

between the three imaginary components - which is confirmed by the real (cross)

autocorrelations, e.g. c12[ℓ],c23[ℓ], c31[ℓ]. Fig. 2 shows four different patterns,

although only three of these are distinct in shape from one another. In fact, the

autocorrelations |rc[ℓ]|, |rp[ℓ]| are approximately equal to |rκ[ℓ]| in magnitude.

The three distinct patterns exhibited by rc[ℓ], rı[ℓ], and rȷ[ℓ] in Fig. 2 suggest that

these three statistical descriptors are sufficient to describe the complete second

order information of the 3D trajectory in Simulation 2. This can be verified by

using Eq. (34) to calculate the last unknown autocorrelation rκ[ℓ] - this is also

confirmed by the values of the autocorrelations in Eq. (39). The maximum value

of c23[ℓ] at lag ℓ = 0 indicates that the activities in the y-axis z-axis are more

synchronised than with the activity in x-axis. This synchronisation is reflected

by the maximum values at ℓ = 0 for the corresponding quaternion counterparts

rκ[ℓ] and rȷ[ℓ].
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Simulation 3. Fig. 3 shows an example of a horizontal trajectory on a 3D sphere

that involves non-zero coordinates in the x and y axes only. Considering the lag

ℓ = 500, we have

rc[500] = 0 + 0ı+ 0ȷ+ 0.0005κ

rp[500] = 0 + 0ı+ 0ȷ− 0.0005κ

rı[500] = −0.00031767 + 0ı+ 0ȷ+ 0κ

rȷ[500] = 0.00031767 + 0ı+ 0ȷ+ 0κ

rκ[500] = 0 + 0ı+ 0ȷ− 0.0005κ (40)

Similarly to the previous simulations, Eq. (40) confirms the relationship rı[ℓ] =

−rȷ[ℓ] and rc[ℓ] = −rκ[ℓ] in Table II. Moreover, plugging in the values in Eq.

(40) into the relationship Eq. (34) confirms the validity of the latter.

Observe that the lag ℓ ̸= 0 considered in Eq. (40) implies that both the imaginary

parts ℑ{rc[500]},ℑ{rp[500]} ≠ 0. Moreover, since there is no activity in the

z-axis, the autocorrelation rκ[500] does not bring any new information when

compared to rc[500] and rp[500], since |rκ[ℓ]| = |rc[ℓ]| = |rp[ℓ]|. The inactivity in

the z-axis is confirmed by the bottom plots of the real (vanishing) autorrelation

of the third channel, e.g. c33[ℓ] = c23[ℓ] = c13[ℓ] = 0, which are redundant

statistics like its quaternion counterpart |rκ[ℓ]|.

This article has been accepted for publication in IEEE Signal Processing Magazine. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MSP.2024.3384178

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



22

Simulation 4. Fig. 4 shows an example of a vertical trajectory in the X plane

that involves non-zero coordinates in the x and z axes only. Considering the lag

ℓ = 500, we have

rc[500] = 0 + 0ı+ 0.0005ȷ+ 0κ

rp[500] = 0 + 0ı− 0.0005ȷ+ 0κ

rı[500] = −0.00031767 + 0ı+ 0ȷ+ 0κ

rȷ[500] = 0 + 0ı− 0.0005ȷ+ 0κ

rκ[500] = 0.00031767 + 0ı+ 0ȷ+ 0κ (41)

Like in Simulation 3, the imaginary parts ℑ{rc[500]},ℑ{rp[500]} ≠ 0 due

to the non-zero lag. Note the redundancy of the autocorrelation rȷ[ℓ], as the

trajectory does not reside in the y-axis, leading to |rȷ[ℓ]| = |rc[ℓ]| = |rp[ℓ]|. This

redundancy is also reflected by the vanishing real autocorrelations of the second

channel, i.e. c22[ℓ] = c21[ℓ] = c23[ℓ] = 0.

Observe also that Eq. (41) confirms the relationship rı[ℓ] = −rκ[ℓ] and

rc[ℓ] = −rȷ[ℓ] in Table II. Moreover, plugging in the values in Eq. (41) into the

relationship in Eq. (34) confirms the validity of the latter.

Although these simulations illustrate different trajectories, their statistics share the

following similar traits as observed from Figs. 1-4:

T1 The symmetries of the autocorrelations |r[ℓ]| = |r[−ℓ]| along the y axis (at the

lag ℓ = 0), confirming Property P4;

T2 The equalities of the autocorrelations |rc[ℓ]| = |rp[ℓ]|, as governed by Eq. (33);

T3 The equalities of the autocorrelation |rη[ℓ]| = |rc[ℓ]| = |rp[ℓ]| (as observed in

Remark 1) when there is no activity in the corresponding axis of rotation. For

example, in Simulation 3, the zero values in the z axis for the horizontal trajectory

lead to the redundancy of |rκ[ℓ] = |rc[ℓ]|;

T4 The maximum values of |rc[0]| and |rp[0]| at lag ℓ = 0, due to property P2 and

Eq. (33);

T5 The maximum values of |rη[0]| at lag ℓ = 0, if there is either a redundancy in
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that axis or a lack of structure in the 3D trajectory due to randomisation.

In addition to these insights, the overarching contribution to this work is to demonstrate

how quaternion statistics can be exploited to classify different 3D trajectories based

on the redundancies of some autocorrelations. For instance, the redundancy of |rκ[ℓ]|

in Simulation 3 indicates that there is no activity in the z axis, hence a horizontal

trajectory on the unit sphere. Likewise, the redundancy of |rȷ[ℓ]| indicates a vertical

trajectory in the X plane (or no activity in the y axis) for Simulation 4. Now that

the fundamentals of augmented statistics have been established, some applications of

augmented statistics are next revisited, with a focus on 3D orientation applications.

V. APPLICATIONS

Augmented statistics for quaternions have been considered in a range of applications

including sleep analysis [26], renewable energy [27], and seismic data analysis [28].

Given that quaternions are best known for the modelling of 3D rotations, we next

elaborate two applications of quaternion signal processing and augmented statistics

in the context of 3D orientations. Application 1 is concerned with the tracking of

the orientation variable q[n] for an unmanned aerial vehicle, while Application 2

considers the denoising of the orientation variable q[n] from a multiplicative noise.

The algorithms considered were the Quaternion Least Mean Square9 (QLMS) without

augmented statistics, the widely linear QLMS with augmented statistics [30], and a

benchmark algorithm tailored for each application. To facilitate reproducibility, these

real-world applications were adopted from the examples provided by Mathworks.

For more details, the readers are referred to the hyperlinks provided. Moreover, the

Supplementary Material10 at offer further practical insights to facilitate the adoption

of augmented quaternion statistics in applications.

To illustrate how the QLMS and the widely QLMS algorithms differ in quater-

nion statistics, consider their weight updates. For QLMS, its weight update11 can be

9A hardware QLMS implementation based on parallel processing can be found in [29].
10This paper has supplementary downloadable material available at http://ieeexplore.ieee.org., provided by the

authors. Contact clive.cheongtook@rhul.ac.uk for further questions about this work.
11Based on the assumption that the output filter can be computed as y[n] = wH[n]q[n].
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expressed as:

w[n+ 1] = w[n] + µq[n]e∗[n]

E {w[n+ 1]} = E {w[n]}+ µR[n]E {wo[n]−w[n]} (42)

where w[n], wo[n], and e[n] denote respectively the learnt weights, the optimal weights

(in terms of minimum mean square error) and the error. Observe that QLMS exploits

the covariance R[n] of the input q[n] only. On the other hand, the widely linear QLMS

takes advantage of augmented statistics through the use of the augmented covariance

Ra[n] within its update [30]:

wa[n+ 1] = wa[n] + µqa[n]e∗[n]

E {wa[n+ 1]} = E {wa[n]}+ µRa[n]E {wa
o [n]−wa[n]} (43)

where the weight vectors w[n] and wo[n] have been augmented by four folds to wa[n]

and wa
o [n] for widely linear processing. Similarly, the statistics have been augmented

to include not only the covariance R[n], but also the complementary covariances

Rı[n], Rȷ[n], and Rκ[n], i.e.

Ra[n] = E
{
qa[n]qaH [n]

}
=


R[n] Rı[n] Rȷ[n] Rκ[n]

(Rı[n])
ı (R[n])ı (Rκ[n])

ı (Rȷ[n])
ı

(Rȷ[n])
ȷ (Rκ[n])

ȷ (R[n])ȷ (Rı[n])
ȷ

(Rκ[n])
κ (Rȷ[n])

κ (Rı[n])
κ (R[n])κ


(44)

owing to the augmented input qa[n] =

[
q[n], qı[n], qȷ[n], qκ[n]

]
. The complemen-

tary covariances Rη[n] can be further expanded into the structure in Eq. (29) made up

of η-autocorrelations rη[ℓ] as defined in Eq. (20). Similarly, the covariance R[n] matrix

can be constructed with the building block of rc[ℓ]. For a horizontal motion such as in

Simulation 3, the augmented input can be reduced to qa[n] =

[
q[n], qȷ[n]

]
, whereas

for a vertical motion in the X plane in Simulation 4, a sufficient input corresponds to

qa[n] =

[
q[n], qκ[n]

]
. We refer to Table II to sufficient statistics for 2D modelling.
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Application 1. Consider the tracking of 3D orientations of an unmanned aerial

vehicle (UAV), which involves determining the orientation of q[n] from its

current position p†[n] and its previous positions p[n], as in Eq. (1). Fig. 5 shows

a real-world example of tracking the 3D orientation of a UAV for a duration of

approximately 18 seconds. This simulation was adapted from an exampleb on

data fusion of IMU sensors (such as accelerometers and gyroscopes) with GPS

sensors. The 3D orientation can be tracked ‘live’ by the 3D scope (like a virtual

gyroscope) in the bottom right plot of Fig. 5. The actual position of the UAV

involves not only rotation but also translation, which means that its movement

extends beyond the unit sphere; this makes it difficult to visualise the rotational

movements. To circumvent this visualisation issue, the left hand plot shows the

position of the UAV, if it were to start at position (1, 0, 0) on a unit sphere, and

its subsequent movements were restricted to the actual orientations (rotations)

of the UAV, whilst neglecting the translational movements. The top right plot of

Fig. 5 tracks the errors of the widely linear Quaternion LMS (denoted as ‘widely

linear QLMS’) based on augmented statistics, the strictly linear Quaternion LMS

without augmented statistics (denoted as ‘standard linear QLMS’) [30], and the

benchmark real-valued Kalman filter taken from the Mathworks example. The

benchmark real-valued Kalman filter tracked well the orientations given that

all its estimates were well within a margin error of one degree. However, the

direct operation in H exhibited performance benefits, especially when augmented

statistics were taken into account. In the context of augmented statistics, Property

PI on η−Hermitian Toeplitz structure in Eq. (30) can be exploited to reduce the

computational complexity of complementary correlation matrices Rη[n], since

only τ entries of Rη[n] need to be calculated explicitly, instead of τ 2 entries. The

same trick can be used for the computation of the Toeplitz covariance Rc[n].

bhttps://www.mathworks.com/help/fusion/ug/imu-and-gps-fusion-for-inertial-navigation.html
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Application 2. Consider the denoising of the 3D orientation variable q[n], where

the nature of the noise is multiplicative as in Eq. (1), and of the same form

as the orientation variable q[n], i.e. a full quaternion variable. Consequently,

the uncertainty associated with the new position p†[n] in Eq. (1) due to the

multiplicative noise qnoise[n] can be modelled as

p†[n] =

(
qnoise[n]q[n]

)
p[n]

(
q∗[n]q∗noise[n]

)
(45)

This application was taken from an examplec of Mathworks, which demonstrated

the low pass filtering of 3D orientation q[n] by a real-valued algorithm called

spherical linear interpolation (SLERP), which is the best known algorithm

in 3D rotations. Fig 6 compares the performance of the benchmark SLERP

algorithm with the widely QLMS (with augmented statistics) and the strictly

linear QLMS (without augmented statistics). All algorithms performed well

given the proximities of their estimates with the ground truth 3D rotation in

all the axes of rotation. The advantage of the SLERP is that it requires no

teaching (or desired) signal, since it denoises the 3D orientation signal q[n]

by interpolating between two consecutive noisy samples. However, this benefit

comes at the expense of weaker performance compared to the widely linear

QLMS and strictly linear QLMS, as illustrated in the bottom plot in Fig. 6. The

widely linear QLMS performed better than the standard QLMS, owing to the

use of augmented statistics.

chttps://www.mathworks.com/help/nav/ug/lowpass-filter-orientation-using-quaternion-slerp.html

VI. CONCLUSION

This tutorial embarks upon our foundation work on quaternion statistics [1] to es-

tablish a reader friendly insight and guide into their current and emerging applications.

This has involved the statistical characterisation of quaternion sequences, properties

of quaternion auto-correlations, and the degeneracy of quaternion correlations when

considering 3D or 2D (complex) data. This has served to demonstrate how quaternion

statistics can act as a lynchpin in machine learning algorithms in 3D and 4D. Whilst

keeping focus on making sense from quaternion statistics and opening avenues for
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further developments in this field, this paper also complements our sister paper [20],

which revisits quaternion learning algorithms and their applications.
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Fig. 1: Augmented quaternion statistics of no particular trajectory. Top Left: Random
points on a unit sphere. Top Right: The vanishing auto-correlations (except at lag
ℓ = 0) indicate the randomness of the data. Bottom: 9 Real valued autocorrelations
for trivariate signals.
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Fig. 2: Augmented quaternion statistics of a 3D trajectory. Top Left: A 3D oblique
trajectory on a unit sphere. Top Right: Only three distinct patterns are exhibited by the
auto-correlations, illustrating that only three descriptors are sufficient, e.g. rc[ℓ], rı[ℓ]
and rȷ[ℓ]. Note, however, that |rk[ℓ]| ≠ |rc[ℓ]| in this example, despite their similarity.
Bottom: 9 Real valued autocorrelations for trivariate signals.
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Fig. 3: Augmented quaternion statistics of a 2D trajectory. Top Left: A 2D horizontal
trajectory on a unit sphere. Top Right: Only two distinct patterns are exhibited by
the auto-correlations, illustrating that only two descriptors are sufficient, e.g. rc[ℓ] and
rȷ[ℓ]. Bottom: 9 Real valued autocorrelations for trivariate signals.
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Fig. 4: Augmented quaternion statistics of a 2D trajectory. Top Left: a 2D vertical
trajectory in X plane on a unit sphere. Top Right: Only two distinct patterns are
exhibited by the auto-correlations, illustrating that two descriptors are sufficient, e.g.
rc[ℓ] and rı[ℓ]. Bottom: 9 Real valued autocorrelations for trivariate signals.
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Fig. 5: Tracking the 3D orientation of a real-world unmanned aerial vehicle (UAV).
Left: The plot displays the 3D positions of the UAV on a unit sphere, after the
removal of translational motions. Right: The top plot shows the tracking errors of
the benchmark real Kalman filter and the considered quaternion algorithms, i.e. the
widely linear QLMS (augmented statistics) and the strictly (standard) linear QLMS
(without augmented statistics). The bottom plot shows the ‘live’ scope that changes
its 3D position according to the tracked orientation.
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Fig. 6: Filtering of rotational (and multiplicative) noise in 3D orientation by the
widely linear QLMS, the strictly (standard) linear QLMS, and the benchmark SLERP
algorithm, a popular algorithm for the ‘spherical’ linear interpolation of 3D rotations.
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